From 4158fc148938b61d544e98612a04722375faa4fc Mon Sep 17 00:00:00 2001 From: chrstphtrs Date: Fri, 22 Sep 2023 08:13:51 +0200 Subject: [PATCH 001/669] Add initial commit --- .gitattributes | 2 + .github/workflows/.gitkeep | 0 .gitignore | 262 ++++++++++++++++++++++++++++++++++ .gitmodules | 3 + .pre-commit-config.yaml | 44 ++++++ .reuse/dep5 | 0 .syncignore-receive | 14 ++ .syncignore-send | 12 ++ CITATION.cff | 13 ++ LICENSE.md | 20 +++ README.md | 52 +++++++ config/config.personal.yaml | 16 +++ config/config.yaml | 95 ++++++++++++ environment.yaml | 62 ++++++++ matplotlibrc | 7 + workflow/Snakefile | 43 ++++++ workflow/envs/.gitkeep | 0 workflow/notebooks/.gitkeep | 0 workflow/rules/.gitkeep | 0 workflow/scripts/dummy.py | 11 ++ workflow/submodules/.gitkeep | 0 workflow/submodules/pypsa-eur | 1 + 22 files changed, 657 insertions(+) create mode 100644 .gitattributes create mode 100644 .github/workflows/.gitkeep create mode 100644 .gitignore create mode 100644 .gitmodules create mode 100644 .pre-commit-config.yaml create mode 100644 .reuse/dep5 create mode 100644 .syncignore-receive create mode 100644 .syncignore-send create mode 100644 CITATION.cff create mode 100644 LICENSE.md create mode 100644 README.md create mode 100644 config/config.personal.yaml create mode 100644 config/config.yaml create mode 100644 environment.yaml create mode 100644 matplotlibrc create mode 100644 workflow/Snakefile create mode 100644 workflow/envs/.gitkeep create mode 100644 workflow/notebooks/.gitkeep create mode 100644 workflow/rules/.gitkeep create mode 100644 workflow/scripts/dummy.py create mode 100644 workflow/submodules/.gitkeep create mode 160000 workflow/submodules/pypsa-eur diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 000000000..49523506e --- /dev/null +++ b/.gitattributes @@ -0,0 +1,2 @@ +*.pdf filter=lfs diff=lfs merge=lfs -text +*.png filter=lfs diff=lfs merge=lfs -text diff --git a/.github/workflows/.gitkeep b/.github/workflows/.gitkeep new file mode 100644 index 000000000..e69de29bb diff --git a/.gitignore b/.gitignore new file mode 100644 index 000000000..699cd2af3 --- /dev/null +++ b/.gitignore @@ -0,0 +1,262 @@ +# misc +.vscode +dconf +.snakemake/ +*.ipynb_checkpoints +*.nc +*.log +*.pdf +*.png + +# generated files +results/ +resources/ +data/ + +## Core latex/pdflatex auxiliary files: +*.aux +*.lof +*.log +*.lot +*.fls +*.out +*.toc +*.fmt +*.fot +*.cb +*.cb2 + +## Bibliography auxiliary files (bibtex/biblatex/biber): +*.bbl +*.bcf +*.blg +*-blx.aux +*-blx.bib +*.brf +*.run.xml + +## Build tool auxiliary files: +*.fdb_latexmk +*.synctex +*.synctex(busy) +*.synctex.gz +*.synctex.gz(busy) +*.pdfsync + +# Python +*.pyc +build/ +dist/ +__pycache__ +*.egg-info +.cache/ + +## Intermediate documents: +*.dvi +*.xdv +*-converted-to.* +# these rules might exclude image files for figures etc. +# *.ps +# *.eps +# *.pdf + +## Build tool directories for auxiliary files +# latexrun +latex.out/ + +## Auxiliary and intermediate files from other packages: +# algorithms +*.alg +*.loa + +# achemso +acs-*.bib + +# amsthm +*.thm + +# beamer +*.nav +*.pre +*.snm +*.vrb + +# changes +*.soc + +# cprotect +*.cpt + +# elsarticle (documentclass of Elsevier journals) +*.spl + +# endnotes +*.ent + +# fixme +*.lox + +# feynmf/feynmp +*.mf +*.mp +*.t[1-9] +*.t[1-9][0-9] +*.tfm + +#(r)(e)ledmac/(r)(e)ledpar +*.end +*.?end +*.[1-9] +*.[1-9][0-9] +*.[1-9][0-9][0-9] +*.[1-9]R +*.[1-9][0-9]R +*.[1-9][0-9][0-9]R +*.eledsec[1-9] +*.eledsec[1-9]R +*.eledsec[1-9][0-9] +*.eledsec[1-9][0-9]R +*.eledsec[1-9][0-9][0-9] +*.eledsec[1-9][0-9][0-9]R + +# glossaries +*.acn +*.acr +*.glg +*.glo +*.gls +*.glsdefs + +# gnuplottex +*-gnuplottex-* + +# gregoriotex +*.gaux +*.gtex + +# htlatex +*.4ct +*.4tc +*.idv +*.lg +*.trc +*.xref + +# hyperref +*.brf + +# knitr +*-concordance.tex +*.tikz +*-tikzDictionary + +# listings +*.lol + +# makeidx +*.idx +*.ilg +*.ind +*.ist + +# minitoc +*.maf +*.mlf +*.mlt +*.mtc[0-9]* +*.slf[0-9]* +*.slt[0-9]* +*.stc[0-9]* + +# minted +_minted* +*.pyg + +# morewrites +*.mw + +# nomencl +*.nlg +*.nlo +*.nls + +# pax +*.pax + +# pdfpcnotes +*.pdfpc + +# sagetex +*.sagetex.sage +*.sagetex.py +*.sagetex.scmd + +# scrwfile +*.wrt + +# sympy +*.sout +*.sympy +sympy-plots-for-*.tex/ + +# pdfcomment +*.upa +*.upb + +# pythontex +*.pytxcode +pythontex-files-*/ + +# thmtools +*.loe + +# TikZ & PGF +*.dpth +*.md5 +*.auxlock + +*.tdo +*.lod + +# xmpincl +*.xmpi + +# xindy +*.xdy + +# xypic precompiled matrices +*.xyc + +# endfloat +*.ttt +*.fff + +# Latexian +TSWLatexianTemp* + +## Editors: +# WinEdt +*.bak +*.sav + +# Texpad +.texpadtmp + +# LyX +*.lyx~ + +# Kile +*.backup + +# KBibTeX +*~[0-9]* + +# auto folder when using emacs and auctex +./auto/* +*.el + +# expex forward references with \gathertags +*-tags.tex + +# standalone packages +*.sta \ No newline at end of file diff --git a/.gitmodules b/.gitmodules new file mode 100644 index 000000000..f0ceea823 --- /dev/null +++ b/.gitmodules @@ -0,0 +1,3 @@ +[submodule "workflow/submodules/pypsa-eur"] + path = workflow/submodules/pypsa-eur + url = git@github.com:PyPSA/pypsa-eur.git diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 000000000..2d12d626d --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,44 @@ +repos: +- repo: https://github.com/pre-commit/pre-commit-hooks + rev: v4.2.0 + hooks: + - id: trailing-whitespace + - id: end-of-file-fixer + - id: mixed-line-ending + - id: check-yaml + - id: check-merge-conflict + - id: check-added-large-files + args: ['--maxkb=2000'] +- repo: https://github.com/psf/black + rev: 22.3.0 + hooks: + - id: black + - id: black-jupyter +- repo: https://github.com/aflc/pre-commit-jupyter + rev: v1.2.1 + hooks: + - id: jupyter-notebook-cleanup +- repo: https://github.com/snakemake/snakefmt + rev: v0.6.0 + hooks: + - id: snakefmt +- repo: https://github.com/jonasbb/pre-commit-latex-hooks + rev: v1.3.0 + hooks: + - id: american-eg-ie + - id: cleveref-capitalization + - id: consistent-spelling + args: + [ + "--emph=et al.", + '--regex=naive=\bna(i|\\"i)ve', + '--regex=optimisation=\boptimi(s|z)ation', + ] + - id: ensure-labels-for-sections + - id: no-space-in-cite + - id: tilde-cite + - id: unique-labels +# - repo: https://github.com/fsfe/reuse-tool +# rev: latest +# hooks: +# - id: reuse \ No newline at end of file diff --git a/.reuse/dep5 b/.reuse/dep5 new file mode 100644 index 000000000..e69de29bb diff --git a/.syncignore-receive b/.syncignore-receive new file mode 100644 index 000000000..09cc0f7f5 --- /dev/null +++ b/.syncignore-receive @@ -0,0 +1,14 @@ +# build files to ignore when receiving from cluster +.snakemake +.git +.pytest_cache +.ipynb_checkpoints +.vscode +.DS_Store +__pycache__ +*.pyc +*.pyo + +# project specific +data +*.nc diff --git a/.syncignore-send b/.syncignore-send new file mode 100644 index 000000000..2aea6014c --- /dev/null +++ b/.syncignore-send @@ -0,0 +1,12 @@ +.snakemake +.git +.pytest_cache +__pycache__ +*.pyc +*.pyo +.vscode +.DS_Store +.ipynb_checkpoints +.vscode +resources +results \ No newline at end of file diff --git a/CITATION.cff b/CITATION.cff new file mode 100644 index 000000000..cc8d796c8 --- /dev/null +++ b/CITATION.cff @@ -0,0 +1,13 @@ +cff-version: 1.2.0 +message: "pypsa-ariadne" +title: "Kopernikus-Projekt Ariadne - Gesamtsystemmodell PyPSA-Eur" +repository: https://github.com/account/pypsa-ariadne +version: 0.0.0 +doi: "N/A" +date-released: "N/A" +license: MIT +authors: + - family-names: Your surname + given-names: Christoph Tries + orcid: https://orcid.org/0009-0000-2425-0993 + \ No newline at end of file diff --git a/LICENSE.md b/LICENSE.md new file mode 100644 index 000000000..3ed920762 --- /dev/null +++ b/LICENSE.md @@ -0,0 +1,20 @@ +Copyright (c) 2023 Christoph Tries Your surname + +Permission is hereby granted, free of charge, to any person obtaining +a copy of this software and associated documentation files (the +"Software"), to deal in the Software without restriction, including +without limitation the rights to use, copy, modify, merge, publish, +distribute, sublicense, and/or sell copies of the Software, and to +permit persons to whom the Software is furnished to do so, subject to +the following conditions: + +The above copyright notice and this permission notice shall be +included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. diff --git a/README.md b/README.md new file mode 100644 index 000000000..7f106f9d4 --- /dev/null +++ b/README.md @@ -0,0 +1,52 @@ +# Kopernikus-Projekt Ariadne - Gesamtsystemmodell PyPSA-Eur + +Dieses Repository enthält das Gesamtsystemmodell für das Kopernikus-Projekt Ariadne, basierend auf der Toolbox PyPSA und dem Datensatz PyPSA-Eur. Das Modell bildet Deutschland mit hoher geographischer Auflösung, mit voller Sektorenkopplung und mit Integration in das europäische Energiesystem ab. + +This repository contains the entire scientific project, including data sources and code. The philosophy behind this repository is that no intermediary results are included, but all results are computed from raw data and code. + +## Clone the repository - including necessary submodules! + +To start you need to clone the [PyPSA-Ariadne repository](https://github.com/PyPSA/pypsa-ariadne/). Since the repository relies on Git Submodules to integrate the PyPSA-Eur dataset as a basis on which to expand, you need to include the `--recurse-submodules` flag in your `git clone` command: + + git clone --recurse-submodules git@github.com:PyPSA/pypsa-ariadne.git + +Alternatively, after having cloned the repository without activating submodules, you can run the two following commands: + + git submodule update --init --recursive + +This command first initializes your local configuration file, second fetches all the data from the project(s) declared as submodule(s) (in this case, PyPSA-Eur) as well as all potential nested submodules, and third checks out the appropriate PyPSA-Eur commit which is defined in the PyPSA-Ariadne repository. + +You can fetch and merge any new commits from the remote of the submodules with the following command: + + git submodule update --remote + +More information on Git Submodules can be found [here](https://git-scm.com/book/en/v2/Git-Tools-Submodules). + +## Getting ready + +You need [mamba](https://mamba.readthedocs.io/en/latest/) to run the analysis. Using mamba, you can create an environment from within you can run it: + + mamba env create -f environment.yaml + +## Run the analysis + + snakemake -call + +This will run all analysis steps to reproduce results. + +To generate a PDF of the dependency graph of all steps `build/dag.pdf` run: + + snakemake -c1 --use-conda -f dag + +## Repo structure + +* `config`: configurations used in the study +* `cutouts`: very large weather data cutouts supplied by atlite library +* `data`: place for raw data +* `resources`: place for intermediate/processing data for the workflow +* `results`: will contain all results (does not exist initially) +* `workflow`: contains the Snakemake workflow, including the submodule PyPSA-Eur + +## License + +The code in this repo is MIT licensed, see `./LICENSE.md`. diff --git a/config/config.personal.yaml b/config/config.personal.yaml new file mode 100644 index 000000000..61042763c --- /dev/null +++ b/config/config.personal.yaml @@ -0,0 +1,16 @@ +# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: CC0-1.0 + +# IMPORTANT: Specify your personal configuration here. After having done so, run the following command to avoid git committing the file with your personal configurations: +# git update-index --skip-worktree FILENAME +# and if you want to track the changes again use this command: +# git update-index --no-skip-worktree FILENAME +# See also: https://stackoverflow.com/questions/13630849/git-difference-between-assume-unchanged-and-skip-worktree# +private: + keys: + entsoe_api: + +remote: + ssh: "" + path: "" \ No newline at end of file diff --git a/config/config.yaml b/config/config.yaml new file mode 100644 index 000000000..2dd399d1e --- /dev/null +++ b/config/config.yaml @@ -0,0 +1,95 @@ +# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: CC0-1.0 + +# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run +run: + name: "test-365H" + scenarios: + enable: true + shared_resources: true + disable_progressbar: true + +# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight +foresight: myopic + +# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#scenario +# Wildcard docs in https://pypsa-eur.readthedocs.io/en/latest/wildcards.html +scenario: + simpl: + - '' + ll: + - v1.2 + clusters: + - 22 + opts: + - '' + sector_opts: + - Co2L0-365H-T-H-B-I-A-solar+p3-linemaxext15 + planning_horizons: + # - 2020 + # - 2030 + # - 2040 + - 2050 + +# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries +# Germany plus 12 "Stromnachbarn" +countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'PL', 'SE'] + +# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable +enable: + retrieve: false # set to false once initial data is retrieved + retrieve_cutout: false # set to false once initial data is retrieved + +focus_weights: +# 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" + 'DE': 0.3636 # 8/22 + 'AT': 0.0455 # 1/22 + 'BE': 0.0455 + 'CH': 0.0455 + 'CZ': 0.0455 + 'DK': 0.0909 # 2/22 + 'FR': 0.0454 + 'GB': 0.0909 + 'LU': 0.0454 + 'NL': 0.0454 + 'NO': 0.0454 + 'PL': 0.0454 + 'SE': 0.0454 + +# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#co2-budget +co2_budget: + 2020: 0.701 + 2025: 0.524 + 2030: 0.297 + 2035: 0.150 + 2040: 0.071 + 2045: 0.032 + 2050: 0.000 + +# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector +sector: + district_heating: + potential: 0.6 + progress: + 2020: 0.0 + 2030: 0.3 + 2040: 0.6 + 2050: 1.0 + #TBD what to include in config + +# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry +industry: + St_primary_fraction: + 2020: 0.6 + 2025: 0.55 + 2030: 0.5 + 2035: 0.45 + 2040: 0.4 + 2045: 0.35 + 2050: 0.3 + #TBD what to include in config + +# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving +solving: + walltime: "12:00:00" \ No newline at end of file diff --git a/environment.yaml b/environment.yaml new file mode 100644 index 000000000..f0f91e8e1 --- /dev/null +++ b/environment.yaml @@ -0,0 +1,62 @@ +name: pypsa-ariadne +channels: +- conda-forge +- bioconda +- gurobi +dependencies: +- python>=3.8 +- pip + +- pre-commit +- black + +- jupyter +- jupyterlab + + # Dependencies of the workflow itself +- xlrd +- openpyxl!=3.1.1 +- pycountry +- seaborn +- snakemake-minimal>=7.7.0 +- memory_profiler +- yaml +- pytables +- lxml +- powerplantmatching>=0.5.5 +- numpy +- pandas>=1.4 +- geopandas>=0.11.0 +- atlite>=0.2.9 +- dask +- xarray +- rioxarray +- netcdf4 +- networkx +- scipy +- shapely>=2.0 +- pyomo +- gurobi +- matplotlib<3.6 +- proj +- fiona +- country_converter +- geopy +- tqdm +- pytz +- tabula-py +- pyxlsb +- graphviz + + # Keep in conda environment when calling ipython +- ipython + + # GIS dependencies: +- cartopy +- descartes +- rasterio!=1.2.10 + + +- pip: + - tsam>=1.1.0 + - pypsa>=0.25.1 \ No newline at end of file diff --git a/matplotlibrc b/matplotlibrc new file mode 100644 index 000000000..b199278a5 --- /dev/null +++ b/matplotlibrc @@ -0,0 +1,7 @@ +font.family: sans-serif +font.sans-serif: Ubuntu +image.cmap: viridis +axes.grid : false +legend.frameon : false +savefig.bbox : tight +mathtext.default : regular diff --git a/workflow/Snakefile b/workflow/Snakefile new file mode 100644 index 000000000..4f54b7796 --- /dev/null +++ b/workflow/Snakefile @@ -0,0 +1,43 @@ +# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT + +configfile: "workflow/submodules/pypsa-eur/config/config.default.yaml" +configfile: "config/config.yaml" + + +module pypsaeur: + snakefile: + "submodules/pypsa-eur/Snakefile" + config: + config + + +use rule * from pypsaeur + + +from pathlib import Path + +data_dir = Path("workflow/submodules/pypsa-eur/data") +rule get_data: + output: + [ + str(Path("data") / p.relative_to(data_dir)) + for p in data_dir.rglob("*") + if p.is_file() + ], + shell: + """ + mkdir -p data + cp -nR {data_dir}/. data/ + """ + + +rule clean: + message: "Remove all build results but keep downloaded data." + run: + import shutil + + shutil.rmtree("resources") + shutil.rmtree("results") + print("Data downloaded to data/ has not been cleaned.") diff --git a/workflow/envs/.gitkeep b/workflow/envs/.gitkeep new file mode 100644 index 000000000..e69de29bb diff --git a/workflow/notebooks/.gitkeep b/workflow/notebooks/.gitkeep new file mode 100644 index 000000000..e69de29bb diff --git a/workflow/rules/.gitkeep b/workflow/rules/.gitkeep new file mode 100644 index 000000000..e69de29bb diff --git a/workflow/scripts/dummy.py b/workflow/scripts/dummy.py new file mode 100644 index 000000000..840fdfdb6 --- /dev/null +++ b/workflow/scripts/dummy.py @@ -0,0 +1,11 @@ +"""Package description.""" + +import pandas as pd + + +def myfunction(): + return None + + +if __name__ == "__main__": + myfunction diff --git a/workflow/submodules/.gitkeep b/workflow/submodules/.gitkeep new file mode 100644 index 000000000..e69de29bb diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur new file mode 160000 index 000000000..0d2aac5dd --- /dev/null +++ b/workflow/submodules/pypsa-eur @@ -0,0 +1 @@ +Subproject commit 0d2aac5dd26ff03d06be2aabe19daef1e4317d2e From d8f916c38ea712072294b92a0d2b27f783fe41e6 Mon Sep 17 00:00:00 2001 From: chrstphtrs Date: Wed, 18 Oct 2023 17:03:30 +0200 Subject: [PATCH 002/669] update environment based on recent pypsa-eur master changes --- environment.yaml | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/environment.yaml b/environment.yaml index f0f91e8e1..e07c760c5 100644 --- a/environment.yaml +++ b/environment.yaml @@ -29,7 +29,7 @@ dependencies: - geopandas>=0.11.0 - atlite>=0.2.9 - dask -- xarray +- xarray<=2023.8.0 - rioxarray - netcdf4 - networkx @@ -37,6 +37,7 @@ dependencies: - shapely>=2.0 - pyomo - gurobi +- ipopt - matplotlib<3.6 - proj - fiona @@ -59,4 +60,5 @@ dependencies: - pip: - tsam>=1.1.0 - - pypsa>=0.25.1 \ No newline at end of file + - pypsa>=0.25.1 + - highspy \ No newline at end of file From 1684297e4237b079bf3504a960b4acb84fef7077 Mon Sep 17 00:00:00 2001 From: chrstphtrs Date: Wed, 18 Oct 2023 17:08:14 +0200 Subject: [PATCH 003/669] add national co2 budget constraints in config, add pypsa-eur commits containing national co2 budget option, add link for submodule pypsa-eur to dedicated branch ariadne --- config/config.yaml | 57 +++++++++++++++++++++++++++-------- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 45 insertions(+), 14 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 2dd399d1e..24f53aef3 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -25,12 +25,12 @@ scenario: opts: - '' sector_opts: - - Co2L0-365H-T-H-B-I-A-solar+p3-linemaxext15 + - 365H-T-H-B-I-A-solar+p3-linemaxext15 planning_horizons: # - 2020 - # - 2030 + - 2030 # - 2040 - - 2050 + # - 2050 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" @@ -38,8 +38,8 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: false # set to false once initial data is retrieved - retrieve_cutout: false # set to false once initial data is retrieved + retrieve: true # set to false once initial data is retrieved + retrieve_cutout: true # set to false once initial data is retrieved focus_weights: # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" @@ -50,7 +50,7 @@ focus_weights: 'CZ': 0.0455 'DK': 0.0909 # 2/22 'FR': 0.0454 - 'GB': 0.0909 + 'GB': 0.0909 # 2/22 'LU': 0.0454 'NL': 0.0454 'NO': 0.0454 @@ -59,13 +59,43 @@ focus_weights: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#co2-budget co2_budget: - 2020: 0.701 - 2025: 0.524 - 2030: 0.297 - 2035: 0.150 - 2040: 0.071 - 2045: 0.032 - 2050: 0.000 + 2020: 0.800 # 20% reduction by 2020 + 2025: 0.600 + 2030: 0.450 # 55% reduction by 2030 (Ff55) + 2035: 0.250 + 2040: 0.100 # goal to be set next year + 2045: 0.050 + 2050: 0.000 # climate-neutral by 2050 + +co2_budget_national: + 2030: + 'DE': 0.350 + 'AT': 0.450 + 'BE': 0.450 + 'CH': 0.450 + 'CZ': 0.450 + 'DK': 0.450 + 'FR': 0.450 + 'GB': 0.450 + 'LU': 0.450 + 'NL': 0.450 + 'NO': 0.450 + 'PL': 0.450 + 'SE': 0.450 + 2050: + 'DE': 0.000 + 'AT': 0.000 + 'BE': 0.000 + 'CH': 0.000 + 'CZ': 0.000 + 'DK': 0.000 + 'FR': 0.000 + 'GB': 0.000 + 'LU': 0.000 + 'NL': 0.000 + 'NO': 0.000 + 'PL': 0.000 + 'SE': 0.000 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: @@ -76,6 +106,7 @@ sector: 2030: 0.3 2040: 0.6 2050: 1.0 + co2_budget_national: true #TBD what to include in config # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 0d2aac5dd..9b9090c76 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 0d2aac5dd26ff03d06be2aabe19daef1e4317d2e +Subproject commit 9b9090c76cb1fbd601626342ce569d87e490d9d0 From 34911940f16f0c1e46f654354f942f366afb8eca Mon Sep 17 00:00:00 2001 From: chrstphtrs Date: Tue, 24 Oct 2023 16:43:23 +0200 Subject: [PATCH 004/669] clean up config and function add_co2limit_country in solve_network --- config/config.yaml | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 24f53aef3..de8d30e21 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -38,8 +38,8 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: true # set to false once initial data is retrieved - retrieve_cutout: true # set to false once initial data is retrieved + retrieve: false # set to false once initial data is retrieved + retrieve_cutout: false # set to false once initial data is retrieved focus_weights: # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" @@ -68,6 +68,8 @@ co2_budget: 2050: 0.000 # climate-neutral by 2050 co2_budget_national: + select_unselect_all: true # if true, add national constraints for all countries; if all, add national constraints for none + exclude_include: [] # if all_countries is true, add countries to exclude; if all_countries is false, add countries to include 2030: 'DE': 0.350 'AT': 0.450 From 66ab0e22535570104ef9f964c1748eaa750dbedc Mon Sep 17 00:00:00 2001 From: chrstphtrs Date: Tue, 21 Nov 2023 14:57:13 +0100 Subject: [PATCH 005/669] update submodule to current state of pypsa-ariadne branch --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 9b9090c76..d9ec127f9 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 9b9090c76cb1fbd601626342ce569d87e490d9d0 +Subproject commit d9ec127f996f854cc775cdfcc6db18cd26cf3ea5 From 28fee4c38ff153588abb8bdb3e598345ccf5bebc Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Mon, 4 Dec 2023 16:48:52 +0100 Subject: [PATCH 006/669] update to latest pypsa-eur/ariadne branch Fixes infeasibility with CO2 (DAC was counted with wrong sign). --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index d9ec127f9..66178a5a2 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit d9ec127f996f854cc775cdfcc6db18cd26cf3ea5 +Subproject commit 66178a5a27625b7055d029403c66bd7ac6df1da5 From 8a9b42f14ecf1fa77495899ac887bc2f75d42be1 Mon Sep 17 00:00:00 2001 From: Toni Seibold <153275395+toniseibold@users.noreply.github.com> Date: Fri, 8 Dec 2023 11:52:59 +0100 Subject: [PATCH 007/669] Update README.md --- README.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/README.md b/README.md index 7f106f9d4..607393cba 100644 --- a/README.md +++ b/README.md @@ -30,6 +30,14 @@ You need [mamba](https://mamba.readthedocs.io/en/latest/) to run the analysis. U ## Run the analysis +For the first run open config.yaml and set + + enable: + retrieve: true # set to false once initial data is retrieved + retrieve_cutout: true # set to false once initial data is retrieved + +and then run from main repository + snakemake -call This will run all analysis steps to reproduce results. From 74f1d2845c6cf6dd8497a4a99c2cf34a6e1debcc Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 8 Dec 2023 13:37:56 +0100 Subject: [PATCH 008/669] updates so that it runs 2020-50 Bug fixes in pypsa-eur/ariadne and FT min partload adjusted down. --- config/config.yaml | 52 +++++++++++++++++++++++++++++------ workflow/submodules/pypsa-eur | 2 +- 2 files changed, 45 insertions(+), 9 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index de8d30e21..e02060497 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,10 +4,10 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "test-365H" + name: "231208-fixprocessemissions-365H" scenarios: enable: true - shared_resources: true + shared_resources: true #stops recalculating disable_progressbar: true # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight @@ -19,7 +19,7 @@ scenario: simpl: - '' ll: - - v1.2 + - vopt clusters: - 22 opts: @@ -27,10 +27,10 @@ scenario: sector_opts: - 365H-T-H-B-I-A-solar+p3-linemaxext15 planning_horizons: - # - 2020 + - 2020 - 2030 - # - 2040 - # - 2050 + - 2040 + - 2050 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" @@ -38,7 +38,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: false # set to false once initial data is retrieved + retrieve: true # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved focus_weights: @@ -70,6 +70,20 @@ co2_budget: co2_budget_national: select_unselect_all: true # if true, add national constraints for all countries; if all, add national constraints for none exclude_include: [] # if all_countries is true, add countries to exclude; if all_countries is false, add countries to include + 2020: + 'DE': 0.6 + 'AT': 0.8 + 'BE': 0.8 + 'CH': 0.8 + 'CZ': 0.8 + 'DK': 0.8 + 'FR': 0.8 + 'GB': 0.8 + 'LU': 0.8 + 'NL': 0.8 + 'NO': 0.8 + 'PL': 0.8 + 'SE': 0.8 2030: 'DE': 0.350 'AT': 0.450 @@ -84,6 +98,20 @@ co2_budget_national: 'NO': 0.450 'PL': 0.450 'SE': 0.450 + 2040: + 'DE': 0.120 + 'AT': 0.200 + 'BE': 0.200 + 'CH': 0.200 + 'CZ': 0.200 + 'DK': 0.200 + 'FR': 0.200 + 'GB': 0.200 + 'LU': 0.200 + 'NL': 0.200 + 'NO': 0.200 + 'PL': 0.200 + 'SE': 0.200 2050: 'DE': 0.000 'AT': 0.000 @@ -110,6 +138,8 @@ sector: 2050: 1.0 co2_budget_national: true #TBD what to include in config + #relax so no infeasibility in 2050 with no land transport demand + min_part_load_fischer_tropsch: 0.7 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry industry: @@ -125,4 +155,10 @@ industry: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving solving: - walltime: "12:00:00" \ No newline at end of file + walltime: "12:00:00" + options: + load_shedding: false + +plotting: + tech_colors: + load: "#111100" diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 66178a5a2..00e86e643 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 66178a5a27625b7055d029403c66bd7ac6df1da5 +Subproject commit 00e86e6435816fe007fb25d62de90cf58fbc01c4 From 0520f4cb19a9cb17bb6c96f731a919745d0df45c Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 8 Dec 2023 18:35:47 +0100 Subject: [PATCH 009/669] add rule and script to download ariadne scenario data --- config/config.yaml | 13 ++++++++++--- workflow/Snakefile | 14 ++++++++++++++ .../scripts/retrieve_ariadne_scenario_data.py | 19 +++++++++++++++++++ workflow/submodules/pypsa-eur | 2 +- 4 files changed, 44 insertions(+), 4 deletions(-) create mode 100644 workflow/scripts/retrieve_ariadne_scenario_data.py diff --git a/config/config.yaml b/config/config.yaml index e02060497..a321c643f 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,12 +4,19 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "231208-fixprocessemissions-365H" + name: "231208-fixlvinfeasibility-365H" scenarios: enable: true shared_resources: true #stops recalculating disable_progressbar: true + +iiasa_database: + db_name: ariadne_intern + model_name: Hybrid + scenario: 8Gt_EnSec + region: Deutschland + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight foresight: myopic @@ -19,7 +26,7 @@ scenario: simpl: - '' ll: - - vopt + - v1.2 clusters: - 22 opts: @@ -139,7 +146,7 @@ sector: co2_budget_national: true #TBD what to include in config #relax so no infeasibility in 2050 with no land transport demand - min_part_load_fischer_tropsch: 0.7 + min_part_load_fischer_tropsch: 0. # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry industry: diff --git a/workflow/Snakefile b/workflow/Snakefile index 4f54b7796..f1ed7cbca 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -4,6 +4,7 @@ configfile: "workflow/submodules/pypsa-eur/config/config.default.yaml" configfile: "config/config.yaml" +configfile: "config/config.personal.yaml" module pypsaeur: @@ -41,3 +42,16 @@ rule clean: shutil.rmtree("resources") shutil.rmtree("results") print("Data downloaded to data/ has not been cleaned.") + + +rule retrieve_ariadne_scenario_data: + params: + iiasa=config["iiasa_database"] + output: + data="resources/ariadne_scenario_data.csv" + log: + "logs/retrieve_ariadne_scenario_data.log" + resources: + mem_mb=1000 + script: + "scripts/retrieve_ariadne_scenario_data.py" diff --git a/workflow/scripts/retrieve_ariadne_scenario_data.py b/workflow/scripts/retrieve_ariadne_scenario_data.py new file mode 100644 index 000000000..3906656ff --- /dev/null +++ b/workflow/scripts/retrieve_ariadne_scenario_data.py @@ -0,0 +1,19 @@ + + +import pyam + +pyam.iiasa.set_config(snakemake.config["iiasa_database"]["username"], + snakemake.config["iiasa_database"]["password"]) + + +model_raw = pyam.read_iiasa(snakemake.config["iiasa_database"]["db_name"], + model=snakemake.config["iiasa_database"]["model_name"], + scenario=snakemake.config["iiasa_database"]["scenario"]) + +model_df = model_raw.timeseries() + +model_df = model_df.loc[snakemake.config["iiasa_database"]["model_name"], + snakemake.config["iiasa_database"]["scenario"], + snakemake.config["iiasa_database"]["region"]] + +model_df.to_csv(snakemake.output.data) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 00e86e643..326ed6332 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 00e86e6435816fe007fb25d62de90cf58fbc01c4 +Subproject commit 326ed63329d55d5a84f9230840161cdb3673e27a From ba2bc38e93cd6de185ae7fa791b037ee751aa21f Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 15 Dec 2023 09:55:48 +0100 Subject: [PATCH 010/669] override default costs with local cost assumptions --- ariadne-data/costs_2020-modifications.csv | 2 ++ ariadne-data/costs_2030-modifications.csv | 2 ++ ariadne-data/costs_2040-modifications.csv | 2 ++ ariadne-data/costs_2050-modifications.csv | 2 ++ workflow/Snakefile | 5 +++++ workflow/submodules/pypsa-eur | 2 +- 6 files changed, 14 insertions(+), 1 deletion(-) create mode 100644 ariadne-data/costs_2020-modifications.csv create mode 100644 ariadne-data/costs_2030-modifications.csv create mode 100644 ariadne-data/costs_2040-modifications.csv create mode 100644 ariadne-data/costs_2050-modifications.csv diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv new file mode 100644 index 000000000..ce89ed324 --- /dev/null +++ b/ariadne-data/costs_2020-modifications.csv @@ -0,0 +1,2 @@ +technology,parameter,value,unit,source,further description +gas,fuel,50.0,EUR/MWh_th,TTF futures, diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv new file mode 100644 index 000000000..ce89ed324 --- /dev/null +++ b/ariadne-data/costs_2030-modifications.csv @@ -0,0 +1,2 @@ +technology,parameter,value,unit,source,further description +gas,fuel,50.0,EUR/MWh_th,TTF futures, diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv new file mode 100644 index 000000000..ce89ed324 --- /dev/null +++ b/ariadne-data/costs_2040-modifications.csv @@ -0,0 +1,2 @@ +technology,parameter,value,unit,source,further description +gas,fuel,50.0,EUR/MWh_th,TTF futures, diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv new file mode 100644 index 000000000..ce89ed324 --- /dev/null +++ b/ariadne-data/costs_2050-modifications.csv @@ -0,0 +1,2 @@ +technology,parameter,value,unit,source,further description +gas,fuel,50.0,EUR/MWh_th,TTF futures, diff --git a/workflow/Snakefile b/workflow/Snakefile index f1ed7cbca..990e997c4 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -55,3 +55,8 @@ rule retrieve_ariadne_scenario_data: mem_mb=1000 script: "scripts/retrieve_ariadne_scenario_data.py" + +use rule modify_cost_data from pypsaeur with: + input: + costs="data/costs_{year}.csv", + modifications="ariadne-data/costs_{year}-modifications.csv" diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 326ed6332..830019a6e 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 326ed63329d55d5a84f9230840161cdb3673e27a +Subproject commit 830019a6e5d5ced3403bd4d5d9e28e2d66fe621b From 4525faefa60ace7dd74e5f39c767ce1df0aba1ca Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 15 Dec 2023 14:58:41 +0100 Subject: [PATCH 011/669] include additional solver functionality for minimum electrolysis --- ariadne-data/additional_functionality.py | 35 ++++++++++++++++++++++++ workflow/Snakefile | 17 ++++++++++++ workflow/submodules/pypsa-eur | 2 +- 3 files changed, 53 insertions(+), 1 deletion(-) create mode 100644 ariadne-data/additional_functionality.py diff --git a/ariadne-data/additional_functionality.py b/ariadne-data/additional_functionality.py new file mode 100644 index 000000000..a76250236 --- /dev/null +++ b/ariadne-data/additional_functionality.py @@ -0,0 +1,35 @@ + +electrolyser_targets = {2020: 0, + 2030: 10, + 2040: 50, + 2050: 80} + + + +def add_electrolysers_for_de(n, snapshots, investment_year): + + print(f"Adding constraint on electrolyser capacity to be greater than {electrolyser_targets[investment_year]} GW") + + electrolyser_existing_index = n.links.index[(n.links.index.str[:2] == "DE") & (n.links.carrier == "H2 Electrolysis") & ~n.links.p_nom_extendable] + electrolyser_extendable_index = n.links.index[(n.links.index.str[:2] == "DE") & (n.links.carrier == "H2 Electrolysis") & n.links.p_nom_extendable] + + existing_electrolyser_capacity = n.links.loc[electrolyser_existing_index, "p_nom"].sum() + + print(f"Existing electrolyser capacity: {existing_electrolyser_capacity} MW") + + electrolyser_pnom = n.model["Link-p_nom"].loc[electrolyser_extendable_index] + + lhs = electrolyser_pnom.sum() + + c = n.model.add_constraints( + lhs >= 1e3*electrolyser_targets[investment_year] - existing_electrolyser_capacity, name=f"GlobalConstraint-electrolyser_capacity" + ) + + + +def additional_functionality(n, snapshots, planning_horizons): + print("Adding Ariadne-specific functionality") + + investment_year = int(planning_horizons[-4:]) + + add_electrolysers_for_de(n, snapshots, investment_year) diff --git a/workflow/Snakefile b/workflow/Snakefile index 990e997c4..0da7de645 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -6,6 +6,13 @@ configfile: "workflow/submodules/pypsa-eur/config/config.default.yaml" configfile: "config/config.yaml" configfile: "config/config.personal.yaml" +run = config.get("run", {}) +RDIR = run["name"] + "/" if run.get("name") else "" +RESOURCES = "resources/" + RDIR if not run.get("shared_resources") else "resources/" +RESULTS = "results/" + RDIR + + + module pypsaeur: snakefile: @@ -60,3 +67,13 @@ use rule modify_cost_data from pypsaeur with: input: costs="data/costs_{year}.csv", modifications="ariadne-data/costs_{year}-modifications.csv" + + +use rule solve_sector_network_myopic from pypsaeur with: + input: + network=RESULTS + + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + costs="data/costs_{planning_horizons}.csv", + config=RESULTS + "config.yaml", + additional_functionality="ariadne-data/additional_functionality.py", + co2_totals_name=RESOURCES + "co2_totals.csv", diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 830019a6e..c5a123b4f 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 830019a6e5d5ced3403bd4d5d9e28e2d66fe621b +Subproject commit c5a123b4f443a29e8f0f7446ed45ab48230ed1a9 From 5c33d0849c8ab6909cae0ecef1ebab0f3259cde7 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 15 Dec 2023 16:49:23 +0100 Subject: [PATCH 012/669] move additional functionality script to workflow folder --- {ariadne-data => workflow/scripts}/additional_functionality.py | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename {ariadne-data => workflow/scripts}/additional_functionality.py (100%) diff --git a/ariadne-data/additional_functionality.py b/workflow/scripts/additional_functionality.py similarity index 100% rename from ariadne-data/additional_functionality.py rename to workflow/scripts/additional_functionality.py From ed91e9b8505a88b7343f8cec8c773b0bfce401d6 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 15 Dec 2023 17:20:23 +0100 Subject: [PATCH 013/669] generalise minimum limits on capacities --- .gitignore | 8 +- config/config.yaml | 132 ++++++++++++------- workflow/Snakefile | 2 +- workflow/scripts/additional_functionality.py | 39 +++--- workflow/submodules/pypsa-eur | 2 +- 5 files changed, 111 insertions(+), 72 deletions(-) diff --git a/.gitignore b/.gitignore index 699cd2af3..be25a4f5c 100644 --- a/.gitignore +++ b/.gitignore @@ -259,4 +259,10 @@ TSWLatexianTemp* *-tags.tex # standalone packages -*.sta \ No newline at end of file +*.sta + +logs + +benchmarks + +cidportal.jrc.ec.europa.eu \ No newline at end of file diff --git a/config/config.yaml b/config/config.yaml index a321c643f..cb132e90f 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "231208-fixlvinfeasibility-365H" + name: "231215-3H-minlimits" scenarios: enable: true shared_resources: true #stops recalculating @@ -32,7 +32,7 @@ scenario: opts: - '' sector_opts: - - 365H-T-H-B-I-A-solar+p3-linemaxext15 + - 3H-T-H-B-I-A-solar+p3-linemaxext15 planning_horizons: - 2020 - 2030 @@ -45,7 +45,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: true # set to false once initial data is retrieved + retrieve: false # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved focus_weights: @@ -79,60 +79,89 @@ co2_budget_national: exclude_include: [] # if all_countries is true, add countries to exclude; if all_countries is false, add countries to include 2020: 'DE': 0.6 - 'AT': 0.8 - 'BE': 0.8 - 'CH': 0.8 - 'CZ': 0.8 - 'DK': 0.8 - 'FR': 0.8 - 'GB': 0.8 - 'LU': 0.8 - 'NL': 0.8 - 'NO': 0.8 - 'PL': 0.8 - 'SE': 0.8 + 'AT': 0.9 + 'BE': 0.9 + 'CH': 0.9 + 'CZ': 0.9 + 'DK': 0.9 + 'FR': 0.9 + 'GB': 0.9 + 'LU': 0.9 + 'NL': 0.9 + 'NO': 0.9 + 'PL': 0.9 + 'SE': 0.9 2030: 'DE': 0.350 - 'AT': 0.450 - 'BE': 0.450 - 'CH': 0.450 - 'CZ': 0.450 - 'DK': 0.450 - 'FR': 0.450 - 'GB': 0.450 - 'LU': 0.450 - 'NL': 0.450 - 'NO': 0.450 - 'PL': 0.450 - 'SE': 0.450 + 'AT': 0.850 + 'BE': 0.850 + 'CH': 0.850 + 'CZ': 0.850 + 'DK': 0.850 + 'FR': 0.850 + 'GB': 0.850 + 'LU': 0.850 + 'NL': 0.850 + 'NO': 0.850 + 'PL': 0.850 + 'SE': 0.850 2040: 'DE': 0.120 - 'AT': 0.200 - 'BE': 0.200 - 'CH': 0.200 - 'CZ': 0.200 - 'DK': 0.200 - 'FR': 0.200 - 'GB': 0.200 - 'LU': 0.200 - 'NL': 0.200 - 'NO': 0.200 - 'PL': 0.200 - 'SE': 0.200 + 'AT': 0.700 + 'BE': 0.700 + 'CH': 0.700 + 'CZ': 0.700 + 'DK': 0.700 + 'FR': 0.700 + 'GB': 0.700 + 'LU': 0.700 + 'NL': 0.700 + 'NO': 0.700 + 'PL': 0.700 + 'SE': 0.700 2050: 'DE': 0.000 - 'AT': 0.000 - 'BE': 0.000 - 'CH': 0.000 - 'CZ': 0.000 - 'DK': 0.000 - 'FR': 0.000 - 'GB': 0.000 - 'LU': 0.000 - 'NL': 0.000 - 'NO': 0.000 - 'PL': 0.000 - 'SE': 0.000 + 'AT': 0.500 + 'BE': 0.500 + 'CH': 0.500 + 'CZ': 0.500 + 'DK': 0.500 + 'FR': 0.500 + 'GB': 0.500 + 'LU': 0.500 + 'NL': 0.500 + 'NO': 0.500 + 'PL': 0.500 + 'SE': 0.500 + +limits_min: + Generator: + onwind: + DE: + 2020: 50 + 2030: 100 + 2040: 160 + 2050: 200 + offwind: + DE: + 2020: 1 + 2030: 20 + 2040: 25 + 2050: 25 + solar: + DE: + 2020: 50 + 2030: 215 + 2040: 300 + 2050: 400 + Link: + H2 Electrolysis: + DE: + 2020: 0 + 2030: 10 + 2040: 50 + 2050: 80 + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: @@ -163,6 +192,7 @@ industry: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving solving: walltime: "12:00:00" + mem: 200000 #30000 is OK for 22 nodes, 365H; 140000 for 22 nodes 3H; 400000 for 44 nodes 3H options: load_shedding: false diff --git a/workflow/Snakefile b/workflow/Snakefile index 0da7de645..fd767d7ce 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -75,5 +75,5 @@ use rule solve_sector_network_myopic from pypsaeur with: + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", costs="data/costs_{planning_horizons}.csv", config=RESULTS + "config.yaml", - additional_functionality="ariadne-data/additional_functionality.py", + additional_functionality="workflow/scripts/additional_functionality.py", co2_totals_name=RESOURCES + "co2_totals.csv", diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index a76250236..edc19e286 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -1,35 +1,38 @@ -electrolyser_targets = {2020: 0, - 2030: 10, - 2040: 50, - 2050: 80} +def add_min_limits(n, snapshots, investment_year, config): + print(config["limits_min"]) + for c in n.iterate_components(config["limits_min"]): + print(f"Adding minimum constraints for {c.list_name}") -def add_electrolysers_for_de(n, snapshots, investment_year): + for carrier in config["limits_min"][c.name]: - print(f"Adding constraint on electrolyser capacity to be greater than {electrolyser_targets[investment_year]} GW") + for ct in config["limits_min"][c.name][carrier]: + limit = 1e3*config["limits_min"][c.name][carrier][ct][investment_year] - electrolyser_existing_index = n.links.index[(n.links.index.str[:2] == "DE") & (n.links.carrier == "H2 Electrolysis") & ~n.links.p_nom_extendable] - electrolyser_extendable_index = n.links.index[(n.links.index.str[:2] == "DE") & (n.links.carrier == "H2 Electrolysis") & n.links.p_nom_extendable] + print(f"Adding constraint on {c.name} {carrier} capacity in {ct} to be greater than {limit} MW") - existing_electrolyser_capacity = n.links.loc[electrolyser_existing_index, "p_nom"].sum() + existing_index = c.df.index[(c.df.index.str[:2] == ct) & (c.df.carrier.str[:len(carrier)] == carrier) & ~c.df.p_nom_extendable] + extendable_index = c.df.index[(c.df.index.str[:2] == ct) & (c.df.carrier.str[:len(carrier)] == carrier) & c.df.p_nom_extendable] - print(f"Existing electrolyser capacity: {existing_electrolyser_capacity} MW") + existing_capacity = c.df.loc[existing_index, "p_nom"].sum() - electrolyser_pnom = n.model["Link-p_nom"].loc[electrolyser_extendable_index] + print(f"Existing {c.name} {carrier} capacity in {ct}: {existing_capacity} MW") - lhs = electrolyser_pnom.sum() + p_nom = n.model[c.name + "-p_nom"].loc[extendable_index] - c = n.model.add_constraints( - lhs >= 1e3*electrolyser_targets[investment_year] - existing_electrolyser_capacity, name=f"GlobalConstraint-electrolyser_capacity" - ) + lhs = p_nom.sum() + n.model.add_constraints( + lhs >= limit - existing_capacity, name=f"GlobalConstraint-{c.name}-{carrier.replace(' ','-')}-capacity" + ) -def additional_functionality(n, snapshots, planning_horizons): + +def additional_functionality(n, snapshots, wildcards, config): print("Adding Ariadne-specific functionality") - investment_year = int(planning_horizons[-4:]) + investment_year = int(wildcards.planning_horizons[-4:]) - add_electrolysers_for_de(n, snapshots, investment_year) + add_min_limits(n, snapshots, investment_year, config) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index c5a123b4f..1a7f093e0 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit c5a123b4f443a29e8f0f7446ed45ab48230ed1a9 +Subproject commit 1a7f093e037ed177468c163863a7bbd929d322c3 From 7d3fc1177bdbbd811f7245f2b40730e7d3b1fff5 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Wed, 20 Dec 2023 09:08:49 +0100 Subject: [PATCH 014/669] add constraint on hydrogen imports --- config/config.yaml | 8 ++++++- workflow/scripts/additional_functionality.py | 24 ++++++++++++++++++++ 2 files changed, 31 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index cb132e90f..22d548c26 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "231215-3H-minlimits" + name: "231218-3H-maximportH2" scenarios: enable: true shared_resources: true #stops recalculating @@ -162,6 +162,12 @@ limits_min: 2040: 50 2050: 80 +h2_import_max: + DE: + 2020: 0 + 2030: 20 + 2040: 100 + 2050: 200 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index edc19e286..db9c92291 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -28,7 +28,29 @@ def add_min_limits(n, snapshots, investment_year, config): lhs >= limit - existing_capacity, name=f"GlobalConstraint-{c.name}-{carrier.replace(' ','-')}-capacity" ) +def h2_import_limits(n, snapshots, investment_year, config): + for ct in config["h2_import_max"]: + limit = config["h2_import_max"][ct][investment_year]*1e6 + + print(f"limiting H2 imports in {ct} to {limit/1e6} TWh/a") + + incoming = n.links.index[(n.links.carrier == "H2 pipeline") & (n.links.bus0.str[:2] != ct) & (n.links.bus1.str[:2] == ct)] + outgoing = n.links.index[(n.links.carrier == "H2 pipeline") & (n.links.bus0.str[:2] == ct) & (n.links.bus1.str[:2] != ct)] + + incoming_p = (n.model["Link-p"].loc[:, incoming]*n.snapshot_weightings.generators).sum() + outgoing_p = (n.model["Link-p"].loc[:, outgoing]*n.snapshot_weightings.generators).sum() + + print(incoming_p) + print(outgoing_p) + + lhs = incoming_p - outgoing_p + + print(lhs) + + n.model.add_constraints( + lhs <= limit, name=f"GlobalConstraint-H2_import_limit-{ct}" + ) def additional_functionality(n, snapshots, wildcards, config): print("Adding Ariadne-specific functionality") @@ -36,3 +58,5 @@ def additional_functionality(n, snapshots, wildcards, config): investment_year = int(wildcards.planning_horizons[-4:]) add_min_limits(n, snapshots, investment_year, config) + + h2_import_limits(n, snapshots, investment_year, config) From 43916e23075ed02fe8508d7c38ce7895f97d4f01 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Wed, 20 Dec 2023 09:44:30 +0100 Subject: [PATCH 015/669] change modifications to cost to avoid touching PyPSA-Eur Now the output name of retrieve_cost_data is altered instead, then this file is modified. This avoids having to touch the input names of many rules using cost_{year}.csv. --- workflow/Snakefile | 18 +++++++++++++++--- workflow/scripts/modify_cost_data.py | 11 +++++++++++ workflow/submodules/pypsa-eur | 2 +- 3 files changed, 27 insertions(+), 4 deletions(-) create mode 100644 workflow/scripts/modify_cost_data.py diff --git a/workflow/Snakefile b/workflow/Snakefile index fd767d7ce..8d7312128 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -63,10 +63,22 @@ rule retrieve_ariadne_scenario_data: script: "scripts/retrieve_ariadne_scenario_data.py" -use rule modify_cost_data from pypsaeur with: +if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", True): + + use rule retrieve_cost_data from pypsaeur with: + output: + "data/costs_{year}-original.csv", + +rule modify_cost_data: input: - costs="data/costs_{year}.csv", - modifications="ariadne-data/costs_{year}-modifications.csv" + costs="data/costs_{year}-original.csv", + modifications="ariadne-data/costs_{year}-modifications.csv", + output: + "data/costs_{year}.csv", + resources: + mem_mb=1000 + script: + "scripts/modify_cost_data.py" use rule solve_sector_network_myopic from pypsaeur with: diff --git a/workflow/scripts/modify_cost_data.py b/workflow/scripts/modify_cost_data.py new file mode 100644 index 000000000..0806e7a36 --- /dev/null +++ b/workflow/scripts/modify_cost_data.py @@ -0,0 +1,11 @@ + +import pandas as pd + +costs = pd.read_csv(snakemake.input.costs, index_col=[0, 1]).sort_index() + +modifications = pd.read_csv(snakemake.input.modifications, index_col=[0, 1]).sort_index() +costs.loc[modifications.index] = modifications +print(modifications) +print( costs.loc[modifications.index]) + +costs.to_csv(snakemake.output[0]) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 1a7f093e0..b3753d73d 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 1a7f093e037ed177468c163863a7bbd929d322c3 +Subproject commit b3753d73d75eedaddb8da9f6dcfc4bcf8793831a From 81e6be912799407576fc53c6d5faef1efd540369 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Wed, 20 Dec 2023 09:56:45 +0100 Subject: [PATCH 016/669] remove dummy script --- workflow/scripts/dummy.py | 11 ----------- 1 file changed, 11 deletions(-) delete mode 100644 workflow/scripts/dummy.py diff --git a/workflow/scripts/dummy.py b/workflow/scripts/dummy.py deleted file mode 100644 index 840fdfdb6..000000000 --- a/workflow/scripts/dummy.py +++ /dev/null @@ -1,11 +0,0 @@ -"""Package description.""" - -import pandas as pd - - -def myfunction(): - return None - - -if __name__ == "__main__": - myfunction From 04b8b01edcdd79743ebd0a56fb4192d5433ec2b1 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Thu, 21 Dec 2023 16:10:50 +0100 Subject: [PATCH 017/669] use new regional oil/methanol demand switches from PyPSA-Eur --- config/config.yaml | 8 +++++--- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 6 insertions(+), 4 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 22d548c26..f797c7f92 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "231218-3H-maximportH2" + name: "231221-365H-testoilregional" scenarios: enable: true shared_resources: true #stops recalculating @@ -32,7 +32,7 @@ scenario: opts: - '' sector_opts: - - 3H-T-H-B-I-A-solar+p3-linemaxext15 + - 365H-T-H-B-I-A-solar+p3-linemaxext15 planning_horizons: - 2020 - 2030 @@ -45,7 +45,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: false # set to false once initial data is retrieved + retrieve: true # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved focus_weights: @@ -182,6 +182,8 @@ sector: #TBD what to include in config #relax so no infeasibility in 2050 with no land transport demand min_part_load_fischer_tropsch: 0. + regional_methanol_demand: true #set to true if regional CO2 constraints needed + regional_oil_demand: true #set to true if regional CO2 constraints needed # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry industry: diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index b3753d73d..8a55a55d2 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit b3753d73d75eedaddb8da9f6dcfc4bcf8793831a +Subproject commit 8a55a55d20215dfe32cc49bae5de3e0f05411f1f From a4772299bdc1cba5682ebc5cc428b0db8c4b4348 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Tue, 2 Jan 2024 16:04:01 +0100 Subject: [PATCH 018/669] move code for national CO2 budgets to additional_functionality Before this was coded directly into PyPSA-Eur's solve_network.py. This has been moved locally for flexibility. In addition: use new format for additional_functionality where snakemake itself is passed rather than config and wildcards separately. Also introduced logger here. --- config/config.yaml | 4 +- workflow/scripts/additional_functionality.py | 139 +++++++++++++++++-- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 129 insertions(+), 16 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index f797c7f92..7920c7cce 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "231221-365H-testoilregional" + name: "240102-365H-moveco2" scenarios: enable: true shared_resources: true #stops recalculating @@ -45,7 +45,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: true # set to false once initial data is retrieved + retrieve: false # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved focus_weights: diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index db9c92291..3ccff23d1 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -1,24 +1,31 @@ +import logging, pandas as pd + +from prepare_sector_network import emission_sectors_from_opts + +logger = logging.getLogger(__name__) + + def add_min_limits(n, snapshots, investment_year, config): - print(config["limits_min"]) + logger.info(config["limits_min"]) for c in n.iterate_components(config["limits_min"]): - print(f"Adding minimum constraints for {c.list_name}") + logger.info(f"Adding minimum constraints for {c.list_name}") for carrier in config["limits_min"][c.name]: for ct in config["limits_min"][c.name][carrier]: limit = 1e3*config["limits_min"][c.name][carrier][ct][investment_year] - print(f"Adding constraint on {c.name} {carrier} capacity in {ct} to be greater than {limit} MW") + logger.info(f"Adding constraint on {c.name} {carrier} capacity in {ct} to be greater than {limit} MW") existing_index = c.df.index[(c.df.index.str[:2] == ct) & (c.df.carrier.str[:len(carrier)] == carrier) & ~c.df.p_nom_extendable] extendable_index = c.df.index[(c.df.index.str[:2] == ct) & (c.df.carrier.str[:len(carrier)] == carrier) & c.df.p_nom_extendable] existing_capacity = c.df.loc[existing_index, "p_nom"].sum() - print(f"Existing {c.name} {carrier} capacity in {ct}: {existing_capacity} MW") + logger.info(f"Existing {c.name} {carrier} capacity in {ct}: {existing_capacity} MW") p_nom = n.model[c.name + "-p_nom"].loc[extendable_index] @@ -33,7 +40,7 @@ def h2_import_limits(n, snapshots, investment_year, config): for ct in config["h2_import_max"]: limit = config["h2_import_max"][ct][investment_year]*1e6 - print(f"limiting H2 imports in {ct} to {limit/1e6} TWh/a") + logger.info(f"limiting H2 imports in {ct} to {limit/1e6} TWh/a") incoming = n.links.index[(n.links.carrier == "H2 pipeline") & (n.links.bus0.str[:2] != ct) & (n.links.bus1.str[:2] == ct)] outgoing = n.links.index[(n.links.carrier == "H2 pipeline") & (n.links.bus0.str[:2] == ct) & (n.links.bus1.str[:2] != ct)] @@ -41,22 +48,128 @@ def h2_import_limits(n, snapshots, investment_year, config): incoming_p = (n.model["Link-p"].loc[:, incoming]*n.snapshot_weightings.generators).sum() outgoing_p = (n.model["Link-p"].loc[:, outgoing]*n.snapshot_weightings.generators).sum() - print(incoming_p) - print(outgoing_p) + logger.info(incoming_p) + logger.info(outgoing_p) lhs = incoming_p - outgoing_p - print(lhs) + logger.info(lhs) n.model.add_constraints( lhs <= limit, name=f"GlobalConstraint-H2_import_limit-{ct}" ) -def additional_functionality(n, snapshots, wildcards, config): - print("Adding Ariadne-specific functionality") - investment_year = int(wildcards.planning_horizons[-4:]) +def add_co2limit_country(n, limit_countries, snakemake, nyears=1.0): + """ + Add a set of emissions limit constraints for specified countries. + + The countries and emissions limits are specified in the config file entry 'co2_budget_country_{investment_year}'. + + Parameters + ---------- + n : pypsa.Network + config : dict + limit_countries : dict + nyears: float, optional + Used to scale the emissions constraint to the number of snapshots of the base network. + """ + logger.info(f"Adding CO2 budget limit for each country as per unit of 1990 levels") + + countries = n.config["countries"] + + # TODO: import function from prepare_sector_network? Move to common place? + sectors = emission_sectors_from_opts(n.opts) + + # convert Mt to tCO2 + co2_totals = 1e6 * pd.read_csv(snakemake.input.co2_totals_name, index_col=0) + + co2_limit_countries = co2_totals.loc[countries, sectors].sum(axis=1) + co2_limit_countries = co2_limit_countries.loc[co2_limit_countries.index.isin(limit_countries.keys())] + + co2_limit_countries *= co2_limit_countries.index.map(limit_countries) * nyears + + p = n.model["Link-p"] # dimension: (time, component) + + # NB: Most country-specific links retain their locational information in bus1 (except for DAC, where it is in bus2, and process emissions, where it is in bus0) + country = n.links.bus1.map(n.buses.location).map(n.buses.country) + country_DAC = ( + n.links[n.links.carrier == "DAC"] + .bus2.map(n.buses.location) + .map(n.buses.country) + ) + country[country_DAC.index] = country_DAC + country_process_emissions = ( + n.links[n.links.carrier.str.contains("process emissions")] + .bus0.map(n.buses.location) + .map(n.buses.country) + ) + country[country_process_emissions.index] = country_process_emissions + + lhs = [] + for port in [col[3:] for col in n.links if col.startswith("bus")]: + if port == str(0): + efficiency = ( + n.links["efficiency"].apply(lambda x: -1.0).rename("efficiency0") + ) + elif port == str(1): + efficiency = n.links["efficiency"] + else: + efficiency = n.links[f"efficiency{port}"] + mask = n.links[f"bus{port}"].map(n.buses.carrier).eq("co2") + + idx = n.links[mask].index + + international = n.links.carrier.map( + lambda x: 0.4 if x in ["kerosene for aviation", "shipping oil"] else 1.0 + ) + grouping = country.loc[idx] + + if not grouping.isnull().all(): + expr = ( + ((p.loc[:, idx] * efficiency[idx] * international[idx]) + .groupby(grouping, axis=1) + .sum() + *n.snapshot_weightings.generators + ) + .sum(dims="snapshot") + ) + lhs.append(expr) + + lhs = sum(lhs) # dimension: (country) + lhs = lhs.rename({list(lhs.dims.keys())[0]: "snapshot"}) + rhs = pd.Series(co2_limit_countries) # dimension: (country) + + for ct in lhs.indexes["snapshot"]: + n.model.add_constraints( + lhs.loc[ct] <= rhs[ct], + name=f"GlobalConstraint-co2_limit_per_country{ct}", + ) + n.add( + "GlobalConstraint", + f"co2_limit_per_country{ct}", + constant=rhs[ct], + sense="<=", + type="", + ) + + +def additional_functionality(n, snapshots, snakemake): + + logger.info("Adding Ariadne-specific functionality") + + investment_year = int(snakemake.wildcards.planning_horizons[-4:]) + + add_min_limits(n, snapshots, investment_year, snakemake.config) + + h2_import_limits(n, snapshots, investment_year, snakemake.config) - add_min_limits(n, snapshots, investment_year, config) + if snakemake.config["sector"]["co2_budget_national"]: + # prepare co2 constraint + nhours = n.snapshot_weightings.generators.sum() + nyears = nhours / 8760 + limit_countries = snakemake.config["co2_budget_national"][investment_year] - h2_import_limits(n, snapshots, investment_year, config) + # add co2 constraint for each country + logger.info(f"Add CO2 limit for each country") + add_co2limit_country(n, limit_countries, snakemake, nyears) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 8a55a55d2..1b569dde1 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 8a55a55d20215dfe32cc49bae5de3e0f05411f1f +Subproject commit 1b569dde1bcbcd32175d41b0ba3ed265e76a1aad From 578a661fe090b5633667271645d17f47c741b38f Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Tue, 2 Jan 2024 17:47:47 +0100 Subject: [PATCH 019/669] simplify and tidy the code for national CO2 budgets --- config/config.yaml | 60 +--------- workflow/scripts/additional_functionality.py | 112 +++++++------------ 2 files changed, 44 insertions(+), 128 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 7920c7cce..a431d6313 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240102-365H-moveco2" + name: "240102-365H-tidyCO2" scenarios: enable: true shared_resources: true #stops recalculating @@ -75,64 +75,14 @@ co2_budget: 2050: 0.000 # climate-neutral by 2050 co2_budget_national: - select_unselect_all: true # if true, add national constraints for all countries; if all, add national constraints for none - exclude_include: [] # if all_countries is true, add countries to exclude; if all_countries is false, add countries to include 2020: - 'DE': 0.6 - 'AT': 0.9 - 'BE': 0.9 - 'CH': 0.9 - 'CZ': 0.9 - 'DK': 0.9 - 'FR': 0.9 - 'GB': 0.9 - 'LU': 0.9 - 'NL': 0.9 - 'NO': 0.9 - 'PL': 0.9 - 'SE': 0.9 + DE: 0.6 2030: - 'DE': 0.350 - 'AT': 0.850 - 'BE': 0.850 - 'CH': 0.850 - 'CZ': 0.850 - 'DK': 0.850 - 'FR': 0.850 - 'GB': 0.850 - 'LU': 0.850 - 'NL': 0.850 - 'NO': 0.850 - 'PL': 0.850 - 'SE': 0.850 + DE: 0.35 2040: - 'DE': 0.120 - 'AT': 0.700 - 'BE': 0.700 - 'CH': 0.700 - 'CZ': 0.700 - 'DK': 0.700 - 'FR': 0.700 - 'GB': 0.700 - 'LU': 0.700 - 'NL': 0.700 - 'NO': 0.700 - 'PL': 0.700 - 'SE': 0.700 + DE: 0.12 2050: - 'DE': 0.000 - 'AT': 0.500 - 'BE': 0.500 - 'CH': 0.500 - 'CZ': 0.500 - 'DK': 0.500 - 'FR': 0.500 - 'GB': 0.500 - 'LU': 0.500 - 'NL': 0.500 - 'NO': 0.500 - 'PL': 0.500 - 'SE': 0.500 + DE: 0. limits_min: Generator: diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 3ccff23d1..9f65e27d7 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -60,95 +60,64 @@ def h2_import_limits(n, snapshots, investment_year, config): ) -def add_co2limit_country(n, limit_countries, snakemake, nyears=1.0): +def add_co2limit_country(n, limit_countries, snakemake): """ Add a set of emissions limit constraints for specified countries. - The countries and emissions limits are specified in the config file entry 'co2_budget_country_{investment_year}'. + The countries and emissions limits are specified in the config file entry 'co2_budget_national'. Parameters ---------- n : pypsa.Network - config : dict limit_countries : dict - nyears: float, optional - Used to scale the emissions constraint to the number of snapshots of the base network. + snakemake: snakemake object """ logger.info(f"Adding CO2 budget limit for each country as per unit of 1990 levels") - countries = n.config["countries"] + nhours = n.snapshot_weightings.generators.sum() + nyears = nhours / 8760 - # TODO: import function from prepare_sector_network? Move to common place? sectors = emission_sectors_from_opts(n.opts) - # convert Mt to tCO2 + # convert MtCO2 to tCO2 co2_totals = 1e6 * pd.read_csv(snakemake.input.co2_totals_name, index_col=0) - co2_limit_countries = co2_totals.loc[countries, sectors].sum(axis=1) - co2_limit_countries = co2_limit_countries.loc[co2_limit_countries.index.isin(limit_countries.keys())] - - co2_limit_countries *= co2_limit_countries.index.map(limit_countries) * nyears - - p = n.model["Link-p"] # dimension: (time, component) - - # NB: Most country-specific links retain their locational information in bus1 (except for DAC, where it is in bus2, and process emissions, where it is in bus0) - country = n.links.bus1.map(n.buses.location).map(n.buses.country) - country_DAC = ( - n.links[n.links.carrier == "DAC"] - .bus2.map(n.buses.location) - .map(n.buses.country) - ) - country[country_DAC.index] = country_DAC - country_process_emissions = ( - n.links[n.links.carrier.str.contains("process emissions")] - .bus0.map(n.buses.location) - .map(n.buses.country) - ) - country[country_process_emissions.index] = country_process_emissions - - lhs = [] - for port in [col[3:] for col in n.links if col.startswith("bus")]: - if port == str(0): - efficiency = ( - n.links["efficiency"].apply(lambda x: -1.0).rename("efficiency0") - ) - elif port == str(1): - efficiency = n.links["efficiency"] - else: - efficiency = n.links[f"efficiency{port}"] - mask = n.links[f"bus{port}"].map(n.buses.carrier).eq("co2") - - idx = n.links[mask].index - - international = n.links.carrier.map( - lambda x: 0.4 if x in ["kerosene for aviation", "shipping oil"] else 1.0 - ) - grouping = country.loc[idx] - - if not grouping.isnull().all(): - expr = ( - ((p.loc[:, idx] * efficiency[idx] * international[idx]) - .groupby(grouping, axis=1) - .sum() - *n.snapshot_weightings.generators - ) - .sum(dims="snapshot") - ) - lhs.append(expr) + co2_total_totals = co2_totals[sectors].sum(axis=1) * nyears + + for ct in limit_countries: + limit = co2_total_totals[ct]*limit_countries[ct] + logger.info(f"Limiting emissions in country {ct} to {limit_countries[ct]} of 1990 levels, i.e. {limit} tCO2/a") + + lhs = [] + + for port in [col[3:] for col in n.links if col.startswith("bus")]: + + links = n.links.index[(n.links.index.str[:2] == ct) & (n.links[f"bus{port}"] == "co2 atmosphere")] - lhs = sum(lhs) # dimension: (country) - lhs = lhs.rename({list(lhs.dims.keys())[0]: "snapshot"}) - rhs = pd.Series(co2_limit_countries) # dimension: (country) + if port == "0": + efficiency = -1. + elif port == "1": + efficiency = n.links.loc[links, f"efficiency"] + else: + efficiency = n.links.loc[links, f"efficiency{port}"] + + international_factor = pd.Series(1., index=links) + # TODO: move to config + international_factor[links.str.contains("shipping oil")] = 0.4 + international_factor[links.str.contains("kerosene for aviation")] = 0.4 + + lhs.append((n.model["Link-p"].loc[:, links]*efficiency*international_factor*n.snapshot_weightings.generators).sum()) + + lhs = sum(lhs) - for ct in lhs.indexes["snapshot"]: n.model.add_constraints( - lhs.loc[ct] <= rhs[ct], - name=f"GlobalConstraint-co2_limit_per_country{ct}", + lhs <= limit, + name=f"GlobalConstraint-co2_limit-{ct}", ) n.add( "GlobalConstraint", - f"co2_limit_per_country{ct}", - constant=rhs[ct], + f"co2_limit-{ct}", + constant=limit, sense="<=", type="", ) @@ -165,11 +134,8 @@ def additional_functionality(n, snapshots, snakemake): h2_import_limits(n, snapshots, investment_year, snakemake.config) if snakemake.config["sector"]["co2_budget_national"]: - # prepare co2 constraint - nhours = n.snapshot_weightings.generators.sum() - nyears = nhours / 8760 + logger.info(f"Add CO2 limit for each country") + limit_countries = snakemake.config["co2_budget_national"][investment_year] - # add co2 constraint for each country - logger.info(f"Add CO2 limit for each country") - add_co2limit_country(n, limit_countries, snakemake, nyears) + add_co2limit_country(n, limit_countries, snakemake) From 2cfb857bfb21decc444b159cbc73f8597f900378 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Tue, 2 Jan 2024 18:13:46 +0100 Subject: [PATCH 020/669] add GlobalConstraint object for H2 limit and capacity limits This ensures there is a place to read out the duals to. --- config/config.yaml | 2 +- workflow/scripts/additional_functionality.py | 40 +++++++++++++------- 2 files changed, 28 insertions(+), 14 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index a431d6313..5daac7299 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240102-365H-tidyCO2" + name: "240102-365H-GCduals" scenarios: enable: true shared_resources: true #stops recalculating diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 9f65e27d7..37d9d6c2e 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -8,8 +8,6 @@ def add_min_limits(n, snapshots, investment_year, config): - logger.info(config["limits_min"]) - for c in n.iterate_components(config["limits_min"]): logger.info(f"Adding minimum constraints for {c.list_name}") @@ -31,9 +29,20 @@ def add_min_limits(n, snapshots, investment_year, config): lhs = p_nom.sum() + cname = f"capacity_minimum-{ct}-{c.name}-{carrier.replace(' ','-')}" + n.model.add_constraints( - lhs >= limit - existing_capacity, name=f"GlobalConstraint-{c.name}-{carrier.replace(' ','-')}-capacity" + lhs >= limit - existing_capacity, name=f"GlobalConstraint-{cname}" ) + n.add( + "GlobalConstraint", + cname, + constant=limit, + sense=">=", + type="", + carrier_attribute="", + ) + def h2_import_limits(n, snapshots, investment_year, config): @@ -48,15 +57,20 @@ def h2_import_limits(n, snapshots, investment_year, config): incoming_p = (n.model["Link-p"].loc[:, incoming]*n.snapshot_weightings.generators).sum() outgoing_p = (n.model["Link-p"].loc[:, outgoing]*n.snapshot_weightings.generators).sum() - logger.info(incoming_p) - logger.info(outgoing_p) - lhs = incoming_p - outgoing_p - logger.info(lhs) + cname = f"H2_import_limit-{ct}" n.model.add_constraints( - lhs <= limit, name=f"GlobalConstraint-H2_import_limit-{ct}" + lhs <= limit, name=f"GlobalConstraint-{cname}" + ) + n.add( + "GlobalConstraint", + cname, + constant=limit, + sense="<=", + type="", + carrier_attribute="", ) @@ -110,16 +124,19 @@ def add_co2limit_country(n, limit_countries, snakemake): lhs = sum(lhs) + cname = f"co2_limit-{ct}" + n.model.add_constraints( lhs <= limit, - name=f"GlobalConstraint-co2_limit-{ct}", + name=f"GlobalConstraint-{cname}", ) n.add( "GlobalConstraint", - f"co2_limit-{ct}", + cname, constant=limit, sense="<=", type="", + carrier_attribute="", ) @@ -134,8 +151,5 @@ def additional_functionality(n, snapshots, snakemake): h2_import_limits(n, snapshots, investment_year, snakemake.config) if snakemake.config["sector"]["co2_budget_national"]: - logger.info(f"Add CO2 limit for each country") - limit_countries = snakemake.config["co2_budget_national"][investment_year] - add_co2limit_country(n, limit_countries, snakemake) From 966f2eb4b908da46106319c14582521e44ba8451 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Thu, 4 Jan 2024 13:12:51 +0100 Subject: [PATCH 021/669] adjust to PyPSA-Eur master 34535bc --- workflow/Snakefile | 11 +++++------ workflow/scripts/additional_functionality.py | 3 ++- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 8 insertions(+), 8 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 8d7312128..f3a10bb80 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -82,10 +82,9 @@ rule modify_cost_data: use rule solve_sector_network_myopic from pypsaeur with: + params: + **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"},, + custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), input: - network=RESULTS - + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", - costs="data/costs_{planning_horizons}.csv", - config=RESULTS + "config.yaml", - additional_functionality="workflow/scripts/additional_functionality.py", - co2_totals_name=RESOURCES + "co2_totals.csv", + **rule.solve_sector_network_myopic.input, + co2_totals_name=RESOURCES + "co2_totals.csv", \ No newline at end of file diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 37d9d6c2e..fd17f8ac9 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -1,6 +1,7 @@ -import logging, pandas as pd +import logging +import pandas as pd from prepare_sector_network import emission_sectors_from_opts logger = logging.getLogger(__name__) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 1b569dde1..34535bcbf 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 1b569dde1bcbcd32175d41b0ba3ed265e76a1aad +Subproject commit 34535bcbffd5506faeaba7c8ada546e29f00c7eb From 7d7fdc0ddfe68dad0bb04f97a362dde240472228 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Thu, 4 Jan 2024 13:14:18 +0100 Subject: [PATCH 022/669] fix typo: extra comma in solve_sector_network_myopic params --- workflow/Snakefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index f3a10bb80..bcd04c663 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -83,7 +83,7 @@ rule modify_cost_data: use rule solve_sector_network_myopic from pypsaeur with: params: - **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"},, + **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), input: **rule.solve_sector_network_myopic.input, From 92bbb38def3263c9426f7b8298a12fa1ad2262bd Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Thu, 4 Jan 2024 13:38:39 +0100 Subject: [PATCH 023/669] update pypsa-eur submodule version to handle _helpers.py --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 34535bcbf..c3bcaee1a 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 34535bcbffd5506faeaba7c8ada546e29f00c7eb +Subproject commit c3bcaee1a22a888d2ba1147ed643fbf7607ffa86 From f4a3e114aac4fe620d067e390828d34020482eb1 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Thu, 4 Jan 2024 17:11:58 +0100 Subject: [PATCH 024/669] fix typo in Snakefile --- workflow/Snakefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index bcd04c663..99dc58a01 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -86,5 +86,5 @@ use rule solve_sector_network_myopic from pypsaeur with: **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), input: - **rule.solve_sector_network_myopic.input, + **rules.solve_sector_network_myopic.input, co2_totals_name=RESOURCES + "co2_totals.csv", \ No newline at end of file From b6ba89aecec5be44ad9e66906e9dc0bb54ebcb18 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Thu, 4 Jan 2024 17:13:58 +0100 Subject: [PATCH 025/669] update pypsa-eur submodule version to handle _helpers.py --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index c3bcaee1a..73abb6196 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit c3bcaee1a22a888d2ba1147ed643fbf7607ffa86 +Subproject commit 73abb6196796ae0d741050f5cfe333b8c02cd768 From b1a3b38ef38480258f7ac038139a7c984e3d0df2 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 12 Jan 2024 13:45:59 +0100 Subject: [PATCH 026/669] force decentral boiler dispatch to follow the load profile --- .gitignore | 4 +- config/config.yaml | 3 +- workflow/scripts/additional_functionality.py | 63 ++++++++++++++++++++ 3 files changed, 68 insertions(+), 2 deletions(-) diff --git a/.gitignore b/.gitignore index be25a4f5c..ecce080a4 100644 --- a/.gitignore +++ b/.gitignore @@ -265,4 +265,6 @@ logs benchmarks -cidportal.jrc.ec.europa.eu \ No newline at end of file +cidportal.jrc.ec.europa.eu + +zenodo.org \ No newline at end of file diff --git a/config/config.yaml b/config/config.yaml index 5daac7299..020c5e6fe 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240102-365H-GCduals" + name: "240112-365H-forceboilersconstraint2" scenarios: enable: true shared_resources: true #stops recalculating @@ -134,6 +134,7 @@ sector: min_part_load_fischer_tropsch: 0. regional_methanol_demand: true #set to true if regional CO2 constraints needed regional_oil_demand: true #set to true if regional CO2 constraints needed + biogas_upgrading_cc: true # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry industry: diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index fd17f8ac9..a3e8ae647 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -4,6 +4,8 @@ import pandas as pd from prepare_sector_network import emission_sectors_from_opts +from xarray import DataArray + logger = logging.getLogger(__name__) @@ -140,6 +142,63 @@ def add_co2limit_country(n, limit_countries, snakemake): carrier_attribute="", ) +def force_boiler_profiles_existing(n): + """this scales the boiler dispatch to the load profile with a factor common to all boilers at load""" + + logger.info("Forcing boiler profiles for existing ones") + + decentral_boilers = n.links.index[n.links.carrier.str.contains("boiler") + & ~n.links.carrier.str.contains("urban central") + & ~n.links.p_nom_extendable] + + if decentral_boilers.empty: + return + + boiler_loads = n.links.loc[decentral_boilers,"bus1"] + boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div(n.loads_t.p_set[boiler_loads].max(),axis=1) + boiler_profiles_pu.columns = decentral_boilers + boiler_profiles = DataArray(boiler_profiles_pu.multiply(n.links.loc[decentral_boilers,"p_nom"],axis=1)) + + boiler_load_index = pd.Index(boiler_loads.unique()) + boiler_load_index.name = "Load" + + # per load scaling factor + n.model.add_variables(coords=[boiler_load_index], name="Load-profile_factor") + + # clumsy indicator matrix to map boilers to loads + df = pd.DataFrame(index=boiler_load_index,columns=decentral_boilers,data=0.) + for k,v in boiler_loads.items(): + df.loc[v,k] = 1. + + lhs = n.model["Link-p"].loc[:,decentral_boilers] - (boiler_profiles*DataArray(df)*n.model["Load-profile_factor"]).sum("Load") + + n.model.add_constraints(lhs, "=", 0, "Link-fixed_profile") + + # hack so that PyPSA doesn't complain there is nowhere to store the variable + n.loads["profile_factor_opt"] = 0. + + +def force_boiler_profiles_new(n): + """this is equivalent to setting p_min_pu = p_max_pu = load_profile_pu""" + + logger.info("Forcing boiler profiles for new ones") + + decentral_boilers = n.links.index[n.links.carrier.str.contains("boiler") + & ~n.links.carrier.str.contains("urban central") + & n.links.p_nom_extendable] + + if decentral_boilers.empty: + return + + boiler_loads = n.links.loc[decentral_boilers,"bus1"] + boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div(n.loads_t.p_set[boiler_loads].max(),axis=1) + boiler_profiles_pu.columns = decentral_boilers + boiler_profiles_pu = DataArray(boiler_profiles_pu) + + lhs = n.model["Link-p"].loc[:,decentral_boilers] - boiler_profiles_pu*n.model["Link-p_nom"].loc[decentral_boilers] + + n.model.add_constraints(lhs, "=", 0, "Link-fixed_profile_ext") + def additional_functionality(n, snapshots, snakemake): @@ -151,6 +210,10 @@ def additional_functionality(n, snapshots, snakemake): h2_import_limits(n, snapshots, investment_year, snakemake.config) + force_boiler_profiles_existing(n) + + force_boiler_profiles_new(n) + if snakemake.config["sector"]["co2_budget_national"]: limit_countries = snakemake.config["co2_budget_national"][investment_year] add_co2limit_country(n, limit_countries, snakemake) From 2d2e0f36b901c5605c20fb8962ff97d629670815 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 12 Jan 2024 18:00:26 +0100 Subject: [PATCH 027/669] existing heating: adjust 2020 stock to ARIADNE database totals Also adjust space heating reduction and DH shares to better values. --- config/config.yaml | 15 ++++++++-- workflow/Snakefile | 23 +++++++++++++-- workflow/scripts/modify_existing_heating.py | 31 +++++++++++++++++++++ workflow/submodules/pypsa-eur | 2 +- 4 files changed, 65 insertions(+), 6 deletions(-) create mode 100644 workflow/scripts/modify_existing_heating.py diff --git a/config/config.yaml b/config/config.yaml index 020c5e6fe..f62d449dc 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240112-365H-forceboilersconstraint2" + name: "240112-365H-adaptexistingheat" scenarios: enable: true shared_resources: true #stops recalculating @@ -122,7 +122,7 @@ h2_import_max: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: district_heating: - potential: 0.6 + potential: 0.4 progress: 2020: 0.0 2030: 0.3 @@ -146,7 +146,16 @@ industry: 2040: 0.4 2045: 0.35 2050: 0.3 - #TBD what to include in config + + # this needs to be taken from ariadne database + reduce_space_heat_exogenously_factor: + 2020: 0.0 + 2025: 0.05 + 2030: 0.10 + 2035: 0.16 + 2040: 0.22 + 2045: 0.25 + 2050: 0.35 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving solving: diff --git a/workflow/Snakefile b/workflow/Snakefile index 99dc58a01..eb1355105 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -55,7 +55,7 @@ rule retrieve_ariadne_scenario_data: params: iiasa=config["iiasa_database"] output: - data="resources/ariadne_scenario_data.csv" + data=RESOURCES + "ariadne_scenario_data.csv" log: "logs/retrieve_ariadne_scenario_data.log" resources: @@ -87,4 +87,23 @@ use rule solve_sector_network_myopic from pypsaeur with: custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), input: **rules.solve_sector_network_myopic.input, - co2_totals_name=RESOURCES + "co2_totals.csv", \ No newline at end of file + co2_totals_name=RESOURCES + "co2_totals.csv", + + +rule modify_existing_heating: + input: + ariadne=RESOURCES + "ariadne_scenario_data.csv", + existing_heating="data/existing_infrastructure/existing_heating_raw.csv", + output: + existing_heating=RESOURCES + "existing_heating.csv", + resources: + mem_mb=1000 + script: + "scripts/modify_existing_heating.py" + + + +use rule add_existing_baseyear from pypsaeur with: + input: + **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, + existing_heating=RESOURCES + "existing_heating.csv", diff --git a/workflow/scripts/modify_existing_heating.py b/workflow/scripts/modify_existing_heating.py new file mode 100644 index 000000000..f529fc9df --- /dev/null +++ b/workflow/scripts/modify_existing_heating.py @@ -0,0 +1,31 @@ + + +import pandas as pd + + +existing_heating = pd.read_csv(snakemake.input.existing_heating, + index_col=0) + +ariadne = pd.read_csv(snakemake.input.ariadne, + index_col=0) + +print("before",existing_heating.loc["Germany"]) + +mapping = {"gas boiler" : "Gas Boiler", + "oil boiler" : "Oil Boiler", + "air heat pump" : "Heat Pump|Electrical|Air", + "ground heat pump" : "Heat Pump|Electrical|Ground", + "biomass boiler" : "Biomass Boiler"} + +year = "2020" +for tech in mapping: + stock = ariadne.at[f"Stock|Space Heating|{mapping[tech]}",year] + peak = stock*existing_heating.loc["Germany"].sum()/ariadne.at[f"Stock|Space Heating",year] + existing_heating.at["Germany",tech] = peak + + + +print("before",existing_heating.loc["Germany"]) + + +existing_heating.to_csv(snakemake.output.existing_heating) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 73abb6196..6417c7a12 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 73abb6196796ae0d741050f5cfe333b8c02cd768 +Subproject commit 6417c7a122954a08bd83af1fd639ea160510c864 From 2d8251043e7d132142e9568b904c8919e55bbc7e Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 16 Jan 2024 16:32:56 +0100 Subject: [PATCH 028/669] fix clustering --- config/config.yaml | 32 ++++++++++++++++---------------- 1 file changed, 16 insertions(+), 16 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index f62d449dc..7d9a585ad 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -47,22 +47,22 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P enable: retrieve: false # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved - -focus_weights: -# 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" - 'DE': 0.3636 # 8/22 - 'AT': 0.0455 # 1/22 - 'BE': 0.0455 - 'CH': 0.0455 - 'CZ': 0.0455 - 'DK': 0.0909 # 2/22 - 'FR': 0.0454 - 'GB': 0.0909 # 2/22 - 'LU': 0.0454 - 'NL': 0.0454 - 'NO': 0.0454 - 'PL': 0.0454 - 'SE': 0.0454 +clustering: + focus_weights: + # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" + 'DE': 0.3636 # 8/22 + 'AT': 0.0455 # 1/22 + 'BE': 0.0455 + 'CH': 0.0455 + 'CZ': 0.0455 + 'DK': 0.0909 # 2/22 + 'FR': 0.0454 + 'GB': 0.0909 # 2/22 + 'LU': 0.0454 + 'NL': 0.0454 + 'NO': 0.0454 + 'PL': 0.0454 + 'SE': 0.0454 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#co2-budget co2_budget: From c67800b03f938c33756278a576f037bea1e1e339 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Fri, 12 Jan 2024 19:44:47 +0100 Subject: [PATCH 029/669] added wasserstoff kernnetz --- config/config.yaml | 8 + workflow/Snakefile | 53 ++- .../scripts/build_wasserstoff_kernnetz.py | 322 ++++++++++++++++++ .../scripts/cluster_wasserstoff_kernnetz.py | 126 +++++++ 4 files changed, 507 insertions(+), 2 deletions(-) create mode 100644 workflow/scripts/build_wasserstoff_kernnetz.py create mode 100644 workflow/scripts/cluster_wasserstoff_kernnetz.py diff --git a/config/config.yaml b/config/config.yaml index f62d449dc..480815cf2 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,11 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: +<<<<<<< HEAD name: "240112-365H-adaptexistingheat" +======= + name: "h2_kernnetz" +>>>>>>> 101f3c8 (added wasserstoff kernnetz) scenarios: enable: true shared_resources: true #stops recalculating @@ -119,6 +123,10 @@ h2_import_max: 2040: 100 2050: 200 +wasserstoff_kernnetz: + enable: true + reload_locations: false + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: district_heating: diff --git a/workflow/Snakefile b/workflow/Snakefile index eb1355105..948e9c595 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -2,6 +2,10 @@ # # SPDX-License-Identifier: MIT +from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider + +HTTP = HTTPRemoteProvider() + configfile: "workflow/submodules/pypsa-eur/config/config.default.yaml" configfile: "config/config.yaml" configfile: "config/config.personal.yaml" @@ -12,8 +16,6 @@ RESOURCES = "resources/" + RDIR if not run.get("shared_resources") else "resourc RESULTS = "results/" + RDIR - - module pypsaeur: snakefile: "submodules/pypsa-eur/Snakefile" @@ -23,6 +25,9 @@ module pypsaeur: use rule * from pypsaeur +wildcard_constraints: + simpl="[a-zA-Z0-9]*", + clusters="[0-9]+(m|c)?|all", from pathlib import Path @@ -81,11 +86,47 @@ rule modify_cost_data: "scripts/modify_cost_data.py" +rule build_wasserstoff_kernnetz: + input: + wasserstoff_kernnetz_1=HTTP.remote( + "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage2_Leitungsmeldungen_weiterer_potenzieller_Wasserstoffnetzbetreiber_Veroeffentlichung_final.xlsx", + keep_local=True, + static=True, + ), + wasserstoff_kernnetz_2=HTTP.remote( + "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage3_FNB_Massnahmenliste_Veroeffentlichung_final.xlsx", + keep_local=True, + static=True, + ), + locations="data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", + output: + cleaned_wasserstoff_kernnetz="resources/wasserstoff_kernnetz.csv", + script: + "scripts/build_wasserstoff_kernnetz.py" + + +rule cluster_wasserstoff_kernnetz: + input: + cleaned_h2_network="resources/wasserstoff_kernnetz.csv", + regions_onshore="resources/regions_onshore_elec_s{simpl}_{clusters}.geojson", + regions_offshore="resources/regions_offshore_elec_s{simpl}_{clusters}.geojson", + output: + clustered_h2_network="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", + script: + "scripts/cluster_wasserstoff_kernnetz.py" + +use rule prepare_sector_network from pypsaeur with: + input: + **rules.prepare_sector_network.input, + custom_h2_pipelines="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv" if config["wasserstoff_kernnetz"]["enable"] else [], + + use rule solve_sector_network_myopic from pypsaeur with: params: **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), input: +<<<<<<< HEAD **rules.solve_sector_network_myopic.input, co2_totals_name=RESOURCES + "co2_totals.csv", @@ -107,3 +148,11 @@ use rule add_existing_baseyear from pypsaeur with: input: **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, existing_heating=RESOURCES + "existing_heating.csv", +======= + network=RESULTS + + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + costs="data/costs_{planning_horizons}.csv", + config=RESULTS + "config.yaml", + additional_functionality="workflow/scripts/additional_functionality.py", + co2_totals_name=RESOURCES + "co2_totals.csv", +>>>>>>> 101f3c8 (added wasserstoff kernnetz) diff --git a/workflow/scripts/build_wasserstoff_kernnetz.py b/workflow/scripts/build_wasserstoff_kernnetz.py new file mode 100644 index 000000000..77b886835 --- /dev/null +++ b/workflow/scripts/build_wasserstoff_kernnetz.py @@ -0,0 +1,322 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT +""" +Preprocess hydrogen kernnetz based on data from FNB Gas +(https://fnb-gas.de/wasserstoffnetz-wasserstoff-kernnetz/). +""" + +import logging + +logger = logging.getLogger(__name__) + +import pandas as pd +import geopandas as gpd +import numpy as np +import uuid + +from shapely import wkt +from shapely.geometry import LineString, Point +from pypsa.geo import haversine_pts + +def diameter_to_capacity_h2(pipe_diameter_mm): + """ + Calculate pipe capacity in MW based on diameter in mm. Linear interpolation. + + 20 inch (500 mm) 50 bar -> 1.2 GW H2 pipe capacity (LHV) + 36 inch (900 mm) 50 bar -> 4.7 GW H2 pipe capacity (LHV) + 48 inch (1200 mm) 80 bar -> 16.9 GW H2 pipe capacity (LHV) + + Based on table 4 of + https://ehb.eu/files/downloads/EHB-Analysing-the-future-demand-supply-and-transport-of-hydrogen-June-2021-v3.pdf + """ + # slopes definitions + m0 = (1200 - 0) / (500 - 0) + m1 = (4700 - 1200) / (900 - 500) + m2 = (16900 - 4700) / (1200 - 900) + # intercepts + a0 = 0 + a1 = 1200 - m1 * 500 + a2 = 4700 - m2 * 900 + + if pipe_diameter_mm < 500: + return a0 + m0 * pipe_diameter_mm + elif pipe_diameter_mm < 900: + return a1 + m1 * pipe_diameter_mm + else: + return a2 + m2 * pipe_diameter_mm + +def load_merge_dataset(fn1, fn2): + # load, clean and merge + + df2 = pd.read_excel(fn1, skiprows=2, skipfooter=2) + df3_re = pd.read_excel(fn2, "Wasserstoff-Kernnetz Umstellung", skiprows=2, skipfooter=4) + df3_ne = pd.read_excel(fn2, "Wasserstoff-Kernnetz Neubau", skiprows=3, skipfooter=2) + + for df in [df2, df3_re, df3_ne]: + df.columns = [c.replace("\n", "") for c in df.columns.values.astype(str)] + + # clean first dataset + # drop lines not in Kernetz + df2 = df2[df2["Bestandteil des Wasserstoff-Kernnetzes"] == "ja"] + + keep2 = [ + "Name (Lfd.Nr.-Von-Nach)", + "Umstellungsdatum/ Planerische Inbetriebnahme", + "Anfangspunkt(Ort)", + "Endpunkt(Ort)", + "Nenndurchmesser (DN)", + "Länge (km)", + "Druckstufe (DP)[mind. 30 barg]", + "Bundesland", + "Umstellung/ Neubau", + ] + + to_rename2 = { + "Name (Lfd.Nr.-Von-Nach)": "name", + "Umstellungsdatum/ Planerische Inbetriebnahme": "build_year", + "Nenndurchmesser (DN)": "diameter_mm", + "Länge (km)": "length", + "Druckstufe (DP)[mind. 30 barg]": "max_pressure_bar", + "Umstellung/ Neubau": "retrofitted", + } + + df2 = df2[keep2].rename(columns=to_rename2) + + # extract info on retrofitted + df2["retrofitted"] = df2["retrofitted"].apply(lambda x: False if x == "Neubau" else True) + + # clean second dataset + # select only pipes + df3_ne = df3_ne[df3_ne["Maßnahmenart"] == "Leitung"] + + keep3 = [ + "Name", + "Planerische Inbetriebnahme", + "Anfangspunkt(Ort)", + "Endpunkt(Ort)", + "Nenndurchmesser (DN)", + "Länge (km)", + "Druckstufe (DP)[mind. 30 barg]", + "Bundesland", + "retrofitted", + ] + + to_rename3 = { + "Name": "name", + "Planerische Inbetriebnahme": "build_year", + "Nenndurchmesser (DN)": "diameter_mm", + "Länge (km)": "length", + "Druckstufe (DP)[mind. 30 barg]": "max_pressure_bar", + } + + df3_ne["retrofitted"] = False + df3_re["retrofitted"] = True + df3 = pd.concat([df3_re[keep3], df3_ne[keep3]]).rename(columns=to_rename3) + df = pd.concat([df2, df3]) + df.reset_index(drop=True, inplace=True) + + return df + +def prepare_dataset(df): + + # extract Bundesland information + def split_Bundesland(bl): + Bundesland1 = "" + Bundesland2 = "" + + split_BL = bl.split("/") + + if len(split_BL) == 1: + Bundesland1 = split_BL[0].strip() + Bundesland2 = split_BL[0].strip() + elif len(split_BL) == 2: + Bundesland1 = split_BL[0].strip() + Bundesland2 = split_BL[1].strip() + elif len(split_BL) == 3: + Bundesland1 = split_BL[0].strip() + Bundesland2 = split_BL[2].strip() + else: + pass + + return Bundesland1, Bundesland2 + + # clean diameter + df["diameter_mm"] = pd.to_numeric(df["diameter_mm"], errors="coerce").fillna(300).astype(int) + + # clean build_year + df["build_year"] = pd.to_numeric(df["build_year"], errors="coerce").fillna(2030).astype(int) + df['build_year'] = np.where(df['build_year']<=2025 , 2030, df['build_year']) + + # clean pressure + df["max_pressure_bar"] = pd.to_numeric(df["max_pressure_bar"], errors="coerce").fillna(30).astype(int) + df['max_pressure_bar'] = np.where(df['max_pressure_bar']<=30 , 30, df['max_pressure_bar']) + + # create bidirectional and set true + df["bidirectional"] = True + + # split Bundesländer + df[['BL1', 'BL2']] = df['Bundesland'].apply(split_Bundesland).apply(pd.Series) + + # calc capa + df["p_nom"] = df.diameter_mm.apply(diameter_to_capacity_h2) + + # eliminate leading and trailing spaces + df[["Anfangspunkt(Ort)"]] = df[["Anfangspunkt(Ort)"]].apply(lambda x: x.str.strip(), axis=1) + df[["Endpunkt(Ort)"]] = df[["Endpunkt(Ort)"]].apply(lambda x: x.str.strip(), axis=1) + + # drop pipes with same start and end + df = df[df["Anfangspunkt(Ort)"] != df["Endpunkt(Ort)"]] + # drop pipes with length smaller than 10 km + df = df[df.length > 5] + + # reindex + df.reset_index(drop=True, inplace=True) + + return df + +def extract_locations(df, fn="", reload=False): + + # use already extracted data + if not reload: + locations = pd.read_csv(fn, index_col=0) + locations["point"] = locations["point"].apply(wkt.loads) + + # make new extraction + else: + try: + from geopy.extra.rate_limiter import RateLimiter + from geopy.geocoders import Nominatim + except: + raise ModuleNotFoundError( + "Optional dependency 'geopy' not found." + "Install via 'conda install -c conda-forge geopy'" + #"or set 'industry: hotmaps_locate_missing: false'." + ) + + locator = Nominatim(user_agent=str(uuid.uuid4())) + geocode = RateLimiter(locator.geocode, min_delay_seconds=2) + # load state data for checking + gdf_state = gpd.read_file("https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_DEU_1.json.zip").set_index("GID_1") + + def get_location(row): + + def get_loc_A(loc="location",add_info=""): + loc_A = Point(gpd.tools.geocode(row[loc] + ', ' + add_info, timeout=7)["geometry"][0]) + return loc_A + + def get_loc_B(loc="location",add_info=""): + loc_B = geocode([row[loc], add_info], timeout=7) + if loc_B is not None: + loc_B = Point(loc_B.longitude,loc_B.latitude) + else: + loc_B = Point(0,0) + return loc_B + + def is_in_state(point, state="state"): + if (row[state] in gdf_state.NAME_1.tolist()) & (point is not None): + polygon_geometry = gdf_state[gdf_state.NAME_1 == row[state]].geometry.squeeze() + return point.within(polygon_geometry) + else: + return False + + loc = get_loc_A("location", "Deutschland") + + # check if location is in Bundesland + if not is_in_state(loc, "state"): + # check if other loc is in Bundesland + loc = get_loc_B("location", "Deutschland") + # if both methods do not return loc in Bundesland, add Bundesland info + if not is_in_state(loc, "state"): + loc = get_loc_A("location", row["state"] + ", Deutschland") + # if no location in Bundesland can be found + if not is_in_state(loc, "state"): + loc=Point(0,0) + + return loc + + # extract locations and state + locations1, locations2 = df[["Anfangspunkt(Ort)", "BL1"]], df[["Endpunkt(Ort)", "BL2"]] + locations1.columns, locations2.columns = ["location", "state"], ["location", "state"] + locations = pd.concat([locations1, locations2], axis=0) + locations.drop_duplicates(inplace=True) + + # (3min) + locations["point"] = locations.apply(lambda row: get_location(row), axis=1) + + # map manual locations (NOT FOUND OR WRONG) + locations.point = locations.apply(lambda row: Point(man_map.get(row.location) if row.location in man_map.keys() else row.point), axis=1) + + + # assign locations + df["point0"] = pd.merge(df, locations, left_on=['Anfangspunkt(Ort)', 'BL1'], right_on=['location', 'state'], how='left')["point"] + df["point1"] = pd.merge(df, locations, left_on=['Endpunkt(Ort)', 'BL2'], right_on=['location', 'state'], how='left')["point"] + + # calc length of points + length_factor = 1.5 + df["length_haversine"] = df.apply( + lambda p: length_factor + * haversine_pts([p.point0.x, p.point0.y], [p.point1.x, p.point1.y]), + axis=1, + ) + + # calc length ratio + df["length_ratio"] = df.apply(lambda row: max(row.length, row.length_haversine) / (min(row.length, row.length_haversine) + 1), axis=1) + + # drop all unrealistic ratio lines + df.drop(df[(df.retrofitted == False) & (df.length_ratio > 3)].index, inplace=True) + + # calc LineString + df["geometry"] = df.apply(lambda x: LineString([x["point0"], x["point1"]]), axis=1) + + return df + + +# manual addresses (longitude, latitude) +man_map = { +"Oude Statenzijl" : (7.205108658430258, 53.20183834422634), +"Helgoland" : (7.882663327316698, 54.183393795580166), +"SEN-1" : (6.5, 55.0), +"AWZ" : (14.220711180456643, 54.429208831326804), +'Bremen': (8.795818388451732, 53.077669699449594), +"Bad Lauchstädt" : (11.869106908389433, 51.38797498313352), +"Großkugel" : (12.151584743366769, 51.4166927585755), +"Bobbau" : (12.269345975889912, 51.69045938775995), +'Visbeck': (8.310468203836264, 52.834518912466216), +'Elbe-Süd' : (9.608042769377906, 53.57422954537108), +'Salzgitter' : (10.386847343138689, 52.13861418123843), +'Wefensleben' : (11.15557835653467, 52.176005656180244), +'Fessenheim' : (7.5352027843079, 47.91300212650956), +'Hittistetten' : (10.09644829589717,48.32667870548472), +'Lindau' : (9.690886766574819, 47.55387858107057), +'Ludwigshafen' : (8.444314472678961, 49.477207809634784), +'Niederhohndorf' : (12.466430165766688, 50.7532612203904), +'Rückersdorf' : (12.21941992347776, 50.822251899358236), +'Bissingen' : (10.6158383, 48.7177493), +'Rehden' : (8.476178919627396, 52.60675277527164), +} + + + +if __name__ == "__main__": + ''' + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake("build_wasserstoff_kernnetz") + ''' + + logging.basicConfig(level=snakemake.config["logging"]["level"]) + + wasserstoff_kernnetz = load_merge_dataset(snakemake.input.wasserstoff_kernnetz_1[0], snakemake.input.wasserstoff_kernnetz_2[0]) + + wasserstoff_kernnetz = prepare_dataset(wasserstoff_kernnetz) + + wasserstoff_kernnetz = extract_locations( + wasserstoff_kernnetz, + snakemake.input.locations, + reload=snakemake.config["wasserstoff_kernnetz"]["reload_locations"] + ) + + wasserstoff_kernnetz.to_csv(snakemake.output.cleaned_wasserstoff_kernnetz) diff --git a/workflow/scripts/cluster_wasserstoff_kernnetz.py b/workflow/scripts/cluster_wasserstoff_kernnetz.py new file mode 100644 index 000000000..53ea4ffbf --- /dev/null +++ b/workflow/scripts/cluster_wasserstoff_kernnetz.py @@ -0,0 +1,126 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT +""" +Cluster Wasserstoff Kernnetz to clustered model regions. +""" + +import logging + +logger = logging.getLogger(__name__) + +import geopandas as gpd +import pandas as pd +from packaging.version import Version, parse +from pypsa.geo import haversine_pts +from shapely import wkt + +def concat_gdf(gdf_list, crs="EPSG:4326"): + """ + Concatenate multiple geopandas dataframes with common coordinate reference + system (crs). + """ + return gpd.GeoDataFrame(pd.concat(gdf_list), crs=crs) + +def load_bus_regions(onshore_path, offshore_path): + """ + Load pypsa-eur on- and offshore regions and concat. + """ + bus_regions_offshore = gpd.read_file(offshore_path) + bus_regions_onshore = gpd.read_file(onshore_path) + bus_regions = concat_gdf([bus_regions_offshore, bus_regions_onshore]) + bus_regions = bus_regions.dissolve(by="name", aggfunc="sum") + + return bus_regions + +def build_clustered_h2_network(df, bus_regions, length_factor=1.25): + for i in [0, 1]: + gdf = gpd.GeoDataFrame(geometry=df[f"point{i}"], crs="EPSG:4326") + + kws = ( + dict(op="within") + if parse(gpd.__version__) < Version("0.10") + else dict(predicate="within") + ) + bus_mapping = gpd.sjoin(gdf, bus_regions, how="left", **kws).index_right + bus_mapping = bus_mapping.groupby(bus_mapping.index).first() + + df[f"bus{i}"] = bus_mapping + + df[f"point{i}"] = df[f"bus{i}"].map( + bus_regions.to_crs(3035).centroid.to_crs(4326) + ) + + # drop pipes where not both buses are inside regions + df = df.loc[~df.bus0.isna() & ~df.bus1.isna()] + + # drop pipes within the same region + df = df.loc[df.bus1 != df.bus0] + + # recalculate lengths as center to center * length factor + df["length"] = df.apply( + lambda p: length_factor + * haversine_pts([p.point0.x, p.point0.y], [p.point1.x, p.point1.y]), + axis=1, + ) + + # tidy and create new numbered index + df.drop(["point0", "point1"], axis=1, inplace=True) + df.reset_index(drop=True, inplace=True) + + return df + +def reindex_pipes(df): + def make_index(x): + connector = " <-> " if x.bidirectional else " -> " + return "h2 pipeline " + x.bus0 + connector + x.bus1 + + df.index = df.apply(make_index, axis=1) + + df["p_min_pu"] = df.bidirectional.apply(lambda bi: -1 if bi else 0) + df.drop("bidirectional", axis=1, inplace=True) + + df.sort_index(axis=1, inplace=True) + + +def aggregate_parallel_pipes(df): + strategies = { + "bus0": "first", + "bus1": "first", + "p_nom": "sum", + #"p_nom_diameter": "sum", + "max_pressure_bar": "mean", + "build_year": "mean", + "diameter_mm": "mean", + "length": "mean", + "name": " ".join, + "p_min_pu": "min", + } + return df.groupby(df.index).agg(strategies) + +if __name__ == "__main__": + ''' + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake("cluster_wasserstoff_kernnetz", simpl="", clusters="37") + ''' + + logging.basicConfig(level=snakemake.config["logging"]["level"]) + + fn = snakemake.input.cleaned_h2_network + df = pd.read_csv(fn, index_col=0) + for col in ["point0", "point1"]: + df[col] = df[col].apply(wkt.loads) + + bus_regions = load_bus_regions( + snakemake.input.regions_onshore, snakemake.input.regions_offshore + ) + + wasserstoff_kernnetz = build_clustered_h2_network(df, bus_regions) + + reindex_pipes(wasserstoff_kernnetz) + gas_network = aggregate_parallel_pipes(wasserstoff_kernnetz) + + wasserstoff_kernnetz.to_csv(snakemake.output.clustered_h2_network) \ No newline at end of file From 44038beb9fda4a1fd5b907abf526fc60c7405e1e Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Mon, 15 Jan 2024 17:41:04 +0100 Subject: [PATCH 030/669] added divide_pipes option --- config/config.yaml | 2 + .../scripts/build_wasserstoff_kernnetz.py | 8 +- .../scripts/cluster_wasserstoff_kernnetz.py | 112 +++++++++++++++++- 3 files changed, 117 insertions(+), 5 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 480815cf2..c7a83c392 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -126,6 +126,8 @@ h2_import_max: wasserstoff_kernnetz: enable: true reload_locations: false + divide_pipes: false + pipes_segment_length: 10 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: diff --git a/workflow/scripts/build_wasserstoff_kernnetz.py b/workflow/scripts/build_wasserstoff_kernnetz.py index 77b886835..8506ebefc 100644 --- a/workflow/scripts/build_wasserstoff_kernnetz.py +++ b/workflow/scripts/build_wasserstoff_kernnetz.py @@ -254,7 +254,7 @@ def is_in_state(point, state="state"): df["point1"] = pd.merge(df, locations, left_on=['Endpunkt(Ort)', 'BL2'], right_on=['location', 'state'], how='left')["point"] # calc length of points - length_factor = 1.5 + length_factor = 1.0 df["length_haversine"] = df.apply( lambda p: length_factor * haversine_pts([p.point0.x, p.point0.y], [p.point1.x, p.point1.y]), @@ -265,7 +265,7 @@ def is_in_state(point, state="state"): df["length_ratio"] = df.apply(lambda row: max(row.length, row.length_haversine) / (min(row.length, row.length_haversine) + 1), axis=1) # drop all unrealistic ratio lines - df.drop(df[(df.retrofitted == False) & (df.length_ratio > 3)].index, inplace=True) + df.drop(df[(df.retrofitted == False) & (df.length_ratio > 2)].index, inplace=True) # calc LineString df["geometry"] = df.apply(lambda x: LineString([x["point0"], x["point1"]]), axis=1) @@ -295,10 +295,12 @@ def is_in_state(point, state="state"): 'Rückersdorf' : (12.21941992347776, 50.822251899358236), 'Bissingen' : (10.6158383, 48.7177493), 'Rehden' : (8.476178919627396, 52.60675277527164), +'Eynatten' : (6.083339457526605, 50.69260916361823), +'Vlieghuis' : (6.8382504272201095, 52.66036497820981), +'Kalle' : (6.921180663621839, 52.573992586428425), } - if __name__ == "__main__": ''' if "snakemake" not in globals(): diff --git a/workflow/scripts/cluster_wasserstoff_kernnetz.py b/workflow/scripts/cluster_wasserstoff_kernnetz.py index 53ea4ffbf..819ca17ec 100644 --- a/workflow/scripts/cluster_wasserstoff_kernnetz.py +++ b/workflow/scripts/cluster_wasserstoff_kernnetz.py @@ -15,6 +15,9 @@ from packaging.version import Version, parse from pypsa.geo import haversine_pts from shapely import wkt +from shapely.geometry import LineString, Point +from shapely.ops import transform +import pyproj def concat_gdf(gdf_list, crs="EPSG:4326"): """ @@ -67,10 +70,111 @@ def build_clustered_h2_network(df, bus_regions, length_factor=1.25): # tidy and create new numbered index df.drop(["point0", "point1"], axis=1, inplace=True) + df[["bus0", "bus1"]] = df.apply(sort_buses, axis=1) df.reset_index(drop=True, inplace=True) return df +def sort_buses(row): + if ((row['bus0'][:2] == row['bus1'][:2]) and (row['bus0'][-1] > row['bus1'][-1])): + return pd.Series([row['bus1'], row['bus0']]) + elif ((row['bus0'][:2] != row['bus1'][:2]) and (row['bus0'][:2] > row['bus1'][:2])): + return pd.Series([row['bus1'], row['bus0']]) + else: + return pd.Series([row['bus0'], row['bus1']]) + +def split_line_by_length(line, segment_length_km): + """ + Split a Shapely LineString into segments of a specified length. + + Parameters: + - line (LineString): The original LineString to be split. + - segment_length_km (float): The desired length of each resulting segment in kilometers. + + Returns: + list: A list of Shapely LineString objects representing the segments. + """ + # Define a function for projecting points to meters + project_to_meters = pyproj.Transformer.from_proj( + pyproj.Proj('epsg:4326'), # assuming WGS84 + pyproj.Proj(proj='utm', zone=33, ellps='WGS84'), # adjust the projection as needed + always_xy=True + ).transform + + # Define a function for projecting points back to decimal degrees + project_to_degrees = pyproj.Transformer.from_proj( + pyproj.Proj(proj='utm', zone=33, ellps='WGS84'), # adjust the projection as needed + pyproj.Proj('epsg:4326'), + always_xy=True + ).transform + + # Convert segment length from kilometers to meters + segment_length_meters = segment_length_km * 1000.0 + + # Project the LineString to a suitable metric projection + projected_line = transform(project_to_meters, line) + + total_length = projected_line.length + num_segments = int(total_length / segment_length_meters) + + if num_segments < 2: + return [line] + + segments = [] + for i in range(1, num_segments + 1): + start_point = projected_line.interpolate((i - 1) * segment_length_meters) + end_point = projected_line.interpolate(i * segment_length_meters) + + # Extract x and y coordinates from the tuples + start_point_coords = (start_point.x, start_point.y) + end_point_coords = (end_point.x, end_point.y) + + # Create Shapely Point objects + start_point_degrees = Point(start_point_coords) + end_point_degrees = Point(end_point_coords) + + # Project the points back to decimal degrees + start_point_degrees = transform(project_to_degrees, start_point_degrees) + end_point_degrees = transform(project_to_degrees, end_point_degrees) + + # last point without interpolation + if i == num_segments: + end_point_degrees = Point(line.coords[-1]) + + + segment = LineString([start_point_degrees, end_point_degrees]) + segments.append(segment) + + return segments + +def divide_pipes(df, segment_length=10): + """ + Divide a GeoPandas DataFrame of LineString geometries into segments of a specified length. + + Parameters: + - df (GeoDataFrame): The input DataFrame containing LineString geometries. + - segment_length (float): The desired length of each resulting segment in kilometers. + + Returns: + GeoDataFrame: A new GeoDataFrame with additional rows representing the segmented pipes. + """ + + result = pd.DataFrame(columns=df.columns) + + for index, pipe in df.iterrows(): + segments = split_line_by_length(pipe.geometry, segment_length) + + for i in range(0,len(segments)): + res_row = pipe.copy() + res_row.geometry = segments[i] + res_row.point0 = Point(segments[i].coords[0]) + res_row.point1 = Point(segments[i].coords[1]) + res_row.length_haversine = segment_length + result.loc[f"{index}-{i}"] = res_row + + return result + + def reindex_pipes(df): def make_index(x): connector = " <-> " if x.bidirectional else " -> " @@ -89,7 +193,6 @@ def aggregate_parallel_pipes(df): "bus0": "first", "bus1": "first", "p_nom": "sum", - #"p_nom_diameter": "sum", "max_pressure_bar": "mean", "build_year": "mean", "diameter_mm": "mean", @@ -99,6 +202,7 @@ def aggregate_parallel_pipes(df): } return df.groupby(df.index).agg(strategies) + if __name__ == "__main__": ''' if "snakemake" not in globals(): @@ -111,13 +215,17 @@ def aggregate_parallel_pipes(df): fn = snakemake.input.cleaned_h2_network df = pd.read_csv(fn, index_col=0) - for col in ["point0", "point1"]: + for col in ["point0", "point1", "geometry"]: df[col] = df[col].apply(wkt.loads) bus_regions = load_bus_regions( snakemake.input.regions_onshore, snakemake.input.regions_offshore ) + if snakemake.config["wasserstoff_kernnetz"]["divide_pipes"]: + print("PIPES ARE DIVIDED") + df = divide_pipes(df, segment_length=snakemake.config["wasserstoff_kernnetz"]["pipes_segment_length"]) + wasserstoff_kernnetz = build_clustered_h2_network(df, bus_regions) reindex_pipes(wasserstoff_kernnetz) From 0e542cadc4173a0fdf49d2790595178c4dfc1c07 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Tue, 16 Jan 2024 09:28:08 +0100 Subject: [PATCH 031/669] bug fix --- workflow/scripts/cluster_wasserstoff_kernnetz.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/workflow/scripts/cluster_wasserstoff_kernnetz.py b/workflow/scripts/cluster_wasserstoff_kernnetz.py index 819ca17ec..7013bbc59 100644 --- a/workflow/scripts/cluster_wasserstoff_kernnetz.py +++ b/workflow/scripts/cluster_wasserstoff_kernnetz.py @@ -229,6 +229,7 @@ def aggregate_parallel_pipes(df): wasserstoff_kernnetz = build_clustered_h2_network(df, bus_regions) reindex_pipes(wasserstoff_kernnetz) - gas_network = aggregate_parallel_pipes(wasserstoff_kernnetz) + + wasserstoff_kernnetz = aggregate_parallel_pipes(wasserstoff_kernnetz) wasserstoff_kernnetz.to_csv(snakemake.output.clustered_h2_network) \ No newline at end of file From 7003ed496fbf29ff6f44ce0d7d6b1ee32d5e0d3c Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Tue, 16 Jan 2024 17:33:04 +0100 Subject: [PATCH 032/669] final adjustments wasserstoff kernnetz --- workflow/Snakefile | 2 ++ workflow/scripts/cluster_wasserstoff_kernnetz.py | 3 +-- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 948e9c595..7310b74c4 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -106,6 +106,8 @@ rule build_wasserstoff_kernnetz: rule cluster_wasserstoff_kernnetz: + params: + divide_pipes=config["wasserstoff_kernnetz"]["divide_pipes"] input: cleaned_h2_network="resources/wasserstoff_kernnetz.csv", regions_onshore="resources/regions_onshore_elec_s{simpl}_{clusters}.geojson", diff --git a/workflow/scripts/cluster_wasserstoff_kernnetz.py b/workflow/scripts/cluster_wasserstoff_kernnetz.py index 7013bbc59..d8f8f1bbd 100644 --- a/workflow/scripts/cluster_wasserstoff_kernnetz.py +++ b/workflow/scripts/cluster_wasserstoff_kernnetz.py @@ -223,13 +223,12 @@ def aggregate_parallel_pipes(df): ) if snakemake.config["wasserstoff_kernnetz"]["divide_pipes"]: - print("PIPES ARE DIVIDED") df = divide_pipes(df, segment_length=snakemake.config["wasserstoff_kernnetz"]["pipes_segment_length"]) wasserstoff_kernnetz = build_clustered_h2_network(df, bus_regions) reindex_pipes(wasserstoff_kernnetz) - + wasserstoff_kernnetz = aggregate_parallel_pipes(wasserstoff_kernnetz) wasserstoff_kernnetz.to_csv(snakemake.output.clustered_h2_network) \ No newline at end of file From 5c422f9a91304f04d26304319b584a40956906a3 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Tue, 16 Jan 2024 18:11:46 +0100 Subject: [PATCH 033/669] wasserstoff kernnetz git hustle --- config/config.yaml | 5 +---- workflow/Snakefile | 24 ------------------------ 2 files changed, 1 insertion(+), 28 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index c7a83c392..28af626d7 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,11 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: -<<<<<<< HEAD - name: "240112-365H-adaptexistingheat" -======= name: "h2_kernnetz" ->>>>>>> 101f3c8 (added wasserstoff kernnetz) scenarios: enable: true shared_resources: true #stops recalculating @@ -129,6 +125,7 @@ wasserstoff_kernnetz: divide_pipes: false pipes_segment_length: 10 + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: district_heating: diff --git a/workflow/Snakefile b/workflow/Snakefile index 7310b74c4..2657a3d4c 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -128,33 +128,9 @@ use rule solve_sector_network_myopic from pypsaeur with: **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), input: -<<<<<<< HEAD - **rules.solve_sector_network_myopic.input, - co2_totals_name=RESOURCES + "co2_totals.csv", - - -rule modify_existing_heating: - input: - ariadne=RESOURCES + "ariadne_scenario_data.csv", - existing_heating="data/existing_infrastructure/existing_heating_raw.csv", - output: - existing_heating=RESOURCES + "existing_heating.csv", - resources: - mem_mb=1000 - script: - "scripts/modify_existing_heating.py" - - - -use rule add_existing_baseyear from pypsaeur with: - input: - **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, - existing_heating=RESOURCES + "existing_heating.csv", -======= network=RESULTS + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", costs="data/costs_{planning_horizons}.csv", config=RESULTS + "config.yaml", additional_functionality="workflow/scripts/additional_functionality.py", co2_totals_name=RESOURCES + "co2_totals.csv", ->>>>>>> 101f3c8 (added wasserstoff kernnetz) From 44fc70210fd05aaaf8d5606189fd59e10b6e9761 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 17 Jan 2024 10:00:25 +0100 Subject: [PATCH 034/669] Snakemake update --- workflow/Snakefile | 24 +++++++++++++++++++----- 1 file changed, 19 insertions(+), 5 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 2657a3d4c..80ee81f2a 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -128,9 +128,23 @@ use rule solve_sector_network_myopic from pypsaeur with: **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), input: - network=RESULTS - + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", - costs="data/costs_{planning_horizons}.csv", - config=RESULTS + "config.yaml", - additional_functionality="workflow/scripts/additional_functionality.py", + **rules.solve_sector_network_myopic.input, co2_totals_name=RESOURCES + "co2_totals.csv", + + +rule modify_existing_heating: + input: + ariadne=RESOURCES + "ariadne_scenario_data.csv", + existing_heating="data/existing_infrastructure/existing_heating_raw.csv", + output: + existing_heating=RESOURCES + "existing_heating.csv", + resources: + mem_mb=1000 + script: + "scripts/modify_existing_heating.py" + + +use rule add_existing_baseyear from pypsaeur with: + input: + **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, + existing_heating=RESOURCES + "existing_heating.csv", \ No newline at end of file From bad957129d4f17072370b3ee79116f1a9e5c6bf7 Mon Sep 17 00:00:00 2001 From: Micha Date: Wed, 17 Jan 2024 10:12:39 +0100 Subject: [PATCH 035/669] Improve environment.yaml (#3) * avoid pip * remove xarray constraint * add pyam for ariadne data retrieval (needs USERNAME!) --- environment.yaml | 11 ++++++----- 1 file changed, 6 insertions(+), 5 deletions(-) diff --git a/environment.yaml b/environment.yaml index e07c760c5..8090944ca 100644 --- a/environment.yaml +++ b/environment.yaml @@ -29,7 +29,7 @@ dependencies: - geopandas>=0.11.0 - atlite>=0.2.9 - dask -- xarray<=2023.8.0 +- xarray - rioxarray - netcdf4 - networkx @@ -48,6 +48,10 @@ dependencies: - tabula-py - pyxlsb - graphviz +- tsam>=1.1.0 +- pypsa>=0.25.1 +- highs +- pyam # Keep in conda environment when calling ipython - ipython @@ -58,7 +62,4 @@ dependencies: - rasterio!=1.2.10 -- pip: - - tsam>=1.1.0 - - pypsa>=0.25.1 - - highspy \ No newline at end of file + From 4480d44629a38e6d5c777c12915db5cf146cfee5 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 17 Jan 2024 11:51:13 +0100 Subject: [PATCH 036/669] added locations in data folder --- .../locations_wasserstoff_kernnetz.csv | 254 ++++++++++++++++++ 1 file changed, 254 insertions(+) create mode 100644 data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv diff --git a/data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv b/data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv new file mode 100644 index 000000000..13f38d024 --- /dev/null +++ b/data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv @@ -0,0 +1,254 @@ +,location,state,point +0,Brunsbüttel,Schleswig-Holstein,POINT (9.1395423 53.8972549) +1,Ahlten,Niedersachsen,POINT (9.9119656 52.3650694) +2,Balve-Eisborn,Nordrhein-Westfalen,POINT (7.8838676 51.3870558) +3,Reutles,Bayern,POINT (11.0246344 49.5343175) +4,Hochheim,Hessen,POINT (8.3514488 50.0145517) +5,Legden,Nordrhein-Westfalen,POINT (7.1058059 52.0306248) +6,Kulkwitz,Sachsen,POINT (12.2324261 51.283959) +7,Marl,Nordrhein-Westfalen,POINT (7.0829054 51.6485843) +8,Mühlberg,Sachsen,POINT (13.1725218 51.5046897) +9,Klein Offenseth,Schleswig-Holstein,POINT (9.683364 53.7847143) +10,Hemmingstedt,Schleswig-Holstein,POINT (9.08263 54.1506435) +11,Huntorf,Niedersachsen,POINT (8.3897014 53.1956997) +12,Sandkrug,Niedersachsen,POINT (7.5526822 53.4630231) +13,Wiederitzsch,Sachsen,POINT (12.374251 51.3941234) +14,Finsing,Bayern,POINT (11.8253553 48.2167439) +15,Ismaning Nord,Bayern,POINT (11.6608879 48.2110287) +16,Seyweiler,Saarland,POINT (7.2691502 49.161041) +17,Carling,Saarland,POINT (6.9537369 49.3841872) +18,Fürstenhausen,Saarland,POINT (6.8654184 49.2431689) +19,Leidingen,Saarland,POINT (6.6109318 49.3086764) +20,Perl,Saarland,POINT (6.3874514 49.4735915) +21,March,Baden-Württemberg,POINT (7.7790038 48.0578573) +22,Forchheim,Bayern,POINT (11.0595749 49.7187319) +23,Lengthal,Bayern,POINT (12.805992 48.1818627) +24,Münchsmünster,Bayern,POINT (11.6864502 48.7630342) +25,Schmidhausen,Bayern,POINT (11.8304698 48.4235449) +27,Schnaitsee,Bayern,POINT (12.3686999 48.0702334) +28,Irsching (Menning),Bayern,POINT (11.5730893 48.7574014) +29,Mailing,Bayern,POINT (11.478937018588255 48.774092800000005) +30,Zöllnitz,Sachsen-Anhalt,POINT (11.7003344 52.0089065) +31,Lubmin,Mecklenburg-Vorpommern,POINT (13.612798 54.1318409) +32,Uckermark,Brandenburg,POINT (13.915135050326025 53.24526305) +33,Bobbau,Sachsen-Anhalt,POINT (12.269345975889912 51.69045938775995) +34,Radeland,Brandenburg,POINT (13.5537371 52.0630691) +35,Wolfsbehringen,Thüringen,POINT (10.4890767 51.0066759) +36,Stadtroda,Thüringen,POINT (11.7263639 50.8582666) +37,Rückersdorf,Thüringen,POINT (12.21941992347776 50.822251899358236) +38,Dürrengleina,Thüringen,POINT (11.5378974 50.8571407) +39,Reckrod,Hessen,POINT (9.795001 50.7751551) +42,Zethau,Sachsen,POINT (13.3837749 50.7773525) +44,Wilhelmshaven,Niedersachsen,POINT (8.106301 53.5278793) +45,Sande,Niedersachsen,POINT (8.0144916 53.5027182) +47,Oude Statenzijl,Niedersachsen,POINT (7.205108658430258 53.20183834422634) +48,Folmhusen,Niedersachsen,POINT (7.4794643 53.1730626) +50,Ganderkesee,Niedersachsen,POINT (8.5451469 53.0344984) +52,Dötlingen,Niedersachsen,POINT (8.3820642 52.9356656) +53,Visbeck,Niedersachsen,POINT (8.310468203836264 52.834518912466216) +54,Achim,Niedersachsen,POINT (9.039649 53.0096048) +56,Heidenau,Niedersachsen,POINT (9.6531686 53.3139784) +57,Fockbek,Schleswig-Holstein,POINT (9.6067007 54.3065487) +59,Eckel,Niedersachsen,POINT (9.9233342 53.3512004) +60,Luttum,Niedersachsen,POINT (9.2992445 52.8957679) +61,Kolshorn,Niedersachsen,POINT (9.940178157648713 52.41249285000001) +63,Quarnstedt,Schleswig-Holstein,POINT (9.7866367 53.954381) +65,Schepsdorf,Niedersachsen,POINT (7.2881111 52.5092543) +67,Frenswegen,Niedersachsen,POINT (7.0377193 52.4547637) +68,Rehden,Niedersachsen,POINT (8.476178919627396 52.60675277527164) +69,Voigtei,Niedersachsen,POINT (8.9226462 52.6081821) +70,Kohlshorn,Niedersachsen,POINT (9.940178157648713 52.41249285000001) +72,Reiningen,Niedersachsen,POINT (10.0524902 52.9153376) +74,Lehringen,Niedersachsen,POINT (9.4010201 52.8825054) +75,Weser,Niedersachsen,POINT (9.2181918 52.6410849) +76,Vinnhorst,Niedersachsen,POINT (9.7032801 52.4222536) +77,Misburg,Niedersachsen,POINT (9.8612306 52.3735637) +78,Gersten,Niedersachsen,POINT (7.4953102 52.5709728) +79,Emsbüren,Niedersachsen,POINT (7.2959699 52.3927616) +80,Vreden,Nordrhein-Westfalen,POINT (6.8236481 52.035862) +81,Gescher,Nordrhein-Westfalen,POINT (7.0038803 51.956874) +83,Wettringen,Nordrhein-Westfalen,POINT (7.3218939 52.2103897) +84,Albachten,Nordrhein-Westfalen,POINT (7.5273089 51.9218529) +85,Ascheberg,Nordrhein-Westfalen,POINT (7.6196825 51.7886689) +86,Werne,Nordrhein-Westfalen,POINT (7.6355052 51.66268) +88,Paffrath,Nordrhein-Westfalen,POINT (7.1000318 50.9994265) +89,Niederkassel,Nordrhein-Westfalen,POINT (7.0351942 50.8137102) +90,Birlinghoven,Nordrhein-Westfalen,POINT (7.2241731 50.7479113) +91,Rüsselsheim,Hessen,POINT (8.4138251 49.991701) +93,Westhofen,Nordrhein-Westfalen,POINT (7.5334109 51.4249817) +94,Medelsheim,Saarland,POINT (7.2672779 49.1444166) +95,Mittelbrunn,Rheinland-Pfalz,POINT (7.549097 49.3708476) +96,Gernsheim,Hessen,POINT (8.4861853 49.7505186) +97,Rimpar,Bayern,POINT (9.95903408726619 49.8530509) +98,Rothenstadt,Bayern,POINT (12.1396079 49.6338326) +99,Bad Bentheim,Niedersachsen,POINT (7.1605921 52.3024786) +100,Ledgen,Nordrhein-Westfalen,POINT (7.5543751 51.4789205) +101,St. Hubert,Nordrhein-Westfalen,POINT (6.4524179 51.382662) +102,Glehn,Nordrhein-Westfalen,POINT (6.5766765 51.1650012) +103,Voigtslach,Nordrhein-Westfalen,POINT (6.934751 51.0749889) +104,Ketzin,Brandenburg,POINT (12.8443972 52.4769264) +105,Buchholz,Brandenburg,POINT (13.7638809 52.1107175) +106,Bobbau,Sachsen,POINT (12.269345975889912 51.69045938775995) +108,Schkeuditz,Sachsen,POINT (12.2216292 51.3963509) +109,Lüptitz,Sachsen,POINT (12.7716385 51.3933612) +110,Rüdersdorf,Brandenburg,POINT (13.784527 52.471293) +111,Vogelsdorf,Brandenburg,POINT (13.7601248 52.5076938) +112,Wefensleben,Sachsen-Anhalt,POINT (11.15557835653467 52.176005656180244) +113,Wedringen,Sachsen-Anhalt,POINT (11.4654553 52.2727122) +114,Bernburg Dröbel,Sachsen-Anhalt,POINT (11.7768217 51.7989678) +115,Bernburg,Sachsen-Anhalt,POINT (11.7391606 51.7930788) +116,Bad Lauchstädt,Sachsen-Anhalt,POINT (11.869106908389433 51.38797498313352) +118,Milzau,Sachsen-Anhalt,POINT (11.8989296 51.3757611) +120,Leuna,Sachsen-Anhalt,POINT (12.0195081 51.3233638) +122,Cavertitz,Sachsen,POINT (13.1301296 51.3869974) +123,Kleinziethen,Brandenburg,POINT (13.4452219 52.3802493) +124,Heidelberg,Baden-Württemberg,POINT (8.694724 49.4093582) +125,Heilbronn,Baden-Württemberg,POINT (9.218655 49.142291) +126,Löchgau,Baden-Württemberg,POINT (9.1053914 49.0024253) +127,Bad Krozingen,Baden-Württemberg,POINT (7.7033313 47.9118288) +128,Hittistetten,Baden-Württemberg,POINT (10.09644829589717 48.32667870548472) +129,Elten,Nordrhein-Westfalen,POINT (6.1620438 51.8731461) +130,Uedener Bruch,Nordrhein-Westfalen,POINT (6.2940229 51.6682254) +132,Gescher Süd,Nordrhein-Westfalen,POINT (7.027887397926482 51.94277415) +133,Amelsbüren,Nordrhein-Westfalen,POINT (7.6059771 51.8833893) +134,Möllen,Nordrhein-Westfalen,POINT (6.6942745 51.5809193) +135,Vlieghuis,Nordrhein-Westfalen,POINT (6.8382504272201095 52.66036497820981) +136,Kalle,Nordrhein-Westfalen,POINT (6.921180663621839 52.573992586428425) +137,Wallach,Nordrhein-Westfalen,POINT (6.5711307 51.5956853) +139,Bissingen,Bayern,POINT (10.6158383 48.7177493) +140,Kötz,Bayern,POINT (10.289760282067878 48.40444315) +142,Niederhohndorf,Thüringen,POINT (12.466430165766688 50.7532612203904) +143,Waidhaus,Bayern,POINT (12.4955813 49.6428282) +144,Arzberg,Bayern,POINT (12.1859087 50.0567356) +145,Rostock,Mecklenburg-Vorpommern,POINT (12.1400211 54.0886707) +146,SEN-1,AWZ D Nordsee,POINT (6.5 55) +147,Helgoland,AWZ D Nordsee,POINT (7.882663327316698 54.183393795580166) +148,AWZ,AWZ D Ostsee,POINT (14.220711180456643 54.429208831326804) +149,Edesbüttel,Niedersachsen,POINT (10.6252392 52.4053764) +150,Lampertheim,Hessen,POINT (8.4093474 49.6239449) +151,Ludwigshafen,Baden-Württemberg,POINT (8.444314472678961 49.477207809634784) +152,Emden Ost,Niedersachsen,POINT (7.208170859556342 53.34411255) +153,Bunde,Niedersachsen,POINT (7.2695448 53.184017) +154,Rastede,Niedersachsen,POINT (8.201904 53.2467081) +155,Elsfleth,Niedersachsen,POINT (8.4571037 53.2357029) +156,Heist,Schleswig-Holstein,POINT (9.6664509 53.6528424) +157,Ellund,Schleswig-Holstein,POINT (9.3224522 54.7865236) +158,Peine,Niedersachsen,POINT (10.2349489 52.3217849) +159,Barßel,Niedersachsen,POINT (7.7434171 53.1699986) +160,Wardenburg,Niedersachsen,POINT (8.1945038 53.0654681) +167,Egenstedt,Niedersachsen,POINT (9.9934217 52.1010937) +168,Hanekenfähr,Niedersachsen,POINT (7.3039222 52.4697713) +169,Wilhelmshaven Nord,Niedersachsen,POINT (8.102611826217313 53.57990075) +172,Emden West,Niedersachsen,POINT (7.17328769741499 53.35350955) +173,Bottrop,Nordrhein-Westfalen,POINT (6.929204 51.521581) +174,Eynatten,Nordrhein-Westfalen,POINT (6.083339457526605 50.69260916361823) +176,Wiesbaden,Hessen,POINT (8.2416556 50.0820384) +177,Schillig,Niedersachsen,POINT (8.0235529 53.7033668) +178,Dykhausen,Niedersachsen,POINT (7.9665652 53.5031607) +180,Heek,Nordrhein-Westfalen,POINT (7.1011759 52.1242301) +181,Dorsten,Nordrhein-Westfalen,POINT (6.9647431 51.6604071) +183,Hamborn,Nordrhein-Westfalen,POINT (6.772532547024161 51.5041215) +184,Krefeld,Nordrhein-Westfalen,POINT (6.5623343 51.3331205) +185,Neumühl,Nordrhein-Westfalen,POINT (6.7973866 51.4902985) +189,Dannenreich,Brandenburg,POINT (13.7489708 52.3146936) +191,Havellandkanal,Brandenburg,POINT (13.2461296 52.8455492) +193,Eisenhüttenstadt,Brandenburg,POINT (14.6294413 52.1448863) +194,Gosda,Brandenburg,POINT (14.6360307 51.6364028) +195,Salzgitter,Sachsen-Anhalt,POINT (10.386847343138689 52.13861418123843) +196,Halle,Sachsen-Anhalt,POINT (11.9705452 51.4825041) +197,Nempitz,Sachsen-Anhalt,POINT (12.1478216 51.291215) +198,Kienbaum,Brandenburg,POINT (13.9571532 52.4554736) +199,Glasewitz,Mecklenburg-Vorpommern,POINT (12.2823709 53.8194539) +200,Pritzwalk,Brandenburg,POINT (12.1761903 53.1492896) +203,Biesenbrow,Brandenburg,POINT (14.0155881 53.1191146) +204,Schwedt,Brandenburg,POINT (14.2840858 53.0586366) +205,Brusendorf,Brandenburg,POINT (13.509532 52.3093902) +206,Böhlen,Sachsen,POINT (12.3859676 51.2027284) +207,Bad Dürrenberg,Sachsen-Anhalt,POINT (12.0665175 51.2998551) +208,Coswig,Sachsen,POINT (13.5783983 51.1267305) +209,Uhrsleben,Sachsen-Anhalt,POINT (11.264415698864283 52.1991685) +210,Lampertheim,Baden-Württemberg,POINT (8.5109914 49.5260921) +211,Altbach,Baden-Württemberg,POINT (9.3807848 48.7244372) +212,Fessenheim,Baden-Württemberg,POINT (7.5352027843079 47.91300212650956) +214,Oberaußem,Nordrhein-Westfalen,POINT (6.6794102 50.9735806) +215,Kalscheuren,Nordrhein-Westfalen,POINT (6.9074954 50.8753279) +216,Dormagen,Nordrhein-Westfalen,POINT (6.8407931 51.0941656) +217,Recklinghausen,Nordrhein-Westfalen,POINT (7.1978546 51.6143815) +218,Rinkerode,Nordrhein-Westfalen,POINT (7.6847518 51.8457359) +220,Emsbüren,Nordrhein-Westfalen,POINT (7.5543751 51.4789205) +1,Salzgitter Hallendorf,Niedersachsen,POINT (10.3775522 52.1533277) +2,Arnsberg-Bruchhausen,Nordrhein-Westfalen,POINT (8.0252464 51.4263456) +3,Nürnberg,Bayern,POINT (11.077298 49.453872) +4,Mainz-Kastel,Hessen,POINT (8.2844378 50.0083449) +6,Lössnig,Sachsen,POINT (12.3959513 51.2992474) +7,Gelsenkirchen,Nordrhein-Westfalen,POINT (7.0960124 51.5110321) +8,Röderau,Sachsen,POINT (13.4644419 51.3879818) +10,Ascheberg (Holstein),Schleswig-Holstein,POINT (10.3423409 54.1483357) +11,Oldenburg,Niedersachsen,POINT (8.2146017 53.1389753) +12,Bramsche,Niedersachsen,POINT (7.9749336 52.4109547) +13,Sixdorf,Sachsen-Anhalt,POINT (11.8334655 51.7331641) +16,Dillingen,Saarland,POINT (6.7243197 49.3552721) +18,Saarbrücken,Saarland,POINT (6.996379 49.234362) +20,Besch,Saarland,POINT (6.3740372 49.5042645) +21,Freiburg,Baden-Württemberg,POINT (7.8494005 47.9960901) +23,Burgkirchen,Bayern,POINT (12.7307847 48.1676884) +25,Moosburg,Bayern,POINT (11.9333 48.4667) +28,Kösching,Bayern,POINT (11.4971139 48.8104641) +30,Bad Lauchstädt,Thüringen,POINT (11.869106908389433 51.38797498313352) +42,Deutschneudorf,Sachsen,POINT (13.4614048 50.6049366) +45,Jemgum,Niedersachsen,POINT (7.3834995 53.2667955) +48,Nüttermoor,Niedersachsen,POINT (7.4360347 53.2625382) +50,Bremen,Niedersachsen,POINT (8.795818388451732 53.077669699449594) +53,Lemförde,Niedersachsen,POINT (8.3738085 52.4647071) +56,Elbe-Süd,Niedersachsen,POINT (9.608042769377906 53.57422954537108) +59,Leversen,Niedersachsen,POINT (9.8959115 53.4071494) +65,Lingen,Niedersachsen,POINT (7.316584 52.5224659) +72,Georgsmarienhütte,Niedersachsen,POINT (8.05 52.2) +73,Rheden,Niedersachsen,POINT (9.7879627 52.0577352) +86,Ummeln,Nordrhein-Westfalen,POINT (8.4599606 51.9694347) +92,Wesseling,Nordrhein-Westfalen,POINT (6.9810852 50.8247166) +93,Herdecke,Nordrhein-Westfalen,POINT (7.4330062 51.4001119) +105,Piesteritz,Sachsen-Anhalt,POINT (12.5969035 51.8678903) +106,Großkugel,Sachsen-Anhalt,POINT (12.151584743366769 51.4166927585755) +111,Blumberg,Brandenburg,POINT (13.6015561 52.607472) +113,Glöthe,Sachsen-Anhalt,POINT (11.6734539 51.9100444) +115,Preußlitz,Sachsen-Anhalt,POINT (11.8119764 51.7331789) +118,Großkugel,Sachsen,POINT (12.151584743366769 51.4166927585755) +123,Osdorfer Straße,Brandenburg,POINT (13.2711292 52.4003307) +128,Lindau,Baden-Württemberg,POINT (9.690886766574819 47.55387858107057) +130,Wardt,Nordrhein-Westfalen,POINT (6.4371478 51.688944) +136,Ochtrup,Nordrhein-Westfalen,POINT (7.188806 52.2102308) +137,Xanten,Nordrhein-Westfalen,POINT (6.4543203 51.661519) +138,Bergheim,Nordrhein-Westfalen,POINT (6.6410004 50.9540457) +139,Wertingen,Bayern,POINT (10.6808075 48.5601209) +140,Hittistetten (Senden),Bayern,POINT (10.0955295 48.3278287) +142,Rückersdorf,Sachsen,POINT (12.21941992347776 50.822251899358236) +145,Wrangelsburg,Mecklenburg-Vorpommern,POINT (13.5944793 54.016375) +150,Ludwighafen,Rheinland-Pfalz,POINT (8.4381568 49.4704113) +151,Karlsruhe,Rheinland-Pfalz,POINT (8.29684904101257 49.056995900000004) +154,Westerstede,Niedersachsen,POINT (7.9273367 53.2575197) +155,Bremerhaven,Niedersachsen,POINT (8.5979065 53.6040332) +157,Niebüll,Schleswig-Holstein,POINT (8.8255846 54.7869088) +158,Hallendorf,Niedersachsen,POINT (10.3775522 52.1533277) +169,Wilhelmshaven Süd,Niedersachsen,POINT (8.1153355 53.5187847) +171,Wettringen,Niedersachsen,POINT (9.075962 52.8398531) +173,Gladbeck,Nordrhein-Westfalen,POINT (6.9877343 51.5718665) +175,Ludwigshafen,Hessen,POINT (8.444314472678961 49.477207809634784) +176,Frankfurt,Hessen,POINT (8.6820917 50.1106444) +180,Epe,Nordrhein-Westfalen,POINT (7.0283370514193555 52.17018885) +186,Hamm,Nordrhein-Westfalen,POINT (7.815197 51.6804093) +191,Falkenhöh,Brandenburg,POINT (13.141735 52.5695382) +194,Spreetal,Brandenburg,POINT (13.9011346 52.3971347) +195,Wefensleben,Niedersachsen,POINT (11.15557835653467 52.176005656180244) +196,Cörmigk,Sachsen-Anhalt,POINT (11.8413647 51.7265394) +202,Brandenburg a.d. Havel,Brandenburg,POINT (12.5497933 52.4108261) +204,Mescherin,Brandenburg,POINT (14.425521097275155 53.25520185) +206,Borna,Sachsen,POINT (12.4999055 51.1241649) +208,Dresden,Sachsen,POINT (13.7381437 51.0493286) +211,Bissingen,Baden-Württemberg,POINT (10.6158383 48.7177493) +213,Averbruch,Nordrhein-Westfalen,POINT (6.74367564842036 51.54893875) +214,Weiden,Nordrhein-Westfalen,POINT (7.2411269 51.0625299) +216,Merkenich,Nordrhein-Westfalen,POINT (6.9579743 51.0258343) +217,Leverkusen,Nordrhein-Westfalen,POINT (6.9881194 51.0324743) +218,Uentrop,Nordrhein-Westfalen,POINT (7.940585 51.6926159) +219,Eisenach,Thüringen,POINT (10.3193565 50.9747134) From 8654b3e3b8c5ff0dc8b8f09895365de436ae5a08 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 16 Jan 2024 17:18:55 +0100 Subject: [PATCH 037/669] non-CO2 GHG correction --- config/config.yaml | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 7d9a585ad..99e31a7a9 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -75,14 +75,15 @@ co2_budget: 2050: 0.000 # climate-neutral by 2050 co2_budget_national: + # Corrected for non-CO2 GHGs via the ariadne database 2020: - DE: 0.6 + DE: 0.58 # 0.6 2030: - DE: 0.35 + DE: 0.30 # 0.35 2040: - DE: 0.12 + DE: 0.09 # 0.12 2050: - DE: 0. + DE: -0.04 # 0. limits_min: Generator: From a9d78597731f9ea4a70083bf1a8b5f5de1ad2345 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 17 Jan 2024 18:08:06 +0100 Subject: [PATCH 038/669] testing and tidy up --- config/config.yaml | 38 ++++++++++++++--------------- workflow/Snakefile | 61 +++++++++++++++++++++++----------------------- 2 files changed, 49 insertions(+), 50 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 28af626d7..4e00dbe0c 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "h2_kernnetz" + name: "wasserstoff_kernnetz_test" scenarios: enable: true shared_resources: true #stops recalculating @@ -17,6 +17,7 @@ iiasa_database: scenario: 8Gt_EnSec region: Deutschland + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight foresight: myopic @@ -47,22 +48,22 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P enable: retrieve: false # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved - -focus_weights: -# 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" - 'DE': 0.3636 # 8/22 - 'AT': 0.0455 # 1/22 - 'BE': 0.0455 - 'CH': 0.0455 - 'CZ': 0.0455 - 'DK': 0.0909 # 2/22 - 'FR': 0.0454 - 'GB': 0.0909 # 2/22 - 'LU': 0.0454 - 'NL': 0.0454 - 'NO': 0.0454 - 'PL': 0.0454 - 'SE': 0.0454 +clustering: + focus_weights: + # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" + 'DE': 0.3636 # 8/22 + 'AT': 0.0455 # 1/22 + 'BE': 0.0455 + 'CH': 0.0455 + 'CZ': 0.0455 + 'DK': 0.0909 # 2/22 + 'FR': 0.0454 + 'GB': 0.0909 # 2/22 + 'LU': 0.0454 + 'NL': 0.0454 + 'NO': 0.0454 + 'PL': 0.0454 + 'SE': 0.0454 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#co2-budget co2_budget: @@ -125,7 +126,6 @@ wasserstoff_kernnetz: divide_pipes: false pipes_segment_length: 10 - # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: district_heating: @@ -173,4 +173,4 @@ solving: plotting: tech_colors: - load: "#111100" + load: "#111100" \ No newline at end of file diff --git a/workflow/Snakefile b/workflow/Snakefile index 80ee81f2a..9a98851b6 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -16,6 +16,8 @@ RESOURCES = "resources/" + RDIR if not run.get("shared_resources") else "resourc RESULTS = "results/" + RDIR + + module pypsaeur: snakefile: "submodules/pypsa-eur/Snakefile" @@ -25,9 +27,6 @@ module pypsaeur: use rule * from pypsaeur -wildcard_constraints: - simpl="[a-zA-Z0-9]*", - clusters="[0-9]+(m|c)?|all", from pathlib import Path @@ -86,6 +85,33 @@ rule modify_cost_data: "scripts/modify_cost_data.py" +use rule solve_sector_network_myopic from pypsaeur with: + params: + **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, + custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), + input: + **rules.solve_sector_network_myopic.input, + co2_totals_name=RESOURCES + "co2_totals.csv", + + +rule modify_existing_heating: + input: + ariadne=RESOURCES + "ariadne_scenario_data.csv", + existing_heating="data/existing_infrastructure/existing_heating_raw.csv", + output: + existing_heating=RESOURCES + "existing_heating.csv", + resources: + mem_mb=1000 + script: + "scripts/modify_existing_heating.py" + + + +use rule add_existing_baseyear from pypsaeur with: + input: + **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, + existing_heating=RESOURCES + "existing_heating.csv", + rule build_wasserstoff_kernnetz: input: wasserstoff_kernnetz_1=HTTP.remote( @@ -120,31 +146,4 @@ rule cluster_wasserstoff_kernnetz: use rule prepare_sector_network from pypsaeur with: input: **rules.prepare_sector_network.input, - custom_h2_pipelines="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv" if config["wasserstoff_kernnetz"]["enable"] else [], - - -use rule solve_sector_network_myopic from pypsaeur with: - params: - **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, - custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), - input: - **rules.solve_sector_network_myopic.input, - co2_totals_name=RESOURCES + "co2_totals.csv", - - -rule modify_existing_heating: - input: - ariadne=RESOURCES + "ariadne_scenario_data.csv", - existing_heating="data/existing_infrastructure/existing_heating_raw.csv", - output: - existing_heating=RESOURCES + "existing_heating.csv", - resources: - mem_mb=1000 - script: - "scripts/modify_existing_heating.py" - - -use rule add_existing_baseyear from pypsaeur with: - input: - **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, - existing_heating=RESOURCES + "existing_heating.csv", \ No newline at end of file + custom_h2_pipelines="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv" if config["wasserstoff_kernnetz"]["enable"] else [], \ No newline at end of file From e5ab7708aabf53fd51a6f935774c12ba41bea87b Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 18 Jan 2024 14:30:56 +0100 Subject: [PATCH 039/669] wildcard constraints --- workflow/Snakefile | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 9a98851b6..f08161507 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -15,8 +15,9 @@ RDIR = run["name"] + "/" if run.get("name") else "" RESOURCES = "resources/" + RDIR if not run.get("shared_resources") else "resources/" RESULTS = "results/" + RDIR - - +wildcard_constraints: + simpl="[a-zA-Z0-9]*", + clusters="[0-9]+(m|c)?|all", module pypsaeur: snakefile: @@ -106,12 +107,12 @@ rule modify_existing_heating: "scripts/modify_existing_heating.py" - use rule add_existing_baseyear from pypsaeur with: input: **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, existing_heating=RESOURCES + "existing_heating.csv", + rule build_wasserstoff_kernnetz: input: wasserstoff_kernnetz_1=HTTP.remote( @@ -143,6 +144,7 @@ rule cluster_wasserstoff_kernnetz: script: "scripts/cluster_wasserstoff_kernnetz.py" + use rule prepare_sector_network from pypsaeur with: input: **rules.prepare_sector_network.input, From 2e862d05ef3b0b97a06155facf93ea525f97309b Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 18 Jan 2024 14:56:12 +0100 Subject: [PATCH 040/669] update referencing pypsa europe --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 6417c7a12..e90b79840 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 6417c7a122954a08bd83af1fd639ea160510c864 +Subproject commit e90b79840d752728be74d33b805b8f3551dfbb88 From 8538df24175b1144470e286f6894e16b4d6191b1 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 17 Jan 2024 18:08:06 +0100 Subject: [PATCH 041/669] testing and tidy up --- workflow/Snakefile | 59 +++++++++++++++++++++++++++++++++++ workflow/submodules/pypsa-eur | 2 +- 2 files changed, 60 insertions(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index f08161507..e259e5d00 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -15,6 +15,11 @@ RDIR = run["name"] + "/" if run.get("name") else "" RESOURCES = "resources/" + RDIR if not run.get("shared_resources") else "resources/" RESULTS = "results/" + RDIR +wildcard_constraints: + simpl="[a-zA-Z0-9]*", + clusters="[0-9]+(m|c)?|all", + + wildcard_constraints: simpl="[a-zA-Z0-9]*", clusters="[0-9]+(m|c)?|all", @@ -113,6 +118,60 @@ use rule add_existing_baseyear from pypsaeur with: existing_heating=RESOURCES + "existing_heating.csv", +use rule solve_sector_network_myopic from pypsaeur with: + params: + **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, + custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), + input: + **rules.solve_sector_network_myopic.input, + co2_totals_name=RESOURCES + "co2_totals.csv", + + +rule modify_existing_heating: + input: + ariadne=RESOURCES + "ariadne_scenario_data.csv", + existing_heating="data/existing_infrastructure/existing_heating_raw.csv", + output: + existing_heating=RESOURCES + "existing_heating.csv", + resources: + mem_mb=1000 + script: + "scripts/modify_existing_heating.py" + + +use rule add_existing_baseyear from pypsaeur with: + input: + **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, + existing_heating=RESOURCES + "existing_heating.csv", + + +use rule solve_sector_network_myopic from pypsaeur with: + params: + **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, + custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), + input: + **rules.solve_sector_network_myopic.input, + co2_totals_name=RESOURCES + "co2_totals.csv", + + +rule modify_existing_heating: + input: + ariadne=RESOURCES + "ariadne_scenario_data.csv", + existing_heating="data/existing_infrastructure/existing_heating_raw.csv", + output: + existing_heating=RESOURCES + "existing_heating.csv", + resources: + mem_mb=1000 + script: + "scripts/modify_existing_heating.py" + + + +use rule add_existing_baseyear from pypsaeur with: + input: + **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, + existing_heating=RESOURCES + "existing_heating.csv", + rule build_wasserstoff_kernnetz: input: wasserstoff_kernnetz_1=HTTP.remote( diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index e90b79840..8fe0608f8 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit e90b79840d752728be74d33b805b8f3551dfbb88 +Subproject commit 8fe0608f8971e5f6e926c6865d02ae1e30e2cac1 From 63345b60c1edf7a6887f0f11928335014665ff4b Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Fri, 19 Jan 2024 10:19:56 +0100 Subject: [PATCH 042/669] cleaned Snakefile --- workflow/Snakefile | 58 ---------------------------------------------- 1 file changed, 58 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index e259e5d00..3219c2ae7 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -20,10 +20,6 @@ wildcard_constraints: clusters="[0-9]+(m|c)?|all", -wildcard_constraints: - simpl="[a-zA-Z0-9]*", - clusters="[0-9]+(m|c)?|all", - module pypsaeur: snakefile: "submodules/pypsa-eur/Snakefile" @@ -118,60 +114,6 @@ use rule add_existing_baseyear from pypsaeur with: existing_heating=RESOURCES + "existing_heating.csv", -use rule solve_sector_network_myopic from pypsaeur with: - params: - **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, - custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), - input: - **rules.solve_sector_network_myopic.input, - co2_totals_name=RESOURCES + "co2_totals.csv", - - -rule modify_existing_heating: - input: - ariadne=RESOURCES + "ariadne_scenario_data.csv", - existing_heating="data/existing_infrastructure/existing_heating_raw.csv", - output: - existing_heating=RESOURCES + "existing_heating.csv", - resources: - mem_mb=1000 - script: - "scripts/modify_existing_heating.py" - - -use rule add_existing_baseyear from pypsaeur with: - input: - **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, - existing_heating=RESOURCES + "existing_heating.csv", - - -use rule solve_sector_network_myopic from pypsaeur with: - params: - **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, - custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), - input: - **rules.solve_sector_network_myopic.input, - co2_totals_name=RESOURCES + "co2_totals.csv", - - -rule modify_existing_heating: - input: - ariadne=RESOURCES + "ariadne_scenario_data.csv", - existing_heating="data/existing_infrastructure/existing_heating_raw.csv", - output: - existing_heating=RESOURCES + "existing_heating.csv", - resources: - mem_mb=1000 - script: - "scripts/modify_existing_heating.py" - - - -use rule add_existing_baseyear from pypsaeur with: - input: - **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, - existing_heating=RESOURCES + "existing_heating.csv", - rule build_wasserstoff_kernnetz: input: wasserstoff_kernnetz_1=HTTP.remote( From a57f3ccb9bf6a37421b61e7f7e2b5150d3a21608 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Fri, 19 Jan 2024 10:38:01 +0100 Subject: [PATCH 043/669] changed submodules to latest pypsa-eur master commit --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 6417c7a12..85ecb1355 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 6417c7a122954a08bd83af1fd639ea160510c864 +Subproject commit 85ecb1355aef5625d51156f7f2077d8ccb76fcd8 From 70803502b29481fe3dea61877222c141e15765b7 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Fri, 19 Jan 2024 10:57:30 +0100 Subject: [PATCH 044/669] reverted commit --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 85ecb1355..6417c7a12 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 85ecb1355aef5625d51156f7f2077d8ccb76fcd8 +Subproject commit 6417c7a122954a08bd83af1fd639ea160510c864 From 783d47ca47e864ad9f897b0e025e91fc8ce3523d Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 19 Jan 2024 12:03:59 +0100 Subject: [PATCH 045/669] add dummy script to modify energy totals --- workflow/Snakefile | 19 +++++++++++++++++++ workflow/scripts/modify_energy_totals.py | 12 ++++++++++++ 2 files changed, 31 insertions(+) create mode 100644 workflow/scripts/modify_energy_totals.py diff --git a/workflow/Snakefile b/workflow/Snakefile index eb1355105..fdce536f1 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -107,3 +107,22 @@ use rule add_existing_baseyear from pypsaeur with: input: **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, existing_heating=RESOURCES + "existing_heating.csv", + + + +rule modify_energy_totals: + input: + ariadne=RESOURCES + "ariadne_scenario_data.csv", + energy_totals=RESOURCES + "energy_totals.csv", + output: + energy_totals=RESOURCES + "energy_totals-modified.csv", + resources: + mem_mb=1000 + script: + "scripts/modify_energy_totals.py" + + +use rule build_population_weighted_energy_totals from pypsaeur with: + input: + **{k: v for k, v in rules.build_population_weighted_energy_totals.input.items() if k != "energy_totals"}, + energy_totals=RESOURCES + "energy_totals-modified.csv", diff --git a/workflow/scripts/modify_energy_totals.py b/workflow/scripts/modify_energy_totals.py new file mode 100644 index 000000000..57387a554 --- /dev/null +++ b/workflow/scripts/modify_energy_totals.py @@ -0,0 +1,12 @@ + + +import pandas as pd + + +energy_totals = pd.read_csv(snakemake.input.energy_totals, + index_col=0) + +ariadne = pd.read_csv(snakemake.input.ariadne, + index_col=0) + +energy_totals.to_csv(snakemake.output.energy_totals) From 7255a1976580d10441fad47e9ebb62a6189293cc Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 19 Jan 2024 14:23:09 +0100 Subject: [PATCH 046/669] move fixed profile for new boilers to new modify_prenetwork script The constraint in additional_functionality.py was incredibly unperformant, raising presolving time by 4 hours. Now the restriction is applied before solving with: n.links_t.p_max_pu = p_min_pu = load_profile_pu for new boilers. --- config/config.yaml | 12 +++--- workflow/Snakefile | 23 ++++++++++- workflow/scripts/additional_functionality.py | 24 ----------- workflow/scripts/modify_prenetwork.py | 43 ++++++++++++++++++++ workflow/submodules/pypsa-eur | 2 +- 5 files changed, 72 insertions(+), 32 deletions(-) create mode 100644 workflow/scripts/modify_prenetwork.py diff --git a/config/config.yaml b/config/config.yaml index f62d449dc..f36971517 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240112-365H-adaptexistingheat" + name: "240119-3H-fixnewboilerspre" scenarios: enable: true shared_resources: true #stops recalculating @@ -32,12 +32,12 @@ scenario: opts: - '' sector_opts: - - 365H-T-H-B-I-A-solar+p3-linemaxext15 + - 3H-T-H-B-I-A-solar+p3-linemaxext15 planning_horizons: - 2020 - - 2030 - - 2040 - - 2050 + # - 2030 + #- 2040 + #- 2050 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" @@ -160,7 +160,7 @@ industry: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving solving: walltime: "12:00:00" - mem: 200000 #30000 is OK for 22 nodes, 365H; 140000 for 22 nodes 3H; 400000 for 44 nodes 3H + mem: 140000 #30000 is OK for 22 nodes, 365H; 140000 for 22 nodes 3H; 400000 for 44 nodes 3H options: load_shedding: false diff --git a/workflow/Snakefile b/workflow/Snakefile index fdce536f1..3cff346e2 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -12,6 +12,12 @@ RESOURCES = "resources/" + RDIR if not run.get("shared_resources") else "resourc RESULTS = "results/" + RDIR +wildcard_constraints: + simpl="[a-zA-Z0-9]*", + clusters="[0-9]+(m|c)?|all", + ll="(v|c)([0-9\.]+|opt)", + opts="[-+a-zA-Z0-9\.]*", + sector_opts="[-+a-zA-Z0-9\.\s]*", module pypsaeur: @@ -81,12 +87,27 @@ rule modify_cost_data: "scripts/modify_cost_data.py" +rule modify_prenetwork: + input: + network=RESULTS + + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" + output: + network=RESULTS + + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" + resources: + mem_mb=1000 + script: + "scripts/modify_prenetwork.py" + + use rule solve_sector_network_myopic from pypsaeur with: params: **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), input: - **rules.solve_sector_network_myopic.input, + **{k: v for k, v in rules.solve_sector_network_myopic.input.items() if k != "network"}, + network=RESULTS + + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", co2_totals_name=RESOURCES + "co2_totals.csv", diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index a3e8ae647..693784845 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -178,28 +178,6 @@ def force_boiler_profiles_existing(n): n.loads["profile_factor_opt"] = 0. -def force_boiler_profiles_new(n): - """this is equivalent to setting p_min_pu = p_max_pu = load_profile_pu""" - - logger.info("Forcing boiler profiles for new ones") - - decentral_boilers = n.links.index[n.links.carrier.str.contains("boiler") - & ~n.links.carrier.str.contains("urban central") - & n.links.p_nom_extendable] - - if decentral_boilers.empty: - return - - boiler_loads = n.links.loc[decentral_boilers,"bus1"] - boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div(n.loads_t.p_set[boiler_loads].max(),axis=1) - boiler_profiles_pu.columns = decentral_boilers - boiler_profiles_pu = DataArray(boiler_profiles_pu) - - lhs = n.model["Link-p"].loc[:,decentral_boilers] - boiler_profiles_pu*n.model["Link-p_nom"].loc[decentral_boilers] - - n.model.add_constraints(lhs, "=", 0, "Link-fixed_profile_ext") - - def additional_functionality(n, snapshots, snakemake): logger.info("Adding Ariadne-specific functionality") @@ -212,8 +190,6 @@ def additional_functionality(n, snapshots, snakemake): force_boiler_profiles_existing(n) - force_boiler_profiles_new(n) - if snakemake.config["sector"]["co2_budget_national"]: limit_countries = snakemake.config["co2_budget_national"][investment_year] add_co2limit_country(n, limit_countries, snakemake) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py new file mode 100644 index 000000000..d3a064226 --- /dev/null +++ b/workflow/scripts/modify_prenetwork.py @@ -0,0 +1,43 @@ + + + +import logging + +import pandas as pd + +import pypsa + +logger = logging.getLogger(__name__) + + + +def fix_new_boiler_profiles(n): + + logger.info("Forcing boiler profiles for new ones") + + decentral_boilers = n.links.index[n.links.carrier.str.contains("boiler") + & ~n.links.carrier.str.contains("urban central") + & n.links.p_nom_extendable] + + if decentral_boilers.empty: + return + + boiler_loads = n.links.loc[decentral_boilers,"bus1"] + boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div(n.loads_t.p_set[boiler_loads].max(),axis=1) + boiler_profiles_pu.columns = decentral_boilers + + for attr in ["p_min_pu","p_max_pu"]: + n.links_t[attr][decentral_boilers] = boiler_profiles_pu + print(n.links_t[attr][decentral_boilers]) + + +if __name__ == "__main__": + + logger.info("Adding Ariadne-specific functionality") + + + n = pypsa.Network(snakemake.input.network) + + fix_new_boiler_profiles(n) + + n.export_to_netcdf(snakemake.output.network) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 6417c7a12..0022a8851 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 6417c7a122954a08bd83af1fd639ea160510c864 +Subproject commit 0022a88517ce2352ace44d28ad1721880845ba2b From 938893d7cf70df8fd816199e797f76a0b53c4ff1 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 19 Jan 2024 18:44:06 +0100 Subject: [PATCH 047/669] existing_heating is now an input to script to build distribution --- workflow/Snakefile | 4 ++-- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 3cff346e2..c033c5668 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -124,9 +124,9 @@ rule modify_existing_heating: -use rule add_existing_baseyear from pypsaeur with: +use rule build_existing_heating_distribution from pypsaeur with: input: - **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, + **{k: v for k, v in rules.build_existing_heating_distribution.input.items() if k != "existing_heating"}, existing_heating=RESOURCES + "existing_heating.csv", diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 0022a8851..88f61220e 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 0022a88517ce2352ace44d28ad1721880845ba2b +Subproject commit 88f61220e2261d0cb758d8e0e6930f7116bbbcca From 1e19d1fd63c08829b48124b7bb5db88589eb6ed8 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Mon, 22 Jan 2024 14:33:41 +0100 Subject: [PATCH 048/669] feature_jg: code review --- workflow/Snakefile | 5 + .../scripts/build_wasserstoff_kernnetz.py | 437 ++++++++++-------- .../scripts/cluster_wasserstoff_kernnetz.py | 180 +++----- workflow/submodules/pypsa-eur | 2 +- 4 files changed, 307 insertions(+), 317 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 3219c2ae7..8ce3ab35d 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -126,6 +126,11 @@ rule build_wasserstoff_kernnetz: keep_local=True, static=True, ), + gadm=HTTP.remote( + "https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_DEU_1.json.zip", + keep_local=True, + static=True + ), locations="data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", output: cleaned_wasserstoff_kernnetz="resources/wasserstoff_kernnetz.csv", diff --git a/workflow/scripts/build_wasserstoff_kernnetz.py b/workflow/scripts/build_wasserstoff_kernnetz.py index 8506ebefc..c05cbd9c3 100644 --- a/workflow/scripts/build_wasserstoff_kernnetz.py +++ b/workflow/scripts/build_wasserstoff_kernnetz.py @@ -11,21 +11,49 @@ logger = logging.getLogger(__name__) -import pandas as pd -import geopandas as gpd -import numpy as np import uuid +import geopandas as gpd +import numpy as np +import pandas as pd +from pypsa.geo import haversine_pts from shapely import wkt from shapely.geometry import LineString, Point -from pypsa.geo import haversine_pts + + +MANUAL_ADDRESSES = { + "Oude Statenzijl": (7.205108658430258, 53.20183834422634), + "Helgoland": (7.882663327316698, 54.183393795580166), + "SEN-1": (6.5, 55.0), + "AWZ": (14.220711180456643, 54.429208831326804), + "Bremen": (8.795818388451732, 53.077669699449594), + "Bad Lauchstädt": (11.869106908389433, 51.38797498313352), + "Großkugel": (12.151584743366769, 51.4166927585755), + "Bobbau": (12.269345975889912, 51.69045938775995), + "Visbeck": (8.310468203836264, 52.834518912466216), + "Elbe-Süd": (9.608042769377906, 53.57422954537108), + "Salzgitter": (10.386847343138689, 52.13861418123843), + "Wefensleben": (11.15557835653467, 52.176005656180244), + "Fessenheim": (7.5352027843079, 47.91300212650956), + "Hittistetten": (10.09644829589717, 48.32667870548472), + "Lindau": (9.690886766574819, 47.55387858107057), + "Ludwigshafen": (8.444314472678961, 49.477207809634784), + "Niederhohndorf": (12.466430165766688, 50.7532612203904), + "Rückersdorf": (12.21941992347776, 50.822251899358236), + "Bissingen": (10.6158383, 48.7177493), + "Rehden": (8.476178919627396, 52.60675277527164), + "Eynatten": (6.083339457526605, 50.69260916361823), + "Vlieghuis": (6.8382504272201095, 52.66036497820981), + "Kalle": (6.921180663621839, 52.573992586428425), +} + def diameter_to_capacity_h2(pipe_diameter_mm): """ Calculate pipe capacity in MW based on diameter in mm. Linear interpolation. - 20 inch (500 mm) 50 bar -> 1.2 GW H2 pipe capacity (LHV) - 36 inch (900 mm) 50 bar -> 4.7 GW H2 pipe capacity (LHV) + 20 inch (500 mm) 50 bar -> 1.2 GW H2 pipe capacity (LHV) + 36 inch (900 mm) 50 bar -> 4.7 GW H2 pipe capacity (LHV) 48 inch (1200 mm) 80 bar -> 16.9 GW H2 pipe capacity (LHV) Based on table 4 of @@ -46,52 +74,57 @@ def diameter_to_capacity_h2(pipe_diameter_mm): return a1 + m1 * pipe_diameter_mm else: return a2 + m2 * pipe_diameter_mm - -def load_merge_dataset(fn1, fn2): + + +def load_and_merge_raw(fn1, fn2): # load, clean and merge - df2 = pd.read_excel(fn1, skiprows=2, skipfooter=2) - df3_re = pd.read_excel(fn2, "Wasserstoff-Kernnetz Umstellung", skiprows=2, skipfooter=4) - df3_ne = pd.read_excel(fn2, "Wasserstoff-Kernnetz Neubau", skiprows=3, skipfooter=2) + df_fn1 = pd.read_excel(fn1, skiprows=2, skipfooter=2) + df_fn2_retrofit = pd.read_excel( + fn2, "Wasserstoff-Kernnetz Umstellung", skiprows=2, skipfooter=4 + ) + df_fn2_new = pd.read_excel( + fn2, "Wasserstoff-Kernnetz Neubau", skiprows=3, skipfooter=2 + ) - for df in [df2, df3_re, df3_ne]: - df.columns = [c.replace("\n", "") for c in df.columns.values.astype(str)] + for df in [df_fn1, df_fn2_retrofit, df_fn2_new]: + df.columns = df.columns.str.replace("\n", "") # clean first dataset # drop lines not in Kernetz - df2 = df2[df2["Bestandteil des Wasserstoff-Kernnetzes"] == "ja"] - - keep2 = [ - "Name (Lfd.Nr.-Von-Nach)", - "Umstellungsdatum/ Planerische Inbetriebnahme", - "Anfangspunkt(Ort)", - "Endpunkt(Ort)", - "Nenndurchmesser (DN)", - "Länge (km)", - "Druckstufe (DP)[mind. 30 barg]", - "Bundesland", - "Umstellung/ Neubau", + df_fn1 = df_fn1[df_fn1["Bestandteil des Wasserstoff-Kernnetzes"] == "ja"] + + to_keep = [ + "Name (Lfd.Nr.-Von-Nach)", + "Umstellungsdatum/ Planerische Inbetriebnahme", + "Anfangspunkt(Ort)", + "Endpunkt(Ort)", + "Nenndurchmesser (DN)", + "Länge (km)", + "Druckstufe (DP)[mind. 30 barg]", + "Bundesland", + "Umstellung/ Neubau", ] - to_rename2 = { - "Name (Lfd.Nr.-Von-Nach)": "name", - "Umstellungsdatum/ Planerische Inbetriebnahme": "build_year", - "Nenndurchmesser (DN)": "diameter_mm", - "Länge (km)": "length", - "Druckstufe (DP)[mind. 30 barg]": "max_pressure_bar", - "Umstellung/ Neubau": "retrofitted", + to_rename = { + "Name (Lfd.Nr.-Von-Nach)": "name", + "Umstellungsdatum/ Planerische Inbetriebnahme": "build_year", + "Nenndurchmesser (DN)": "diameter_mm", + "Länge (km)": "length", + "Druckstufe (DP)[mind. 30 barg]": "max_pressure_bar", + "Umstellung/ Neubau": "retrofitted", } - df2 = df2[keep2].rename(columns=to_rename2) + df_fn1 = df_fn1[to_keep].rename(columns=to_rename) # extract info on retrofitted - df2["retrofitted"] = df2["retrofitted"].apply(lambda x: False if x == "Neubau" else True) + df_fn1["retrofitted"] = df_fn1.retrofitted != "Neubau" - # clean second dataset + # clean second dataset # select only pipes - df3_ne = df3_ne[df3_ne["Maßnahmenart"] == "Leitung"] + df_fn2_new = df_fn2_new[df_fn2_new["Maßnahmenart"] == "Leitung"] - keep3 = [ + to_keep = [ "Name", "Planerische Inbetriebnahme", "Anfangspunkt(Ort)", @@ -103,7 +136,7 @@ def load_merge_dataset(fn1, fn2): "retrofitted", ] - to_rename3 = { + to_rename = { "Name": "name", "Planerische Inbetriebnahme": "build_year", "Nenndurchmesser (DN)": "diameter_mm", @@ -111,161 +144,197 @@ def load_merge_dataset(fn1, fn2): "Druckstufe (DP)[mind. 30 barg]": "max_pressure_bar", } - df3_ne["retrofitted"] = False - df3_re["retrofitted"] = True - df3 = pd.concat([df3_re[keep3], df3_ne[keep3]]).rename(columns=to_rename3) - df = pd.concat([df2, df3]) + df_fn2_new["retrofitted"] = False + df_fn2_retrofit["retrofitted"] = True + df_fn2 = pd.concat([df_fn2_retrofit, df_fn2_new])[to_keep].rename(columns=to_rename) + df = pd.concat([df_fn1, df_fn2]) df.reset_index(drop=True, inplace=True) return df + def prepare_dataset(df): - # extract Bundesland information - def split_Bundesland(bl): - Bundesland1 = "" - Bundesland2 = "" - - split_BL = bl.split("/") - - if len(split_BL) == 1: - Bundesland1 = split_BL[0].strip() - Bundesland2 = split_BL[0].strip() - elif len(split_BL) == 2: - Bundesland1 = split_BL[0].strip() - Bundesland2 = split_BL[1].strip() - elif len(split_BL) == 3: - Bundesland1 = split_BL[0].strip() - Bundesland2 = split_BL[2].strip() - else: - pass - - return Bundesland1, Bundesland2 - + # clean length + df.length = df.length.astype(float) + # clean diameter - df["diameter_mm"] = pd.to_numeric(df["diameter_mm"], errors="coerce").fillna(300).astype(int) + df.diameter_mm = ( + df.diameter_mm.astype(str) + .str.extractall(r"(\d+)") + .groupby(level=0) + .last() + .astype(int) + ) - # clean build_year - df["build_year"] = pd.to_numeric(df["build_year"], errors="coerce").fillna(2030).astype(int) - df['build_year'] = np.where(df['build_year']<=2025 , 2030, df['build_year']) + # clean max pressure + df.max_pressure_bar = ( + df.max_pressure_bar.astype(str) + .str.extractall(r"(\d+[.,]?\d*)") + .groupby(level=0) + .last() + .squeeze() + .str.replace(",", ".") + .astype(float) + .clip(lower=30) + ) - # clean pressure - df["max_pressure_bar"] = pd.to_numeric(df["max_pressure_bar"], errors="coerce").fillna(30).astype(int) - df['max_pressure_bar'] = np.where(df['max_pressure_bar']<=30 , 30, df['max_pressure_bar']) + # clean build_year + df.build_year = ( + df.build_year.astype(str) + .str.extract(r"(\b\d{4}\b)") + .astype(float) + .fillna(2030) + .clip(lower=2030) + ) # create bidirectional and set true df["bidirectional"] = True - # split Bundesländer - df[['BL1', 'BL2']] = df['Bundesland'].apply(split_Bundesland).apply(pd.Series) + df[["BL1", "BL2"]] = ( + df["Bundesland"] + .apply(lambda bl: [bl.split("/")[0].strip(), bl.split("/")[-1].strip()]) + .apply(pd.Series) + ) # calc capa df["p_nom"] = df.diameter_mm.apply(diameter_to_capacity_h2) # eliminate leading and trailing spaces - df[["Anfangspunkt(Ort)"]] = df[["Anfangspunkt(Ort)"]].apply(lambda x: x.str.strip(), axis=1) - df[["Endpunkt(Ort)"]] = df[["Endpunkt(Ort)"]].apply(lambda x: x.str.strip(), axis=1) + df["Anfangspunkt(Ort)"] = df["Anfangspunkt(Ort)"].str.strip() + df["Endpunkt(Ort)"] = df["Endpunkt(Ort)"].str.strip() # drop pipes with same start and end df = df[df["Anfangspunkt(Ort)"] != df["Endpunkt(Ort)"]] - # drop pipes with length smaller than 10 km + + # drop pipes with length smaller than 5 km df = df[df.length > 5] # reindex df.reset_index(drop=True, inplace=True) - + return df -def extract_locations(df, fn="", reload=False): - # use already extracted data - if not reload: - locations = pd.read_csv(fn, index_col=0) - locations["point"] = locations["point"].apply(wkt.loads) +def geocode_locations(df): - # make new extraction - else: - try: - from geopy.extra.rate_limiter import RateLimiter - from geopy.geocoders import Nominatim - except: - raise ModuleNotFoundError( - "Optional dependency 'geopy' not found." - "Install via 'conda install -c conda-forge geopy'" - #"or set 'industry: hotmaps_locate_missing: false'." - ) + try: + from geopy.extra.rate_limiter import RateLimiter + from geopy.geocoders import Nominatim + except: + raise ModuleNotFoundError( + "Optional dependency 'geopy' not found." + "Install via 'conda install -c conda-forge geopy'" + ) - locator = Nominatim(user_agent=str(uuid.uuid4())) - geocode = RateLimiter(locator.geocode, min_delay_seconds=2) - # load state data for checking - gdf_state = gpd.read_file("https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_DEU_1.json.zip").set_index("GID_1") - - def get_location(row): - - def get_loc_A(loc="location",add_info=""): - loc_A = Point(gpd.tools.geocode(row[loc] + ', ' + add_info, timeout=7)["geometry"][0]) - return loc_A - - def get_loc_B(loc="location",add_info=""): - loc_B = geocode([row[loc], add_info], timeout=7) - if loc_B is not None: - loc_B = Point(loc_B.longitude,loc_B.latitude) - else: - loc_B = Point(0,0) - return loc_B - - def is_in_state(point, state="state"): - if (row[state] in gdf_state.NAME_1.tolist()) & (point is not None): - polygon_geometry = gdf_state[gdf_state.NAME_1 == row[state]].geometry.squeeze() - return point.within(polygon_geometry) - else: - return False - - loc = get_loc_A("location", "Deutschland") - - # check if location is in Bundesland + locator = Nominatim(user_agent=str(uuid.uuid4())) + geocode = RateLimiter(locator.geocode, min_delay_seconds=2) + # load state data for checking + gdf_state = gpd.read_file(snakemake.input.gadm).set_index("GID_1") + + def get_location(row): + def get_loc_A(loc="location", add_info=""): + loc_A = Point( + gpd.tools.geocode(row[loc] + ", " + add_info, timeout=7)[ + "geometry" + ][0] + ) + return loc_A + + def get_loc_B(loc="location", add_info=""): + loc_B = geocode([row[loc], add_info], timeout=7) + if loc_B is not None: + loc_B = Point(loc_B.longitude, loc_B.latitude) + else: + loc_B = Point(0, 0) + return loc_B + + def is_in_state(point, state="state"): + if (row[state] in gdf_state.NAME_1.tolist()) & (point is not None): + polygon_geometry = gdf_state[ + gdf_state.NAME_1 == row[state] + ].geometry.squeeze() + return point.within(polygon_geometry) + else: + return False + + loc = get_loc_A("location", "Deutschland") + + # check if location is in Bundesland + if not is_in_state(loc, "state"): + # check if other loc is in Bundesland + loc = get_loc_B("location", "Deutschland") + # if both methods do not return loc in Bundesland, add Bundesland info if not is_in_state(loc, "state"): - # check if other loc is in Bundesland - loc = get_loc_B("location", "Deutschland") - # if both methods do not return loc in Bundesland, add Bundesland info + loc = get_loc_A("location", row["state"] + ", Deutschland") + # if no location in Bundesland can be found if not is_in_state(loc, "state"): - loc = get_loc_A("location", row["state"] + ", Deutschland") - # if no location in Bundesland can be found - if not is_in_state(loc, "state"): - loc=Point(0,0) - - return loc - - # extract locations and state - locations1, locations2 = df[["Anfangspunkt(Ort)", "BL1"]], df[["Endpunkt(Ort)", "BL2"]] - locations1.columns, locations2.columns = ["location", "state"], ["location", "state"] - locations = pd.concat([locations1, locations2], axis=0) - locations.drop_duplicates(inplace=True) - - # (3min) - locations["point"] = locations.apply(lambda row: get_location(row), axis=1) - - # map manual locations (NOT FOUND OR WRONG) - locations.point = locations.apply(lambda row: Point(man_map.get(row.location) if row.location in man_map.keys() else row.point), axis=1) - - - # assign locations - df["point0"] = pd.merge(df, locations, left_on=['Anfangspunkt(Ort)', 'BL1'], right_on=['location', 'state'], how='left')["point"] - df["point1"] = pd.merge(df, locations, left_on=['Endpunkt(Ort)', 'BL2'], right_on=['location', 'state'], how='left')["point"] + loc = Point(0, 0) + + return loc + + # extract locations and state + locations1, locations2 = ( + df[["Anfangspunkt(Ort)", "BL1"]], + df[["Endpunkt(Ort)", "BL2"]], + ) + locations1.columns, locations2.columns = ["location", "state"], [ + "location", + "state", + ] + locations = pd.concat([locations1, locations2], axis=0) + locations.drop_duplicates(inplace=True) + + # (3min) + locations["point"] = locations.apply(lambda row: get_location(row), axis=1) + + # map manual locations (NOT FOUND OR WRONG) + locations.point = locations.apply( + lambda row: Point( + MANUAL_ADDRESSES.get(row.location) + if row.location in MANUAL_ADDRESSES.keys() + else row.point + ), + axis=1, + ) + + return locations + + +def assign_locations(df, locations): + + df["point0"] = pd.merge( + df, + locations, + left_on=["Anfangspunkt(Ort)", "BL1"], + right_on=["location", "state"], + how="left", + )["point"] + df["point1"] = pd.merge( + df, + locations, + left_on=["Endpunkt(Ort)", "BL2"], + right_on=["location", "state"], + how="left", + )["point"] # calc length of points length_factor = 1.0 df["length_haversine"] = df.apply( - lambda p: length_factor - * haversine_pts([p.point0.x, p.point0.y], [p.point1.x, p.point1.y]), - axis=1, - ) + lambda p: length_factor + * haversine_pts([p.point0.x, p.point0.y], [p.point1.x, p.point1.y]), + axis=1, + ) # calc length ratio - df["length_ratio"] = df.apply(lambda row: max(row.length, row.length_haversine) / (min(row.length, row.length_haversine) + 1), axis=1) + df["length_ratio"] = df.apply( + lambda row: max(row.length, row.length_haversine) + / (min(row.length, row.length_haversine) + 1), + axis=1, + ) - # drop all unrealistic ratio lines - df.drop(df[(df.retrofitted == False) & (df.length_ratio > 2)].index, inplace=True) + # only keep pipes with realistic length ratio + df = df.query("retrofitted or length_ratio <= 2") # calc LineString df["geometry"] = df.apply(lambda x: LineString([x["point0"], x["point1"]]), axis=1) @@ -273,52 +342,32 @@ def is_in_state(point, state="state"): return df -# manual addresses (longitude, latitude) -man_map = { -"Oude Statenzijl" : (7.205108658430258, 53.20183834422634), -"Helgoland" : (7.882663327316698, 54.183393795580166), -"SEN-1" : (6.5, 55.0), -"AWZ" : (14.220711180456643, 54.429208831326804), -'Bremen': (8.795818388451732, 53.077669699449594), -"Bad Lauchstädt" : (11.869106908389433, 51.38797498313352), -"Großkugel" : (12.151584743366769, 51.4166927585755), -"Bobbau" : (12.269345975889912, 51.69045938775995), -'Visbeck': (8.310468203836264, 52.834518912466216), -'Elbe-Süd' : (9.608042769377906, 53.57422954537108), -'Salzgitter' : (10.386847343138689, 52.13861418123843), -'Wefensleben' : (11.15557835653467, 52.176005656180244), -'Fessenheim' : (7.5352027843079, 47.91300212650956), -'Hittistetten' : (10.09644829589717,48.32667870548472), -'Lindau' : (9.690886766574819, 47.55387858107057), -'Ludwigshafen' : (8.444314472678961, 49.477207809634784), -'Niederhohndorf' : (12.466430165766688, 50.7532612203904), -'Rückersdorf' : (12.21941992347776, 50.822251899358236), -'Bissingen' : (10.6158383, 48.7177493), -'Rehden' : (8.476178919627396, 52.60675277527164), -'Eynatten' : (6.083339457526605, 50.69260916361823), -'Vlieghuis' : (6.8382504272201095, 52.66036497820981), -'Kalle' : (6.921180663621839, 52.573992586428425), -} - - if __name__ == "__main__": - ''' if "snakemake" not in globals(): + import os + import sys + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) from _helpers import mock_snakemake snakemake = mock_snakemake("build_wasserstoff_kernnetz") - ''' - + logging.basicConfig(level=snakemake.config["logging"]["level"]) - wasserstoff_kernnetz = load_merge_dataset(snakemake.input.wasserstoff_kernnetz_1[0], snakemake.input.wasserstoff_kernnetz_2[0]) - - wasserstoff_kernnetz = prepare_dataset(wasserstoff_kernnetz) - - wasserstoff_kernnetz = extract_locations( - wasserstoff_kernnetz, - snakemake.input.locations, - reload=snakemake.config["wasserstoff_kernnetz"]["reload_locations"] + wasserstoff_kernnetz = load_and_merge_raw( + snakemake.input.wasserstoff_kernnetz_1[0], + snakemake.input.wasserstoff_kernnetz_2[0], ) - + + wasserstoff_kernnetz = prepare_dataset(wasserstoff_kernnetz) + + if snakemake.config["wasserstoff_kernnetz"]["reload_locations"]: + locations = geocode_locations(wasserstoff_kernnetz) + else: + locations = pd.read_csv(snakemake.input.locations, index_col=0) + locations["point"] = locations["point"].apply(wkt.loads) + + wasserstoff_kernnetz = assign_locations(wasserstoff_kernnetz, locations) + wasserstoff_kernnetz.to_csv(snakemake.output.cleaned_wasserstoff_kernnetz) diff --git a/workflow/scripts/cluster_wasserstoff_kernnetz.py b/workflow/scripts/cluster_wasserstoff_kernnetz.py index d8f8f1bbd..62003207d 100644 --- a/workflow/scripts/cluster_wasserstoff_kernnetz.py +++ b/workflow/scripts/cluster_wasserstoff_kernnetz.py @@ -1,5 +1,5 @@ # -*- coding: utf-8 -*- -# SPDX-FileCopyrightText: : 2020-2023 The PyPSA-Eur Authors +# SPDX-FileCopyrightText: : 2024 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ @@ -10,79 +10,40 @@ logger = logging.getLogger(__name__) -import geopandas as gpd import pandas as pd -from packaging.version import Version, parse -from pypsa.geo import haversine_pts from shapely import wkt from shapely.geometry import LineString, Point from shapely.ops import transform import pyproj -def concat_gdf(gdf_list, crs="EPSG:4326"): - """ - Concatenate multiple geopandas dataframes with common coordinate reference - system (crs). - """ - return gpd.GeoDataFrame(pd.concat(gdf_list), crs=crs) - -def load_bus_regions(onshore_path, offshore_path): - """ - Load pypsa-eur on- and offshore regions and concat. - """ - bus_regions_offshore = gpd.read_file(offshore_path) - bus_regions_onshore = gpd.read_file(onshore_path) - bus_regions = concat_gdf([bus_regions_offshore, bus_regions_onshore]) - bus_regions = bus_regions.dissolve(by="name", aggfunc="sum") - - return bus_regions - -def build_clustered_h2_network(df, bus_regions, length_factor=1.25): - for i in [0, 1]: - gdf = gpd.GeoDataFrame(geometry=df[f"point{i}"], crs="EPSG:4326") - - kws = ( - dict(op="within") - if parse(gpd.__version__) < Version("0.10") - else dict(predicate="within") - ) - bus_mapping = gpd.sjoin(gdf, bus_regions, how="left", **kws).index_right - bus_mapping = bus_mapping.groupby(bus_mapping.index).first() - - df[f"bus{i}"] = bus_mapping - - df[f"point{i}"] = df[f"bus{i}"].map( - bus_regions.to_crs(3035).centroid.to_crs(4326) - ) - - # drop pipes where not both buses are inside regions - df = df.loc[~df.bus0.isna() & ~df.bus1.isna()] - - # drop pipes within the same region - df = df.loc[df.bus1 != df.bus0] +import os +import sys + +paths = ["workflow/submodules/pypsa-eur/scripts", "../submodules/pypsa-eur/scripts"] +for path in paths: + sys.path.insert(0, os.path.abspath(path)) +from cluster_gas_network import ( + load_bus_regions, + reindex_pipes, + aggregate_parallel_pipes, + build_clustered_gas_network, +) + +# Define a function for projecting points to meters +project_to_meters = pyproj.Transformer.from_proj( + pyproj.Proj("epsg:4326"), # assuming WGS84 + pyproj.Proj(proj="utm", zone=33, ellps="WGS84"), # adjust the projection as needed + always_xy=True, +).transform + +# Define a function for projecting points back to decimal degrees +project_to_degrees = pyproj.Transformer.from_proj( + pyproj.Proj(proj="utm", zone=33, ellps="WGS84"), # adjust the projection as needed + pyproj.Proj("epsg:4326"), + always_xy=True, +).transform - # recalculate lengths as center to center * length factor - df["length"] = df.apply( - lambda p: length_factor - * haversine_pts([p.point0.x, p.point0.y], [p.point1.x, p.point1.y]), - axis=1, - ) - # tidy and create new numbered index - df.drop(["point0", "point1"], axis=1, inplace=True) - df[["bus0", "bus1"]] = df.apply(sort_buses, axis=1) - df.reset_index(drop=True, inplace=True) - - return df - -def sort_buses(row): - if ((row['bus0'][:2] == row['bus1'][:2]) and (row['bus0'][-1] > row['bus1'][-1])): - return pd.Series([row['bus1'], row['bus0']]) - elif ((row['bus0'][:2] != row['bus1'][:2]) and (row['bus0'][:2] > row['bus1'][:2])): - return pd.Series([row['bus1'], row['bus0']]) - else: - return pd.Series([row['bus0'], row['bus1']]) - def split_line_by_length(line, segment_length_km): """ Split a Shapely LineString into segments of a specified length. @@ -94,22 +55,9 @@ def split_line_by_length(line, segment_length_km): Returns: list: A list of Shapely LineString objects representing the segments. """ - # Define a function for projecting points to meters - project_to_meters = pyproj.Transformer.from_proj( - pyproj.Proj('epsg:4326'), # assuming WGS84 - pyproj.Proj(proj='utm', zone=33, ellps='WGS84'), # adjust the projection as needed - always_xy=True - ).transform - - # Define a function for projecting points back to decimal degrees - project_to_degrees = pyproj.Transformer.from_proj( - pyproj.Proj(proj='utm', zone=33, ellps='WGS84'), # adjust the projection as needed - pyproj.Proj('epsg:4326'), - always_xy=True - ).transform # Convert segment length from kilometers to meters - segment_length_meters = segment_length_km * 1000.0 + segment_length_meters = segment_length_km * 1000 # Project the LineString to a suitable metric projection projected_line = transform(project_to_meters, line) @@ -117,7 +65,8 @@ def split_line_by_length(line, segment_length_km): total_length = projected_line.length num_segments = int(total_length / segment_length_meters) - if num_segments < 2: + # Return early if no segmentation required + if num_segments <= 1: return [line] segments = [] @@ -141,12 +90,12 @@ def split_line_by_length(line, segment_length_km): if i == num_segments: end_point_degrees = Point(line.coords[-1]) - segment = LineString([start_point_degrees, end_point_degrees]) segments.append(segment) return segments + def divide_pipes(df, segment_length=10): """ Divide a GeoPandas DataFrame of LineString geometries into segments of a specified length. @@ -164,52 +113,31 @@ def divide_pipes(df, segment_length=10): for index, pipe in df.iterrows(): segments = split_line_by_length(pipe.geometry, segment_length) - for i in range(0,len(segments)): + for i, segment in enumerate(segments): res_row = pipe.copy() - res_row.geometry = segments[i] - res_row.point0 = Point(segments[i].coords[0]) - res_row.point1 = Point(segments[i].coords[1]) + res_row.geometry = segment + res_row.point0 = Point(segment.coords[0]) + res_row.point1 = Point(segment.coords[1]) res_row.length_haversine = segment_length result.loc[f"{index}-{i}"] = res_row return result -def reindex_pipes(df): - def make_index(x): - connector = " <-> " if x.bidirectional else " -> " - return "h2 pipeline " + x.bus0 + connector + x.bus1 - - df.index = df.apply(make_index, axis=1) - - df["p_min_pu"] = df.bidirectional.apply(lambda bi: -1 if bi else 0) - df.drop("bidirectional", axis=1, inplace=True) - - df.sort_index(axis=1, inplace=True) - - -def aggregate_parallel_pipes(df): - strategies = { - "bus0": "first", - "bus1": "first", - "p_nom": "sum", - "max_pressure_bar": "mean", - "build_year": "mean", - "diameter_mm": "mean", - "length": "mean", - "name": " ".join, - "p_min_pu": "min", - } - return df.groupby(df.index).agg(strategies) - - if __name__ == "__main__": - ''' if "snakemake" not in globals(): + import os + import sys + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) from _helpers import mock_snakemake - snakemake = mock_snakemake("cluster_wasserstoff_kernnetz", simpl="", clusters="37") - ''' + snakemake = mock_snakemake( + "cluster_wasserstoff_kernnetz", + simpl="", + clusters=22, + ) logging.basicConfig(level=snakemake.config["logging"]["level"]) @@ -222,13 +150,21 @@ def aggregate_parallel_pipes(df): snakemake.input.regions_onshore, snakemake.input.regions_offshore ) - if snakemake.config["wasserstoff_kernnetz"]["divide_pipes"]: - df = divide_pipes(df, segment_length=snakemake.config["wasserstoff_kernnetz"]["pipes_segment_length"]) + kernnetz_cf = snakemake.config["wasserstoff_kernnetz"] + if kernnetz_cf["divide_pipes"]: + segment_length = kernnetz_cf["pipes_segment_length"] + df = divide_pipes(df, segment_length=segment_length) + + wasserstoff_kernnetz = build_clustered_gas_network(df, bus_regions) - wasserstoff_kernnetz = build_clustered_h2_network(df, bus_regions) + wasserstoff_kernnetz[["bus0", "bus1"]] = ( + wasserstoff_kernnetz[["bus0", "bus1"]].apply(sorted, axis=1).apply(pd.Series) + ) - reindex_pipes(wasserstoff_kernnetz) + reindex_pipes(wasserstoff_kernnetz, prefix="h2 pipeline") + wasserstoff_kernnetz["p_min_pu"] = 0 + wasserstoff_kernnetz["p_nom_diameter"] = 0 wasserstoff_kernnetz = aggregate_parallel_pipes(wasserstoff_kernnetz) - wasserstoff_kernnetz.to_csv(snakemake.output.clustered_h2_network) \ No newline at end of file + wasserstoff_kernnetz.to_csv(snakemake.output.clustered_h2_network) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 8fe0608f8..a9ac68b50 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 8fe0608f8971e5f6e926c6865d02ae1e30e2cac1 +Subproject commit a9ac68b50e837a0365e6eb3e66d57f433dfb6804 From 245381867aa66b1e340f8aba92c264d852b85fff Mon Sep 17 00:00:00 2001 From: Julian Geis Date: Mon, 22 Jan 2024 16:21:27 +0100 Subject: [PATCH 049/669] Update build_wasserstoff_kernnetz.py removed the clipping and set the default build_year to 2032 --- workflow/scripts/build_wasserstoff_kernnetz.py | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/workflow/scripts/build_wasserstoff_kernnetz.py b/workflow/scripts/build_wasserstoff_kernnetz.py index c05cbd9c3..bbeeb63a5 100644 --- a/workflow/scripts/build_wasserstoff_kernnetz.py +++ b/workflow/scripts/build_wasserstoff_kernnetz.py @@ -176,7 +176,6 @@ def prepare_dataset(df): .squeeze() .str.replace(",", ".") .astype(float) - .clip(lower=30) ) # clean build_year @@ -184,8 +183,7 @@ def prepare_dataset(df): df.build_year.astype(str) .str.extract(r"(\b\d{4}\b)") .astype(float) - .fillna(2030) - .clip(lower=2030) + .fillna(2032) ) # create bidirectional and set true From ec150f7fd78ca43901d6ce8fe5e4d33f2f4086c1 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Wed, 24 Jan 2024 13:44:57 +0100 Subject: [PATCH 050/669] fix boiler and retrofitting bugs Boiler bug: The forced p_min/max_pu profiles for new boilers were being carried forward to future years by add_brownfield.py and interfering with the separate constraint for existing boiler profiles in additional_functionality.py (that allows a profile downscaling). This created infeasibilities. Retrofitting bug: The exogeneous space heating reduction in config.yaml was under "industry" instead of "sector" so not being taken over at all. --- config/config.yaml | 29 +++++++++++++-------------- workflow/scripts/modify_prenetwork.py | 25 +++++++++++++++++++++-- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 38 insertions(+), 18 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 1e5ad0160..58f364d0d 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240119-3H-fixnewboilerspre" + name: "240124-365H-fixedboilers" scenarios: enable: true shared_resources: true #stops recalculating @@ -32,12 +32,12 @@ scenario: opts: - '' sector_opts: - - 3H-T-H-B-I-A-solar+p3-linemaxext15 + - 365H-T-H-B-I-A-solar+p3-linemaxext15 planning_horizons: - 2020 - # - 2030 - #- 2040 - #- 2050 + - 2030 + - 2040 + - 2050 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" @@ -135,6 +135,15 @@ sector: regional_methanol_demand: true #set to true if regional CO2 constraints needed regional_oil_demand: true #set to true if regional CO2 constraints needed biogas_upgrading_cc: true + # this needs to be taken from ariadne database + reduce_space_heat_exogenously_factor: + 2020: 0.0 + 2025: 0.05 + 2030: 0.10 + 2035: 0.16 + 2040: 0.22 + 2045: 0.25 + 2050: 0.35 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry industry: @@ -147,16 +156,6 @@ industry: 2045: 0.35 2050: 0.3 - # this needs to be taken from ariadne database - reduce_space_heat_exogenously_factor: - 2020: 0.0 - 2025: 0.05 - 2030: 0.10 - 2035: 0.16 - 2040: 0.22 - 2045: 0.25 - 2050: 0.35 - # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving solving: walltime: "12:00:00" diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index d3a064226..11d86b4ad 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -27,8 +27,27 @@ def fix_new_boiler_profiles(n): boiler_profiles_pu.columns = decentral_boilers for attr in ["p_min_pu","p_max_pu"]: - n.links_t[attr][decentral_boilers] = boiler_profiles_pu - print(n.links_t[attr][decentral_boilers]) + n.links_t[attr] = pd.concat([n.links_t[attr], boiler_profiles_pu],axis=1) + logger.info(f"new boiler profiles:\n{n.links_t[attr][decentral_boilers]}") + + +def remove_old_boiler_profiles(n): + """Removed because this is handled in additional_functionality. + This removes p_min/max_pu constraints added in previous years + and carried over by add_brownfield. + """ + + logger.info("Removing p_min/max_pu constraints on old boiler profiles") + + + decentral_boilers = n.links.index[n.links.carrier.str.contains("boiler") + & ~n.links.carrier.str.contains("urban central") + & ~n.links.p_nom_extendable] + + for attr in ["p_min_pu","p_max_pu"]: + to_drop = decentral_boilers.intersection(n.links_t[attr].columns) + logger.info(f"Dropping {to_drop} from n.links_t.{attr}") + n.links_t[attr].drop(to_drop, axis=1, inplace=True) if __name__ == "__main__": @@ -40,4 +59,6 @@ def fix_new_boiler_profiles(n): fix_new_boiler_profiles(n) + remove_old_boiler_profiles(n) + n.export_to_netcdf(snakemake.output.network) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 88f61220e..2cc816d6d 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 88f61220e2261d0cb758d8e0e6930f7116bbbcca +Subproject commit 2cc816d6d1df876fcafa33747fb2443a506f39ee From 578b8b67fcfff54b4c9f96369542e36b47c45ce1 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Wed, 24 Jan 2024 13:57:33 +0100 Subject: [PATCH 051/669] implement option to ban new fossil decentral boilers --- config/config.yaml | 5 ++++- workflow/scripts/modify_prenetwork.py | 20 ++++++++++++++++++++ 2 files changed, 24 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 58f364d0d..b65660ef0 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240124-365H-fixedboilers" + name: "240124-365H-fossilboilerban" scenarios: enable: true shared_resources: true #stops recalculating @@ -119,6 +119,9 @@ h2_import_max: 2040: 100 2050: 200 +new_decentral_fossil_boiler_ban: + DE: 2029 + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: district_heating: diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 11d86b4ad..6c196e0b0 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -50,6 +50,24 @@ def remove_old_boiler_profiles(n): n.links_t[attr].drop(to_drop, axis=1, inplace=True) +def new_boiler_ban(n): + + logger.info(f"Implementing ban on new decentral gas & oil boilers (if there are any)") + + year = int(snakemake.wildcards.planning_horizons) + + logger.info(f"Current year is {year}") + + for ct in snakemake.config["new_decentral_fossil_boiler_ban"]: + ban_year = int(snakemake.config["new_decentral_fossil_boiler_ban"][ct]) + logger.info(f"{ct} has a new gas/oil boiler ban from {ban_year}") + if ban_year < year: + logger.info(f"Implementing ban in this network") + links = n.links.index[(n.links.index.str[:2] == ct) & (n.links.index.str.contains("gas boiler") ^ n.links.index.str.contains("oil boiler")) & n.links.p_nom_extendable & ~n.links.index.str.contains("urban central")] + logger.info(f"Dropping {links}") + n.links.drop(links, + inplace=True) + if __name__ == "__main__": logger.info("Adding Ariadne-specific functionality") @@ -57,6 +75,8 @@ def remove_old_boiler_profiles(n): n = pypsa.Network(snakemake.input.network) + new_boiler_ban(n) + fix_new_boiler_profiles(n) remove_old_boiler_profiles(n) From 438a559d0b8376f6108e52e75bfb1bcf7a9a2ea0 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 24 Jan 2024 17:05:48 +0100 Subject: [PATCH 052/669] adding ipcei bool and gas cap --- config/config.yaml | 2 +- .../locations_wasserstoff_kernnetz.csv | 14 ++++++------ .../scripts/build_wasserstoff_kernnetz.py | 22 +++++++++++++++++++ .../scripts/cluster_wasserstoff_kernnetz.py | 17 +++++++++++++- 4 files changed, 46 insertions(+), 9 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 4e00dbe0c..524fd9a3f 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "wasserstoff_kernnetz_test" + name: "wkn_refine_1" scenarios: enable: true shared_resources: true #stops recalculating diff --git a/data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv b/data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv index 13f38d024..1b219ebf0 100644 --- a/data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv +++ b/data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv @@ -4,19 +4,19 @@ 2,Balve-Eisborn,Nordrhein-Westfalen,POINT (7.8838676 51.3870558) 3,Reutles,Bayern,POINT (11.0246344 49.5343175) 4,Hochheim,Hessen,POINT (8.3514488 50.0145517) -5,Legden,Nordrhein-Westfalen,POINT (7.1058059 52.0306248) +5,Legden,Nordrhein-Westfalen,POINT (7.099754098013676 52.03269789265483) 6,Kulkwitz,Sachsen,POINT (12.2324261 51.283959) 7,Marl,Nordrhein-Westfalen,POINT (7.0829054 51.6485843) 8,Mühlberg,Sachsen,POINT (13.1725218 51.5046897) 9,Klein Offenseth,Schleswig-Holstein,POINT (9.683364 53.7847143) 10,Hemmingstedt,Schleswig-Holstein,POINT (9.08263 54.1506435) 11,Huntorf,Niedersachsen,POINT (8.3897014 53.1956997) -12,Sandkrug,Niedersachsen,POINT (7.5526822 53.4630231) +12,Sandkrug,Niedersachsen,POINT (8.257391972093515 53.0538793739347) 13,Wiederitzsch,Sachsen,POINT (12.374251 51.3941234) 14,Finsing,Bayern,POINT (11.8253553 48.2167439) 15,Ismaning Nord,Bayern,POINT (11.6608879 48.2110287) 16,Seyweiler,Saarland,POINT (7.2691502 49.161041) -17,Carling,Saarland,POINT (6.9537369 49.3841872) +17,Carling,Saarland,POINT (6.713267207127634 49.16738919353264) 18,Fürstenhausen,Saarland,POINT (6.8654184 49.2431689) 19,Leidingen,Saarland,POINT (6.6109318 49.3086764) 20,Perl,Saarland,POINT (6.3874514 49.4735915) @@ -58,7 +58,7 @@ 68,Rehden,Niedersachsen,POINT (8.476178919627396 52.60675277527164) 69,Voigtei,Niedersachsen,POINT (8.9226462 52.6081821) 70,Kohlshorn,Niedersachsen,POINT (9.940178157648713 52.41249285000001) -72,Reiningen,Niedersachsen,POINT (10.0524902 52.9153376) +72,Reiningen,Niedersachsen,POINT (8.374879149975513 52.50849502371421) 74,Lehringen,Niedersachsen,POINT (9.4010201 52.8825054) 75,Weser,Niedersachsen,POINT (9.2181918 52.6410849) 76,Vinnhorst,Niedersachsen,POINT (9.7032801 52.4222536) @@ -82,12 +82,12 @@ 97,Rimpar,Bayern,POINT (9.95903408726619 49.8530509) 98,Rothenstadt,Bayern,POINT (12.1396079 49.6338326) 99,Bad Bentheim,Niedersachsen,POINT (7.1605921 52.3024786) -100,Ledgen,Nordrhein-Westfalen,POINT (7.5543751 51.4789205) +100,Ledgen,Nordrhein-Westfalen,POINT (7.099754098013676 52.03269789265483) 101,St. Hubert,Nordrhein-Westfalen,POINT (6.4524179 51.382662) 102,Glehn,Nordrhein-Westfalen,POINT (6.5766765 51.1650012) 103,Voigtslach,Nordrhein-Westfalen,POINT (6.934751 51.0749889) 104,Ketzin,Brandenburg,POINT (12.8443972 52.4769264) -105,Buchholz,Brandenburg,POINT (13.7638809 52.1107175) +105,Buchholz,Brandenburg,POINT (12.929212986885771 52.15737808332214) 106,Bobbau,Sachsen,POINT (12.269345975889912 51.69045938775995) 108,Schkeuditz,Sachsen,POINT (12.2216292 51.3963509) 109,Lüptitz,Sachsen,POINT (12.7716385 51.3933612) @@ -204,7 +204,7 @@ 59,Leversen,Niedersachsen,POINT (9.8959115 53.4071494) 65,Lingen,Niedersachsen,POINT (7.316584 52.5224659) 72,Georgsmarienhütte,Niedersachsen,POINT (8.05 52.2) -73,Rheden,Niedersachsen,POINT (9.7879627 52.0577352) +73,Rheden,Niedersachsen,POINT (8.476178919627396 52.60675277527164) 86,Ummeln,Nordrhein-Westfalen,POINT (8.4599606 51.9694347) 92,Wesseling,Nordrhein-Westfalen,POINT (6.9810852 50.8247166) 93,Herdecke,Nordrhein-Westfalen,POINT (7.4330062 51.4001119) diff --git a/workflow/scripts/build_wasserstoff_kernnetz.py b/workflow/scripts/build_wasserstoff_kernnetz.py index bbeeb63a5..e085ef1d8 100644 --- a/workflow/scripts/build_wasserstoff_kernnetz.py +++ b/workflow/scripts/build_wasserstoff_kernnetz.py @@ -20,6 +20,15 @@ from shapely import wkt from shapely.geometry import LineString, Point +import os +import sys + +paths = ["workflow/submodules/pypsa-eur/scripts", "../submodules/pypsa-eur/scripts"] +for path in paths: + sys.path.insert(0, os.path.abspath(path)) +from build_gas_network import ( + diameter_to_capacity +) MANUAL_ADDRESSES = { "Oude Statenzijl": (7.205108658430258, 53.20183834422634), @@ -45,6 +54,12 @@ "Eynatten": (6.083339457526605, 50.69260916361823), "Vlieghuis": (6.8382504272201095, 52.66036497820981), "Kalle": (6.921180663621839, 52.573992586428425), + 'Carling': (6.713267207127634, 49.16738919353264), + 'Legden': (7.099754098013676, 52.03269789265483), + 'Ledgen': (7.099754098013676, 52.03269789265483), + 'Reiningen': (8.374879149975513, 52.50849502371421), + 'Buchholz': (12.929212986885771, 52.15737808332214), + 'Sandkrug': (8.257391972093515, 53.05387937393471), } @@ -104,6 +119,7 @@ def load_and_merge_raw(fn1, fn2): "Druckstufe (DP)[mind. 30 barg]", "Bundesland", "Umstellung/ Neubau", + "IPCEI-Projekt(ja/ nein)", ] to_rename = { @@ -113,6 +129,7 @@ def load_and_merge_raw(fn1, fn2): "Länge (km)": "length", "Druckstufe (DP)[mind. 30 barg]": "max_pressure_bar", "Umstellung/ Neubau": "retrofitted", + "IPCEI-Projekt(ja/ nein)": "ipcei", } df_fn1 = df_fn1[to_keep].rename(columns=to_rename) @@ -134,6 +151,7 @@ def load_and_merge_raw(fn1, fn2): "Druckstufe (DP)[mind. 30 barg]", "Bundesland", "retrofitted", + "IPCEI-Projekt(Name/ nein)", ] to_rename = { @@ -142,6 +160,7 @@ def load_and_merge_raw(fn1, fn2): "Nenndurchmesser (DN)": "diameter_mm", "Länge (km)": "length", "Druckstufe (DP)[mind. 30 barg]": "max_pressure_bar", + "IPCEI-Projekt(Name/ nein)" : "ipcei", } df_fn2_new["retrofitted"] = False @@ -198,6 +217,9 @@ def prepare_dataset(df): # calc capa df["p_nom"] = df.diameter_mm.apply(diameter_to_capacity_h2) + # eliminated gas capa from retrofitted pipes + df["gas_cap"] = df.diameter_mm.apply(diameter_to_capacity) + # eliminate leading and trailing spaces df["Anfangspunkt(Ort)"] = df["Anfangspunkt(Ort)"].str.strip() df["Endpunkt(Ort)"] = df["Endpunkt(Ort)"].str.strip() diff --git a/workflow/scripts/cluster_wasserstoff_kernnetz.py b/workflow/scripts/cluster_wasserstoff_kernnetz.py index 62003207d..0c1af57bf 100644 --- a/workflow/scripts/cluster_wasserstoff_kernnetz.py +++ b/workflow/scripts/cluster_wasserstoff_kernnetz.py @@ -25,7 +25,6 @@ from cluster_gas_network import ( load_bus_regions, reindex_pipes, - aggregate_parallel_pipes, build_clustered_gas_network, ) @@ -123,6 +122,22 @@ def divide_pipes(df, segment_length=10): return result +def aggregate_parallel_pipes(df): + strategies = { + "bus0": "first", + "bus1": "first", + "p_nom": "sum", + "p_nom_diameter": "sum", + "max_pressure_bar": "mean", + "build_year": "mean", + "diameter_mm": "mean", + "length": "mean", + "name": " ".join, + "p_min_pu": "min", + "gas_cap": "sum", + } + return df.groupby(df.index).agg(strategies) + if __name__ == "__main__": if "snakemake" not in globals(): From 25a441b88b9ac7aa0452ea0e8dbf892e9016fef5 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 24 Jan 2024 17:26:33 +0100 Subject: [PATCH 053/669] updated submodules --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index a9ac68b50..b70deac7a 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit a9ac68b50e837a0365e6eb3e66d57f433dfb6804 +Subproject commit b70deac7a123a09d15ebb586ce7284918c872be0 From dac96413c45b3fc34b186173b08536e7cb2c65a7 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Wed, 24 Jan 2024 17:46:37 +0100 Subject: [PATCH 054/669] implement option to ban coal generation from a year onwards --- config/config.yaml | 6 +++++- workflow/scripts/modify_prenetwork.py | 23 +++++++++++++++++------ 2 files changed, 22 insertions(+), 7 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index b65660ef0..420fb1ee6 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240124-365H-fossilboilerban" + name: "240124-365H-coalexit" scenarios: enable: true shared_resources: true #stops recalculating @@ -122,6 +122,10 @@ h2_import_max: new_decentral_fossil_boiler_ban: DE: 2029 +coal_generation_ban: + DE: 2038 + + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: district_heating: diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 6c196e0b0..a53b8da0e 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -52,22 +52,31 @@ def remove_old_boiler_profiles(n): def new_boiler_ban(n): - logger.info(f"Implementing ban on new decentral gas & oil boilers (if there are any)") - year = int(snakemake.wildcards.planning_horizons) - logger.info(f"Current year is {year}") - for ct in snakemake.config["new_decentral_fossil_boiler_ban"]: ban_year = int(snakemake.config["new_decentral_fossil_boiler_ban"][ct]) - logger.info(f"{ct} has a new gas/oil boiler ban from {ban_year}") if ban_year < year: - logger.info(f"Implementing ban in this network") + logger.info(f"For year {year} in {ct} implementing ban on new decentral oil & gas boilers from {ban_year}") links = n.links.index[(n.links.index.str[:2] == ct) & (n.links.index.str.contains("gas boiler") ^ n.links.index.str.contains("oil boiler")) & n.links.p_nom_extendable & ~n.links.index.str.contains("urban central")] logger.info(f"Dropping {links}") n.links.drop(links, inplace=True) +def coal_generation_ban(n): + + year = int(snakemake.wildcards.planning_horizons) + + for ct in snakemake.config["coal_generation_ban"]: + ban_year = int(snakemake.config["coal_generation_ban"][ct]) + if ban_year < year: + logger.info(f"For year {year} in {ct} implementing coal and lignite ban from {ban_year}") + links = n.links.index[(n.links.index.str[:2] == ct) & n.links.carrier.isin(["coal","lignite"])] + logger.info(f"Dropping {links}") + n.links.drop(links, + inplace=True) + + if __name__ == "__main__": logger.info("Adding Ariadne-specific functionality") @@ -81,4 +90,6 @@ def new_boiler_ban(n): remove_old_boiler_profiles(n) + coal_generation_ban(n) + n.export_to_netcdf(snakemake.output.network) From d445e897090d0ecb0086890446be574faf819b9f Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 19 Jan 2024 12:03:59 +0100 Subject: [PATCH 055/669] add dummy script to modify energy totals --- workflow/Snakefile | 22 +++++++++++++++++++++- workflow/scripts/modify_energy_totals.py | 12 ++++++++++++ 2 files changed, 33 insertions(+), 1 deletion(-) create mode 100644 workflow/scripts/modify_energy_totals.py diff --git a/workflow/Snakefile b/workflow/Snakefile index 8ce3ab35d..4464be077 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -114,6 +114,7 @@ use rule add_existing_baseyear from pypsaeur with: existing_heating=RESOURCES + "existing_heating.csv", +<<<<<<< HEAD rule build_wasserstoff_kernnetz: input: wasserstoff_kernnetz_1=HTTP.remote( @@ -154,4 +155,23 @@ rule cluster_wasserstoff_kernnetz: use rule prepare_sector_network from pypsaeur with: input: **rules.prepare_sector_network.input, - custom_h2_pipelines="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv" if config["wasserstoff_kernnetz"]["enable"] else [], \ No newline at end of file + custom_h2_pipelines="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv" if config["wasserstoff_kernnetz"]["enable"] else [], +======= + +rule modify_energy_totals: + input: + ariadne=RESOURCES + "ariadne_scenario_data.csv", + energy_totals=RESOURCES + "energy_totals.csv", + output: + energy_totals=RESOURCES + "energy_totals-modified.csv", + resources: + mem_mb=1000 + script: + "scripts/modify_energy_totals.py" + + +use rule build_population_weighted_energy_totals from pypsaeur with: + input: + **{k: v for k, v in rules.build_population_weighted_energy_totals.input.items() if k != "energy_totals"}, + energy_totals=RESOURCES + "energy_totals-modified.csv", +>>>>>>> 783d47c (add dummy script to modify energy totals) diff --git a/workflow/scripts/modify_energy_totals.py b/workflow/scripts/modify_energy_totals.py new file mode 100644 index 000000000..57387a554 --- /dev/null +++ b/workflow/scripts/modify_energy_totals.py @@ -0,0 +1,12 @@ + + +import pandas as pd + + +energy_totals = pd.read_csv(snakemake.input.energy_totals, + index_col=0) + +ariadne = pd.read_csv(snakemake.input.ariadne, + index_col=0) + +energy_totals.to_csv(snakemake.output.energy_totals) From 6ec8c1bc3462264ae14ed5232eb2f8c34e2e1566 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 19 Jan 2024 14:23:09 +0100 Subject: [PATCH 056/669] move fixed profile for new boilers to new modify_prenetwork script The constraint in additional_functionality.py was incredibly unperformant, raising presolving time by 4 hours. Now the restriction is applied before solving with: n.links_t.p_max_pu = p_min_pu = load_profile_pu for new boilers. --- config/config.yaml | 10 +-- workflow/Snakefile | 80 +++++++++++++++++++- workflow/scripts/additional_functionality.py | 24 ------ workflow/scripts/modify_prenetwork.py | 43 +++++++++++ 4 files changed, 126 insertions(+), 31 deletions(-) create mode 100644 workflow/scripts/modify_prenetwork.py diff --git a/config/config.yaml b/config/config.yaml index 524fd9a3f..3ea144c7e 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -33,12 +33,12 @@ scenario: opts: - '' sector_opts: - - 365H-T-H-B-I-A-solar+p3-linemaxext15 + - 3H-T-H-B-I-A-solar+p3-linemaxext15 planning_horizons: - 2020 - - 2030 - - 2040 - - 2050 + # - 2030 + #- 2040 + #- 2050 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" @@ -167,7 +167,7 @@ industry: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving solving: walltime: "12:00:00" - mem: 200000 #30000 is OK for 22 nodes, 365H; 140000 for 22 nodes 3H; 400000 for 44 nodes 3H + mem: 140000 #30000 is OK for 22 nodes, 365H; 140000 for 22 nodes 3H; 400000 for 44 nodes 3H options: load_shedding: false diff --git a/workflow/Snakefile b/workflow/Snakefile index 4464be077..712687c5d 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -87,12 +87,27 @@ rule modify_cost_data: "scripts/modify_cost_data.py" +rule modify_prenetwork: + input: + network=RESULTS + + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" + output: + network=RESULTS + + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" + resources: + mem_mb=1000 + script: + "scripts/modify_prenetwork.py" + + use rule solve_sector_network_myopic from pypsaeur with: params: **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), input: - **rules.solve_sector_network_myopic.input, + **{k: v for k, v in rules.solve_sector_network_myopic.input.items() if k != "network"}, + network=RESULTS + + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", co2_totals_name=RESOURCES + "co2_totals.csv", @@ -174,4 +189,65 @@ use rule build_population_weighted_energy_totals from pypsaeur with: input: **{k: v for k, v in rules.build_population_weighted_energy_totals.input.items() if k != "energy_totals"}, energy_totals=RESOURCES + "energy_totals-modified.csv", ->>>>>>> 783d47c (add dummy script to modify energy totals) + + + +rule modify_energy_totals: + input: + ariadne=RESOURCES + "ariadne_scenario_data.csv", + energy_totals=RESOURCES + "energy_totals.csv", + output: + energy_totals=RESOURCES + "energy_totals-modified.csv", + resources: + mem_mb=1000 + script: + "scripts/modify_energy_totals.py" + + +use rule build_population_weighted_energy_totals from pypsaeur with: + input: + **{k: v for k, v in rules.build_population_weighted_energy_totals.input.items() if k != "energy_totals"}, + energy_totals=RESOURCES + "energy_totals-modified.csv", + + +rule build_wasserstoff_kernnetz: + input: + wasserstoff_kernnetz_1=HTTP.remote( + "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage2_Leitungsmeldungen_weiterer_potenzieller_Wasserstoffnetzbetreiber_Veroeffentlichung_final.xlsx", + keep_local=True, + static=True, + ), + wasserstoff_kernnetz_2=HTTP.remote( + "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage3_FNB_Massnahmenliste_Veroeffentlichung_final.xlsx", + keep_local=True, + static=True, + ), + gadm=HTTP.remote( + "https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_DEU_1.json.zip", + keep_local=True, + static=True + ), + locations="data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", + output: + cleaned_wasserstoff_kernnetz="resources/wasserstoff_kernnetz.csv", + script: + "scripts/build_wasserstoff_kernnetz.py" + + +rule cluster_wasserstoff_kernnetz: + params: + divide_pipes=config["wasserstoff_kernnetz"]["divide_pipes"] + input: + cleaned_h2_network="resources/wasserstoff_kernnetz.csv", + regions_onshore="resources/regions_onshore_elec_s{simpl}_{clusters}.geojson", + regions_offshore="resources/regions_offshore_elec_s{simpl}_{clusters}.geojson", + output: + clustered_h2_network="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", + script: + "scripts/cluster_wasserstoff_kernnetz.py" + + +use rule prepare_sector_network from pypsaeur with: + input: + **rules.prepare_sector_network.input, + custom_h2_pipelines="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv" if config["wasserstoff_kernnetz"]["enable"] else [], \ No newline at end of file diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index a3e8ae647..693784845 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -178,28 +178,6 @@ def force_boiler_profiles_existing(n): n.loads["profile_factor_opt"] = 0. -def force_boiler_profiles_new(n): - """this is equivalent to setting p_min_pu = p_max_pu = load_profile_pu""" - - logger.info("Forcing boiler profiles for new ones") - - decentral_boilers = n.links.index[n.links.carrier.str.contains("boiler") - & ~n.links.carrier.str.contains("urban central") - & n.links.p_nom_extendable] - - if decentral_boilers.empty: - return - - boiler_loads = n.links.loc[decentral_boilers,"bus1"] - boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div(n.loads_t.p_set[boiler_loads].max(),axis=1) - boiler_profiles_pu.columns = decentral_boilers - boiler_profiles_pu = DataArray(boiler_profiles_pu) - - lhs = n.model["Link-p"].loc[:,decentral_boilers] - boiler_profiles_pu*n.model["Link-p_nom"].loc[decentral_boilers] - - n.model.add_constraints(lhs, "=", 0, "Link-fixed_profile_ext") - - def additional_functionality(n, snapshots, snakemake): logger.info("Adding Ariadne-specific functionality") @@ -212,8 +190,6 @@ def additional_functionality(n, snapshots, snakemake): force_boiler_profiles_existing(n) - force_boiler_profiles_new(n) - if snakemake.config["sector"]["co2_budget_national"]: limit_countries = snakemake.config["co2_budget_national"][investment_year] add_co2limit_country(n, limit_countries, snakemake) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py new file mode 100644 index 000000000..d3a064226 --- /dev/null +++ b/workflow/scripts/modify_prenetwork.py @@ -0,0 +1,43 @@ + + + +import logging + +import pandas as pd + +import pypsa + +logger = logging.getLogger(__name__) + + + +def fix_new_boiler_profiles(n): + + logger.info("Forcing boiler profiles for new ones") + + decentral_boilers = n.links.index[n.links.carrier.str.contains("boiler") + & ~n.links.carrier.str.contains("urban central") + & n.links.p_nom_extendable] + + if decentral_boilers.empty: + return + + boiler_loads = n.links.loc[decentral_boilers,"bus1"] + boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div(n.loads_t.p_set[boiler_loads].max(),axis=1) + boiler_profiles_pu.columns = decentral_boilers + + for attr in ["p_min_pu","p_max_pu"]: + n.links_t[attr][decentral_boilers] = boiler_profiles_pu + print(n.links_t[attr][decentral_boilers]) + + +if __name__ == "__main__": + + logger.info("Adding Ariadne-specific functionality") + + + n = pypsa.Network(snakemake.input.network) + + fix_new_boiler_profiles(n) + + n.export_to_netcdf(snakemake.output.network) From 26526c89e3bdae6cb6aaadc5a3609a31a0824362 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 19 Jan 2024 18:44:06 +0100 Subject: [PATCH 057/669] existing_heating is now an input to script to build distribution --- workflow/Snakefile | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 712687c5d..1d2ce39af 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -123,9 +123,10 @@ rule modify_existing_heating: "scripts/modify_existing_heating.py" -use rule add_existing_baseyear from pypsaeur with: + +use rule build_existing_heating_distribution from pypsaeur with: input: - **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, + **{k: v for k, v in rules.build_existing_heating_distribution.input.items() if k != "existing_heating"}, existing_heating=RESOURCES + "existing_heating.csv", From daf1dbc4024d214a3e646ff4440e3b5f82271627 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Wed, 24 Jan 2024 13:44:57 +0100 Subject: [PATCH 058/669] fix boiler and retrofitting bugs Boiler bug: The forced p_min/max_pu profiles for new boilers were being carried forward to future years by add_brownfield.py and interfering with the separate constraint for existing boiler profiles in additional_functionality.py (that allows a profile downscaling). This created infeasibilities. Retrofitting bug: The exogeneous space heating reduction in config.yaml was under "industry" instead of "sector" so not being taken over at all. --- config/config.yaml | 27 +++++++++++++-------------- workflow/scripts/modify_prenetwork.py | 25 +++++++++++++++++++++++-- 2 files changed, 36 insertions(+), 16 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 3ea144c7e..6bb29939d 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -33,12 +33,12 @@ scenario: opts: - '' sector_opts: - - 3H-T-H-B-I-A-solar+p3-linemaxext15 + - 365H-T-H-B-I-A-solar+p3-linemaxext15 planning_horizons: - 2020 - # - 2030 - #- 2040 - #- 2050 + - 2030 + - 2040 + - 2050 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" @@ -142,6 +142,15 @@ sector: regional_methanol_demand: true #set to true if regional CO2 constraints needed regional_oil_demand: true #set to true if regional CO2 constraints needed biogas_upgrading_cc: true + # this needs to be taken from ariadne database + reduce_space_heat_exogenously_factor: + 2020: 0.0 + 2025: 0.05 + 2030: 0.10 + 2035: 0.16 + 2040: 0.22 + 2045: 0.25 + 2050: 0.35 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry industry: @@ -154,16 +163,6 @@ industry: 2045: 0.35 2050: 0.3 - # this needs to be taken from ariadne database - reduce_space_heat_exogenously_factor: - 2020: 0.0 - 2025: 0.05 - 2030: 0.10 - 2035: 0.16 - 2040: 0.22 - 2045: 0.25 - 2050: 0.35 - # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving solving: walltime: "12:00:00" diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index d3a064226..11d86b4ad 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -27,8 +27,27 @@ def fix_new_boiler_profiles(n): boiler_profiles_pu.columns = decentral_boilers for attr in ["p_min_pu","p_max_pu"]: - n.links_t[attr][decentral_boilers] = boiler_profiles_pu - print(n.links_t[attr][decentral_boilers]) + n.links_t[attr] = pd.concat([n.links_t[attr], boiler_profiles_pu],axis=1) + logger.info(f"new boiler profiles:\n{n.links_t[attr][decentral_boilers]}") + + +def remove_old_boiler_profiles(n): + """Removed because this is handled in additional_functionality. + This removes p_min/max_pu constraints added in previous years + and carried over by add_brownfield. + """ + + logger.info("Removing p_min/max_pu constraints on old boiler profiles") + + + decentral_boilers = n.links.index[n.links.carrier.str.contains("boiler") + & ~n.links.carrier.str.contains("urban central") + & ~n.links.p_nom_extendable] + + for attr in ["p_min_pu","p_max_pu"]: + to_drop = decentral_boilers.intersection(n.links_t[attr].columns) + logger.info(f"Dropping {to_drop} from n.links_t.{attr}") + n.links_t[attr].drop(to_drop, axis=1, inplace=True) if __name__ == "__main__": @@ -40,4 +59,6 @@ def fix_new_boiler_profiles(n): fix_new_boiler_profiles(n) + remove_old_boiler_profiles(n) + n.export_to_netcdf(snakemake.output.network) From 654ee6d15dfde2397f46304313a3e8c80fa56812 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Wed, 24 Jan 2024 13:57:33 +0100 Subject: [PATCH 059/669] implement option to ban new fossil decentral boilers --- config/config.yaml | 3 +++ workflow/scripts/modify_prenetwork.py | 20 ++++++++++++++++++++ 2 files changed, 23 insertions(+) diff --git a/config/config.yaml b/config/config.yaml index 6bb29939d..3e874ecc7 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -120,6 +120,9 @@ h2_import_max: 2040: 100 2050: 200 +new_decentral_fossil_boiler_ban: + DE: 2029 + wasserstoff_kernnetz: enable: true reload_locations: false diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 11d86b4ad..6c196e0b0 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -50,6 +50,24 @@ def remove_old_boiler_profiles(n): n.links_t[attr].drop(to_drop, axis=1, inplace=True) +def new_boiler_ban(n): + + logger.info(f"Implementing ban on new decentral gas & oil boilers (if there are any)") + + year = int(snakemake.wildcards.planning_horizons) + + logger.info(f"Current year is {year}") + + for ct in snakemake.config["new_decentral_fossil_boiler_ban"]: + ban_year = int(snakemake.config["new_decentral_fossil_boiler_ban"][ct]) + logger.info(f"{ct} has a new gas/oil boiler ban from {ban_year}") + if ban_year < year: + logger.info(f"Implementing ban in this network") + links = n.links.index[(n.links.index.str[:2] == ct) & (n.links.index.str.contains("gas boiler") ^ n.links.index.str.contains("oil boiler")) & n.links.p_nom_extendable & ~n.links.index.str.contains("urban central")] + logger.info(f"Dropping {links}") + n.links.drop(links, + inplace=True) + if __name__ == "__main__": logger.info("Adding Ariadne-specific functionality") @@ -57,6 +75,8 @@ def remove_old_boiler_profiles(n): n = pypsa.Network(snakemake.input.network) + new_boiler_ban(n) + fix_new_boiler_profiles(n) remove_old_boiler_profiles(n) From 988e89c8f01829560bbd9a5239426088f5ead6a7 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Wed, 24 Jan 2024 17:46:37 +0100 Subject: [PATCH 060/669] implement option to ban coal generation from a year onwards --- config/config.yaml | 4 ++++ workflow/scripts/modify_prenetwork.py | 23 +++++++++++++++++------ 2 files changed, 21 insertions(+), 6 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 3e874ecc7..a6629018a 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -123,6 +123,10 @@ h2_import_max: new_decentral_fossil_boiler_ban: DE: 2029 +coal_generation_ban: + DE: 2038 + + wasserstoff_kernnetz: enable: true reload_locations: false diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 6c196e0b0..a53b8da0e 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -52,22 +52,31 @@ def remove_old_boiler_profiles(n): def new_boiler_ban(n): - logger.info(f"Implementing ban on new decentral gas & oil boilers (if there are any)") - year = int(snakemake.wildcards.planning_horizons) - logger.info(f"Current year is {year}") - for ct in snakemake.config["new_decentral_fossil_boiler_ban"]: ban_year = int(snakemake.config["new_decentral_fossil_boiler_ban"][ct]) - logger.info(f"{ct} has a new gas/oil boiler ban from {ban_year}") if ban_year < year: - logger.info(f"Implementing ban in this network") + logger.info(f"For year {year} in {ct} implementing ban on new decentral oil & gas boilers from {ban_year}") links = n.links.index[(n.links.index.str[:2] == ct) & (n.links.index.str.contains("gas boiler") ^ n.links.index.str.contains("oil boiler")) & n.links.p_nom_extendable & ~n.links.index.str.contains("urban central")] logger.info(f"Dropping {links}") n.links.drop(links, inplace=True) +def coal_generation_ban(n): + + year = int(snakemake.wildcards.planning_horizons) + + for ct in snakemake.config["coal_generation_ban"]: + ban_year = int(snakemake.config["coal_generation_ban"][ct]) + if ban_year < year: + logger.info(f"For year {year} in {ct} implementing coal and lignite ban from {ban_year}") + links = n.links.index[(n.links.index.str[:2] == ct) & n.links.carrier.isin(["coal","lignite"])] + logger.info(f"Dropping {links}") + n.links.drop(links, + inplace=True) + + if __name__ == "__main__": logger.info("Adding Ariadne-specific functionality") @@ -81,4 +90,6 @@ def new_boiler_ban(n): remove_old_boiler_profiles(n) + coal_generation_ban(n) + n.export_to_netcdf(snakemake.output.network) From fc5fc8b01f1d7e2b5b5ff21b367f33c58ac9ada1 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Fri, 12 Jan 2024 19:44:47 +0100 Subject: [PATCH 061/669] merged current master into feature branch --- config/config.yaml | 4 ++++ workflow/Snakefile | 47 +++++++++++++++++++++++++++++++++++++++++++--- 2 files changed, 48 insertions(+), 3 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index a6629018a..caef379e8 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -120,6 +120,10 @@ h2_import_max: 2040: 100 2050: 200 +wasserstoff_kernnetz: + enable: true + reload_locations: false + new_decentral_fossil_boiler_ban: DE: 2029 diff --git a/workflow/Snakefile b/workflow/Snakefile index 1d2ce39af..f267254e6 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -6,6 +6,10 @@ from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider HTTP = HTTPRemoteProvider() +from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider + +HTTP = HTTPRemoteProvider() + configfile: "workflow/submodules/pypsa-eur/config/config.default.yaml" configfile: "config/config.yaml" configfile: "config/config.personal.yaml" @@ -29,6 +33,9 @@ module pypsaeur: use rule * from pypsaeur +wildcard_constraints: + simpl="[a-zA-Z0-9]*", + clusters="[0-9]+(m|c)?|all", from pathlib import Path @@ -87,6 +94,41 @@ rule modify_cost_data: "scripts/modify_cost_data.py" +rule build_wasserstoff_kernnetz: + input: + wasserstoff_kernnetz_1=HTTP.remote( + "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage2_Leitungsmeldungen_weiterer_potenzieller_Wasserstoffnetzbetreiber_Veroeffentlichung_final.xlsx", + keep_local=True, + static=True, + ), + wasserstoff_kernnetz_2=HTTP.remote( + "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage3_FNB_Massnahmenliste_Veroeffentlichung_final.xlsx", + keep_local=True, + static=True, + ), + locations="data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", + output: + cleaned_wasserstoff_kernnetz="resources/wasserstoff_kernnetz.csv", + script: + "scripts/build_wasserstoff_kernnetz.py" + + +rule cluster_wasserstoff_kernnetz: + input: + cleaned_h2_network="resources/wasserstoff_kernnetz.csv", + regions_onshore="resources/regions_onshore_elec_s{simpl}_{clusters}.geojson", + regions_offshore="resources/regions_offshore_elec_s{simpl}_{clusters}.geojson", + output: + clustered_h2_network="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", + script: + "scripts/cluster_wasserstoff_kernnetz.py" + +use rule prepare_sector_network from pypsaeur with: + input: + **rules.prepare_sector_network.input, + custom_h2_pipelines="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv" if config["wasserstoff_kernnetz"]["enable"] else [], + + rule modify_prenetwork: input: network=RESULTS @@ -105,9 +147,8 @@ use rule solve_sector_network_myopic from pypsaeur with: **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), input: - **{k: v for k, v in rules.solve_sector_network_myopic.input.items() if k != "network"}, - network=RESULTS - + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", +<<<<<<< HEAD + **rules.solve_sector_network_myopic.input, co2_totals_name=RESOURCES + "co2_totals.csv", From 3ff6cd4933b7fbd235f5cd2f25e85746f4ce6e6a Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Mon, 15 Jan 2024 17:41:04 +0100 Subject: [PATCH 062/669] added divide_pipes option --- config/config.yaml | 2 ++ workflow/scripts/build_wasserstoff_kernnetz.py | 1 + workflow/scripts/cluster_wasserstoff_kernnetz.py | 1 + 3 files changed, 4 insertions(+) diff --git a/config/config.yaml b/config/config.yaml index caef379e8..0b5646d19 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -123,6 +123,8 @@ h2_import_max: wasserstoff_kernnetz: enable: true reload_locations: false + divide_pipes: false + pipes_segment_length: 10 new_decentral_fossil_boiler_ban: DE: 2029 diff --git a/workflow/scripts/build_wasserstoff_kernnetz.py b/workflow/scripts/build_wasserstoff_kernnetz.py index e085ef1d8..ebad0d430 100644 --- a/workflow/scripts/build_wasserstoff_kernnetz.py +++ b/workflow/scripts/build_wasserstoff_kernnetz.py @@ -340,6 +340,7 @@ def assign_locations(df, locations): # calc length of points length_factor = 1.0 + length_factor = 1.0 df["length_haversine"] = df.apply( lambda p: length_factor * haversine_pts([p.point0.x, p.point0.y], [p.point1.x, p.point1.y]), diff --git a/workflow/scripts/cluster_wasserstoff_kernnetz.py b/workflow/scripts/cluster_wasserstoff_kernnetz.py index 0c1af57bf..28532353a 100644 --- a/workflow/scripts/cluster_wasserstoff_kernnetz.py +++ b/workflow/scripts/cluster_wasserstoff_kernnetz.py @@ -139,6 +139,7 @@ def aggregate_parallel_pipes(df): return df.groupby(df.index).agg(strategies) + if __name__ == "__main__": if "snakemake" not in globals(): import os From 36aeb9d373b516532c4f8c19d66b899845dab093 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 17 Jan 2024 10:00:25 +0100 Subject: [PATCH 063/669] Snakemake update --- workflow/Snakefile | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index f267254e6..4481fdab2 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -147,7 +147,6 @@ use rule solve_sector_network_myopic from pypsaeur with: **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), input: -<<<<<<< HEAD **rules.solve_sector_network_myopic.input, co2_totals_name=RESOURCES + "co2_totals.csv", @@ -164,10 +163,9 @@ rule modify_existing_heating: "scripts/modify_existing_heating.py" - -use rule build_existing_heating_distribution from pypsaeur with: +use rule add_existing_baseyear from pypsaeur with: input: - **{k: v for k, v in rules.build_existing_heating_distribution.input.items() if k != "existing_heating"}, + **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, existing_heating=RESOURCES + "existing_heating.csv", From 2b0b97df71f0c1b926a3685c0f36eaf412b308c5 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 17 Jan 2024 18:08:06 +0100 Subject: [PATCH 064/669] testing and tidy up --- config/config.yaml | 16 ++++++++++++++++ workflow/Snakefile | 30 +++++++++++++++++++++++++++--- 2 files changed, 43 insertions(+), 3 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 0b5646d19..c04bea3d6 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -64,6 +64,22 @@ clustering: 'NO': 0.0454 'PL': 0.0454 'SE': 0.0454 +clustering: + focus_weights: + # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" + 'DE': 0.3636 # 8/22 + 'AT': 0.0455 # 1/22 + 'BE': 0.0455 + 'CH': 0.0455 + 'CZ': 0.0455 + 'DK': 0.0909 # 2/22 + 'FR': 0.0454 + 'GB': 0.0909 # 2/22 + 'LU': 0.0454 + 'NL': 0.0454 + 'NO': 0.0454 + 'PL': 0.0454 + 'SE': 0.0454 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#co2-budget co2_budget: diff --git a/workflow/Snakefile b/workflow/Snakefile index 4481fdab2..51f72fed4 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -33,9 +33,6 @@ module pypsaeur: use rule * from pypsaeur -wildcard_constraints: - simpl="[a-zA-Z0-9]*", - clusters="[0-9]+(m|c)?|all", from pathlib import Path @@ -94,6 +91,33 @@ rule modify_cost_data: "scripts/modify_cost_data.py" +use rule solve_sector_network_myopic from pypsaeur with: + params: + **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, + custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), + input: + **rules.solve_sector_network_myopic.input, + co2_totals_name=RESOURCES + "co2_totals.csv", + + +rule modify_existing_heating: + input: + ariadne=RESOURCES + "ariadne_scenario_data.csv", + existing_heating="data/existing_infrastructure/existing_heating_raw.csv", + output: + existing_heating=RESOURCES + "existing_heating.csv", + resources: + mem_mb=1000 + script: + "scripts/modify_existing_heating.py" + + + +use rule add_existing_baseyear from pypsaeur with: + input: + **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, + existing_heating=RESOURCES + "existing_heating.csv", + rule build_wasserstoff_kernnetz: input: wasserstoff_kernnetz_1=HTTP.remote( From 725a3327e45c86e63f59c627fcb7b3edc09bc713 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 18 Jan 2024 14:30:56 +0100 Subject: [PATCH 065/669] wildcard constraints --- workflow/Snakefile | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 51f72fed4..952e68b91 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -112,12 +112,12 @@ rule modify_existing_heating: "scripts/modify_existing_heating.py" - use rule add_existing_baseyear from pypsaeur with: input: **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, existing_heating=RESOURCES + "existing_heating.csv", + rule build_wasserstoff_kernnetz: input: wasserstoff_kernnetz_1=HTTP.remote( @@ -147,6 +147,7 @@ rule cluster_wasserstoff_kernnetz: script: "scripts/cluster_wasserstoff_kernnetz.py" + use rule prepare_sector_network from pypsaeur with: input: **rules.prepare_sector_network.input, From b7494a58d25714ea550fe0949adb20c150cda0da Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 17 Jan 2024 18:08:06 +0100 Subject: [PATCH 066/669] testing and tidy up --- workflow/Snakefile | 55 +++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 54 insertions(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 952e68b91..275063002 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -23,7 +23,6 @@ wildcard_constraints: simpl="[a-zA-Z0-9]*", clusters="[0-9]+(m|c)?|all", - module pypsaeur: snakefile: "submodules/pypsa-eur/Snakefile" @@ -118,6 +117,60 @@ use rule add_existing_baseyear from pypsaeur with: existing_heating=RESOURCES + "existing_heating.csv", +use rule solve_sector_network_myopic from pypsaeur with: + params: + **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, + custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), + input: + **rules.solve_sector_network_myopic.input, + co2_totals_name=RESOURCES + "co2_totals.csv", + + +rule modify_existing_heating: + input: + ariadne=RESOURCES + "ariadne_scenario_data.csv", + existing_heating="data/existing_infrastructure/existing_heating_raw.csv", + output: + existing_heating=RESOURCES + "existing_heating.csv", + resources: + mem_mb=1000 + script: + "scripts/modify_existing_heating.py" + + +use rule add_existing_baseyear from pypsaeur with: + input: + **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, + existing_heating=RESOURCES + "existing_heating.csv", + + +use rule solve_sector_network_myopic from pypsaeur with: + params: + **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, + custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), + input: + **rules.solve_sector_network_myopic.input, + co2_totals_name=RESOURCES + "co2_totals.csv", + + +rule modify_existing_heating: + input: + ariadne=RESOURCES + "ariadne_scenario_data.csv", + existing_heating="data/existing_infrastructure/existing_heating_raw.csv", + output: + existing_heating=RESOURCES + "existing_heating.csv", + resources: + mem_mb=1000 + script: + "scripts/modify_existing_heating.py" + + + +use rule add_existing_baseyear from pypsaeur with: + input: + **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, + existing_heating=RESOURCES + "existing_heating.csv", + rule build_wasserstoff_kernnetz: input: wasserstoff_kernnetz_1=HTTP.remote( From 33367536b0444679eee91385daaa73b0aba6a8ad Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Mon, 22 Jan 2024 14:33:41 +0100 Subject: [PATCH 067/669] feature_jg: code review --- workflow/Snakefile | 5 +++++ workflow/scripts/build_wasserstoff_kernnetz.py | 4 ++++ 2 files changed, 9 insertions(+) diff --git a/workflow/Snakefile b/workflow/Snakefile index 275063002..74e8b01ea 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -183,6 +183,11 @@ rule build_wasserstoff_kernnetz: keep_local=True, static=True, ), + gadm=HTTP.remote( + "https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_DEU_1.json.zip", + keep_local=True, + static=True + ), locations="data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", output: cleaned_wasserstoff_kernnetz="resources/wasserstoff_kernnetz.csv", diff --git a/workflow/scripts/build_wasserstoff_kernnetz.py b/workflow/scripts/build_wasserstoff_kernnetz.py index ebad0d430..55ea9430c 100644 --- a/workflow/scripts/build_wasserstoff_kernnetz.py +++ b/workflow/scripts/build_wasserstoff_kernnetz.py @@ -13,10 +13,14 @@ import uuid +import uuid + import geopandas as gpd import numpy as np import pandas as pd from pypsa.geo import haversine_pts +import pandas as pd +from pypsa.geo import haversine_pts from shapely import wkt from shapely.geometry import LineString, Point From 65550b4f1b69dcbedfde8ad5d9c104e14ecd4af1 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 25 Jan 2024 18:03:41 +0100 Subject: [PATCH 068/669] updated Snakefile and updated submodules --- workflow/Snakefile | 199 ++-------------------------------- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 10 insertions(+), 191 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 74e8b01ea..6ca14d210 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -22,6 +22,9 @@ RESULTS = "results/" + RDIR wildcard_constraints: simpl="[a-zA-Z0-9]*", clusters="[0-9]+(m|c)?|all", + ll="(v|c)([0-9\.]+|opt)", + opts="[-+a-zA-Z0-9\.]*", + sector_opts="[-+a-zA-Z0-9\.\s]*", module pypsaeur: snakefile: @@ -89,129 +92,6 @@ rule modify_cost_data: script: "scripts/modify_cost_data.py" - -use rule solve_sector_network_myopic from pypsaeur with: - params: - **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, - custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), - input: - **rules.solve_sector_network_myopic.input, - co2_totals_name=RESOURCES + "co2_totals.csv", - - -rule modify_existing_heating: - input: - ariadne=RESOURCES + "ariadne_scenario_data.csv", - existing_heating="data/existing_infrastructure/existing_heating_raw.csv", - output: - existing_heating=RESOURCES + "existing_heating.csv", - resources: - mem_mb=1000 - script: - "scripts/modify_existing_heating.py" - - -use rule add_existing_baseyear from pypsaeur with: - input: - **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, - existing_heating=RESOURCES + "existing_heating.csv", - - -use rule solve_sector_network_myopic from pypsaeur with: - params: - **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, - custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), - input: - **rules.solve_sector_network_myopic.input, - co2_totals_name=RESOURCES + "co2_totals.csv", - - -rule modify_existing_heating: - input: - ariadne=RESOURCES + "ariadne_scenario_data.csv", - existing_heating="data/existing_infrastructure/existing_heating_raw.csv", - output: - existing_heating=RESOURCES + "existing_heating.csv", - resources: - mem_mb=1000 - script: - "scripts/modify_existing_heating.py" - - -use rule add_existing_baseyear from pypsaeur with: - input: - **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, - existing_heating=RESOURCES + "existing_heating.csv", - - -use rule solve_sector_network_myopic from pypsaeur with: - params: - **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, - custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), - input: - **rules.solve_sector_network_myopic.input, - co2_totals_name=RESOURCES + "co2_totals.csv", - - -rule modify_existing_heating: - input: - ariadne=RESOURCES + "ariadne_scenario_data.csv", - existing_heating="data/existing_infrastructure/existing_heating_raw.csv", - output: - existing_heating=RESOURCES + "existing_heating.csv", - resources: - mem_mb=1000 - script: - "scripts/modify_existing_heating.py" - - - -use rule add_existing_baseyear from pypsaeur with: - input: - **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, - existing_heating=RESOURCES + "existing_heating.csv", - -rule build_wasserstoff_kernnetz: - input: - wasserstoff_kernnetz_1=HTTP.remote( - "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage2_Leitungsmeldungen_weiterer_potenzieller_Wasserstoffnetzbetreiber_Veroeffentlichung_final.xlsx", - keep_local=True, - static=True, - ), - wasserstoff_kernnetz_2=HTTP.remote( - "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage3_FNB_Massnahmenliste_Veroeffentlichung_final.xlsx", - keep_local=True, - static=True, - ), - gadm=HTTP.remote( - "https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_DEU_1.json.zip", - keep_local=True, - static=True - ), - locations="data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", - output: - cleaned_wasserstoff_kernnetz="resources/wasserstoff_kernnetz.csv", - script: - "scripts/build_wasserstoff_kernnetz.py" - - -rule cluster_wasserstoff_kernnetz: - input: - cleaned_h2_network="resources/wasserstoff_kernnetz.csv", - regions_onshore="resources/regions_onshore_elec_s{simpl}_{clusters}.geojson", - regions_offshore="resources/regions_offshore_elec_s{simpl}_{clusters}.geojson", - output: - clustered_h2_network="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", - script: - "scripts/cluster_wasserstoff_kernnetz.py" - - -use rule prepare_sector_network from pypsaeur with: - input: - **rules.prepare_sector_network.input, - custom_h2_pipelines="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv" if config["wasserstoff_kernnetz"]["enable"] else [], - - rule modify_prenetwork: input: network=RESULTS @@ -230,7 +110,9 @@ use rule solve_sector_network_myopic from pypsaeur with: **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), input: - **rules.solve_sector_network_myopic.input, + **{k: v for k, v in rules.solve_sector_network_myopic.input.items() if k != "network"}, + network=RESULTS + + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", co2_totals_name=RESOURCES + "co2_totals.csv", @@ -246,72 +128,11 @@ rule modify_existing_heating: "scripts/modify_existing_heating.py" -use rule add_existing_baseyear from pypsaeur with: - input: - **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "existing_heating"}, - existing_heating=RESOURCES + "existing_heating.csv", - - -<<<<<<< HEAD -rule build_wasserstoff_kernnetz: - input: - wasserstoff_kernnetz_1=HTTP.remote( - "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage2_Leitungsmeldungen_weiterer_potenzieller_Wasserstoffnetzbetreiber_Veroeffentlichung_final.xlsx", - keep_local=True, - static=True, - ), - wasserstoff_kernnetz_2=HTTP.remote( - "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage3_FNB_Massnahmenliste_Veroeffentlichung_final.xlsx", - keep_local=True, - static=True, - ), - gadm=HTTP.remote( - "https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_DEU_1.json.zip", - keep_local=True, - static=True - ), - locations="data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", - output: - cleaned_wasserstoff_kernnetz="resources/wasserstoff_kernnetz.csv", - script: - "scripts/build_wasserstoff_kernnetz.py" - - -rule cluster_wasserstoff_kernnetz: - params: - divide_pipes=config["wasserstoff_kernnetz"]["divide_pipes"] - input: - cleaned_h2_network="resources/wasserstoff_kernnetz.csv", - regions_onshore="resources/regions_onshore_elec_s{simpl}_{clusters}.geojson", - regions_offshore="resources/regions_offshore_elec_s{simpl}_{clusters}.geojson", - output: - clustered_h2_network="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", - script: - "scripts/cluster_wasserstoff_kernnetz.py" - -use rule prepare_sector_network from pypsaeur with: - input: - **rules.prepare_sector_network.input, - custom_h2_pipelines="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv" if config["wasserstoff_kernnetz"]["enable"] else [], -======= - -rule modify_energy_totals: +use rule build_existing_heating_distribution from pypsaeur with: input: - ariadne=RESOURCES + "ariadne_scenario_data.csv", - energy_totals=RESOURCES + "energy_totals.csv", - output: - energy_totals=RESOURCES + "energy_totals-modified.csv", - resources: - mem_mb=1000 - script: - "scripts/modify_energy_totals.py" - - -use rule build_population_weighted_energy_totals from pypsaeur with: - input: - **{k: v for k, v in rules.build_population_weighted_energy_totals.input.items() if k != "energy_totals"}, - energy_totals=RESOURCES + "energy_totals-modified.csv", + **{k: v for k, v in rules.build_existing_heating_distribution.input.items() if k != "existing_heating"}, + existing_heating=RESOURCES + "existing_heating.csv", @@ -358,8 +179,6 @@ rule build_wasserstoff_kernnetz: rule cluster_wasserstoff_kernnetz: - params: - divide_pipes=config["wasserstoff_kernnetz"]["divide_pipes"] input: cleaned_h2_network="resources/wasserstoff_kernnetz.csv", regions_onshore="resources/regions_onshore_elec_s{simpl}_{clusters}.geojson", diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index b70deac7a..ab07797cb 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit b70deac7a123a09d15ebb586ce7284918c872be0 +Subproject commit ab07797cb15fd6630f454555c5aec4ddfd4ea6e0 From aae91f757b94331d1a2e12086c92ffab4f0cdb26 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Mon, 29 Jan 2024 09:57:31 +0100 Subject: [PATCH 069/669] switch to fixing the boiler profiles per boiler rather than load This allows the model to flexibly phase out some boiler carriers (e.g. oil) over others (e.g. biomass). --- workflow/scripts/additional_functionality.py | 35 ++++++++++++++++++-- 1 file changed, 33 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 693784845..342205b7e 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -142,7 +142,7 @@ def add_co2limit_country(n, limit_countries, snakemake): carrier_attribute="", ) -def force_boiler_profiles_existing(n): +def force_boiler_profiles_existing_per_load(n): """this scales the boiler dispatch to the load profile with a factor common to all boilers at load""" logger.info("Forcing boiler profiles for existing ones") @@ -178,6 +178,36 @@ def force_boiler_profiles_existing(n): n.loads["profile_factor_opt"] = 0. +def force_boiler_profiles_existing_per_boiler(n): + """this scales each boiler dispatch to be proportional to the load profile""" + + logger.info("Forcing each existing boiler dispatch to be proportional to the load profile") + + decentral_boilers = n.links.index[n.links.carrier.str.contains("boiler") + & ~n.links.carrier.str.contains("urban central") + & ~n.links.p_nom_extendable] + + if decentral_boilers.empty: + return + + boiler_loads = n.links.loc[decentral_boilers,"bus1"] + boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div(n.loads_t.p_set[boiler_loads].max(),axis=1) + boiler_profiles_pu.columns = decentral_boilers + boiler_profiles = DataArray(boiler_profiles_pu.multiply(n.links.loc[decentral_boilers,"p_nom"],axis=1)) + + #will be per unit + n.model.add_variables(coords=[decentral_boilers], name="Link-fixed_profile_scaling") + + lhs = (1, n.model["Link-p"].loc[:,decentral_boilers]), (-boiler_profiles, n.model["Link-fixed_profile_scaling"]) + + n.model.add_constraints(lhs, "=", 0, "Link-fixed_profile_scaling") + + # hack so that PyPSA doesn't complain there is nowhere to store the variable + n.links["fixed_profile_scaling_opt"] = 0. + + + + def additional_functionality(n, snapshots, snakemake): logger.info("Adding Ariadne-specific functionality") @@ -188,7 +218,8 @@ def additional_functionality(n, snapshots, snakemake): h2_import_limits(n, snapshots, investment_year, snakemake.config) - force_boiler_profiles_existing(n) + #force_boiler_profiles_existing_per_load(n) + force_boiler_profiles_existing_per_boiler(n) if snakemake.config["sector"]["co2_budget_national"]: limit_countries = snakemake.config["co2_budget_national"][investment_year] From 0345f22bc95ddce0c9353fa3ded1e6211af5c514 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Mon, 29 Jan 2024 11:28:48 +0100 Subject: [PATCH 070/669] update to new handling of existing boilers in PyPSA-Eur/ariadne2 --- config/config.yaml | 2 +- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 420fb1ee6..fd1b90f38 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240124-365H-coalexit" + name: "240129-365H-moreexisting" scenarios: enable: true shared_resources: true #stops recalculating diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 2cc816d6d..8db560389 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 2cc816d6d1df876fcafa33747fb2443a506f39ee +Subproject commit 8db560389e98bff2a44938f6307716e2a48b9b69 From ab42f913b4388cdd993508f600f5170835ed52d9 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Mon, 29 Jan 2024 11:54:48 +0100 Subject: [PATCH 071/669] cluster residential and services heat buses --- config/config.yaml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index fd1b90f38..41a68965c 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240129-365H-moreexisting" + name: "240129-365H-clusterheatbuses" scenarios: enable: true shared_resources: true #stops recalculating @@ -142,6 +142,7 @@ sector: regional_methanol_demand: true #set to true if regional CO2 constraints needed regional_oil_demand: true #set to true if regional CO2 constraints needed biogas_upgrading_cc: true + cluster_heat_buses: true # this needs to be taken from ariadne database reduce_space_heat_exogenously_factor: 2020: 0.0 From 70739c51b6317a2a09bd1202863b06a48d638659 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Mon, 29 Jan 2024 18:37:02 +0100 Subject: [PATCH 072/669] adjust country CO2 constraints to include only domestic aviation This requires separation of aviation scope in PyPSA-Eur. This removes need for ugly international_factor correction. Still TODO: include also domestic shipping by separating them in PyPSA-Eur. --- config/config.yaml | 2 +- workflow/scripts/additional_functionality.py | 15 ++++++++------- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 10 insertions(+), 9 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 41a68965c..11e859a09 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240129-365H-clusterheatbuses" + name: "240129-365H-aviationsep" scenarios: enable: true shared_resources: true #stops recalculating diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 342205b7e..4c68e0df1 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -109,7 +109,13 @@ def add_co2limit_country(n, limit_countries, snakemake): for port in [col[3:] for col in n.links if col.startswith("bus")]: - links = n.links.index[(n.links.index.str[:2] == ct) & (n.links[f"bus{port}"] == "co2 atmosphere")] + # todo need to include domestic shipping by only excluding international shipping + links = n.links.index[(n.links.index.str[:2] == ct) + & (n.links[f"bus{port}"] == "co2 atmosphere") + & ~(n.links.carrier == "kerosene for aviation international") + & ~(n.links.carrier.str.contains("shipping"))] + + logger.info(f"For {ct} adding following link carriers to port {port} CO2 constraint: {n.links.loc[links,'carrier'].unique()}") if port == "0": efficiency = -1. @@ -118,12 +124,7 @@ def add_co2limit_country(n, limit_countries, snakemake): else: efficiency = n.links.loc[links, f"efficiency{port}"] - international_factor = pd.Series(1., index=links) - # TODO: move to config - international_factor[links.str.contains("shipping oil")] = 0.4 - international_factor[links.str.contains("kerosene for aviation")] = 0.4 - - lhs.append((n.model["Link-p"].loc[:, links]*efficiency*international_factor*n.snapshot_weightings.generators).sum()) + lhs.append((n.model["Link-p"].loc[:, links]*efficiency*n.snapshot_weightings.generators).sum()) lhs = sum(lhs) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 8db560389..b1ba64a84 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 8db560389e98bff2a44938f6307716e2a48b9b69 +Subproject commit b1ba64a84b184a5f26c6f30e094d503e2397a378 From 5177603691031e0217aece2fe786d16f9705a550 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Tue, 30 Jan 2024 18:59:40 +0100 Subject: [PATCH 073/669] Integration of wasserstoff kernnetz into modify_prenetwork --- workflow/Snakefile | 77 ++++++++------- .../scripts/build_wasserstoff_kernnetz.py | 3 +- .../scripts/cluster_wasserstoff_kernnetz.py | 4 +- workflow/scripts/modify_prenetwork.py | 94 +++++++++++++++++++ 4 files changed, 140 insertions(+), 38 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 6ca14d210..7d8228361 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -93,9 +93,14 @@ rule modify_cost_data: "scripts/modify_cost_data.py" rule modify_prenetwork: + params: + enable_kernnetz=config["wasserstoff_kernnetz"]["enable"], + costs=config["costs"], input: network=RESULTS - + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" + + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + wkn="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", + costs="data/costs_{planning_horizons}.csv", output: network=RESULTS + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" @@ -153,43 +158,45 @@ use rule build_population_weighted_energy_totals from pypsaeur with: **{k: v for k, v in rules.build_population_weighted_energy_totals.input.items() if k != "energy_totals"}, energy_totals=RESOURCES + "energy_totals-modified.csv", +if config["wasserstoff_kernnetz"]["enable"]: + + rule build_wasserstoff_kernnetz: + input: + wasserstoff_kernnetz_1=HTTP.remote( + "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage2_Leitungsmeldungen_weiterer_potenzieller_Wasserstoffnetzbetreiber_Veroeffentlichung_final.xlsx", + keep_local=True, + static=True, + ), + wasserstoff_kernnetz_2=HTTP.remote( + "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage3_FNB_Massnahmenliste_Veroeffentlichung_final.xlsx", + keep_local=True, + static=True, + ), + gadm=HTTP.remote( + "https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_DEU_1.json.zip", + keep_local=True, + static=True + ), + locations="data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", + output: + cleaned_wasserstoff_kernnetz="resources/wasserstoff_kernnetz.csv", + script: + "scripts/build_wasserstoff_kernnetz.py" -rule build_wasserstoff_kernnetz: - input: - wasserstoff_kernnetz_1=HTTP.remote( - "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage2_Leitungsmeldungen_weiterer_potenzieller_Wasserstoffnetzbetreiber_Veroeffentlichung_final.xlsx", - keep_local=True, - static=True, - ), - wasserstoff_kernnetz_2=HTTP.remote( - "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage3_FNB_Massnahmenliste_Veroeffentlichung_final.xlsx", - keep_local=True, - static=True, - ), - gadm=HTTP.remote( - "https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_DEU_1.json.zip", - keep_local=True, - static=True - ), - locations="data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", - output: - cleaned_wasserstoff_kernnetz="resources/wasserstoff_kernnetz.csv", - script: - "scripts/build_wasserstoff_kernnetz.py" - - -rule cluster_wasserstoff_kernnetz: - input: - cleaned_h2_network="resources/wasserstoff_kernnetz.csv", - regions_onshore="resources/regions_onshore_elec_s{simpl}_{clusters}.geojson", - regions_offshore="resources/regions_offshore_elec_s{simpl}_{clusters}.geojson", - output: - clustered_h2_network="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", - script: - "scripts/cluster_wasserstoff_kernnetz.py" + rule cluster_wasserstoff_kernnetz: + input: + cleaned_h2_network="resources/wasserstoff_kernnetz.csv", + regions_onshore="resources/regions_onshore_elec_s{simpl}_{clusters}.geojson", + regions_offshore="resources/regions_offshore_elec_s{simpl}_{clusters}.geojson", + output: + clustered_h2_network="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", + script: + "scripts/cluster_wasserstoff_kernnetz.py" +''' use rule prepare_sector_network from pypsaeur with: input: **rules.prepare_sector_network.input, - custom_h2_pipelines="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv" if config["wasserstoff_kernnetz"]["enable"] else [], \ No newline at end of file + custom_h2_pipelines="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv" if config["wasserstoff_kernnetz"]["enable"] else [], +''' \ No newline at end of file diff --git a/workflow/scripts/build_wasserstoff_kernnetz.py b/workflow/scripts/build_wasserstoff_kernnetz.py index 55ea9430c..81a5467d5 100644 --- a/workflow/scripts/build_wasserstoff_kernnetz.py +++ b/workflow/scripts/build_wasserstoff_kernnetz.py @@ -222,7 +222,8 @@ def prepare_dataset(df): df["p_nom"] = df.diameter_mm.apply(diameter_to_capacity_h2) # eliminated gas capa from retrofitted pipes - df["gas_cap"] = df.diameter_mm.apply(diameter_to_capacity) + df["removed_gas_cap"] = df.diameter_mm.apply(diameter_to_capacity) + df[df.retrofitted == False]["removed_gas_cap"] == 0 # eliminate leading and trailing spaces df["Anfangspunkt(Ort)"] = df["Anfangspunkt(Ort)"].str.strip() diff --git a/workflow/scripts/cluster_wasserstoff_kernnetz.py b/workflow/scripts/cluster_wasserstoff_kernnetz.py index 28532353a..0e0aa218b 100644 --- a/workflow/scripts/cluster_wasserstoff_kernnetz.py +++ b/workflow/scripts/cluster_wasserstoff_kernnetz.py @@ -134,7 +134,7 @@ def aggregate_parallel_pipes(df): "length": "mean", "name": " ".join, "p_min_pu": "min", - "gas_cap": "sum", + "removed_gas_cap": "sum", } return df.groupby(df.index).agg(strategies) @@ -177,7 +177,7 @@ def aggregate_parallel_pipes(df): wasserstoff_kernnetz[["bus0", "bus1"]].apply(sorted, axis=1).apply(pd.Series) ) - reindex_pipes(wasserstoff_kernnetz, prefix="h2 pipeline") + reindex_pipes(wasserstoff_kernnetz, prefix="H2 pipeline") wasserstoff_kernnetz["p_min_pu"] = 0 wasserstoff_kernnetz["p_nom_diameter"] = 0 diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index a53b8da0e..13f63541d 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -7,8 +7,19 @@ import pypsa +import os +import sys + logger = logging.getLogger(__name__) +paths = ["workflow/submodules/pypsa-eur/scripts", "../submodules/pypsa-eur/scripts"] +for path in paths: + sys.path.insert(0, os.path.abspath(path)) +from prepare_sector_network import ( + prepare_costs, + lossy_bidirectional_links, +) + def fix_new_boiler_profiles(n): @@ -76,6 +87,76 @@ def coal_generation_ban(n): n.links.drop(links, inplace=True) +def add_wasserstoff_kernnetz(n, wkn, costs): + + logger.info("adding wasserstoff kernnetz") + + investment_year = int(snakemake.wildcards.planning_horizons) + + # get last planning horizon + planning_horizons = snakemake.config["scenario"]["planning_horizons"] + i = planning_horizons.index(int(snakemake.wildcards.planning_horizons)) + + if i != 0: + last_investment_year = int(planning_horizons[i - 1]) + else: + last_investment_year = 2015 + + # use only pipes which are present between the current year and the last investment period + wkn.query("build_year > @last_investment_year & build_year <= @investment_year", inplace=True) + gas_pipes = n.links[(n.links.carrier == "gas pipeline")][["bus0", "bus1", "p_nom"]] + + if not wkn.empty: + + # add kernnetz to network + n.madd( + "Link", + wkn.index + f"-{investment_year}-kernnetz", + bus0=wkn.bus0.values + " H2", + bus1=wkn.bus1.values + " H2", + p_min_pu=-1, + p_nom_extendable=False, + p_nom=wkn.p_nom.values, + build_year=wkn.build_year.values, + length=wkn.length.values, + capital_cost=costs.at["H2 (g) pipeline", "fixed"] * wkn.length.values, + carrier="H2 pipeline (kernnetz)", + lifetime=costs.at["H2 (g) pipeline", "lifetime"], + ) + + # add reversed pipes and losses + lossy_bidirectional_links(n, "H2 pipeline (kernnetz)", snakemake.config["sector"]["transmission_efficiency"]["H2 pipeline"]) + + # reverte carrier change + n.links.loc[n.links.carrier == "H2 pipeline (kernnetz)", "carrier"] = "H2 pipeline" + + if investment_year <= 2030: + # assume that only pipelines from kernnetz are build (within Germany): make pipes within Germany not extendable and all others extendable (but only from current year) + n.links.loc[(n.links.carrier == "H2 pipeline") & n.links.p_nom_extendable,"p_nom_extendable"] = n.links.loc[(n.links.carrier == "H2 pipeline") & n.links.p_nom_extendable,:].apply(lambda row: False if (row.bus0[:2] == "DE") & (row.bus1[:2] == "DE") else True, axis=1) + + # from 2030 onwards all pipes are extendable (except from the ones the model build up before and the kernnetz lines) + + # reduce the gas network capacity of retrofitted lines + for i, pipe in wkn.iterrows(): + cut = pipe.removed_gas_cap + match_i = 0 + while cut > 0: + match = gas_pipes[(gas_pipes.bus0 == pipe.bus0 + " gas") & (gas_pipes.bus1 == pipe.bus1 + " gas")] + if (match.empty) | (match_i >= len(match)): + break + + p_nom = match.iloc[match_i]['p_nom'] + if p_nom <= cut: + gas_pipes.loc[match.index[match_i], 'p_nom'] -= p_nom + cut -= p_nom + match_i += 1 + else: + gas_pipes.loc[match.index[match_i], 'p_nom'] -= cut + cut = 0 + match_i += 1 + + # assign reduced p_nom for gas pipelines + n.links.loc[(n.links.carrier == "gas pipeline"),"p_nom"] = gas_pipes["p_nom"] if __name__ == "__main__": @@ -83,6 +164,14 @@ def coal_generation_ban(n): n = pypsa.Network(snakemake.input.network) + nhours = n.snapshot_weightings.generators.sum() + nyears = nhours / 8760 + + costs = prepare_costs( + snakemake.input.costs, + snakemake.params.costs, + nyears, + ) new_boiler_ban(n) @@ -92,4 +181,9 @@ def coal_generation_ban(n): coal_generation_ban(n) + if snakemake.config["wasserstoff_kernnetz"]["enable"]: + fn = snakemake.input.wkn + wkn = pd.read_csv(fn, index_col=0) + add_wasserstoff_kernnetz(n, wkn, costs) + n.export_to_netcdf(snakemake.output.network) From 84b26ec1c2a010d2a989c55390b63010bc575509 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 31 Jan 2024 11:52:57 +0100 Subject: [PATCH 074/669] adding german chps from the mastr as a custom powerplant .csv --- config/config.yaml | 16 +- workflow/Snakefile | 23 ++- workflow/scripts/build_existing_chp_de.py | 219 ++++++++++++++++++++++ 3 files changed, 254 insertions(+), 4 deletions(-) create mode 100644 workflow/scripts/build_existing_chp_de.py diff --git a/config/config.yaml b/config/config.yaml index 420fb1ee6..af2975816 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -16,6 +16,8 @@ iiasa_database: model_name: Hybrid scenario: 8Gt_EnSec region: Deutschland + username: ensys.tu-berlin + password: _R.MnTUCU(HnCpK849PXjJ4Gh # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight foresight: myopic @@ -35,9 +37,9 @@ scenario: - 365H-T-H-B-I-A-solar+p3-linemaxext15 planning_horizons: - 2020 - - 2030 - - 2040 - - 2050 + # - 2030 + # - 2040 + # - 2050 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" @@ -48,6 +50,8 @@ enable: retrieve: false # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: + # simplify_network: + # to_substations: true focus_weights: # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" 'DE': 0.3636 # 8/22 @@ -84,6 +88,12 @@ co2_budget_national: 2050: DE: 0. +electricity: + powerplants_filter: (DateOut >= 2020 or DateOut != DateOut) + chp_filter: (Country == "DE" and Set == "CHP") + custom_powerplants: false + custom_chps: true + limits_min: Generator: onwind: diff --git a/workflow/Snakefile b/workflow/Snakefile index c033c5668..eef3791a3 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -1,7 +1,11 @@ -# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT +from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider + +HTTP = HTTPRemoteProvider() + configfile: "workflow/submodules/pypsa-eur/config/config.default.yaml" configfile: "config/config.yaml" configfile: "config/config.personal.yaml" @@ -123,6 +127,23 @@ rule modify_existing_heating: "scripts/modify_existing_heating.py" +rule build_existing_chp_de: + input: + mastr=HTTP.remote( + "https://zenodo.org/records/8225106/files/bnetza_open_mastr_2023-08-08_B.zip?download=1", + keep_local=True, + static=True, + ), + plz_mapping=HTTP.remote( + "https://files.pythonhosted.org/packages/df/70/275ba06974a03080f15536860e4a576cf43bf2c7262367e8e6e08d26c1c2/pyGeoDb-1.3.tar.gz", + keep_local=True, + static=True, + ) + output: + german_chp=RESOURCES + "german_chp.csv", + script: + "scripts/build_existing_chp_de.py" + use rule build_existing_heating_distribution from pypsaeur with: input: diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py new file mode 100644 index 000000000..8a6019a53 --- /dev/null +++ b/workflow/scripts/build_existing_chp_de.py @@ -0,0 +1,219 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT +""" +Using BNetzA data to get a high resolution map of German CHP plants. +(https://open-mastr.readthedocs.io/en/latest/). +""" + +import logging + +logger = logging.getLogger(__name__) + +import pandas as pd +import requests +import zipfile +import tarfile +import os +import sys +import shutil + +sys.path.insert(0, os.path.abspath("../..")) + +def load_dataset(mastr): + """ + Load the dataset from the BNetzA website and return it as a dataframe. + https://zenodo.org/records/8225106 + """ + + source_file = mastr + # Specify the destination directory path + destination_directory = "./data/" + + # Move the file to the destination directory + shutil.move(source_file, destination_directory) + # Delete the original directory + shutil.rmtree("./zenodo.org/records/8225106/") + os.rename("./data/bnetza_open_mastr_2023-08-08_B.zip?download=1", "./data/bnetza_open_mastr_2023-08-08_B.zip") + # Unpack the zip file + with zipfile.ZipFile("./data/bnetza_open_mastr_2023-08-08_B.zip", "r") as zip_ref: + # Extract the specific file you want + files_to_extract = ["bnetza_open_mastr_2023-08-08_B_biomass.csv", "bnetza_open_mastr_2023-08-08_B_combustion.csv"] + for file in files_to_extract: + zip_ref.extract(file, path="./data") + os.remove("./data/bnetza_open_mastr_2023-08-08_B.zip") + # Load the data + combustion = pd.read_csv("./data/bnetza_open_mastr_2023-08-08_B_combustion.csv", dtype={"Postleitzahl": str}) + biomass = pd.read_csv("./data/bnetza_open_mastr_2023-08-08_B_biomass.csv", dtype={"Postleitzahl": str}) + + return combustion, biomass + +def load_plz_mapping(plz_data): + """ + Load the plz mapping from pyGeoDb + https://pypi.org/project/pyGeoDb/#modal-close + """ + file_path = "./data/plzdata.py" + if not os.path.exists(file_path): + source_file = plz_data + # Specify the destination directory path + destination_directory = "./data/" + # Move the file to the destination directory + shutil.move(source_file, destination_directory) + # Delete the original directory + shutil.rmtree("./files.pythonhosted.org") + # Extract files + with tarfile.open("./data/pyGeoDb-1.3.tar.gz", 'r:gz') as tar: + tar.extractall("./data/") + # read file + shutil.move("./data/pyGeoDb-1.3/pygeodb/plzdata.py", "./data/") + # Delete the .tar.gz file + shutil.rmtree("./data/pyGeoDb-1.3") + os.remove("./data/pyGeoDb-1.3.tar.gz") + else: + print("plzdata.py already exists") + + sys.path.append('./data') + from plzdata import geodata + return geodata + + +def clean_data(combustion, biomass, geodata): + """ + Clean the data and return a dataframe with the relevant information. + PLZ is translated to longitude and latitude using the pyGeoDb data. + """ + biomass = biomass[(biomass['Postleitzahl'] != 0) & biomass['Postleitzahl'].notnull()] + biomass.rename(columns={'NameStromerzeugungseinheit': 'NameKraftwerk'}, inplace=True) + + data = pd.concat([biomass, combustion], axis=0, join='inner', ignore_index=True) + + # Get only CHP plants + CHP_raw = data[(data["ThermischeNutzleistung"] > 0) & (data["ThermischeNutzleistung"].notnull())] + CHP_raw.loc[:, "NameKraftwerk"] = CHP_raw["NameKraftwerk"].fillna(CHP_raw["EinheitMastrNummer"]) + + CHP_sel = CHP_raw[["NameKraftwerk", + "Energietraeger", + "Technologie", + "Postleitzahl", + "Inbetriebnahmedatum", + "DatumEndgueltigeStilllegung", + "ThermischeNutzleistung", + "ElektrischeKwkLeistung", + ]] + rename_columns = { + "NameKraftwerk": "Name", + "Energietraeger": "Fueltype", + "Technologie": "Technology", + "ElektrischeKwkLeistung": "Capacity", + "ThermischeNutzleistung": "Capacity_thermal", + "Inbetriebnahmedatum": "DateIn", + "DatumEndgueltigeStilllegung": "DateOut", + } + + CHP_sel.rename(columns=rename_columns, inplace=True) + + # set missing information to match the powerplant data format + CHP_sel.loc[:, "Set"] = "CHP" + CHP_sel.loc[:, "Country"] = "DE" + CHP_sel.loc[:, "Efficiency"] = "" + + # change date format + CHP_sel.loc[CHP_sel["DateIn"].notnull(), "DateIn"] = CHP_sel.loc[CHP_sel["DateIn"].notnull(), "DateIn"].str[:4].astype(int) + CHP_sel.loc[CHP_sel["DateOut"].notnull(), "DateOut"] = CHP_sel.loc[CHP_sel["DateOut"].notnull(), "DateOut"].str[:4].astype(int) + + # get location from PLZ + CHP_sel.loc[:, 'lat'], CHP_sel.loc[:, 'lon'] = zip(*CHP_sel['Postleitzahl'].map(lambda x: geodata.get('DE', {}).get(x, (None, None)))) + + fueltype = { + "Erdgas": "Natural Gas", + "Mineralölprodukte": "Oil", + "Steinkohle": "Coal", + "Braunkohle": "Lignite", + "andere Gase": "Natural Gas", + "nicht biogenere Abfälle": "Waste", + "Wärme": "Other", + "Biomasse": "Bioenergy", + "Wasserstoff": "Hydrogen", + } + technology = { + "Verbrennungsmotor": "", + "Gasturbinen mit Abhitzekessel": "CCGT", + "Brennstoffzelle": "Fuel Cell", + "Strilingmotor": "", + 'Kondensationsmaschine mit Entnahme': "Steam Turbine", + 'Sonstige': "", + 'Gasturbinen ohne Abhitzekessel': "OCGT", + 'Dampfmotor': "Steam Turbine", + 'Gegendruckmaschine mit Entnahme': "Steam Turbine", + 'Gegendruckmaschine ohne Entnahme':"Steam Turbine", + 'Gasturbinen mit nachgeschalteter Dampfturbine': "CCGT", + 'ORC (Organic Rankine Cycle)-Anlage': "Steam Turbine", + 'Kondensationsmaschine ohne Entnahme': "Steam Turbine", + } + + CHP_sel = CHP_sel.replace({"Fueltype": fueltype}) + CHP_sel = CHP_sel.replace({"Technology": technology}) + + def lookup_geodata(missing_plz, geodata): + for i in range(10): + plz = missing_plz[:-1] + str(i) + if plz in geodata['DE']: + return geodata['DE'][plz] + for i in range(100): + if i < 10: + plz = missing_plz[:-2] + "0" + str(i) + if plz in geodata['DE']: + return geodata['DE'][plz] + else: + plz = missing_plz[:-2] + str(i) + if plz in geodata['DE']: + return geodata['DE'][plz] + return [0, 0, 0] + + CHP_sel_empty_lat = CHP_sel[CHP_sel['lat'].isnull()] + CHP_sel_empty_lat.loc[:, 'lat'] = CHP_sel_empty_lat['Postleitzahl'].apply(lambda plz: lookup_geodata(plz, geodata)[0]) + CHP_sel_empty_lat.loc[:, 'lon'] = CHP_sel_empty_lat['Postleitzahl'].apply(lambda plz: lookup_geodata(plz, geodata)[1]) + CHP_sel.update(CHP_sel_empty_lat) + + CHP_sel = CHP_sel.drop(columns=['Postleitzahl']) + + return CHP_sel + +def calculate_efficiency(CHP_de): + """ + Calculate the efficiency of the CHP plants depending on Capacity and DateIn. + Following Triebs et al. (https://doi.org/10.1016/j.ecmx.2020.100068) + """ + def EXT(cap, year): + # returns the efficiency for extraction ceondensing turbine + return ((44/2400) * cap + 0.125 * year - 204.75) / 100 + + def BP(cap,year): + # returns the efficiency for back pressure turbine + return ((5e-3) * cap + 0.325 * year - 611.75) / 100 + # TODO: differentiate between extraction condensing turbine and back pressure turbine + CHP_de['Efficiency'] = CHP_de.apply(lambda row: EXT(row['Capacity'], row['DateIn']), axis=1) + + return CHP_de + + +if __name__ == "__main__": + if "snakemake" not in globals(): + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + snakemake = mock_snakemake("build_existing_chp_de", submodule_dir = "./workflow/submodules/pypsa-eur/") + + logging.basicConfig(level=snakemake.config["logging"]["level"]) + + combustion, biomass = load_dataset(snakemake.input[0]) + + geodata = load_plz_mapping(snakemake.input[1]) + + CHP_de = clean_data(combustion, biomass, geodata) + + CHP_de = calculate_efficiency(CHP_de) + + CHP_de.to_csv(snakemake.output.german_chp, index=False) \ No newline at end of file From 5194095d58d40ce8c7e660bde02dcc5151323837 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 31 Jan 2024 15:15:34 +0100 Subject: [PATCH 075/669] minor bug fix powerplant query --- config/config.yaml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index af2975816..53a2e54d4 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -90,8 +90,8 @@ co2_budget_national: electricity: powerplants_filter: (DateOut >= 2020 or DateOut != DateOut) - chp_filter: (Country == "DE" and Set == "CHP") - custom_powerplants: false + chp_filter: not (Country == "DE" and Set == "CHP") + custom_powerplants: true custom_chps: true limits_min: From 37dd2eb937853ff53254bc629144049f4be1f769 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 31 Jan 2024 17:11:08 +0100 Subject: [PATCH 076/669] remove iiasa_database --- config/config.yaml | 2 -- 1 file changed, 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 53a2e54d4..97abd208a 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -16,8 +16,6 @@ iiasa_database: model_name: Hybrid scenario: 8Gt_EnSec region: Deutschland - username: ensys.tu-berlin - password: _R.MnTUCU(HnCpK849PXjJ4Gh # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight foresight: myopic From 47c26dbd400a42948a5d9436032eaf6ca55dd591 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 31 Jan 2024 19:04:57 +0100 Subject: [PATCH 077/669] more conservative removal of retrofitting pipes --- workflow/scripts/modify_prenetwork.py | 92 ++++++++++++++++++++------- 1 file changed, 70 insertions(+), 22 deletions(-) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 13f63541d..5ee8509a0 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -102,9 +102,9 @@ def add_wasserstoff_kernnetz(n, wkn, costs): else: last_investment_year = 2015 + wkn_all = wkn.copy() # use only pipes which are present between the current year and the last investment period wkn.query("build_year > @last_investment_year & build_year <= @investment_year", inplace=True) - gas_pipes = n.links[(n.links.carrier == "gas pipeline")][["bus0", "bus1", "p_nom"]] if not wkn.empty: @@ -135,28 +135,76 @@ def add_wasserstoff_kernnetz(n, wkn, costs): n.links.loc[(n.links.carrier == "H2 pipeline") & n.links.p_nom_extendable,"p_nom_extendable"] = n.links.loc[(n.links.carrier == "H2 pipeline") & n.links.p_nom_extendable,:].apply(lambda row: False if (row.bus0[:2] == "DE") & (row.bus1[:2] == "DE") else True, axis=1) # from 2030 onwards all pipes are extendable (except from the ones the model build up before and the kernnetz lines) + + # add reversed pipes + def add_reversed_pipes(df): + df_rev = df.copy() + df_rev.index = df_rev.index + "_rev" + df_rev["bus0"] = df.bus1.values + df_rev["bus1"] = df.bus0.values + result = pd.concat([df,df_rev]) + return result + + def reduce_capacity(df, pipes, carrier, origin="removed_gas_cap", target="p_nom", efficiency=1): + """ + Reduce the capacity of pipes in a dataframe based on specified criteria. + + Args: + df (DataFrame): The input dataframe containing the pipe data to be modified. + pipes (DataFrame): The dataframe containing the data how to midify. + carrier (str): The carrier of the pipes. + origin (str, optional): The column name in `df` representing the original capacity of the pipes. Defaults to "removed_gas_cap". + target (str, optional): The column name in `df` representing the target capacity to be modified. Defaults to "p_nom". + efficiency (float, optional): The efficiency factor to reduce the capacity. Defaults to 1. + + Returns: + DataFrame: The modified dataframe with reduced pipe capacities. + """ + + result = df.copy() + + for i, pipe in pipes.iterrows(): + cut = pipe[origin] * efficiency + match_i = 0 + while cut > 0: + match = result[(result.bus0 == pipe.bus0 + " " + carrier) & (result.bus1 == pipe.bus1 + " " + carrier)] + if (match.empty) | (match_i >= len(match)): + break + target_value = match.iloc[match_i][target] + if target_value <= cut: + result.loc[match.index[match_i], target] -= target_value + cut -= target_value + match_i += 1 + else: + result.loc[match.index[match_i], target] -= cut + cut = 0 + match_i += 1 + return result + + # reduce the gas network capacity of retrofitted lines from kernnetz which is build in the current period + if snakemake.config["sector"]["gas_network"]: + + gas_pipes = n.links[(n.links.carrier == "gas pipeline")][["bus0", "bus1", "p_nom"]].copy() + res_gas_pipes = reduce_capacity(gas_pipes, + add_reversed_pipes(wkn), + carrier="gas", + origin="removed_gas_cap", + target="p_nom", + efficiency=1) + n.links.loc[(n.links.carrier == "gas pipeline"),"p_nom"] = res_gas_pipes["p_nom"] + + # reduce H2 retrofitting potential from gas network for all kernnetz pipelines which are being build in total (more conservative approach) + if snakemake.config["sector"]["H2_retrofit"]: + + h2_pipes_retrofitted = n.links[(n.links.carrier == "H2 pipeline retrofitted") & (n.links.index.str.contains(str(investment_year)))][["bus0", "bus1", "p_nom_max"]].copy() + res_h2_pipes_retrofitted = reduce_capacity(h2_pipes_retrofitted, + add_reversed_pipes(wkn_all), + carrier="H2", + origin="removed_gas_cap", + target="p_nom_max", + efficiency=snakemake.config["sector"]["H2_retrofit_capacity_per_CH4"]) + n.links.loc[(n.links.carrier == "H2 pipeline retrofitted") & (n.links.index.str.contains(str(investment_year))), "p_nom_max"] = res_h2_pipes_retrofitted["p_nom_max"] - # reduce the gas network capacity of retrofitted lines - for i, pipe in wkn.iterrows(): - cut = pipe.removed_gas_cap - match_i = 0 - while cut > 0: - match = gas_pipes[(gas_pipes.bus0 == pipe.bus0 + " gas") & (gas_pipes.bus1 == pipe.bus1 + " gas")] - if (match.empty) | (match_i >= len(match)): - break - - p_nom = match.iloc[match_i]['p_nom'] - if p_nom <= cut: - gas_pipes.loc[match.index[match_i], 'p_nom'] -= p_nom - cut -= p_nom - match_i += 1 - else: - gas_pipes.loc[match.index[match_i], 'p_nom'] -= cut - cut = 0 - match_i += 1 - - # assign reduced p_nom for gas pipelines - n.links.loc[(n.links.carrier == "gas pipeline"),"p_nom"] = gas_pipes["p_nom"] if __name__ == "__main__": From a0b134c18e96436570280b8018270da6a37ad06c Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 1 Feb 2024 10:51:54 +0100 Subject: [PATCH 078/669] last modifications and config --- config/config.yaml | 11 +-- workflow/scripts/modify_prenetwork.py | 104 +++++++++++++------------- 2 files changed, 56 insertions(+), 59 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index c04bea3d6..dff49416e 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "wkn_refine_1" + name: "wkn_refine_gas_retrofit" scenarios: enable: true shared_resources: true #stops recalculating @@ -148,13 +148,6 @@ new_decentral_fossil_boiler_ban: coal_generation_ban: DE: 2038 - -wasserstoff_kernnetz: - enable: true - reload_locations: false - divide_pipes: false - pipes_segment_length: 10 - # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: district_heating: @@ -180,6 +173,8 @@ sector: 2040: 0.22 2045: 0.25 2050: 0.35 + gas_network: true + H2_retrofit: true # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry industry: diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 5ee8509a0..f16c3864a 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -88,6 +88,51 @@ def coal_generation_ban(n): inplace=True) def add_wasserstoff_kernnetz(n, wkn, costs): + + # add reversed pipes + def add_reversed_pipes(df): + df_rev = df.copy() + df_rev.index = df_rev.index + "_rev" + df_rev["bus0"] = df.bus1.values + df_rev["bus1"] = df.bus0.values + result = pd.concat([df,df_rev]) + return result + + def reduce_capacity(df, pipes, carrier, origin="removed_gas_cap", target="p_nom", efficiency=1): + """ + Reduce the capacity of pipes in a dataframe based on specified criteria. + + Args: + df (DataFrame): The input dataframe containing the pipe data to be modified. + pipes (DataFrame): The dataframe containing the data how to midify. + carrier (str): The carrier of the pipes. + origin (str, optional): The column name in `df` representing the original capacity of the pipes. Defaults to "removed_gas_cap". + target (str, optional): The column name in `df` representing the target capacity to be modified. Defaults to "p_nom". + efficiency (float, optional): The efficiency factor to reduce the capacity. Defaults to 1. + + Returns: + DataFrame: The modified dataframe with reduced pipe capacities. + """ + + result = df.copy() + + for i, pipe in pipes.iterrows(): + cut = pipe[origin] * efficiency + match_i = 0 + while cut > 0: + match = result[(result.bus0 == pipe.bus0 + " " + carrier) & (result.bus1 == pipe.bus1 + " " + carrier)] + if (match.empty) | (match_i >= len(match)): + break + target_value = match.iloc[match_i][target] + if target_value <= cut: + result.loc[match.index[match_i], target] -= target_value + cut -= target_value + match_i += 1 + else: + result.loc[match.index[match_i], target] -= cut + cut = 0 + match_i += 1 + return result logger.info("adding wasserstoff kernnetz") @@ -130,57 +175,6 @@ def add_wasserstoff_kernnetz(n, wkn, costs): # reverte carrier change n.links.loc[n.links.carrier == "H2 pipeline (kernnetz)", "carrier"] = "H2 pipeline" - if investment_year <= 2030: - # assume that only pipelines from kernnetz are build (within Germany): make pipes within Germany not extendable and all others extendable (but only from current year) - n.links.loc[(n.links.carrier == "H2 pipeline") & n.links.p_nom_extendable,"p_nom_extendable"] = n.links.loc[(n.links.carrier == "H2 pipeline") & n.links.p_nom_extendable,:].apply(lambda row: False if (row.bus0[:2] == "DE") & (row.bus1[:2] == "DE") else True, axis=1) - - # from 2030 onwards all pipes are extendable (except from the ones the model build up before and the kernnetz lines) - - # add reversed pipes - def add_reversed_pipes(df): - df_rev = df.copy() - df_rev.index = df_rev.index + "_rev" - df_rev["bus0"] = df.bus1.values - df_rev["bus1"] = df.bus0.values - result = pd.concat([df,df_rev]) - return result - - def reduce_capacity(df, pipes, carrier, origin="removed_gas_cap", target="p_nom", efficiency=1): - """ - Reduce the capacity of pipes in a dataframe based on specified criteria. - - Args: - df (DataFrame): The input dataframe containing the pipe data to be modified. - pipes (DataFrame): The dataframe containing the data how to midify. - carrier (str): The carrier of the pipes. - origin (str, optional): The column name in `df` representing the original capacity of the pipes. Defaults to "removed_gas_cap". - target (str, optional): The column name in `df` representing the target capacity to be modified. Defaults to "p_nom". - efficiency (float, optional): The efficiency factor to reduce the capacity. Defaults to 1. - - Returns: - DataFrame: The modified dataframe with reduced pipe capacities. - """ - - result = df.copy() - - for i, pipe in pipes.iterrows(): - cut = pipe[origin] * efficiency - match_i = 0 - while cut > 0: - match = result[(result.bus0 == pipe.bus0 + " " + carrier) & (result.bus1 == pipe.bus1 + " " + carrier)] - if (match.empty) | (match_i >= len(match)): - break - target_value = match.iloc[match_i][target] - if target_value <= cut: - result.loc[match.index[match_i], target] -= target_value - cut -= target_value - match_i += 1 - else: - result.loc[match.index[match_i], target] -= cut - cut = 0 - match_i += 1 - return result - # reduce the gas network capacity of retrofitted lines from kernnetz which is build in the current period if snakemake.config["sector"]["gas_network"]: @@ -193,6 +187,8 @@ def reduce_capacity(df, pipes, carrier, origin="removed_gas_cap", target="p_nom" efficiency=1) n.links.loc[(n.links.carrier == "gas pipeline"),"p_nom"] = res_gas_pipes["p_nom"] + if not wkn_all.empty: + # reduce H2 retrofitting potential from gas network for all kernnetz pipelines which are being build in total (more conservative approach) if snakemake.config["sector"]["H2_retrofit"]: @@ -205,6 +201,12 @@ def reduce_capacity(df, pipes, carrier, origin="removed_gas_cap", target="p_nom" efficiency=snakemake.config["sector"]["H2_retrofit_capacity_per_CH4"]) n.links.loc[(n.links.carrier == "H2 pipeline retrofitted") & (n.links.index.str.contains(str(investment_year))), "p_nom_max"] = res_h2_pipes_retrofitted["p_nom_max"] + if investment_year <= 2030: + # assume that only pipelines from kernnetz are build (within Germany): make pipes within Germany not extendable and all others extendable (but only from current year) + n.links.loc[(n.links.carrier == "H2 pipeline") & n.links.p_nom_extendable,"p_nom_extendable"] = n.links.loc[(n.links.carrier == "H2 pipeline") & n.links.p_nom_extendable,:].apply(lambda row: False if (row.bus0[:2] == "DE") & (row.bus1[:2] == "DE") else True, axis=1) + + # from 2030 onwards all pipes are extendable (except from the ones the model build up before and the kernnetz lines) + if __name__ == "__main__": From 3bf76178abe2ccd5d8ec133aed90553c7e5cfa49 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 1 Feb 2024 10:52:20 +0100 Subject: [PATCH 079/669] changed submoduls to latest ariadne 2 --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index ab07797cb..e9be2032d 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit ab07797cb15fd6630f454555c5aec4ddfd4ea6e0 +Subproject commit e9be2032d37f3848d49de8176ef24c203a988c3d From 4b74da060a067110648f48889408057e87152609 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Thu, 1 Feb 2024 16:22:05 +0100 Subject: [PATCH 080/669] Revert "adjust country CO2 constraints to include only domestic aviation" This reverts commit 70739c51b6317a2a09bd1202863b06a48d638659. --- config/config.yaml | 2 +- workflow/scripts/additional_functionality.py | 15 +++++++-------- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 9 insertions(+), 10 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 11e859a09..41a68965c 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240129-365H-aviationsep" + name: "240129-365H-clusterheatbuses" scenarios: enable: true shared_resources: true #stops recalculating diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 4c68e0df1..342205b7e 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -109,13 +109,7 @@ def add_co2limit_country(n, limit_countries, snakemake): for port in [col[3:] for col in n.links if col.startswith("bus")]: - # todo need to include domestic shipping by only excluding international shipping - links = n.links.index[(n.links.index.str[:2] == ct) - & (n.links[f"bus{port}"] == "co2 atmosphere") - & ~(n.links.carrier == "kerosene for aviation international") - & ~(n.links.carrier.str.contains("shipping"))] - - logger.info(f"For {ct} adding following link carriers to port {port} CO2 constraint: {n.links.loc[links,'carrier'].unique()}") + links = n.links.index[(n.links.index.str[:2] == ct) & (n.links[f"bus{port}"] == "co2 atmosphere")] if port == "0": efficiency = -1. @@ -124,7 +118,12 @@ def add_co2limit_country(n, limit_countries, snakemake): else: efficiency = n.links.loc[links, f"efficiency{port}"] - lhs.append((n.model["Link-p"].loc[:, links]*efficiency*n.snapshot_weightings.generators).sum()) + international_factor = pd.Series(1., index=links) + # TODO: move to config + international_factor[links.str.contains("shipping oil")] = 0.4 + international_factor[links.str.contains("kerosene for aviation")] = 0.4 + + lhs.append((n.model["Link-p"].loc[:, links]*efficiency*international_factor*n.snapshot_weightings.generators).sum()) lhs = sum(lhs) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index b1ba64a84..8db560389 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit b1ba64a84b184a5f26c6f30e094d503e2397a378 +Subproject commit 8db560389e98bff2a44938f6307716e2a48b9b69 From a35ba49811e8ab0630f0b04e3b7beb57acd053aa Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Thu, 1 Feb 2024 16:28:17 +0100 Subject: [PATCH 081/669] remove weighting of international aviation and shipping for CO2 Instead international aviation and shipping emissions should be removed from the national constraint by adjusting the cap, which is easier, since these sectors have exogenous demand anyway. --- config/config.yaml | 2 +- workflow/scripts/additional_functionality.py | 9 +++------ workflow/submodules/pypsa-eur | 2 +- 3 files changed, 5 insertions(+), 8 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 41a68965c..2bc92c523 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240129-365H-clusterheatbuses" + name: "240201-365H-revertaviationsep" scenarios: enable: true shared_resources: true #stops recalculating diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 342205b7e..1fb4101b9 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -111,6 +111,8 @@ def add_co2limit_country(n, limit_countries, snakemake): links = n.links.index[(n.links.index.str[:2] == ct) & (n.links[f"bus{port}"] == "co2 atmosphere")] + logger.info(f"For {ct} adding following link carriers to port {port} CO2 constraint: {n.links.loc[links,'carrier'].unique()}") + if port == "0": efficiency = -1. elif port == "1": @@ -118,12 +120,7 @@ def add_co2limit_country(n, limit_countries, snakemake): else: efficiency = n.links.loc[links, f"efficiency{port}"] - international_factor = pd.Series(1., index=links) - # TODO: move to config - international_factor[links.str.contains("shipping oil")] = 0.4 - international_factor[links.str.contains("kerosene for aviation")] = 0.4 - - lhs.append((n.model["Link-p"].loc[:, links]*efficiency*international_factor*n.snapshot_weightings.generators).sum()) + lhs.append((n.model["Link-p"].loc[:, links]*efficiency*n.snapshot_weightings.generators).sum()) lhs = sum(lhs) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 8db560389..dcae9e190 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 8db560389e98bff2a44938f6307716e2a48b9b69 +Subproject commit dcae9e19056e20c5169cf990c0ea08e3dfa23c10 From 3c0b4da454bac717a56dc8d007ce4b5162ca1bc4 Mon Sep 17 00:00:00 2001 From: Micha Date: Thu, 1 Feb 2024 17:38:23 +0100 Subject: [PATCH 082/669] Adjust co2_targets --- config/config.yaml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 99e31a7a9..0e96fb13d 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -77,13 +77,13 @@ co2_budget: co2_budget_national: # Corrected for non-CO2 GHGs via the ariadne database 2020: - DE: 0.58 # 0.6 + DE: 0.73 # 0.6 2030: - DE: 0.30 # 0.35 + DE: 0.40 # 0.35 2040: - DE: 0.09 # 0.12 + DE: 0.12 # 0.12 2050: - DE: -0.04 # 0. + DE: -0.02 # 0. limits_min: Generator: From bf3d3787b15bd1e483c0b3e69cfd251ae0ff3726 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 1 Feb 2024 17:42:17 +0100 Subject: [PATCH 083/669] bug fix, mixing up latitude and longitude --- workflow/scripts/build_existing_chp_de.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py index 8a6019a53..89dec6b1d 100644 --- a/workflow/scripts/build_existing_chp_de.py +++ b/workflow/scripts/build_existing_chp_de.py @@ -124,7 +124,7 @@ def clean_data(combustion, biomass, geodata): CHP_sel.loc[CHP_sel["DateOut"].notnull(), "DateOut"] = CHP_sel.loc[CHP_sel["DateOut"].notnull(), "DateOut"].str[:4].astype(int) # get location from PLZ - CHP_sel.loc[:, 'lat'], CHP_sel.loc[:, 'lon'] = zip(*CHP_sel['Postleitzahl'].map(lambda x: geodata.get('DE', {}).get(x, (None, None)))) + CHP_sel.loc[:, 'lon'], CHP_sel.loc[:, 'lat'] = zip(*CHP_sel['Postleitzahl'].map(lambda x: geodata.get('DE', {}).get(x, (None, None)))) fueltype = { "Erdgas": "Natural Gas", @@ -173,12 +173,12 @@ def lookup_geodata(missing_plz, geodata): return [0, 0, 0] CHP_sel_empty_lat = CHP_sel[CHP_sel['lat'].isnull()] - CHP_sel_empty_lat.loc[:, 'lat'] = CHP_sel_empty_lat['Postleitzahl'].apply(lambda plz: lookup_geodata(plz, geodata)[0]) - CHP_sel_empty_lat.loc[:, 'lon'] = CHP_sel_empty_lat['Postleitzahl'].apply(lambda plz: lookup_geodata(plz, geodata)[1]) + CHP_sel_empty_lat.loc[:, 'lon'] = CHP_sel_empty_lat['Postleitzahl'].apply(lambda plz: lookup_geodata(plz, geodata)[0]) + CHP_sel_empty_lat.loc[:, 'lat'] = CHP_sel_empty_lat['Postleitzahl'].apply(lambda plz: lookup_geodata(plz, geodata)[1]) CHP_sel.update(CHP_sel_empty_lat) - + CHP_sel = CHP_sel.drop(columns=['Postleitzahl']) - + CHP_sel = CHP_sel[['Name', 'Fueltype', 'Technology', 'Set', 'Country', 'Capacity', 'Efficiency', 'DateIn', 'DateOut', 'lat', 'lon', 'Capacity_thermal']] return CHP_sel def calculate_efficiency(CHP_de): From cc8a2a9e94e00c82601fafd785711fd73aceb6d0 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 2 Feb 2024 10:37:26 +0100 Subject: [PATCH 084/669] track script for computing co2 targets --- workflow/scripts/_compute_co2_targets_DE.py | 64 +++++++++++++++++++++ 1 file changed, 64 insertions(+) create mode 100644 workflow/scripts/_compute_co2_targets_DE.py diff --git a/workflow/scripts/_compute_co2_targets_DE.py b/workflow/scripts/_compute_co2_targets_DE.py new file mode 100644 index 000000000..f3cbb6b05 --- /dev/null +++ b/workflow/scripts/_compute_co2_targets_DE.py @@ -0,0 +1,64 @@ +import pyam +import pandas as pd + +# Set USERNAME and PASSWORD for the Ariadne DB +pyam.iiasa.set_config(USERNAME, PASSWORD) + +model_df= pyam.read_iiasa( + "ariadne_intern", + model="Hybrid", + scenario="8Gt_Bal_v3", +).timeseries() + +df = model_df.loc["Hybrid", "8Gt_Bal_v3", "Deutschland"] + +baseline_ksg = 1251 +baseline_pypsa = 1052 + +## GHG target according to KSG +initial_years2030_ksg = pd.Series( + index = [2020, 2025, 2030], + data = [813, 643, 438], +) + +later_years_ksg = pd.Series( + index = [2035, 2040, 2045, 2050], + data = [0.77, 0.88, 1.0, 1.0], +) + +targets_ksg = pd.concat( + [initial_years2030_ksg, (1 - later_years_ksg) * baseline_ksg], +) + +## Compute nonco2 from Ariadne-Hybrid model + +co2_ksg = ( + df.loc["Emissions|CO2 incl Bunkers","Mt CO2/yr"] + - df.loc["Emissions|CO2|Land-Use Change","Mt CO2-equiv/yr"] + - df.loc["Emissions|CO2|Energy|Demand|Bunkers","Mt CO2/yr"] +) + +ghg_ksg = ( + df.loc["Emissions|Kyoto Gases","Mt CO2-equiv/yr"] + - df.loc["Emissions|Kyoto Gases|Land-Use Change","Mt CO2-equiv/yr"] + # No Kyoto Gas emissions for Bunkers recorded in Ariadne DB +) + +nonco2 = ghg_ksg - co2_ksg + +## PyPSA disregards nonco2 GHG emissions + +targets_pypsa = ( + targets_ksg - nonco2 + + df.loc["Emissions|CO2|Energy|Demand|Bunkers","Mt CO2/yr"] +) + +target_fractions_pypsa = ( + targets_pypsa.loc[[2020, 2030, 2040, 2050]] / baseline_pypsa +) + +print( + "PyPSA emission pathway for DE:\n", + target_fractions_pypsa.round(2), + sep="", +) \ No newline at end of file From 5e95ce938a917819cdc25a69f856744682c2700a Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 2 Feb 2024 10:38:52 +0100 Subject: [PATCH 085/669] small rename --- workflow/scripts/_compute_co2_targets_DE.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/_compute_co2_targets_DE.py b/workflow/scripts/_compute_co2_targets_DE.py index f3cbb6b05..ecc4cb379 100644 --- a/workflow/scripts/_compute_co2_targets_DE.py +++ b/workflow/scripts/_compute_co2_targets_DE.py @@ -16,7 +16,7 @@ baseline_pypsa = 1052 ## GHG target according to KSG -initial_years2030_ksg = pd.Series( +initial_years_ksg = pd.Series( index = [2020, 2025, 2030], data = [813, 643, 438], ) @@ -27,7 +27,7 @@ ) targets_ksg = pd.concat( - [initial_years2030_ksg, (1 - later_years_ksg) * baseline_ksg], + [initial_years_ksg, (1 - later_years_ksg) * baseline_ksg], ) ## Compute nonco2 from Ariadne-Hybrid model From 74390669afeee0b9e9012a560e996115ad37137e Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 2 Feb 2024 10:42:46 +0100 Subject: [PATCH 086/669] small comment --- workflow/scripts/_compute_co2_targets_DE.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/_compute_co2_targets_DE.py b/workflow/scripts/_compute_co2_targets_DE.py index ecc4cb379..09df9c5e5 100644 --- a/workflow/scripts/_compute_co2_targets_DE.py +++ b/workflow/scripts/_compute_co2_targets_DE.py @@ -46,7 +46,7 @@ nonco2 = ghg_ksg - co2_ksg -## PyPSA disregards nonco2 GHG emissions +## PyPSA disregards nonco2 GHG emissions, but includes bunkers targets_pypsa = ( targets_ksg - nonco2 From 829286bce4a01038bf16afcf0a7c9ade9c0a842c Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 2 Feb 2024 11:40:03 +0100 Subject: [PATCH 087/669] include reuse and recycling of HVC/plastics for 2020-2050 --- config/config.yaml | 31 ++++++++++++++++++++++++++++++- 1 file changed, 30 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 2bc92c523..b3971f2b9 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240201-365H-revertaviationsep" + name: "240202-365H-recycling" scenarios: enable: true shared_resources: true #stops recalculating @@ -163,6 +163,35 @@ industry: 2040: 0.4 2045: 0.35 2050: 0.3 +#HVC primary/recycling based on values used in Neumann et al https://doi.org/10.1016/j.joule.2023.06.016, linearly interpolated between 2020 and 2050 +#2020 recycling rates based on Agora https://static.agora-energiewende.de/fileadmin/Projekte/2021/2021_02_EU_CEAP/A-EW_254_Mobilising-circular-economy_study_WEB.pdf +#fractions refer to the total primary HVC production in 2020 +#assumes 6.7 Mtplastics produced from recycling in 2020 + HVC_primary_fraction: + 2020: 1.0 + 2025: 0.9 + 2030: 0.8 + 2035: 0.7 + 2040: 0.6 + 2045: 0.5 + 2050: 0.4 + HVC_mechanical_recycling_fraction: + 2020: 0.12 + 2025: 0.15 + 2030: 0.18 + 2035: 0.21 + 2040: 0.24 + 2045: 0.27 + 2050: 0.30 + HVC_chemical_recycling_fraction: + 2020: 0.0 + 2025: 0.0 + 2030: 0.04 + 2035: 0.08 + 2040: 0.12 + 2045: 0.16 + 2050: 0.20 + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving solving: From 9393e8ab697a306a9c74466df97cd0779bdebf64 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 2 Feb 2024 12:39:59 +0100 Subject: [PATCH 088/669] 5 year steps for output --- workflow/scripts/_compute_co2_targets_DE.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/_compute_co2_targets_DE.py b/workflow/scripts/_compute_co2_targets_DE.py index 09df9c5e5..27096548e 100644 --- a/workflow/scripts/_compute_co2_targets_DE.py +++ b/workflow/scripts/_compute_co2_targets_DE.py @@ -54,7 +54,7 @@ ) target_fractions_pypsa = ( - targets_pypsa.loc[[2020, 2030, 2040, 2050]] / baseline_pypsa + targets_pypsa.loc[targets_ksg.index] / baseline_pypsa ) print( From 6ed7cf85a537d2e56fd2b9d854e537cf78104bf1 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 2 Feb 2024 14:01:33 +0100 Subject: [PATCH 089/669] add 5 year steps to config --- config/config.yaml | 15 ++++++++++----- workflow/scripts/_compute_co2_targets_DE.py | 12 ++++++------ 2 files changed, 16 insertions(+), 11 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 0e96fb13d..9e8624290 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -75,15 +75,20 @@ co2_budget: 2050: 0.000 # climate-neutral by 2050 co2_budget_national: - # Corrected for non-CO2 GHGs via the ariadne database 2020: - DE: 0.73 # 0.6 + DE: 0.73 + 2025: + DE: 0.57 2030: - DE: 0.40 # 0.35 + DE: 0.4 + 2035: + DE: 0.26 2040: - DE: 0.12 # 0.12 + DE: 0.12 + 2045: + DE: -0.03 2050: - DE: -0.02 # 0. + DE: -0.02 limits_min: Generator: diff --git a/workflow/scripts/_compute_co2_targets_DE.py b/workflow/scripts/_compute_co2_targets_DE.py index 27096548e..24df7fcb6 100644 --- a/workflow/scripts/_compute_co2_targets_DE.py +++ b/workflow/scripts/_compute_co2_targets_DE.py @@ -55,10 +55,10 @@ target_fractions_pypsa = ( targets_pypsa.loc[targets_ksg.index] / baseline_pypsa -) +).round(2) + +print("co2_budget_national:") -print( - "PyPSA emission pathway for DE:\n", - target_fractions_pypsa.round(2), - sep="", -) \ No newline at end of file +for year in target_fractions_pypsa.index: + print(" ", year, ":", sep="") + print(" DE:", target_fractions_pypsa[year] ) \ No newline at end of file From 00e17888a31d3447fb5b8e0d2df34243e369763d Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 2 Feb 2024 14:59:01 +0100 Subject: [PATCH 090/669] 3 digit targets --- config/config.yaml | 14 +++++++------- workflow/scripts/_compute_co2_targets_DE.py | 4 ++-- 2 files changed, 9 insertions(+), 9 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 9e8624290..e979159fa 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -76,19 +76,19 @@ co2_budget: co2_budget_national: 2020: - DE: 0.73 + DE: 0.728 2025: - DE: 0.57 + DE: 0.571 2030: - DE: 0.4 + DE: 0.396 2035: - DE: 0.26 + DE: 0.258 2040: - DE: 0.12 + DE: 0.118 2045: - DE: -0.03 + DE: -0.028 2050: - DE: -0.02 + DE: -0.024 limits_min: Generator: diff --git a/workflow/scripts/_compute_co2_targets_DE.py b/workflow/scripts/_compute_co2_targets_DE.py index 24df7fcb6..0152df047 100644 --- a/workflow/scripts/_compute_co2_targets_DE.py +++ b/workflow/scripts/_compute_co2_targets_DE.py @@ -55,10 +55,10 @@ target_fractions_pypsa = ( targets_pypsa.loc[targets_ksg.index] / baseline_pypsa -).round(2) +) print("co2_budget_national:") for year in target_fractions_pypsa.index: print(" ", year, ":", sep="") - print(" DE:", target_fractions_pypsa[year] ) \ No newline at end of file + print(" DE:", target_fractions_pypsa[year].round(3)) \ No newline at end of file From 3426e843b7e8c18f98b3b5977bfae9d7f307fd86 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 2 Feb 2024 15:09:01 +0100 Subject: [PATCH 091/669] add comment to explain national CO2 target for Germany --- config/config.yaml | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/config/config.yaml b/config/config.yaml index 80be1f5b4..195603abb 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -74,6 +74,10 @@ co2_budget: 2045: 0.050 2050: 0.000 # climate-neutral by 2050 +# calculated in workflow/scripts/_compute_co2_targets_DE.py; are +# relative to the DE emissions in 1990 *including bunkers*; also +# account for non-CO2 GHG and allow extra room for international +# bunkers which are excluded from the national targets co2_budget_national: 2020: DE: 0.728 From 411644fa04612c9348b83f280e26cfbbb1f784dd Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 2 Feb 2024 18:31:19 +0100 Subject: [PATCH 092/669] co2_spatial set to true so national CO2 limits see process emissions --- config/config.yaml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 195603abb..e161e8666 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240202-365H-recycling" + name: "240202-365H-wprocess" scenarios: enable: true shared_resources: true #stops recalculating @@ -146,6 +146,7 @@ sector: 2040: 0.6 2050: 1.0 co2_budget_national: true + co2_spatial: true #TBD what to include in config #relax so no infeasibility in 2050 with no land transport demand min_part_load_fischer_tropsch: 0. From 4de6ef21c119d9c7a1c149ba6fc9b701fce27422 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 30 Jan 2024 14:54:44 +0100 Subject: [PATCH 093/669] fix whitespace --- workflow/Snakefile | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index c033c5668..f60653761 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -78,7 +78,7 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", T rule modify_cost_data: input: costs="data/costs_{year}-original.csv", - modifications="ariadne-data/costs_{year}-modifications.csv", + modifications="ariadne-data/costs_{year}-modifications.csv", output: "data/costs_{year}.csv", resources: @@ -127,7 +127,7 @@ rule modify_existing_heating: use rule build_existing_heating_distribution from pypsaeur with: input: **{k: v for k, v in rules.build_existing_heating_distribution.input.items() if k != "existing_heating"}, - existing_heating=RESOURCES + "existing_heating.csv", + existing_heating=RESOURCES + "existing_heating.csv", From 907094596a431ff7d5c99a29a7f17f12e39b1b40 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 30 Jan 2024 14:56:13 +0100 Subject: [PATCH 094/669] ignore data --- .gitignore | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/.gitignore b/.gitignore index ecce080a4..2bf7c25a7 100644 --- a/.gitignore +++ b/.gitignore @@ -267,4 +267,5 @@ benchmarks cidportal.jrc.ec.europa.eu -zenodo.org \ No newline at end of file +zenodo.org +globalenergymonitor.org/wp-content/uploads/2023/07/Europe-Gas-Tracker-2023-03-v3.xlsx From 8cf577b68b700eec68c0d7c3c32aa8a5f68275d1 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 5 Feb 2024 10:47:10 +0100 Subject: [PATCH 095/669] use environment secrets --- workflow/Snakefile | 6 +++++- workflow/scripts/retrieve_ariadne_scenario_data.py | 3 +-- 2 files changed, 6 insertions(+), 3 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index f60653761..94c587a2b 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -11,6 +11,9 @@ RDIR = run["name"] + "/" if run.get("name") else "" RESOURCES = "resources/" + RDIR if not run.get("shared_resources") else "resources/" RESULTS = "results/" + RDIR +envvars: + "IIASA_USERNAME", + "IIASA_PASSWORD" wildcard_constraints: simpl="[a-zA-Z0-9]*", @@ -59,7 +62,8 @@ rule clean: rule retrieve_ariadne_scenario_data: params: - iiasa=config["iiasa_database"] + iiasa_usr=os.environ["IIASA_USERNAME"], + iiasa_pwd=os.environ["IIASA_PASSWORD"] output: data=RESOURCES + "ariadne_scenario_data.csv" log: diff --git a/workflow/scripts/retrieve_ariadne_scenario_data.py b/workflow/scripts/retrieve_ariadne_scenario_data.py index 3906656ff..e847efb98 100644 --- a/workflow/scripts/retrieve_ariadne_scenario_data.py +++ b/workflow/scripts/retrieve_ariadne_scenario_data.py @@ -2,8 +2,7 @@ import pyam -pyam.iiasa.set_config(snakemake.config["iiasa_database"]["username"], - snakemake.config["iiasa_database"]["password"]) +pyam.iiasa.set_config(snakemake.params.iiasa_usr, snakemake.params.iiasa_pwd) model_raw = pyam.read_iiasa(snakemake.config["iiasa_database"]["db_name"], From 33481bcc19f153cc738efb13b7700bfd6507f11d Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 5 Feb 2024 11:19:13 +0100 Subject: [PATCH 096/669] Add instructions to README --- README.md | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) diff --git a/README.md b/README.md index 607393cba..e87d00ce7 100644 --- a/README.md +++ b/README.md @@ -28,6 +28,24 @@ You need [mamba](https://mamba.readthedocs.io/en/latest/) to run the analysis. U mamba env create -f environment.yaml +## Provide login details + +The snakemake rule `retrieve_ariadne_scenario_data` logs into the IIASA Database. It requires a USERNAME and a PASSWORD which should be set as environment variables in your local shell configuration. To do that on Linux open your `.bashrc` with a text editor, e.g., with + +``` +vim ~/.bashrc +``` + +and then add the following two lines to the end of that file: + +``` +export IIASA_USERNAME='USERNAME' +export IIASA_PASSWORD='PASSWORD' +``` + +Fill in the correct login details and don't forget the quotation marks. You might have to restart your terminal session / vscode window for the new variables to become available. + + ## Run the analysis For the first run open config.yaml and set From fb893d0f8efddc9d4096c356eed885b599972e4f Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 5 Feb 2024 12:52:03 +0100 Subject: [PATCH 097/669] additional details on environment variables --- README.md | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index e87d00ce7..d1ba16b50 100644 --- a/README.md +++ b/README.md @@ -43,7 +43,14 @@ export IIASA_USERNAME='USERNAME' export IIASA_PASSWORD='PASSWORD' ``` -Fill in the correct login details and don't forget the quotation marks. You might have to restart your terminal session / vscode window for the new variables to become available. +Fill in the correct login details and don't forget the quotation marks. You might have to restart your terminal session / vscode window for the new variables to become available. + +**Caution for vscode users**: If you want to use the environment variables in an Interactive Python Session, another step is required. Create a file `.env` in the working directory and add the lines: +``` +IIASA_USERNAME='USERNAME' +IIASA_PASSWORD='PASSWORD' +``` +Details on Python environment variables in VSCode can be found here: https://code.visualstudio.com/docs/python/environments#_environment-variables ## Run the analysis From f6ec2b69b5286a3cc4e9b3918e6d4928698494bf Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 5 Feb 2024 12:52:47 +0100 Subject: [PATCH 098/669] more cautious phrasing --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index d1ba16b50..ac7ff60ba 100644 --- a/README.md +++ b/README.md @@ -45,7 +45,7 @@ export IIASA_PASSWORD='PASSWORD' Fill in the correct login details and don't forget the quotation marks. You might have to restart your terminal session / vscode window for the new variables to become available. -**Caution for vscode users**: If you want to use the environment variables in an Interactive Python Session, another step is required. Create a file `.env` in the working directory and add the lines: +**Caution for vscode users**: If you want to use the environment variables in an Interactive Python Session, another step might be required depending on your local config. Create a file `.env` in the working directory and add the lines: ``` IIASA_USERNAME='USERNAME' IIASA_PASSWORD='PASSWORD' From db4afb6ffeb38cd2ca317d054fa5e36ee273e253 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Mon, 5 Feb 2024 14:07:34 +0100 Subject: [PATCH 099/669] adding commodity prices for coal, oil, gas from Ariadne assumptions --- ariadne-data/costs_2020-modifications.csv | 4 +++- ariadne-data/costs_2025-modifications.csv | 4 ++++ ariadne-data/costs_2030-modifications.csv | 4 +++- ariadne-data/costs_2035-modifications.csv | 4 ++++ ariadne-data/costs_2040-modifications.csv | 4 +++- ariadne-data/costs_2045-modifications.csv | 4 ++++ ariadne-data/costs_2050-modifications.csv | 4 +++- 7 files changed, 24 insertions(+), 4 deletions(-) create mode 100644 ariadne-data/costs_2025-modifications.csv create mode 100644 ariadne-data/costs_2035-modifications.csv create mode 100644 ariadne-data/costs_2045-modifications.csv diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index ce89ed324..bfbf3b737 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -1,2 +1,4 @@ technology,parameter,value,unit,source,further description -gas,fuel,50.0,EUR/MWh_th,TTF futures, +gas,fuel,11.2,EUR/MWh_th,Ariadne, +oil,fuel,22.1982,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" +coal,fuel,5.7048,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv new file mode 100644 index 000000000..9f3010e66 --- /dev/null +++ b/ariadne-data/costs_2025-modifications.csv @@ -0,0 +1,4 @@ +technology,parameter,value,unit,source,further description +gas,fuel,40,EUR/MWh_th,Ariadne, +oil,fuel,32.9876,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" +coal,fuel,10.6694,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index ce89ed324..db23140c3 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -1,2 +1,4 @@ technology,parameter,value,unit,source,further description -gas,fuel,50.0,EUR/MWh_th,TTF futures, +gas,fuel,22.3,EUR/MWh_th,Ariadne, +oil,fuel,38.821,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" +coal,fuel,6.2056,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv new file mode 100644 index 000000000..ec1806ff9 --- /dev/null +++ b/ariadne-data/costs_2035-modifications.csv @@ -0,0 +1,4 @@ +technology,parameter,value,unit,source,further description +gas,fuel,22.4,EUR/MWh_th,Ariadne, +oil,fuel,38.5629,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" +coal,fuel,6.2601,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index ce89ed324..0cc15d1e4 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -1,2 +1,4 @@ technology,parameter,value,unit,source,further description -gas,fuel,50.0,EUR/MWh_th,TTF futures, +gas,fuel,22.6,EUR/MWh_th,Ariadne, +oil,fuel,38.3564,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" +coal,fuel,6.3036,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv new file mode 100644 index 000000000..d73262d00 --- /dev/null +++ b/ariadne-data/costs_2045-modifications.csv @@ -0,0 +1,4 @@ +technology,parameter,value,unit,source,further description +gas,fuel,22.8,EUR/MWh_th,Ariadne, +oil,fuel,38.0983,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" +coal,fuel,6.3472,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index ce89ed324..f790f08bd 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -1,2 +1,4 @@ technology,parameter,value,unit,source,further description -gas,fuel,50.0,EUR/MWh_th,TTF futures, +gas,fuel,22.9,EUR/MWh_th,Ariadne, +oil,fuel,37.8918,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" +coal,fuel,6.4016,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" From ef5afa03362d3cd42f06787145d69bdfaa26d7d8 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Mon, 5 Feb 2024 18:07:08 +0100 Subject: [PATCH 100/669] wasserstoffkernnetz: fneum's revision --- config/config.yaml | 3 +- workflow/Snakefile | 18 +- .../scripts/build_wasserstoff_kernnetz.py | 2 +- workflow/scripts/modify_prenetwork.py | 220 ++++++++++-------- workflow/submodules/pypsa-eur | 2 +- 5 files changed, 124 insertions(+), 121 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index a09e2ba9e..e34ec6539 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -219,4 +219,5 @@ solving: plotting: tech_colors: - load: "#111100" \ No newline at end of file + load: "#111100" + H2 pipeline (Kernnetz): '#6b3161' \ No newline at end of file diff --git a/workflow/Snakefile b/workflow/Snakefile index f57fa15c9..5fd73ab16 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -6,10 +6,6 @@ from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider HTTP = HTTPRemoteProvider() -from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider - -HTTP = HTTPRemoteProvider() - configfile: "workflow/submodules/pypsa-eur/config/config.default.yaml" configfile: "config/config.yaml" configfile: "config/config.personal.yaml" @@ -97,6 +93,7 @@ rule modify_cost_data: script: "scripts/modify_cost_data.py" + rule modify_prenetwork: params: enable_kernnetz=config["wasserstoff_kernnetz"]["enable"], @@ -115,19 +112,6 @@ rule modify_prenetwork: "scripts/modify_prenetwork.py" -rule modify_prenetwork: - input: - network=RESULTS - + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" - output: - network=RESULTS - + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" - resources: - mem_mb=1000 - script: - "scripts/modify_prenetwork.py" - - use rule solve_sector_network_myopic from pypsaeur with: params: **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, diff --git a/workflow/scripts/build_wasserstoff_kernnetz.py b/workflow/scripts/build_wasserstoff_kernnetz.py index 81a5467d5..98e7c3166 100644 --- a/workflow/scripts/build_wasserstoff_kernnetz.py +++ b/workflow/scripts/build_wasserstoff_kernnetz.py @@ -221,7 +221,7 @@ def prepare_dataset(df): # calc capa df["p_nom"] = df.diameter_mm.apply(diameter_to_capacity_h2) - # eliminated gas capa from retrofitted pipes + # eliminated gas capacity from retrofitted pipes df["removed_gas_cap"] = df.diameter_mm.apply(diameter_to_capacity) df[df.retrofitted == False]["removed_gas_cap"] == 0 diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index f16c3864a..6ee458703 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -1,6 +1,3 @@ - - - import logging import pandas as pd @@ -21,7 +18,6 @@ ) - def fix_new_boiler_profiles(n): logger.info("Forcing boiler profiles for new ones") @@ -87,128 +83,150 @@ def coal_generation_ban(n): n.links.drop(links, inplace=True) + +def add_reversed_pipes(df): + df_rev = df.copy().rename({"bus0": "bus1", "bus1": "bus0"}, axis=1) + df_rev.index = df_rev.index + "-reversed" + return pd.concat([df, df_rev], sort=False) + + +def reduce_capacity(targets, origins, carrier, origin_attr="removed_gas_cap", target_attr="p_nom", conversion_rate=1): + """ + Reduce the capacity of pipes in a dataframe based on specified criteria. + + Args: + target (DataFrame): The dataframe containing pipelines from which to reduce capacitiy. + origin (DataFrame): The dataframe containing data about added pipelines. + carrier (str): The carrier of the pipelines. + origin_attr (str, optional): The column name in `origin` representing the original capacity of the pipelines. Defaults to "removed_gas_cap". + target_attr (str, optional): The column name in `target` representing the target capacity to be modified. Defaults to "p_nom". + conversion_rate (float, optional): The conversion rate to reduce the capacity. Defaults to 1. + + Returns: + DataFrame: The modified dataframe with reduced pipe capacities. + """ + + targets = targets.copy() + + def apply_cut(row): + match = targets[ + (targets.bus0 == row.bus0 + " " + carrier) & + (targets.bus1 == row.bus1 + " " + carrier) + ].sort_index() + cut = row[origin_attr] * conversion_rate + for idx, target_row in match.iterrows(): + if cut <= 0: + break + target_value = target_row[target_attr] + reduction = min(target_value, cut) + targets.at[idx, target_attr] -= reduction + cut -= reduction + + origins.apply(apply_cut, axis=1) + return targets + + def add_wasserstoff_kernnetz(n, wkn, costs): - - # add reversed pipes - def add_reversed_pipes(df): - df_rev = df.copy() - df_rev.index = df_rev.index + "_rev" - df_rev["bus0"] = df.bus1.values - df_rev["bus1"] = df.bus0.values - result = pd.concat([df,df_rev]) - return result - - def reduce_capacity(df, pipes, carrier, origin="removed_gas_cap", target="p_nom", efficiency=1): - """ - Reduce the capacity of pipes in a dataframe based on specified criteria. - - Args: - df (DataFrame): The input dataframe containing the pipe data to be modified. - pipes (DataFrame): The dataframe containing the data how to midify. - carrier (str): The carrier of the pipes. - origin (str, optional): The column name in `df` representing the original capacity of the pipes. Defaults to "removed_gas_cap". - target (str, optional): The column name in `df` representing the target capacity to be modified. Defaults to "p_nom". - efficiency (float, optional): The efficiency factor to reduce the capacity. Defaults to 1. - - Returns: - DataFrame: The modified dataframe with reduced pipe capacities. - """ - - result = df.copy() - - for i, pipe in pipes.iterrows(): - cut = pipe[origin] * efficiency - match_i = 0 - while cut > 0: - match = result[(result.bus0 == pipe.bus0 + " " + carrier) & (result.bus1 == pipe.bus1 + " " + carrier)] - if (match.empty) | (match_i >= len(match)): - break - target_value = match.iloc[match_i][target] - if target_value <= cut: - result.loc[match.index[match_i], target] -= target_value - cut -= target_value - match_i += 1 - else: - result.loc[match.index[match_i], target] -= cut - cut = 0 - match_i += 1 - return result logger.info("adding wasserstoff kernnetz") investment_year = int(snakemake.wildcards.planning_horizons) - # get last planning horizon + # get previous planning horizon planning_horizons = snakemake.config["scenario"]["planning_horizons"] i = planning_horizons.index(int(snakemake.wildcards.planning_horizons)) - - if i != 0: - last_investment_year = int(planning_horizons[i - 1]) - else: - last_investment_year = 2015 + previous_investment_year = int(planning_horizons[i - 1]) if i != 0 else 2015 - wkn_all = wkn.copy() - # use only pipes which are present between the current year and the last investment period - wkn.query("build_year > @last_investment_year & build_year <= @investment_year", inplace=True) + # use only pipes added since the previous investment period + wkn_new = wkn.query("build_year > @previous_investment_year & build_year <= @investment_year") - if not wkn.empty: + if not wkn_new.empty: + + names = wkn_new.index + f"-kernnetz-{investment_year}" # add kernnetz to network n.madd( "Link", - wkn.index + f"-{investment_year}-kernnetz", - bus0=wkn.bus0.values + " H2", - bus1=wkn.bus1.values + " H2", + names, + bus0=wkn_new.bus0.values + " H2", + bus1=wkn_new.bus1.values + " H2", p_min_pu=-1, p_nom_extendable=False, - p_nom=wkn.p_nom.values, - build_year=wkn.build_year.values, - length=wkn.length.values, - capital_cost=costs.at["H2 (g) pipeline", "fixed"] * wkn.length.values, - carrier="H2 pipeline (kernnetz)", + p_nom=wkn_new.p_nom.values, + build_year=wkn_new.build_year.values, + length=wkn_new.length.values, + capital_cost=costs.at["H2 (g) pipeline", "fixed"] * wkn_new.length.values, + carrier="H2 pipeline (Kernnetz)", lifetime=costs.at["H2 (g) pipeline", "lifetime"], ) # add reversed pipes and losses - lossy_bidirectional_links(n, "H2 pipeline (kernnetz)", snakemake.config["sector"]["transmission_efficiency"]["H2 pipeline"]) - - # reverte carrier change - n.links.loc[n.links.carrier == "H2 pipeline (kernnetz)", "carrier"] = "H2 pipeline" - - # reduce the gas network capacity of retrofitted lines from kernnetz which is build in the current period - if snakemake.config["sector"]["gas_network"]: - - gas_pipes = n.links[(n.links.carrier == "gas pipeline")][["bus0", "bus1", "p_nom"]].copy() - res_gas_pipes = reduce_capacity(gas_pipes, - add_reversed_pipes(wkn), - carrier="gas", - origin="removed_gas_cap", - target="p_nom", - efficiency=1) - n.links.loc[(n.links.carrier == "gas pipeline"),"p_nom"] = res_gas_pipes["p_nom"] - - if not wkn_all.empty: - - # reduce H2 retrofitting potential from gas network for all kernnetz pipelines which are being build in total (more conservative approach) - if snakemake.config["sector"]["H2_retrofit"]: - - h2_pipes_retrofitted = n.links[(n.links.carrier == "H2 pipeline retrofitted") & (n.links.index.str.contains(str(investment_year)))][["bus0", "bus1", "p_nom_max"]].copy() - res_h2_pipes_retrofitted = reduce_capacity(h2_pipes_retrofitted, - add_reversed_pipes(wkn_all), - carrier="H2", - origin="removed_gas_cap", - target="p_nom_max", - efficiency=snakemake.config["sector"]["H2_retrofit_capacity_per_CH4"]) - n.links.loc[(n.links.carrier == "H2 pipeline retrofitted") & (n.links.index.str.contains(str(investment_year))), "p_nom_max"] = res_h2_pipes_retrofitted["p_nom_max"] + losses = snakemake.config["sector"]["transmission_efficiency"]["H2 pipeline"] + lossy_bidirectional_links(n, "H2 pipeline (Kernnetz)", losses, subset=names) + + # reduce the gas network capacity of retrofitted lines from kernnetz + # which is build in the current period + gas_pipes = n.links.query("carrier == 'gas pipeline'") + if not gas_pipes.empty: + res_gas_pipes = reduce_capacity( + gas_pipes, + add_reversed_pipes(wkn_new), + carrier="gas", + ) + n.links.loc[n.links.carrier == "gas pipeline", "p_nom"] = res_gas_pipes["p_nom"] + + # reduce H2 retrofitting potential from gas network for all kernnetz + # pipelines which are being build in total (more conservative approach) + if not wkn.empty and snakemake.config["sector"]["H2_retrofit"]: + + conversion_rate = snakemake.config["sector"]["H2_retrofit_capacity_per_CH4"] + + retrofitted_b = ( + n.links.carrier == "H2 pipeline retrofitted" + ) & n.links.index.str.contains(str(investment_year)) + h2_pipes_retrofitted = n.links.loc[retrofitted_b] + + if not h2_pipes_retrofitted.empty: + res_h2_pipes_retrofitted = reduce_capacity( + h2_pipes_retrofitted, + add_reversed_pipes(wkn), + carrier="H2", + target_attr="p_nom_max", + conversion_rate=conversion_rate, + ) + n.links.loc[retrofitted_b, "p_nom_max"] = res_h2_pipes_retrofitted["p_nom_max"] if investment_year <= 2030: - # assume that only pipelines from kernnetz are build (within Germany): make pipes within Germany not extendable and all others extendable (but only from current year) - n.links.loc[(n.links.carrier == "H2 pipeline") & n.links.p_nom_extendable,"p_nom_extendable"] = n.links.loc[(n.links.carrier == "H2 pipeline") & n.links.p_nom_extendable,:].apply(lambda row: False if (row.bus0[:2] == "DE") & (row.bus1[:2] == "DE") else True, axis=1) - - # from 2030 onwards all pipes are extendable (except from the ones the model build up before and the kernnetz lines) + # assume that only pipelines from kernnetz are built (within Germany): + # make pipes within Germany not extendable and all others extendable (but only from current year) + to_fix = ( + n.links.bus0.str.startswith("DE") + & n.links.bus1.str.startswith("DE") + & n.links.carrier.isin(["H2 pipeline", "H2 pipeline retrofitted"]) + ) + n.links.loc[to_fix, "p_nom_extendable"] = False + + # from 2030 onwards all pipes are extendable (except from the ones the model build up before and the kernnetz lines) if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "modify_prenetwork", + simpl="", + clusters=22, + opts="", + ll="v1.2", + sector_opts="365H-T-H-B-I-A-solar+p3-linemaxext15", + planning_horizons="2040", + ) logger.info("Adding Ariadne-specific functionality") diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index dcae9e190..f1420e6b6 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit dcae9e19056e20c5169cf990c0ea08e3dfa23c10 +Subproject commit f1420e6b688cdda24b365b75c7a35b5579e6c58d From e9965ac773afcefeeee7c2dd12a5909ca97cf05e Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Mon, 5 Feb 2024 20:47:10 +0100 Subject: [PATCH 101/669] Update config/config.yaml --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index e34ec6539..0193460d6 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -133,7 +133,7 @@ h2_import_max: wasserstoff_kernnetz: enable: true reload_locations: false - divide_pipes: false + divide_pipes: true pipes_segment_length: 10 new_decentral_fossil_boiler_ban: From d3d2a7cd4d49a771612dca1ae1023d91749904db Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Mon, 5 Feb 2024 22:47:19 +0100 Subject: [PATCH 102/669] MaStR CHP revision --- workflow/Snakefile | 23 ++- workflow/scripts/build_existing_chp_de.py | 188 ++++++++-------------- 2 files changed, 85 insertions(+), 126 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index f04462001..de88b25ff 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -2,6 +2,8 @@ # # SPDX-License-Identifier: MIT +from shutil import unpack_archive + from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider HTTP = HTTPRemoteProvider() @@ -131,15 +133,28 @@ rule modify_existing_heating: "scripts/modify_existing_heating.py" -rule build_existing_chp_de: +rule retrieve_mastr: input: - mastr=HTTP.remote( - "https://zenodo.org/records/8225106/files/bnetza_open_mastr_2023-08-08_B.zip?download=1", + HTTP.remote( + "https://zenodo.org/records/8225106/files/bnetza_open_mastr_2023-08-08_B.zip", keep_local=True, static=True, ), + params: + "data/mastr", + output: + "data/mastr/bnetza_open_mastr_2023-08-08_B_biomass.csv", + "bnetza_open_mastr_2023-08-08_B_combustion.csv", + run: + unpack_archive(input[0], params[0]) + + +rule build_existing_chp_de: + input: + mastr_biomass="data/mastr/bnetza_open_mastr_2023-08-08_B_biomass.csv", + mastr_combustion="data/mastr/bnetza_open_mastr_2023-08-08_B_combustion.csv", plz_mapping=HTTP.remote( - "https://files.pythonhosted.org/packages/df/70/275ba06974a03080f15536860e4a576cf43bf2c7262367e8e6e08d26c1c2/pyGeoDb-1.3.tar.gz", + "https://raw.githubusercontent.com/WZBSocialScienceCenter/plz_geocoord/master/plz_geocoord.csv", keep_local=True, static=True, ) diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py index 89dec6b1d..b011aa721 100644 --- a/workflow/scripts/build_existing_chp_de.py +++ b/workflow/scripts/build_existing_chp_de.py @@ -1,5 +1,5 @@ # -*- coding: utf-8 -*- -# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors +# SPDX-FileCopyrightText: : 2024- The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT """ @@ -12,71 +12,8 @@ logger = logging.getLogger(__name__) import pandas as pd -import requests -import zipfile -import tarfile import os import sys -import shutil - -sys.path.insert(0, os.path.abspath("../..")) - -def load_dataset(mastr): - """ - Load the dataset from the BNetzA website and return it as a dataframe. - https://zenodo.org/records/8225106 - """ - - source_file = mastr - # Specify the destination directory path - destination_directory = "./data/" - - # Move the file to the destination directory - shutil.move(source_file, destination_directory) - # Delete the original directory - shutil.rmtree("./zenodo.org/records/8225106/") - os.rename("./data/bnetza_open_mastr_2023-08-08_B.zip?download=1", "./data/bnetza_open_mastr_2023-08-08_B.zip") - # Unpack the zip file - with zipfile.ZipFile("./data/bnetza_open_mastr_2023-08-08_B.zip", "r") as zip_ref: - # Extract the specific file you want - files_to_extract = ["bnetza_open_mastr_2023-08-08_B_biomass.csv", "bnetza_open_mastr_2023-08-08_B_combustion.csv"] - for file in files_to_extract: - zip_ref.extract(file, path="./data") - os.remove("./data/bnetza_open_mastr_2023-08-08_B.zip") - # Load the data - combustion = pd.read_csv("./data/bnetza_open_mastr_2023-08-08_B_combustion.csv", dtype={"Postleitzahl": str}) - biomass = pd.read_csv("./data/bnetza_open_mastr_2023-08-08_B_biomass.csv", dtype={"Postleitzahl": str}) - - return combustion, biomass - -def load_plz_mapping(plz_data): - """ - Load the plz mapping from pyGeoDb - https://pypi.org/project/pyGeoDb/#modal-close - """ - file_path = "./data/plzdata.py" - if not os.path.exists(file_path): - source_file = plz_data - # Specify the destination directory path - destination_directory = "./data/" - # Move the file to the destination directory - shutil.move(source_file, destination_directory) - # Delete the original directory - shutil.rmtree("./files.pythonhosted.org") - # Extract files - with tarfile.open("./data/pyGeoDb-1.3.tar.gz", 'r:gz') as tar: - tar.extractall("./data/") - # read file - shutil.move("./data/pyGeoDb-1.3/pygeodb/plzdata.py", "./data/") - # Delete the .tar.gz file - shutil.rmtree("./data/pyGeoDb-1.3") - os.remove("./data/pyGeoDb-1.3.tar.gz") - else: - print("plzdata.py already exists") - - sys.path.append('./data') - from plzdata import geodata - return geodata def clean_data(combustion, biomass, geodata): @@ -84,47 +21,39 @@ def clean_data(combustion, biomass, geodata): Clean the data and return a dataframe with the relevant information. PLZ is translated to longitude and latitude using the pyGeoDb data. """ - biomass = biomass[(biomass['Postleitzahl'] != 0) & biomass['Postleitzahl'].notnull()] + biomass.dropna(subset="Postleitzahl", inplace=True) biomass.rename(columns={'NameStromerzeugungseinheit': 'NameKraftwerk'}, inplace=True) - data = pd.concat([biomass, combustion], axis=0, join='inner', ignore_index=True) + data = pd.concat([biomass, combustion], join='inner', ignore_index=True) # Get only CHP plants - CHP_raw = data[(data["ThermischeNutzleistung"] > 0) & (data["ThermischeNutzleistung"].notnull())] - CHP_raw.loc[:, "NameKraftwerk"] = CHP_raw["NameKraftwerk"].fillna(CHP_raw["EinheitMastrNummer"]) - - CHP_sel = CHP_raw[["NameKraftwerk", - "Energietraeger", - "Technologie", - "Postleitzahl", - "Inbetriebnahmedatum", - "DatumEndgueltigeStilllegung", - "ThermischeNutzleistung", - "ElektrischeKwkLeistung", - ]] + CHP_raw = data.query("ThermischeNutzleistung > 0").copy() + CHP_raw.NameKraftwerk = CHP_raw.NameKraftwerk.fillna(CHP_raw.EinheitMastrNummer) + rename_columns = { - "NameKraftwerk": "Name", - "Energietraeger": "Fueltype", - "Technologie": "Technology", - "ElektrischeKwkLeistung": "Capacity", - "ThermischeNutzleistung": "Capacity_thermal", - "Inbetriebnahmedatum": "DateIn", - "DatumEndgueltigeStilllegung": "DateOut", + "NameKraftwerk": "Name", + "Energietraeger": "Fueltype", + "Technologie": "Technology", + "ElektrischeKwkLeistung": "Capacity", + "ThermischeNutzleistung": "Capacity_thermal", + "Inbetriebnahmedatum": "DateIn", + "DatumEndgueltigeStilllegung": "DateOut", + "Postleitzahl": "Postleitzahl", + "Breitengrad": "lat", + "Laengengrad": "lon", } - - CHP_sel.rename(columns=rename_columns, inplace=True) + CHP_sel = CHP_raw[rename_columns.keys()].rename(columns=rename_columns) # set missing information to match the powerplant data format - CHP_sel.loc[:, "Set"] = "CHP" - CHP_sel.loc[:, "Country"] = "DE" - CHP_sel.loc[:, "Efficiency"] = "" + CHP_sel[["Set", "Country", "Efficiency"]] = ["CHP", "DE", ""] # change date format - CHP_sel.loc[CHP_sel["DateIn"].notnull(), "DateIn"] = CHP_sel.loc[CHP_sel["DateIn"].notnull(), "DateIn"].str[:4].astype(int) - CHP_sel.loc[CHP_sel["DateOut"].notnull(), "DateOut"] = CHP_sel.loc[CHP_sel["DateOut"].notnull(), "DateOut"].str[:4].astype(int) + CHP_sel.DateIn = CHP_sel.DateIn.str[:4].astype(float) + CHP_sel.DateOut = CHP_sel.DateOut.str[:4].astype(float) # get location from PLZ - CHP_sel.loc[:, 'lon'], CHP_sel.loc[:, 'lat'] = zip(*CHP_sel['Postleitzahl'].map(lambda x: geodata.get('DE', {}).get(x, (None, None)))) + CHP_sel.fillna({"lat": CHP_sel.Postleitzahl.map(geodata.lat)}, inplace=True) + CHP_sel.fillna({"lon": CHP_sel.Postleitzahl.map(geodata.lng)}, inplace=True) fueltype = { "Erdgas": "Natural Gas", @@ -151,35 +80,43 @@ def clean_data(combustion, biomass, geodata): 'Gasturbinen mit nachgeschalteter Dampfturbine': "CCGT", 'ORC (Organic Rankine Cycle)-Anlage': "Steam Turbine", 'Kondensationsmaschine ohne Entnahme': "Steam Turbine", - } + } - CHP_sel = CHP_sel.replace({"Fueltype": fueltype}) - CHP_sel = CHP_sel.replace({"Technology": technology}) + CHP_sel.replace({"Fueltype": fueltype, "Technology": technology}, inplace=True) - def lookup_geodata(missing_plz, geodata): + def lookup_geodata(missing_plz): for i in range(10): plz = missing_plz[:-1] + str(i) - if plz in geodata['DE']: - return geodata['DE'][plz] + if plz in geodata.index: + return geodata.loc[plz] for i in range(100): - if i < 10: - plz = missing_plz[:-2] + "0" + str(i) - if plz in geodata['DE']: - return geodata['DE'][plz] - else: - plz = missing_plz[:-2] + str(i) - if plz in geodata['DE']: - return geodata['DE'][plz] - return [0, 0, 0] - - CHP_sel_empty_lat = CHP_sel[CHP_sel['lat'].isnull()] - CHP_sel_empty_lat.loc[:, 'lon'] = CHP_sel_empty_lat['Postleitzahl'].apply(lambda plz: lookup_geodata(plz, geodata)[0]) - CHP_sel_empty_lat.loc[:, 'lat'] = CHP_sel_empty_lat['Postleitzahl'].apply(lambda plz: lookup_geodata(plz, geodata)[1]) - CHP_sel.update(CHP_sel_empty_lat) - - CHP_sel = CHP_sel.drop(columns=['Postleitzahl']) - CHP_sel = CHP_sel[['Name', 'Fueltype', 'Technology', 'Set', 'Country', 'Capacity', 'Efficiency', 'DateIn', 'DateOut', 'lat', 'lon', 'Capacity_thermal']] - return CHP_sel + prefix = "0" if i < 10 else "" + plz = missing_plz[:-2] + prefix + str(i) + if plz in geodata.index: + return geodata.loc[plz] + + return pd.Series((pd.NA, pd.NA)) + + missing_i = CHP_sel.lat.isna() | CHP_sel.lon.isna() + CHP_sel.loc[missing_i, ["lat", "lon"]] = CHP_sel.loc[missing_i, "Postleitzahl"].apply(lookup_geodata) + + cols = [ + 'Name', + 'Fueltype', + 'Technology', + 'Set', + 'Country', + 'Capacity', + 'Efficiency', + 'DateIn', + 'DateOut', + 'lat', + 'lon', + 'Capacity_thermal' + ] + + return CHP_sel[cols].copy() + def calculate_efficiency(CHP_de): """ @@ -187,14 +124,14 @@ def calculate_efficiency(CHP_de): Following Triebs et al. (https://doi.org/10.1016/j.ecmx.2020.100068) """ def EXT(cap, year): - # returns the efficiency for extraction ceondensing turbine + # returns the efficiency for extraction condensing turbine return ((44/2400) * cap + 0.125 * year - 204.75) / 100 def BP(cap,year): # returns the efficiency for back pressure turbine return ((5e-3) * cap + 0.325 * year - 611.75) / 100 # TODO: differentiate between extraction condensing turbine and back pressure turbine - CHP_de['Efficiency'] = CHP_de.apply(lambda row: EXT(row['Capacity'], row['DateIn']), axis=1) + CHP_de['Efficiency'] = CHP_de.apply(lambda row: BP(row['Capacity'], row['DateIn']), axis=1) return CHP_de @@ -204,13 +141,20 @@ def BP(cap,year): path = "../submodules/pypsa-eur/scripts" sys.path.insert(0, os.path.abspath(path)) from _helpers import mock_snakemake - snakemake = mock_snakemake("build_existing_chp_de", submodule_dir = "./workflow/submodules/pypsa-eur/") + snakemake = mock_snakemake("build_existing_chp_de") logging.basicConfig(level=snakemake.config["logging"]["level"]) - combustion, biomass = load_dataset(snakemake.input[0]) + biomass = pd.read_csv(snakemake.input.mastr_biomass, dtype={"Postleitzahl": str}) + combustion = pd.read_csv(snakemake.input.mastr_combustion, dtype={"Postleitzahl": str}) - geodata = load_plz_mapping(snakemake.input[1]) + geodata = pd.read_csv( + snakemake.input.plz_mapping[0], + index_col="plz", + dtype={"plz": str}, + names=["plz", "lat", "lng"], + skiprows=1 + ) CHP_de = clean_data(combustion, biomass, geodata) From 262f240ddb782becae34e40f71def85b2e9cb662 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 6 Feb 2024 17:40:19 +0100 Subject: [PATCH 103/669] minor change using custom_powerplants parameter --- config/config.yaml | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 97abd208a..00069679d 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -87,10 +87,9 @@ co2_budget_national: DE: 0. electricity: - powerplants_filter: (DateOut >= 2020 or DateOut != DateOut) - chp_filter: not (Country == "DE" and Set == "CHP") - custom_powerplants: true - custom_chps: true + powerplants_filter: (DateOut >= 2020 or DateOut != DateOut) and (Country != "DE" or Set != "CHP") + custom_powerplants: True + custom_file: resources/german_chp.csv limits_min: Generator: From 4e4db2be5c224756949790130831c20830b8ab26 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Wed, 7 Feb 2024 09:59:53 +0100 Subject: [PATCH 104/669] bugfix: adjust path --- workflow/Snakefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index de88b25ff..d0e4503b2 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -144,7 +144,7 @@ rule retrieve_mastr: "data/mastr", output: "data/mastr/bnetza_open_mastr_2023-08-08_B_biomass.csv", - "bnetza_open_mastr_2023-08-08_B_combustion.csv", + "data/mastr/bnetza_open_mastr_2023-08-08_B_combustion.csv", run: unpack_archive(input[0], params[0]) From dae4782250f14a5c5d84ae89399326c229deccc3 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 7 Feb 2024 14:42:33 +0100 Subject: [PATCH 105/669] added nuclear generation ban --- config/config.yaml | 5 ++++- workflow/scripts/modify_prenetwork.py | 15 +++++++++++++++ 2 files changed, 19 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 2bc92c523..ca32d1430 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240201-365H-revertaviationsep" + name: "fixing_nuclear_biomass_2" scenarios: enable: true shared_resources: true #stops recalculating @@ -125,6 +125,9 @@ new_decentral_fossil_boiler_ban: coal_generation_ban: DE: 2038 +nuclear_generation_ban: + DE: 2022 + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index a53b8da0e..6a9ffea18 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -75,6 +75,19 @@ def coal_generation_ban(n): logger.info(f"Dropping {links}") n.links.drop(links, inplace=True) + +def nuclear_generation_ban(n): + + year = int(snakemake.wildcards.planning_horizons) + + for ct in snakemake.config["nuclear_generation_ban"]: + ban_year = int(snakemake.config["nuclear_generation_ban"][ct]) + if ban_year < year: + logger.info(f"For year {year} in {ct} implementing nuclear ban from {ban_year}") + links = n.links.index[(n.links.index.str[:2] == ct) & n.links.carrier.isin(["nuclear"])] + logger.info(f"Dropping {links}") + n.links.drop(links, + inplace=True) if __name__ == "__main__": @@ -91,5 +104,7 @@ def coal_generation_ban(n): remove_old_boiler_profiles(n) coal_generation_ban(n) + + nuclear_generation_ban(n) n.export_to_netcdf(snakemake.output.network) From f6b30ff336804abaa5a79ba6d9f59a3e81f80fc7 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Wed, 7 Feb 2024 17:51:26 +0100 Subject: [PATCH 106/669] if co2 spatial, also need biomass spatial with biogas upgrading CC --- config/config.yaml | 1 + 1 file changed, 1 insertion(+) diff --git a/config/config.yaml b/config/config.yaml index e161e8666..e391f4957 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -147,6 +147,7 @@ sector: 2050: 1.0 co2_budget_national: true co2_spatial: true + biomass_spatial: true #TBD what to include in config #relax so no infeasibility in 2050 with no land transport demand min_part_load_fischer_tropsch: 0. From 95cf30dcace7b6ba853af1b3bb6e0b14a2dc28e2 Mon Sep 17 00:00:00 2001 From: Micha Date: Thu, 8 Feb 2024 11:43:09 +0100 Subject: [PATCH 107/669] rename scenario --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 4e81724fb..a791c15f5 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240202-365H-wprocess" + name: "240202-365H-nuclearban" scenarios: enable: true shared_resources: true #stops recalculating From d0661067c77f586c2190fe31b9f6093241a3c897 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Thu, 8 Feb 2024 13:54:53 +0100 Subject: [PATCH 108/669] update pypsa-eur submodule version --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index dcae9e190..70f4f1d2c 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit dcae9e19056e20c5169cf990c0ea08e3dfa23c10 +Subproject commit 70f4f1d2ceefdb376cd4431226346d7354167d80 From 2fea794892c51d85dca80f938d09a753c78d4f72 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 9 Feb 2024 08:48:58 +0100 Subject: [PATCH 109/669] fixing units to match convention --- ariadne-data/costs_2020-modifications.csv | 4 ++-- ariadne-data/costs_2025-modifications.csv | 4 ++-- ariadne-data/costs_2030-modifications.csv | 4 ++-- ariadne-data/costs_2035-modifications.csv | 4 ++-- ariadne-data/costs_2040-modifications.csv | 4 ++-- ariadne-data/costs_2045-modifications.csv | 4 ++-- ariadne-data/costs_2050-modifications.csv | 4 ++-- 7 files changed, 14 insertions(+), 14 deletions(-) diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index bfbf3b737..3abdc8d45 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -1,4 +1,4 @@ technology,parameter,value,unit,source,further description gas,fuel,11.2,EUR/MWh_th,Ariadne, -oil,fuel,22.1982,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" -coal,fuel,5.7048,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" +oil,fuel,22.1982,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" +coal,fuel,5.7048,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index 9f3010e66..6f1f6612f 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -1,4 +1,4 @@ technology,parameter,value,unit,source,further description gas,fuel,40,EUR/MWh_th,Ariadne, -oil,fuel,32.9876,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" -coal,fuel,10.6694,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" +oil,fuel,32.9876,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" +coal,fuel,10.6694,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index db23140c3..1d1f9d836 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -1,4 +1,4 @@ technology,parameter,value,unit,source,further description gas,fuel,22.3,EUR/MWh_th,Ariadne, -oil,fuel,38.821,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" -coal,fuel,6.2056,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" +oil,fuel,38.821,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" +coal,fuel,6.2056,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index ec1806ff9..8a894ec54 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -1,4 +1,4 @@ technology,parameter,value,unit,source,further description gas,fuel,22.4,EUR/MWh_th,Ariadne, -oil,fuel,38.5629,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" -coal,fuel,6.2601,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" +oil,fuel,38.5629,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" +coal,fuel,6.2601,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index 0cc15d1e4..1c8a499b5 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -1,4 +1,4 @@ technology,parameter,value,unit,source,further description gas,fuel,22.6,EUR/MWh_th,Ariadne, -oil,fuel,38.3564,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" -coal,fuel,6.3036,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" +oil,fuel,38.3564,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" +coal,fuel,6.3036,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index d73262d00..267afabb0 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -1,4 +1,4 @@ technology,parameter,value,unit,source,further description gas,fuel,22.8,EUR/MWh_th,Ariadne, -oil,fuel,38.0983,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" -coal,fuel,6.3472,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" +oil,fuel,38.0983,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" +coal,fuel,6.3472,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index f790f08bd..82e96c037 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -1,4 +1,4 @@ technology,parameter,value,unit,source,further description gas,fuel,22.9,EUR/MWh_th,Ariadne, -oil,fuel,37.8918,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1bbl = 1.6998MWh" -coal,fuel,6.4016,EUR2020/Mwh,Ariadne,"$2020 = 0.8775 EUR, 1t = 8.06 Mwh" +oil,fuel,37.8918,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" +coal,fuel,6.4016,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" From 74e0d6774138f7e5c04d317e1e2a50251ffda285 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Fri, 9 Feb 2024 09:34:15 +0100 Subject: [PATCH 110/669] update .gitignore --- .gitignore | 3 +++ 1 file changed, 3 insertions(+) diff --git a/.gitignore b/.gitignore index 2bf7c25a7..a8e6e0122 100644 --- a/.gitignore +++ b/.gitignore @@ -269,3 +269,6 @@ cidportal.jrc.ec.europa.eu zenodo.org globalenergymonitor.org/wp-content/uploads/2023/07/Europe-Gas-Tracker-2023-03-v3.xlsx +fnb-gas.de +raw.githubusercontent.com +cutouts \ No newline at end of file From 635180cf02444585bf20378f5e298f49385d0f77 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Fri, 9 Feb 2024 13:43:29 +0100 Subject: [PATCH 111/669] add option to specify the year of a technology's first occurrence --- config/config.yaml | 5 +++++ workflow/scripts/modify_prenetwork.py | 15 +++++++++++++++ 2 files changed, 20 insertions(+) diff --git a/config/config.yaml b/config/config.yaml index f31345c16..3ac9e5580 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -145,6 +145,11 @@ coal_generation_ban: nuclear_generation_ban: DE: 2022 +first_technology_occurrence: + Link: + H2 pipeline: 2025 + H2 Electrolysis: 2025 + H2 pipeline retrofitted: 2025 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index d70d2b835..4d6dda83a 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -18,6 +18,19 @@ ) +def first_technology_occurrence(n): + """ + Sets p_nom_extendable to false for carriers with configured first occurrence + if investment year is before configured year. + """ + + for c, carriers in snakemake.config["first_technology_occurrence"].items(): + for carrier, first_year in carriers.items(): + if int(snakemake.wildcards.planning_horizons) < first_year: + logger.info(f"{carrier} not extendable before {first_year}.") + n.df(c).loc[n.df(c).carrier == carrier, "p_nom_extendable"] = False + + def fix_new_boiler_profiles(n): logger.info("Forcing boiler profiles for new ones") @@ -264,6 +277,8 @@ def add_wasserstoff_kernnetz(n, wkn, costs): nuclear_generation_ban(n) + first_technology_occurrence(n) + if snakemake.config["wasserstoff_kernnetz"]["enable"]: fn = snakemake.input.wkn wkn = pd.read_csv(fn, index_col=0) From 06fcdaffb47c701a452e258ce672a8e3a01ab4ba Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Fri, 9 Feb 2024 13:46:53 +0100 Subject: [PATCH 112/669] remove -solar+p3-linemaxext15 from sector_opts maximum expansion is already set through lines: max_extension: solar potentials have been increased from 1.7 to 5.1 MW/km2 both in config.default.yaml of pypsa-eur --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index f31345c16..e8a0390a4 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -33,7 +33,7 @@ scenario: opts: - '' sector_opts: - - 365H-T-H-B-I-A-solar+p3-linemaxext15 + - 365H-T-H-B-I-A planning_horizons: - 2020 - 2030 From 32dbdce046a4e65aecb7a8be8d62ea43eef25886 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 9 Feb 2024 18:37:59 +0100 Subject: [PATCH 113/669] make sure industrial coal emissions are tracked --- config/config.yaml | 3 ++- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 5050adbd8..61f2521e1 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240202-365H-nuclearban" + name: "240209-365H-fixcoalco2" scenarios: enable: true shared_resources: true #stops recalculating @@ -156,6 +156,7 @@ sector: min_part_load_fischer_tropsch: 0. regional_methanol_demand: true #set to true if regional CO2 constraints needed regional_oil_demand: true #set to true if regional CO2 constraints needed + regional_coal_demand: true #set to true if regional CO2 constraints needed biogas_upgrading_cc: true cluster_heat_buses: true # this needs to be taken from ariadne database diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 70f4f1d2c..b67b02591 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 70f4f1d2ceefdb376cd4431226346d7354167d80 +Subproject commit b67b025913b5ba05fc8a0dd564dbf9bb5b417300 From 62d5f546e7227584ff3e3f25dd6e42cf03389105 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 9 Feb 2024 19:04:31 +0100 Subject: [PATCH 114/669] bugfix: make sure coal emissions are seen --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index b67b02591..6dbb39590 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit b67b025913b5ba05fc8a0dd564dbf9bb5b417300 +Subproject commit 6dbb3959080ece1687278c2f538d600cc7df628d From c6ccdb442621e688b1c38b9f7ad2c2e5edf9133d Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Sat, 10 Feb 2024 13:45:08 +0100 Subject: [PATCH 115/669] adjust logical expression, capacity unit to MW, added renamers --- config/config.yaml | 4 ++-- workflow/Snakefile | 4 ++++ workflow/scripts/build_existing_chp_de.py | 19 ++++++++++++------- 3 files changed, 18 insertions(+), 9 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 491c4bd62..b8b746b52 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240202-365H-wprocess" + name: "240202-365H-first-occurrence" scenarios: enable: true shared_resources: true #stops recalculating @@ -97,7 +97,7 @@ co2_budget_national: DE: -0.024 electricity: - powerplants_filter: (DateOut >= 2020 or DateOut != DateOut) and (Country != "DE" or Set != "CHP") + powerplants_filter: (DateOut >= 2020 or DateOut != DateOut) and not (Country == "DE" and Set == "CHP") custom_powerplants: True custom_file: resources/german_chp.csv diff --git a/workflow/Snakefile b/workflow/Snakefile index d0e4503b2..94dc2ce7f 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -163,6 +163,10 @@ rule build_existing_chp_de: script: "scripts/build_existing_chp_de.py" +use rule add_existing_baseyear from pypsaeur with: + input: + **rules.add_existing_baseyear.input, + custom_powerplants=RESOURCES + "german_chp.csv", use rule build_existing_heating_distribution from pypsaeur with: input: diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py index b011aa721..3f28d3f7f 100644 --- a/workflow/scripts/build_existing_chp_de.py +++ b/workflow/scripts/build_existing_chp_de.py @@ -14,7 +14,7 @@ import pandas as pd import os import sys - + def clean_data(combustion, biomass, geodata): """ @@ -62,6 +62,7 @@ def clean_data(combustion, biomass, geodata): "Braunkohle": "Lignite", "andere Gase": "Natural Gas", "nicht biogenere Abfälle": "Waste", + "nicht biogener Abfall": "Waste", "Wärme": "Other", "Biomasse": "Bioenergy", "Wasserstoff": "Hydrogen", @@ -71,6 +72,7 @@ def clean_data(combustion, biomass, geodata): "Gasturbinen mit Abhitzekessel": "CCGT", "Brennstoffzelle": "Fuel Cell", "Strilingmotor": "", + "Stirlingmotor": "", 'Kondensationsmaschine mit Entnahme': "Steam Turbine", 'Sonstige': "", 'Gasturbinen ohne Abhitzekessel': "OCGT", @@ -115,6 +117,9 @@ def lookup_geodata(missing_plz): 'Capacity_thermal' ] + # convert unit of capacities from kW to MW + CHP_sel.loc[:, ["Capacity", "Capacity_thermal"]] /= 1e3 + return CHP_sel[cols].copy() @@ -132,9 +137,9 @@ def BP(cap,year): return ((5e-3) * cap + 0.325 * year - 611.75) / 100 # TODO: differentiate between extraction condensing turbine and back pressure turbine CHP_de['Efficiency'] = CHP_de.apply(lambda row: BP(row['Capacity'], row['DateIn']), axis=1) - + return CHP_de - + if __name__ == "__main__": if "snakemake" not in globals(): @@ -142,12 +147,12 @@ def BP(cap,year): sys.path.insert(0, os.path.abspath(path)) from _helpers import mock_snakemake snakemake = mock_snakemake("build_existing_chp_de") - + logging.basicConfig(level=snakemake.config["logging"]["level"]) biomass = pd.read_csv(snakemake.input.mastr_biomass, dtype={"Postleitzahl": str}) combustion = pd.read_csv(snakemake.input.mastr_combustion, dtype={"Postleitzahl": str}) - + geodata = pd.read_csv( snakemake.input.plz_mapping[0], index_col="plz", @@ -159,5 +164,5 @@ def BP(cap,year): CHP_de = clean_data(combustion, biomass, geodata) CHP_de = calculate_efficiency(CHP_de) - - CHP_de.to_csv(snakemake.output.german_chp, index=False) \ No newline at end of file + + CHP_de.to_csv(snakemake.output.german_chp, index=False) From 29b181b7e312a9164d85f992e2702002d00cff17 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Sat, 10 Feb 2024 14:17:46 +0100 Subject: [PATCH 116/669] reference pypsa-eur de_chp branch submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 70f4f1d2c..03e82d83f 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 70f4f1d2ceefdb376cd4431226346d7354167d80 +Subproject commit 03e82d83f327d2a9b0feb34859ddfb26e1c46443 From 917e04908ff44d3fe9b342356fe79844fb84b28f Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Mon, 12 Feb 2024 12:07:35 +0100 Subject: [PATCH 117/669] fix missing nuclear --- environment.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/environment.yaml b/environment.yaml index 8090944ca..068dfa729 100644 --- a/environment.yaml +++ b/environment.yaml @@ -23,7 +23,7 @@ dependencies: - yaml - pytables - lxml -- powerplantmatching>=0.5.5 +- powerplantmatching>=0.5.11 - numpy - pandas>=1.4 - geopandas>=0.11.0 From baebc6b5afbb562af10ca52db418cbb32bc65dd8 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Tue, 13 Feb 2024 14:50:30 +0100 Subject: [PATCH 118/669] overwrite config.default.yaml to include nuclear and only build nuclear as link not as generator --- config/config.yaml | 24 ++++++++++++++++++++++-- 1 file changed, 22 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 09aaf2013..70b5e2c49 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240209-365H-fixcoalco2" + name: "test_nuclear" scenarios: enable: true shared_resources: true #stops recalculating @@ -226,4 +226,24 @@ solving: plotting: tech_colors: load: "#111100" - H2 pipeline (Kernnetz): '#6b3161' \ No newline at end of file + H2 pipeline (Kernnetz): '#6b3161' + +# overwrite in config.default.yaml +powerplants_filter: (DateOut >= 2020 or DateOut != DateOut) + +pypsa_eur: + Bus: + - AC + Link: + - DC + Generator: + - onwind + - offwind-ac + - offwind-dc + - solar + - ror + - nuclear + StorageUnit: + - PHS + - hydro + Store: [] \ No newline at end of file From 490b4dae9dc17bdf3dfea242893e7b5066e810db Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Tue, 13 Feb 2024 14:53:23 +0100 Subject: [PATCH 119/669] exclude nuclear from generators --- config/config.yaml | 1 - 1 file changed, 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 70b5e2c49..cbdcc6127 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -242,7 +242,6 @@ pypsa_eur: - offwind-dc - solar - ror - - nuclear StorageUnit: - PHS - hydro From a811d3de18954dab2c9436cbedecd3932c8d7e67 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 14 Feb 2024 11:44:42 +0100 Subject: [PATCH 120/669] changed name and adapted DateOut --- config/config.yaml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index cbdcc6127..7261433da 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "test_nuclear" + name: "240214-365H-test_nuclear" scenarios: enable: true shared_resources: true #stops recalculating @@ -33,7 +33,7 @@ scenario: opts: - '' sector_opts: - - 365H-T-H-B-I-A + - 3H-T-H-B-I-A planning_horizons: - 2020 - 2030 @@ -47,7 +47,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: retrieve: false # set to false once initial data is retrieved - retrieve_cutout: false # set to false once initial data is retrieved + retrieve_cutout: true # set to false once initial data is retrieved clustering: focus_weights: # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" @@ -229,7 +229,7 @@ plotting: H2 pipeline (Kernnetz): '#6b3161' # overwrite in config.default.yaml -powerplants_filter: (DateOut >= 2020 or DateOut != DateOut) +powerplants_filter: (DateOut >= 2019 or DateOut != DateOut) pypsa_eur: Bus: From d05c9e93d65631b8be336d9b7205537eb650058c Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 14 Feb 2024 11:47:02 +0100 Subject: [PATCH 121/669] revert unintended changes --- config/config.yaml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 7261433da..ecfb26082 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -33,7 +33,7 @@ scenario: opts: - '' sector_opts: - - 3H-T-H-B-I-A + - 365H-T-H-B-I-A planning_horizons: - 2020 - 2030 @@ -47,7 +47,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: retrieve: false # set to false once initial data is retrieved - retrieve_cutout: true # set to false once initial data is retrieved + retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" From 27e8cb6050ea6e2e7853c4f03c71eb9bcab9da07 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 14 Feb 2024 12:33:30 +0100 Subject: [PATCH 122/669] adding Fueltype of biggest CHPs manually, if industry is excluded industrial CHPs are too --- workflow/Snakefile | 2 ++ workflow/scripts/build_existing_chp_de.py | 43 +++++++++++++++++++++-- 2 files changed, 43 insertions(+), 2 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index b1b7efacd..81aa35862 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -154,6 +154,8 @@ rule retrieve_mastr: rule build_existing_chp_de: + params: + sector=config["scenario"]["sector_opts"], input: mastr_biomass="data/mastr/bnetza_open_mastr_2023-08-08_B_biomass.csv", mastr_combustion="data/mastr/bnetza_open_mastr_2023-08-08_B_combustion.csv", diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py index 3f28d3f7f..75cf49575 100644 --- a/workflow/scripts/build_existing_chp_de.py +++ b/workflow/scripts/build_existing_chp_de.py @@ -16,7 +16,7 @@ import sys -def clean_data(combustion, biomass, geodata): +def clean_data(combustion, biomass, geodata, opts): """ Clean the data and return a dataframe with the relevant information. PLZ is translated to longitude and latitude using the pyGeoDb data. @@ -24,12 +24,22 @@ def clean_data(combustion, biomass, geodata): biomass.dropna(subset="Postleitzahl", inplace=True) biomass.rename(columns={'NameStromerzeugungseinheit': 'NameKraftwerk'}, inplace=True) + if 'I' not in opts: + # filter out industrial CHPs if industry is not included + industry = combustion.dropna(subset='Einsatzort') + to_drop = industry[industry.Einsatzort.str.contains('Industrie')].index + combustion.drop(index=to_drop, inplace=True) + data = pd.concat([biomass, combustion], join='inner', ignore_index=True) # Get only CHP plants CHP_raw = data.query("ThermischeNutzleistung > 0").copy() CHP_raw.NameKraftwerk = CHP_raw.NameKraftwerk.fillna(CHP_raw.EinheitMastrNummer) + # delete duplicates - compromise only when KwkMastrNummer and Bruttoleistung is the same + CHP_raw = CHP_raw.sort_values(by=['KwkMastrNummer', 'Bruttoleistung']) + CHP_raw = CHP_raw.drop_duplicates(subset=['KwkMastrNummer', 'Bruttoleistung'], keep='last') + rename_columns = { "NameKraftwerk": "Name", "Energietraeger": "Fueltype", @@ -120,6 +130,31 @@ def lookup_geodata(missing_plz): # convert unit of capacities from kW to MW CHP_sel.loc[:, ["Capacity", "Capacity_thermal"]] /= 1e3 + # add missing Fueltype for plants > 100 MW + fuelmap = { + 'GuD Mitte': 'Natural Gas', + 'HKW Mitte': 'Natural Gas', + 'GuD Süd': 'Natural Gas', + 'HKW Lichterfelde': 'Natural Gas', + 'GuD Niehl 2 RheinEnergie': 'Natural Gas', + 'HKW Marzahn': 'Natural Gas', + 'Gasturbinen Heizkraftwerk Nossener Brücke': 'Natural Gas', + 'SEE916495905242': 'Natural Gas', + 'HKW Leipzig Nord': 'Natural Gas', + 'HKW Reuter': 'Waste', + 'Solvay Rb Kraftwerk': 'Lignite', + 'GuD Süd Wolfsburg': 'Natural Gas', + 'GuD Erfurt Ost': 'Natural Gas', + 'KW Nord': 'Natural Gas', + 'SEE904887370686': 'Oil', + 'GuD2': 'Natural Gas', + 'Heizkrafwerk Hafen der Stadtwerke Münster GmbH': 'Waste', + 'Kraftwerk Ha': 'Natural Gas', + 'Kraftwerk HA': 'Natural Gas', + 'PKV Dampfsammelschienen-KWK-Anlage': 'Natural Gas', + } + CHP_sel.loc[CHP_sel['Name'].isin(fuelmap.keys()), 'Fueltype'] = CHP_sel.loc[CHP_sel['Name'].isin(fuelmap.keys()), 'Name'].map(fuelmap) + return CHP_sel[cols].copy() @@ -146,10 +181,14 @@ def BP(cap,year): path = "../submodules/pypsa-eur/scripts" sys.path.insert(0, os.path.abspath(path)) from _helpers import mock_snakemake + snakemake = mock_snakemake("build_existing_chp_de") logging.basicConfig(level=snakemake.config["logging"]["level"]) + options = snakemake.params.sector + opts = options[0].split("-") + biomass = pd.read_csv(snakemake.input.mastr_biomass, dtype={"Postleitzahl": str}) combustion = pd.read_csv(snakemake.input.mastr_combustion, dtype={"Postleitzahl": str}) @@ -161,7 +200,7 @@ def BP(cap,year): skiprows=1 ) - CHP_de = clean_data(combustion, biomass, geodata) + CHP_de = clean_data(combustion, biomass, geodata, opts) CHP_de = calculate_efficiency(CHP_de) From cbcf507181ba21829f1abe147f71c32b868b6b3e Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Wed, 14 Feb 2024 18:19:19 +0100 Subject: [PATCH 123/669] several fixes in PyPSA-Eur to industry - correctly track coal emissions - correctly track gas emissions in Germany - correctly deal with basic chemicals - interpolate between today's industry sector ratios and tomorrow's --- config/config.yaml | 3 ++- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 09aaf2013..bb0785e44 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240209-365H-fixcoalco2" + name: "240214-365H-fixindustry" scenarios: enable: true shared_resources: true #stops recalculating @@ -164,6 +164,7 @@ sector: regional_methanol_demand: true #set to true if regional CO2 constraints needed regional_oil_demand: true #set to true if regional CO2 constraints needed regional_coal_demand: true #set to true if regional CO2 constraints needed + gas_network: true biogas_upgrading_cc: true cluster_heat_buses: true # this needs to be taken from ariadne database diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 6dbb39590..6a65cf90c 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 6dbb3959080ece1687278c2f538d600cc7df628d +Subproject commit 6a65cf90ce51579b3db7acd776114ff287d8d7c6 From a0d555f1361ea66ec30a5d74f461a1e0db6b7077 Mon Sep 17 00:00:00 2001 From: Philipp Glaum Date: Fri, 16 Feb 2024 10:14:37 +0100 Subject: [PATCH 124/669] fix rerun trigger bug due to source_path() in params for solve_sector_network_myopic --- workflow/Snakefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 5fd73ab16..6e2cbf6d7 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -115,7 +115,7 @@ rule modify_prenetwork: use rule solve_sector_network_myopic from pypsaeur with: params: **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, - custom_extra_functionality=workflow.source_path("scripts/additional_functionality.py"), + custom_extra_functionality=os.path.join(os.path.dirname(workflow.snakefile), "scripts/additional_functionality.py"), input: **{k: v for k, v in rules.solve_sector_network_myopic.input.items() if k != "network"}, network=RESULTS From 34f7c5d69a292a996131ec7a3e89cbf73f2c9329 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 16 Feb 2024 11:16:01 +0100 Subject: [PATCH 125/669] include Philipp's scripts for plotting per country --- config/config.yaml | 15 ++++++++++++--- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 13 insertions(+), 4 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index bb0785e44..78d893d85 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240214-365H-fixindustry" + name: "240215-365H-DEoutput" scenarios: enable: true shared_resources: true #stops recalculating @@ -46,7 +46,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: false # set to false once initial data is retrieved + retrieve: true # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: @@ -227,4 +227,13 @@ solving: plotting: tech_colors: load: "#111100" - H2 pipeline (Kernnetz): '#6b3161' \ No newline at end of file + H2 pipeline (Kernnetz): '#6b3161' + countries: + - all + - DE + carriers: + - electricity + - heat + - H2 + carrier_groups: + electricity: [AC, low_voltage] diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 6a65cf90c..2dfca6e41 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 6a65cf90ce51579b3db7acd776114ff287d8d7c6 +Subproject commit 2dfca6e4144e95c055e60a39303d228623899b94 From d3f58c988b060c435e63099133c3ad535a672e51 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 16 Feb 2024 11:31:44 +0100 Subject: [PATCH 126/669] move Wasserstoff Kernnetz data to ariadne-data --- .../wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv | 0 config/config.yaml | 3 ++- workflow/Snakefile | 2 +- 3 files changed, 3 insertions(+), 2 deletions(-) rename {data => ariadne-data}/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv (100%) diff --git a/data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv b/ariadne-data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv similarity index 100% rename from data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv rename to ariadne-data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv diff --git a/config/config.yaml b/config/config.yaml index 0dfed01c9..3d8b86412 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240215-365H-DEoutput" + name: "240216-365H-kernnetz" scenarios: enable: true shared_resources: true #stops recalculating @@ -235,6 +235,7 @@ plotting: - electricity - heat - H2 + - urban central heat carrier_groups: electricity: [AC, low_voltage] diff --git a/workflow/Snakefile b/workflow/Snakefile index 6e2cbf6d7..9017c2184 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -179,7 +179,7 @@ if config["wasserstoff_kernnetz"]["enable"]: keep_local=True, static=True ), - locations="data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", + locations="ariadne-data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", output: cleaned_wasserstoff_kernnetz="resources/wasserstoff_kernnetz.csv", script: From ef729eb9e5e4924e23005b32f566c025277de1ed Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 16 Feb 2024 13:01:49 +0100 Subject: [PATCH 127/669] increase electrolysis costs to DEA upper limit --- ariadne-data/costs_2020-modifications.csv | 1 + ariadne-data/costs_2025-modifications.csv | 1 + ariadne-data/costs_2030-modifications.csv | 1 + ariadne-data/costs_2035-modifications.csv | 1 + ariadne-data/costs_2040-modifications.csv | 1 + ariadne-data/costs_2045-modifications.csv | 1 + ariadne-data/costs_2050-modifications.csv | 1 + config/config.yaml | 3 ++- 8 files changed, 9 insertions(+), 1 deletion(-) diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index 3abdc8d45..4b844a51a 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -2,3 +2,4 @@ technology,parameter,value,unit,source,further description gas,fuel,11.2,EUR/MWh_th,Ariadne, oil,fuel,22.1982,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,5.7048,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" +electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index 6f1f6612f..64e656be7 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -2,3 +2,4 @@ technology,parameter,value,unit,source,further description gas,fuel,40,EUR/MWh_th,Ariadne, oil,fuel,32.9876,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,10.6694,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" +electrolysis,investment,1267,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index 1d1f9d836..3a9f92245 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -2,3 +2,4 @@ technology,parameter,value,unit,source,further description gas,fuel,22.3,EUR/MWh_th,Ariadne, oil,fuel,38.821,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2056,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" +electrolysis,investment,1083,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index 8a894ec54..c21539b55 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -2,3 +2,4 @@ technology,parameter,value,unit,source,further description gas,fuel,22.4,EUR/MWh_th,Ariadne, oil,fuel,38.5629,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2601,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" +electrolysis,investment,900,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index 1c8a499b5..c1ce3ee31 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -2,3 +2,4 @@ technology,parameter,value,unit,source,further description gas,fuel,22.6,EUR/MWh_th,Ariadne, oil,fuel,38.3564,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3036,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" +electrolysis,investment,717,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index 267afabb0..877c027b0 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -2,3 +2,4 @@ technology,parameter,value,unit,source,further description gas,fuel,22.8,EUR/MWh_th,Ariadne, oil,fuel,38.0983,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3472,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" +electrolysis,investment,533,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index 82e96c037..9a57a1342 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -2,3 +2,4 @@ technology,parameter,value,unit,source,further description gas,fuel,22.9,EUR/MWh_th,Ariadne, oil,fuel,37.8918,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.4016,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" +electrolysis,investment,350,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" diff --git a/config/config.yaml b/config/config.yaml index 3d8b86412..83cadb5c9 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240216-365H-kernnetz" + name: "240216-365H-higherelectrolysis" scenarios: enable: true shared_resources: true #stops recalculating @@ -155,6 +155,7 @@ sector: 2030: 0.3 2040: 0.6 2050: 1.0 + central_heat_vent: true co2_budget_national: true co2_spatial: true biomass_spatial: true From f0c054d9f29305f09775c238271e85b83360c40e Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 16 Feb 2024 14:59:46 +0100 Subject: [PATCH 128/669] decision of adding industry chp moved to add_existing_baseyear.py, filter for CHP duplicates --- workflow/Snakefile | 2 - workflow/scripts/build_existing_chp_de.py | 56 +++++++++++++---------- 2 files changed, 31 insertions(+), 27 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 81aa35862..b1b7efacd 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -154,8 +154,6 @@ rule retrieve_mastr: rule build_existing_chp_de: - params: - sector=config["scenario"]["sector_opts"], input: mastr_biomass="data/mastr/bnetza_open_mastr_2023-08-08_B_biomass.csv", mastr_combustion="data/mastr/bnetza_open_mastr_2023-08-08_B_combustion.csv", diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py index 75cf49575..3b2374999 100644 --- a/workflow/scripts/build_existing_chp_de.py +++ b/workflow/scripts/build_existing_chp_de.py @@ -16,31 +16,25 @@ import sys -def clean_data(combustion, biomass, geodata, opts): +def clean_data(combustion, biomass, geodata): """ Clean the data and return a dataframe with the relevant information. PLZ is translated to longitude and latitude using the pyGeoDb data. """ biomass.dropna(subset="Postleitzahl", inplace=True) biomass.rename(columns={'NameStromerzeugungseinheit': 'NameKraftwerk'}, inplace=True) - - if 'I' not in opts: - # filter out industrial CHPs if industry is not included - industry = combustion.dropna(subset='Einsatzort') - to_drop = industry[industry.Einsatzort.str.contains('Industrie')].index - combustion.drop(index=to_drop, inplace=True) + biomass['Einsatzort'] = '' data = pd.concat([biomass, combustion], join='inner', ignore_index=True) - + + data['IndustryStatus'] = data['Einsatzort'].str.contains('Industrie') + data['IndustryStatus'] = data['IndustryStatus'].fillna(False) # Get only CHP plants CHP_raw = data.query("ThermischeNutzleistung > 0").copy() CHP_raw.NameKraftwerk = CHP_raw.NameKraftwerk.fillna(CHP_raw.EinheitMastrNummer) - # delete duplicates - compromise only when KwkMastrNummer and Bruttoleistung is the same - CHP_raw = CHP_raw.sort_values(by=['KwkMastrNummer', 'Bruttoleistung']) - CHP_raw = CHP_raw.drop_duplicates(subset=['KwkMastrNummer', 'Bruttoleistung'], keep='last') - rename_columns = { + "KwkMastrNummer": "ID", "NameKraftwerk": "Name", "Energietraeger": "Fueltype", "Technologie": "Technology", @@ -49,18 +43,32 @@ def clean_data(combustion, biomass, geodata, opts): "Inbetriebnahmedatum": "DateIn", "DatumEndgueltigeStilllegung": "DateOut", "Postleitzahl": "Postleitzahl", - "Breitengrad": "lat", - "Laengengrad": "lon", + "IndustryStatus": "Industry", } CHP_sel = CHP_raw[rename_columns.keys()].rename(columns=rename_columns) - - # set missing information to match the powerplant data format - CHP_sel[["Set", "Country", "Efficiency"]] = ["CHP", "DE", ""] - + # change date format CHP_sel.DateIn = CHP_sel.DateIn.str[:4].astype(float) CHP_sel.DateOut = CHP_sel.DateOut.str[:4].astype(float) + # delete duplicates - compromise only when KwkMastrNummer and Bruttoleistung is the same + strategies = { + "Name": "first", + "Fueltype": "first", + "Technology": "first", + "Capacity": "mean", + "Capacity_thermal": "mean", + "DateIn": "mean", + "DateOut": "mean", + "Postleitzahl": "first", + "Industry": "first", + } + CHP_sel = CHP_sel.groupby("ID").agg(strategies).reset_index() + + # set missing information to match the powerplant data format + CHP_sel[["Set", "Country", "Efficiency"]] = ["CHP", "DE", ""] + CHP_sel[["lat", "lon"]] = ["", ""] + # get location from PLZ CHP_sel.fillna({"lat": CHP_sel.Postleitzahl.map(geodata.lat)}, inplace=True) CHP_sel.fillna({"lon": CHP_sel.Postleitzahl.map(geodata.lng)}, inplace=True) @@ -124,7 +132,8 @@ def lookup_geodata(missing_plz): 'DateOut', 'lat', 'lon', - 'Capacity_thermal' + 'Capacity_thermal', + 'Industry', ] # convert unit of capacities from kW to MW @@ -153,8 +162,8 @@ def lookup_geodata(missing_plz): 'Kraftwerk HA': 'Natural Gas', 'PKV Dampfsammelschienen-KWK-Anlage': 'Natural Gas', } - CHP_sel.loc[CHP_sel['Name'].isin(fuelmap.keys()), 'Fueltype'] = CHP_sel.loc[CHP_sel['Name'].isin(fuelmap.keys()), 'Name'].map(fuelmap) - + CHP_sel['Fueltype'] = CHP_sel['Name'].map(fuelmap).combine_first(CHP_sel['Fueltype']) + return CHP_sel[cols].copy() @@ -186,9 +195,6 @@ def BP(cap,year): logging.basicConfig(level=snakemake.config["logging"]["level"]) - options = snakemake.params.sector - opts = options[0].split("-") - biomass = pd.read_csv(snakemake.input.mastr_biomass, dtype={"Postleitzahl": str}) combustion = pd.read_csv(snakemake.input.mastr_combustion, dtype={"Postleitzahl": str}) @@ -200,7 +206,7 @@ def BP(cap,year): skiprows=1 ) - CHP_de = clean_data(combustion, biomass, geodata, opts) + CHP_de = clean_data(combustion, biomass, geodata) CHP_de = calculate_efficiency(CHP_de) From 5cea6f023af0606509350200c4843c8b77bf863d Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 16 Feb 2024 16:03:46 +0100 Subject: [PATCH 129/669] compute exogenous space heat reduction using Ariadne building num --- config/config.yaml | 17 ++++++++++------- 1 file changed, 10 insertions(+), 7 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 83cadb5c9..5b25148f6 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -168,15 +168,16 @@ sector: gas_network: true biogas_upgrading_cc: true cluster_heat_buses: true - # this needs to be taken from ariadne database + # calculated based on ariadne "Stock|Space Heating" + # and then 2% of buildings renovated per year to reduce their demand by 80% reduce_space_heat_exogenously_factor: 2020: 0.0 - 2025: 0.05 - 2030: 0.10 - 2035: 0.16 - 2040: 0.22 - 2045: 0.25 - 2050: 0.35 + 2025: 0.07 + 2030: 0.14 + 2035: 0.21 + 2040: 0.29 + 2045: 0.36 + 2050: 0.43 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry industry: @@ -237,6 +238,8 @@ plotting: - heat - H2 - urban central heat + - urban decentral heat + - rural heat carrier_groups: electricity: [AC, low_voltage] From 305cf628ca4fd13dbf250e4833c9c85119ea596c Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 16 Feb 2024 16:06:17 +0100 Subject: [PATCH 130/669] read login data from environment variable --- workflow/scripts/_compute_co2_targets_DE.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/_compute_co2_targets_DE.py b/workflow/scripts/_compute_co2_targets_DE.py index 0152df047..61ba174a0 100644 --- a/workflow/scripts/_compute_co2_targets_DE.py +++ b/workflow/scripts/_compute_co2_targets_DE.py @@ -1,8 +1,11 @@ import pyam import pandas as pd - +import os # Set USERNAME and PASSWORD for the Ariadne DB -pyam.iiasa.set_config(USERNAME, PASSWORD) +pyam.iiasa.set_config( + os.environ["IIASA_USERNAME"], + os.environ["IIASA_PASSWORD"], +) model_df= pyam.read_iiasa( "ariadne_intern", From abd43367abd3f66ad62733cdc9e4a851c142228a Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Mon, 19 Feb 2024 12:39:42 +0100 Subject: [PATCH 131/669] include intermediate 20{2,3,4}5 years in all config lists --- config/config.yaml | 27 ++++++++++++++++++++++++--- 1 file changed, 24 insertions(+), 3 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 5b25148f6..7d3129960 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240216-365H-higherelectrolysis" + name: "240216-3H-5A" scenarios: enable: true shared_resources: true #stops recalculating @@ -33,11 +33,14 @@ scenario: opts: - '' sector_opts: - - 365H-T-H-B-I-A + - 3H-T-H-B-I-A planning_horizons: - 2020 + - 2025 - 2030 + - 2035 - 2040 + - 2045 - 2050 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries @@ -100,34 +103,49 @@ limits_min: onwind: DE: 2020: 50 + 2025: 60 2030: 100 + 2035: 120 2040: 160 - 2050: 200 + 2045: 170 + 2050: 180 offwind: DE: 2020: 1 + 2025: 7 2030: 20 + 2035: 25 2040: 25 + 2045: 25 2050: 25 solar: DE: 2020: 50 + 2025: 80 2030: 215 + 2035: 250 2040: 300 + 2045: 350 2050: 400 Link: H2 Electrolysis: DE: 2020: 0 + 2025: 1 2030: 10 + 2035: 20 2040: 50 + 2045: 60 2050: 80 h2_import_max: DE: 2020: 0 + 2025: 5 2030: 20 + 2035: 50 2040: 100 + 2045: 150 2050: 200 wasserstoff_kernnetz: @@ -152,8 +170,11 @@ sector: potential: 0.4 progress: 2020: 0.0 + 2025: 0.15 2030: 0.3 + 2036: 0.45 2040: 0.6 + 2045: 0.8 2050: 1.0 central_heat_vent: true co2_budget_national: true From 08e9c4c9db547f78aebce5d4ea3b992e66eeb5d4 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Fri, 9 Feb 2024 13:43:29 +0100 Subject: [PATCH 132/669] add option to specify the year of a technology's first occurrence --- config/config.yaml | 5 +++++ workflow/scripts/modify_prenetwork.py | 15 +++++++++++++++ 2 files changed, 20 insertions(+) diff --git a/config/config.yaml b/config/config.yaml index 7d3129960..80d0dc06c 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -163,6 +163,11 @@ coal_generation_ban: nuclear_generation_ban: DE: 2022 +first_technology_occurrence: + Link: + H2 pipeline: 2025 + H2 Electrolysis: 2025 + H2 pipeline retrofitted: 2025 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index d70d2b835..4d6dda83a 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -18,6 +18,19 @@ ) +def first_technology_occurrence(n): + """ + Sets p_nom_extendable to false for carriers with configured first occurrence + if investment year is before configured year. + """ + + for c, carriers in snakemake.config["first_technology_occurrence"].items(): + for carrier, first_year in carriers.items(): + if int(snakemake.wildcards.planning_horizons) < first_year: + logger.info(f"{carrier} not extendable before {first_year}.") + n.df(c).loc[n.df(c).carrier == carrier, "p_nom_extendable"] = False + + def fix_new_boiler_profiles(n): logger.info("Forcing boiler profiles for new ones") @@ -264,6 +277,8 @@ def add_wasserstoff_kernnetz(n, wkn, costs): nuclear_generation_ban(n) + first_technology_occurrence(n) + if snakemake.config["wasserstoff_kernnetz"]["enable"]: fn = snakemake.input.wkn wkn = pd.read_csv(fn, index_col=0) From b7c8b4216cd3462f65413cdb43aab1ddaedde8db Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 19 Feb 2024 14:17:42 +0100 Subject: [PATCH 133/669] deactivate retrieve by default --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 80d0dc06c..ca607e69b 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -49,7 +49,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: true # set to false once initial data is retrieved + retrieve: false # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: From 90bd734b93f01b9433f93961c6b298566030506f Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Mon, 19 Feb 2024 15:17:14 +0100 Subject: [PATCH 134/669] adjustments to work with the scenario management --- config/config.yaml | 11 ++-- config/scenarios.yaml | 30 +++++++++ workflow/Snakefile | 66 ++++++++++++++------ workflow/scripts/additional_functionality.py | 4 +- workflow/submodules/pypsa-eur | 2 +- 5 files changed, 85 insertions(+), 28 deletions(-) create mode 100644 config/scenarios.yaml diff --git a/config/config.yaml b/config/config.yaml index 7d3129960..c32ed973b 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,8 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - name: "240216-3H-5A" + name: + - normal scenarios: enable: true shared_resources: true #stops recalculating @@ -33,14 +34,14 @@ scenario: opts: - '' sector_opts: - - 3H-T-H-B-I-A + - 365H-T-H-B-I-A planning_horizons: - 2020 - - 2025 + #- 2025 - 2030 - - 2035 + #- 2035 - 2040 - - 2045 + #- 2045 - 2050 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries diff --git a/config/scenarios.yaml b/config/scenarios.yaml new file mode 100644 index 000000000..06c57a91e --- /dev/null +++ b/config/scenarios.yaml @@ -0,0 +1,30 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT + +# This file is used to define the scenarios that are run by snakemake. Each entry on the first level is a scenario. Each scenario can contain configuration overrides with respect to the config/config.yaml settings. +# +# Example +# +# custom-scenario: # name of the scenario +# electricity: +# renewable_carriers: [wind, solar] # override the list of renewable carriers + +normal: + electricity: + renewable_carriers: + - solar + - onwind + - offwind-ac + - offwind-dc + - hydro + +hydrogen: + limits_min: + Link: + H2 Electrolysis: + DE: + 2040: 100 + 2045: 120 + 2050: 160 diff --git a/workflow/Snakefile b/workflow/Snakefile index 9017c2184..b960ddef6 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -3,6 +3,11 @@ # SPDX-License-Identifier: MIT from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider +import yaml, sys + +sys.path.append("workflow/submodules/pypsa-eur/scripts") + +from _helpers import path_provider HTTP = HTTPRemoteProvider() @@ -10,9 +15,23 @@ configfile: "workflow/submodules/pypsa-eur/config/config.default.yaml" configfile: "config/config.yaml" configfile: "config/config.personal.yaml" -run = config.get("run", {}) -RDIR = run["name"] + "/" if run.get("name") else "" -RESOURCES = "resources/" + RDIR if not run.get("shared_resources") else "resources/" +run = config["run"] +scenarios = run.get("scenarios", {}) +if run["name"] and scenarios.get("enable"): + fn = Path(scenarios["file"]) + scenarios = yaml.safe_load(fn.read_text()) + RDIR = "{run}/" + if run["name"] == "all": + config["run"]["name"] = list(scenarios.keys()) +elif run["name"]: + RDIR = run["name"] + "/" +else: + RDIR = "" + +logs = path_provider("logs/", RDIR, run["shared_resources"]) +benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"]) +resources = path_provider("resources/", RDIR, run["shared_resources"]) + RESULTS = "results/" + RDIR envvars: @@ -25,6 +44,8 @@ wildcard_constraints: ll="(v|c)([0-9\.]+|opt)", opts="[-+a-zA-Z0-9\.]*", sector_opts="[-+a-zA-Z0-9\.\s]*", + planning_horizons="[0-9]*", + year="[0-9]*", module pypsaeur: snakefile: @@ -68,7 +89,7 @@ rule retrieve_ariadne_scenario_data: iiasa_usr=os.environ["IIASA_USERNAME"], iiasa_pwd=os.environ["IIASA_PASSWORD"] output: - data=RESOURCES + "ariadne_scenario_data.csv" + data=resources("ariadne_scenario_data.csv") log: "logs/retrieve_ariadne_scenario_data.log" resources: @@ -76,18 +97,23 @@ rule retrieve_ariadne_scenario_data: script: "scripts/retrieve_ariadne_scenario_data.py" -if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", True): +#if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", True): +# +# use rule retrieve_cost_data from pypsaeur with: +# output: +# resources("costs_{year}-original.csv"), - use rule retrieve_cost_data from pypsaeur with: - output: - "data/costs_{year}-original.csv", +use rule prepare_sector_network from pypsaeur with: + input: + **{k: v for k, v in rules.prepare_sector_network.input.items() if k != "costs"}, + costs=resources("modified-costs_{planning_horizons}.csv"), rule modify_cost_data: input: - costs="data/costs_{year}-original.csv", - modifications="ariadne-data/costs_{year}-modifications.csv", + costs=resources("costs_{planning_horizons}.csv"), + modifications="ariadne-data/costs_{planning_horizons}-modifications.csv", output: - "data/costs_{year}.csv", + resources("modified-costs_{planning_horizons}.csv"), resources: mem_mb=1000 script: @@ -102,7 +128,7 @@ rule modify_prenetwork: network=RESULTS + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", wkn="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", - costs="data/costs_{planning_horizons}.csv", + costs=resources("costs_{planning_horizons}.csv"), output: network=RESULTS + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" @@ -120,15 +146,15 @@ use rule solve_sector_network_myopic from pypsaeur with: **{k: v for k, v in rules.solve_sector_network_myopic.input.items() if k != "network"}, network=RESULTS + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", - co2_totals_name=RESOURCES + "co2_totals.csv", + co2_totals_name=resources("co2_totals.csv"), rule modify_existing_heating: input: - ariadne=RESOURCES + "ariadne_scenario_data.csv", + ariadne=resources("ariadne_scenario_data.csv"), existing_heating="data/existing_infrastructure/existing_heating_raw.csv", output: - existing_heating=RESOURCES + "existing_heating.csv", + existing_heating=resources("existing_heating.csv"), resources: mem_mb=1000 script: @@ -139,16 +165,16 @@ rule modify_existing_heating: use rule build_existing_heating_distribution from pypsaeur with: input: **{k: v for k, v in rules.build_existing_heating_distribution.input.items() if k != "existing_heating"}, - existing_heating=RESOURCES + "existing_heating.csv", + existing_heating=resources("existing_heating.csv"), rule modify_energy_totals: input: - ariadne=RESOURCES + "ariadne_scenario_data.csv", - energy_totals=RESOURCES + "energy_totals.csv", + ariadne=resources("ariadne_scenario_data.csv"), + energy_totals=resources("energy_totals.csv"), output: - energy_totals=RESOURCES + "energy_totals-modified.csv", + energy_totals=resources("energy_totals-modified.csv"), resources: mem_mb=1000 script: @@ -158,7 +184,7 @@ rule modify_energy_totals: use rule build_population_weighted_energy_totals from pypsaeur with: input: **{k: v for k, v in rules.build_population_weighted_energy_totals.input.items() if k != "energy_totals"}, - energy_totals=RESOURCES + "energy_totals-modified.csv", + energy_totals=resources("energy_totals-modified.csv"), if config["wasserstoff_kernnetz"]["enable"]: diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 1fb4101b9..e8ab82d9c 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -2,7 +2,7 @@ import logging import pandas as pd -from prepare_sector_network import emission_sectors_from_opts +from prepare_sector_network import determine_emission_sectors from xarray import DataArray @@ -94,7 +94,7 @@ def add_co2limit_country(n, limit_countries, snakemake): nhours = n.snapshot_weightings.generators.sum() nyears = nhours / 8760 - sectors = emission_sectors_from_opts(n.opts) + sectors = determine_emission_sectors(n.config['sector']) # convert MtCO2 to tCO2 co2_totals = 1e6 * pd.read_csv(snakemake.input.co2_totals_name, index_col=0) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 2dfca6e41..c86d2ea19 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 2dfca6e4144e95c055e60a39303d228623899b94 +Subproject commit c86d2ea19f5a1b1696442ed50bebcf9093f309a5 From 1b04fe4b5e0bc67e1da3a7c3c3cc877f37b918f2 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Mon, 19 Feb 2024 16:20:44 +0100 Subject: [PATCH 135/669] move all settings (mainly temperoral resolution) to config --- config/config.yaml | 10 ++++++---- config/scenarios.yaml | 15 +++++++-------- 2 files changed, 13 insertions(+), 12 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index d05ea31b4..8a86e51ce 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -5,7 +5,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: name: - - normal + - 240219-test/normal scenarios: enable: true shared_resources: true #stops recalculating @@ -34,15 +34,15 @@ scenario: opts: - '' sector_opts: - - 365H-T-H-B-I-A + - none planning_horizons: - 2020 #- 2025 - 2030 #- 2035 - - 2040 + #- 2040 #- 2045 - - 2050 + #- 2050 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" @@ -68,6 +68,8 @@ clustering: 'NO': 0.0454 'PL': 0.0454 'SE': 0.0454 + temporal: + resolution_sector: 3H # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#co2-budget co2_budget: diff --git a/config/scenarios.yaml b/config/scenarios.yaml index 06c57a91e..f5dbdbd9d 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -11,16 +11,15 @@ # electricity: # renewable_carriers: [wind, solar] # override the list of renewable carriers -normal: - electricity: - renewable_carriers: - - solar - - onwind - - offwind-ac - - offwind-dc - - hydro +240219-test/normal: + clustering: + temporal: + resolution_sector: 365H hydrogen: + clustering: + temporal: + resolution_sector: 365H limits_min: Link: H2 Electrolysis: From b301d27004f42fa89820412d2843a647ce9fdd6e Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 20 Feb 2024 09:43:07 +0100 Subject: [PATCH 136/669] bug fixing, german chp were missing bus column, variable salad --- workflow/Snakefile | 3 ++- workflow/scripts/build_existing_chp_de.py | 12 +++++++++--- 2 files changed, 11 insertions(+), 4 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index b1b7efacd..cc74d18c2 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -161,7 +161,8 @@ rule build_existing_chp_de: "https://raw.githubusercontent.com/WZBSocialScienceCenter/plz_geocoord/master/plz_geocoord.csv", keep_local=True, static=True, - ) + ), + busmap=RESOURCES + "networks/base.nc", output: german_chp=RESOURCES + "german_chp.csv", script: diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py index 3b2374999..09a0fec20 100644 --- a/workflow/scripts/build_existing_chp_de.py +++ b/workflow/scripts/build_existing_chp_de.py @@ -14,6 +14,8 @@ import pandas as pd import os import sys +import pypsa +from powerplantmatching.export import map_country_bus def clean_data(combustion, biomass, geodata): @@ -67,11 +69,12 @@ def clean_data(combustion, biomass, geodata): # set missing information to match the powerplant data format CHP_sel[["Set", "Country", "Efficiency"]] = ["CHP", "DE", ""] - CHP_sel[["lat", "lon"]] = ["", ""] + CHP_sel[["lat", "lon"]] = [float("nan"), float("nan")] + # get location from PLZ CHP_sel.fillna({"lat": CHP_sel.Postleitzahl.map(geodata.lat)}, inplace=True) - CHP_sel.fillna({"lon": CHP_sel.Postleitzahl.map(geodata.lng)}, inplace=True) + CHP_sel.fillna({"lon": CHP_sel.Postleitzahl.map(geodata.lon)}, inplace=True) fueltype = { "Erdgas": "Natural Gas", @@ -202,12 +205,15 @@ def BP(cap,year): snakemake.input.plz_mapping[0], index_col="plz", dtype={"plz": str}, - names=["plz", "lat", "lng"], + names=["plz", "lat", "lon"], skiprows=1 ) CHP_de = clean_data(combustion, biomass, geodata) CHP_de = calculate_efficiency(CHP_de) + bn = pypsa.Network(snakemake.input.busmap) + substations = bn.buses.query("substation_lv") + CHP_de = map_country_bus(CHP_de, substations) CHP_de.to_csv(snakemake.output.german_chp, index=False) From f836e66a97378518be7c9aae5aaf5abcd4be9503 Mon Sep 17 00:00:00 2001 From: Fabian Date: Mon, 26 Feb 2024 11:08:23 +0100 Subject: [PATCH 137/669] additional_funcitonality: improve numeric printout in logs --- workflow/scripts/additional_functionality.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index e8ab82d9c..72be8f98e 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -103,7 +103,10 @@ def add_co2limit_country(n, limit_countries, snakemake): for ct in limit_countries: limit = co2_total_totals[ct]*limit_countries[ct] - logger.info(f"Limiting emissions in country {ct} to {limit_countries[ct]} of 1990 levels, i.e. {limit} tCO2/a") + logger.info( + f"Limiting emissions in country {ct} to {limit_countries[ct]:.1%} of " + f"1990 levels, i.e. {limit:,.2f} tCO2/a", + ) lhs = [] From 178f2447e6e5e351b6f6835466f787dc57470609 Mon Sep 17 00:00:00 2001 From: Toni Seibold <153275395+toniseibold@users.noreply.github.com> Date: Tue, 27 Feb 2024 11:48:21 +0100 Subject: [PATCH 138/669] Update environment.yaml for latest pypsa version --- environment.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/environment.yaml b/environment.yaml index 068dfa729..ea2818acf 100644 --- a/environment.yaml +++ b/environment.yaml @@ -49,7 +49,7 @@ dependencies: - pyxlsb - graphviz - tsam>=1.1.0 -- pypsa>=0.25.1 +- pypsa>=0.27.0 - highs - pyam From ff610283389dc6998896197f353390bac991b491 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 28 Feb 2024 11:50:28 +0100 Subject: [PATCH 139/669] start working on snakemake integration of export --- workflow/Snakefile | 22 +++++++++++++++ workflow/scripts/export_ariadne_variables.py | 28 ++++++++++++++++++++ 2 files changed, 50 insertions(+) create mode 100644 workflow/scripts/export_ariadne_variables.py diff --git a/workflow/Snakefile b/workflow/Snakefile index b960ddef6..2b8fb66bd 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -221,3 +221,25 @@ if config["wasserstoff_kernnetz"]["enable"]: clustered_h2_network="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", script: "scripts/cluster_wasserstoff_kernnetz.py" + + + +rule export_ariadne_variables: + input: + networks=expand( + RESULTS + + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + **config["scenario"], + allow_missing=True, + ) + + output: + ariadne_variables=RESULTS + "ariadne/ariadne_variables.csv" + log: + RESULTS + "logs/export_ariadne_variables.log" + script: + "scripts/export_ariadne_variables.py" + +rule ariadne: + input: + ariadne_variables=RESULTS + "ariadne/ariadne_variables.csv" \ No newline at end of file diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py new file mode 100644 index 000000000..5400ab1f0 --- /dev/null +++ b/workflow/scripts/export_ariadne_variables.py @@ -0,0 +1,28 @@ +import pandas as pd + +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "export_ariadne_variables", + simpl="", + clusters=22, + opts="", + ll="v1.2", + sector_opts="365H-T-H-B-I-A-solar+p3-linemaxext15", + planning_horizons="2040", + ) + + +print(snakemake.input.networks) +df=pd.DataFrame() +df.to_csv( + snakemake.output.ariadne_variables, + index=False +) \ No newline at end of file From 94024db87c1fe05598dfcc73044b669d70070453 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 28 Feb 2024 18:04:15 +0100 Subject: [PATCH 140/669] first prototype running --- workflow/Snakefile | 25 +- workflow/scripts/export_ariadne_variables.py | 586 ++++++++++++++++++- 2 files changed, 598 insertions(+), 13 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 2b8fb66bd..2466bd108 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -4,10 +4,10 @@ from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider import yaml, sys - +from shutil import move sys.path.append("workflow/submodules/pypsa-eur/scripts") -from _helpers import path_provider +from _helpers import path_provider, validate_checksum HTTP = HTTPRemoteProvider() @@ -223,15 +223,30 @@ if config["wasserstoff_kernnetz"]["enable"]: "scripts/cluster_wasserstoff_kernnetz.py" +rule download_ariadne_template: + input: + HTTP.remote("https://github.com/iiasa/ariadne-intern-workflow/raw/master/attachments/2024-02-23_template_Ariadne.xlsx") + output: + resources("template_ariadne_database.xlsx") + run: + move(input[0], output[0]) + #validate_checksum(output[0], input[0]) rule export_ariadne_variables: input: + template=resources("template_ariadne_database.xlsx"), + industry_demands=expand( + resources("industrial_energy_demand_elec_s{simpl}_{clusters}_{planning_horizons}.csv"), + **config["scenario"] + ), networks=expand( - RESULTS - + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + #RESULTS + + RESULTS + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", **config["scenario"], allow_missing=True, - ) + ), + + energy_totals=resources("energy_totals.csv"), output: ariadne_variables=RESULTS + "ariadne/ariadne_variables.csv" diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 5400ab1f0..da6e8959c 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1,4 +1,536 @@ import pandas as pd +import pypsa +from functools import reduce +from numpy import isclose + +# Defining global varibales + +TWh2PJ = 3.6 +MWh2TJ = 3.6e-3 +MW2GW = 1e-3 +t2Mt = 1e-6 + +MWh2GJ = 3.6 +TWh2PJ = 3.6 +MWh2PJ = 3.6e-6 + +#n.statistics.withdrawal(bus_carrier="land transport oil", groupby=groupby, aggregate_time=False).filter(like="DE1 0",axis=0) + + + +def get_capacities_electricity(n, region): + + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } + + var = pd.Series() + + capacities_electricity = n.statistics.optimal_capacity( + bus_carrier=["AC", "low voltage"], + **kwargs, + ).filter(like=region).groupby("carrier").sum().drop( + # transmission capacities + ["AC", "DC", "electricity distribution grid"], + ).multiply(MW2GW) + + var["Capacity|Electricity|Biomass|w/ CCS"] = \ + capacities_electricity.get('urban central solid biomass CHP CC') + + var["Capacity|Electricity|Biomass|w/o CCS"] = \ + capacities_electricity.get('urban central solid biomass CHP') + + var["Capacity|Electricity|Biomass|Solids"] = \ + var[[ + "Capacity|Electricity|Biomass|w/ CCS", + "Capacity|Electricity|Biomass|w/o CCS", + ]].sum() + + # Ariadne does no checks, so we implement our own? + assert var["Capacity|Electricity|Biomass|Solids"] == \ + capacities_electricity.filter(like="solid biomass").sum() + + var["Capacity|Electricity|Biomass"] = \ + var["Capacity|Electricity|Biomass|Solids"] + + + var["Capacity|Electricity|Coal|Hard Coal"] = \ + capacities_electricity.get('coal', 0) + + var["Capacity|Electricity|Coal|Lignite"] = \ + capacities_electricity.get('lignite', 0) + + # var["Capacity|Electricity|Coal|Hard Coal|w/ CCS"] = + # var["Capacity|Electricity|Coal|Hard Coal|w/o CCS"] = + # var["Capacity|Electricity|Coal|Lignite|w/ CCS"] = + # var["Capacity|Electricity|Coal|Lignite|w/o CCS"] = + # var["Capacity|Electricity|Coal|w/ CCS"] = + # var["Capacity|Electricity|Coal|w/o CCS"] = + # Q: CCS for coal Implemented, but not activated, should we use it? + # !: No, because of Kohleausstieg + # > config: coal_cc + + + var["Capacity|Electricity|Coal"] = \ + var[[ + "Capacity|Electricity|Coal|Lignite", + "Capacity|Electricity|Coal|Hard Coal", + ]].sum() + + # var["Capacity|Electricity|Gas|CC|w/ CCS"] = + # var["Capacity|Electricity|Gas|CC|w/o CCS"] = + # ! Not implemented, rarely used + + var["Capacity|Electricity|Gas|CC"] = \ + capacities_electricity.get('CCGT') + + var["Capacity|Electricity|Gas|OC"] = \ + capacities_electricity.get('OCGT') + + var["Capacity|Electricity|Gas|w/ CCS"] = \ + capacities_electricity.get('urban central gas CHP CC') + + var["Capacity|Electricity|Gas|w/o CCS"] = \ + capacities_electricity.get('urban central gas CHP') + \ + var[[ + "Capacity|Electricity|Gas|CC", + "Capacity|Electricity|Gas|OC", + ]].sum() + + + var["Capacity|Electricity|Gas"] = \ + var[[ + "Capacity|Electricity|Gas|w/ CCS", + "Capacity|Electricity|Gas|w/o CCS", + ]].sum() + + # var["Capacity|Electricity|Geothermal"] = + # ! Not implemented + + var["Capacity|Electricity|Hydro"] = \ + pd.Series({ + c: capacities_electricity.get(c) + for c in ["ror", "hydro"] + }).sum() + # Q!: Not counting PHS here, because it is a true storage, + # as opposed to hydro + + # var["Capacity|Electricity|Hydrogen|CC"] = + # ! Not implemented + # var["Capacity|Electricity|Hydrogen|OC"] = + # Q: "H2-turbine" + # Q: What about retrofitted gas power plants? -> Lisa + + var["Capacity|Electricity|Hydrogen|FC"] = \ + capacities_electricity.get("H2 Fuel Cell") + + var["Capacity|Electricity|Hydrogen"] = \ + var["Capacity|Electricity|Hydrogen|FC"] + + # var["Capacity|Electricity|Non-Renewable Waste"] = + # ! Not implemented + + var["Capacity|Electricity|Nuclear"] = \ + capacities_electricity.get("nuclear", 0) + + # var["Capacity|Electricity|Ocean"] = + # ! Not implemented + + # var["Capacity|Electricity|Oil|w/ CCS"] = + # var["Capacity|Electricity|Oil|w/o CCS"] = + # ! Not implemented + + var["Capacity|Electricity|Oil"] = \ + capacities_electricity.get("oil") + + + var["Capacity|Electricity|Solar|PV|Rooftop"] = \ + capacities_electricity.get("solar rooftop") + + var["Capacity|Electricity|Solar|PV|Open Field"] = \ + capacities_electricity.get("solar") + + var["Capacity|Electricity|Solar|PV"] = \ + var[[ + "Capacity|Electricity|Solar|PV|Open Field", + "Capacity|Electricity|Solar|PV|Rooftop", + ]].sum() + + # var["Capacity|Electricity|Solar|CSP"] = + # ! not implemented + + var["Capacity|Electricity|Solar"] = \ + var["Capacity|Electricity|Solar|PV"] + + var["Capacity|Electricity|Wind|Offshore"] = \ + capacities_electricity.get( + ["offwind", "offwind-ac", "offwind-dc"] + ).sum() + # !: take care of "offwind" -> "offwind-ac"/"offwind-dc" + + var["Capacity|Electricity|Wind|Onshore"] = \ + capacities_electricity.get("onwind") + + var["Capacity|Electricity|Wind"] = \ + capacities_electricity.filter(like="wind").sum() + + assert var["Capacity|Electricity|Wind"] == \ + var[[ + "Capacity|Electricity|Wind|Offshore", + "Capacity|Electricity|Wind|Onshore", + ]].sum() + + + # var["Capacity|Electricity|Storage Converter|CAES"] = + # ! Not implemented + + var["Capacity|Electricity|Storage Converter|Hydro Dam Reservoir"] = \ + capacities_electricity.get('hydro') + + var["Capacity|Electricity|Storage Converter|Pump Hydro"] = \ + capacities_electricity.get('PHS') + + var["Capacity|Electricity|Storage Converter|Stationary Batteries"] = \ + capacities_electricity.get("battery discharger") + \ + capacities_electricity.get("home battery discharger") + + var["Capacity|Electricity|Storage Converter|Vehicles"] = \ + capacities_electricity.get("V2G", 0) + + var["Capacity|Electricity|Storage Converter"] = \ + var[[ + "Capacity|Electricity|Storage Converter|Hydro Dam Reservoir", + "Capacity|Electricity|Storage Converter|Pump Hydro", + "Capacity|Electricity|Storage Converter|Stationary Batteries", + "Capacity|Electricity|Storage Converter|Vehicles", + ]].sum() + + + storage_capacities = n.statistics.optimal_capacity( + storage=True, + **kwargs, + ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) + # var["Capacity|Electricity|Storage Reservoir|CAES"] = + # ! Not implemented + + var["Capacity|Electricity|Storage Reservoir|Hydro Dam Reservoir"] = \ + storage_capacities.get("hydro") + + var["Capacity|Electricity|Storage Reservoir|Pump Hydro"] = \ + storage_capacities.get("PHS") + + var["Capacity|Electricity|Storage Reservoir|Stationary Batteries"] = \ + pd.Series({ + c: storage_capacities.get(c) + for c in ["battery", "home battery"] + }).sum() + + var["Capacity|Electricity|Storage Reservoir|Vehicles"] = \ + storage_capacities.get("Li ion", 0) + + var["Capacity|Electricity|Storage Reservoir"] = \ + var[[ + "Capacity|Electricity|Storage Reservoir|Hydro Dam Reservoir", + "Capacity|Electricity|Storage Reservoir|Pump Hydro", + "Capacity|Electricity|Storage Reservoir|Stationary Batteries", + "Capacity|Electricity|Storage Reservoir|Vehicles", + ]].sum() + + + var["Capacity|Electricity"] = \ + var[[ + "Capacity|Electricity|Wind", + "Capacity|Electricity|Solar", + "Capacity|Electricity|Oil", + "Capacity|Electricity|Coal", + "Capacity|Electricity|Gas", + "Capacity|Electricity|Biomass", + "Capacity|Electricity|Hydro", + "Capacity|Electricity|Hydrogen", + "Capacity|Electricity|Nuclear", + ]].sum() + + # Test if we forgot something + _drop_idx = [ + col for col in [ + "PHS", + "battery discharger", + "home battery discharger", + "V2G", + ] if col in capacities_electricity.index + ] + assert isclose( + var["Capacity|Electricity"], + capacities_electricity.drop(_drop_idx).sum(), + ) + + return var + +def get_capacities_heat(n, region): + + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } + + var = pd.Series() + + capacities_heat = n.statistics.optimal_capacity( + bus_carrier=[ + "urban central heat", + "urban decentral heat", + "rural heat" + ], + **kwargs, + ).filter(like=region).groupby("carrier").sum().drop( + ["urban central heat vent"] + ).multiply(MW2GW) + + + var["Capacity|Heat|Solar thermal"] = \ + capacities_heat.filter(like="solar thermal").sum() + # TODO Ariadne DB distinguishes between Heat and Decentral Heat! + # We should probably change all capacities here?! + + # !!! Missing in the Ariadne database + # We could be much more detailed for the heat sector (as for electricity) + # if desired by Ariadne + # + var["Capacity|Heat|Biomass|w/ CCS"] = \ + capacities_heat.get('urban central solid biomass CHP CC') + var["Capacity|Heat|Biomass|w/o CCS"] = \ + capacities_heat.get('urban central solid biomass CHP') \ + + capacities_heat.filter(like="biomass boiler").sum() + + var["Capacity|Heat|Biomass"] = \ + var["Capacity|Heat|Biomass|w/ CCS"] + \ + var["Capacity|Heat|Biomass|w/o CCS"] + + assert isclose( + var["Capacity|Heat|Biomass"], + capacities_heat.filter(like="biomass").sum() + ) + + var["Capacity|Heat|Resistive heater"] = \ + capacities_heat.filter(like="resistive heater").sum() + + var["Capacity|Heat|Processes"] = \ + pd.Series({c: capacities_heat.get(c) for c in [ + "Fischer-Tropsch", + "H2 Electrolysis", + "H2 Fuel Cell", + "Sabatier", + "methanolisation", + ]}).sum() + + # !!! Missing in the Ariadne database + + var["Capacity|Heat|Gas"] = \ + capacities_heat.filter(like="gas boiler").sum() \ + + capacities_heat.filter(like="gas CHP").sum() + + # var["Capacity|Heat|Geothermal"] = + # ! Not implemented + + var["Capacity|Heat|Heat pump"] = \ + capacities_heat.filter(like="heat pump").sum() + + var["Capacity|Heat|Oil"] = \ + capacities_heat.filter(like="oil boiler").sum() + + var["Capacity|Heat|Storage Converter"] = \ + capacities_heat.filter(like="water tanks discharger").sum() + + storage_capacities = n.statistics.optimal_capacity( + storage=True, + **kwargs, + ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) + + var["Capacity|Heat|Storage Reservoir"] = \ + storage_capacities.filter(like="water tanks").sum() + + # Q: New technologies get added as we develop the model. + # It would be helpful to have some double-checking, e.g., + # by asserting that every technology gets added, + # or by computing the total independtly of the subtotals, + # and summing the subcategories to compare to the total + # !: For now, check the totals by summing in two different ways + + var["Capacity|Heat"] = ( + var["Capacity|Heat|Solar thermal"] + + var["Capacity|Heat|Resistive heater"] + + var["Capacity|Heat|Biomass"] + + var["Capacity|Heat|Oil"] + + var["Capacity|Heat|Gas"] + + var["Capacity|Heat|Processes"] + + #var["Capacity|Heat|Hydrogen"] + + var["Capacity|Heat|Heat pump"] + ) + + assert isclose( + var["Capacity|Heat"], + capacities_heat[ + # exclude storage converters (i.e., dischargers) + ~capacities_heat.index.str.contains("discharger") + ].sum() + ) + + return var + + +def get_capacities_other(n, region): + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } + + var = pd.Series() + + capacities_h2 = n.statistics.optimal_capacity( + bus_carrier="H2", + **kwargs, + ).filter( + like=region + ).groupby("carrier").sum().multiply(MW2GW) + + var["Capacity|Hydrogen|Gas|w/ CCS"] = \ + capacities_h2.get("SMR CC") + + var["Capacity|Hydrogen|Gas|w/o CCS"] = \ + capacities_h2.get("SMR") + + var["Capacity|Hydrogen|Gas"] = \ + capacities_h2.filter(like="SMR").sum() + + assert var["Capacity|Hydrogen|Gas"] == \ + var["Capacity|Hydrogen|Gas|w/ CCS"] + \ + var["Capacity|Hydrogen|Gas|w/o CCS"] + + var["Capacity|Hydrogen|Electricity"] = \ + capacities_h2.get("H2 Electrolysis", 0) + + var["Capacity|Hydrogen"] = ( + var["Capacity|Hydrogen|Electricity"] + + var["Capacity|Hydrogen|Gas"] + ) + assert isclose( + var["Capacity|Hydrogen"], + capacities_h2.reindex([ + "H2 Electrolysis", + "SMR", + "SMR CC", + ]).sum(), # if technology not build, reindex returns NaN + ) + + storage_capacities = n.statistics.optimal_capacity( + storage=True, + **kwargs, + ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) + + var["Capacity|Hydrogen|Reservoir"] = \ + storage_capacities.get("H2") + + + + capacities_gas = n.statistics.optimal_capacity( + bus_carrier="gas", + **kwargs, + ).filter( + like=region + ).groupby("carrier").sum().drop( + # Drop Import (Generator, gas), Storage (Store, gas), + # and Transmission capacities + ["gas", "gas pipeline", "gas pipeline new"] + ).multiply(MW2GW) + + var["Capacity|Gases|Hydrogen"] = \ + capacities_gas.get("Sabatier", 0) + + var["Capacity|Gases|Biomass"] = \ + capacities_gas.reindex([ + "biogas to gas", + "biogas to gas CC", + ]).sum() + + var["Capacity|Gases"] = ( + var["Capacity|Gases|Hydrogen"] + + var["Capacity|Gases|Biomass"] + ) + + assert isclose( + var["Capacity|Gases"], + capacities_gas.sum(), + ) + + + capacities_liquids = n.statistics.optimal_capacity( + bus_carrier=["oil", "methanol"], + **kwargs, + ).filter( + like=region + ).groupby("carrier").sum().multiply(MW2GW) + + var["Capacity|Liquids|Hydrogen"] = \ + capacities_liquids.get("Fischer-Tropsch") + \ + capacities_liquids.get("methanolisation", 0) + + var["Capacity|Liquids"] = var["Capacity|Liquids|Hydrogen"] + + assert isclose( + var["Capacity|Liquids"], capacities_liquids.sum(), + ) + + return var + +def get_ariadne_var(n, industry_demand, energy_totals, region): + + var = pd.concat([ + get_capacities_electricity(n,region), + get_capacities_heat(n,region), + get_capacities_other(n,region), + #get_primary_energy(n, region), + #get_secondary_energy(n, region), + #get_final_energy(n, region, industry_demand, energy_totals), + #get_prices(n,region), + #get_emissions + ]) + + + return var + + +# uses the global variables model, scenario and var2unit. For now. +def get_data( + n, industry_demand, energy_totals, region, + version="0.9.0", scenario="test" + ): + + var = get_ariadne_var(n, industry_demand, energy_totals, region) + + data = [] + for v in var.index: + try: + unit = var2unit[v] + except KeyError: + print("Warning: Variable '", v, "' not in Ariadne Database", sep="") + unit = "NA" + + data.append([ + "PyPSA-Eur " + version, + scenario, + region, + v, + unit, + var[v], + ]) + + tab = pd.DataFrame( + data, + columns=["Model", "Scenario", "Region", "Variable", "Unit", year] + ) + + return tab if __name__ == "__main__": if "snakemake" not in globals(): @@ -15,14 +547,52 @@ clusters=22, opts="", ll="v1.2", - sector_opts="365H-T-H-B-I-A-solar+p3-linemaxext15", - planning_horizons="2040", + sector_opts="None", + planning_horizons="2050", + run="240219-test/normal" ) -print(snakemake.input.networks) -df=pd.DataFrame() -df.to_csv( - snakemake.output.ariadne_variables, - index=False -) \ No newline at end of file + config = snakemake.config + var2unit = pd.read_excel( + snakemake.input.template, + sheet_name="variable_definitions", + index_col="Variable", + )["Unit"] + + industry_demands = [ + pd.read_csv( + in_dem, + index_col="TWh/a (MtCO2/a)", + ).multiply(TWh2PJ).rename_axis("bus") + for in_dem in snakemake.input.industry_demands + ] + energy_totals = pd.read_csv( + snakemake.input.energy_totals, + index_col=0, + ).multiply(TWh2PJ) + + networks = [pypsa.Network(n) for n in snakemake.input.networks] + + yearly_dfs = [] + for i, year in enumerate(config["scenario"]["planning_horizons"]): + yearly_dfs.append(get_data( + networks[i], + industry_demands[i], + energy_totals, + "DE", + version=config["version"], + scenario=config["run"]["name"][0], + )) + + df = reduce( + lambda left, right: pd.merge( + left, + right, + on=["Model", "Scenario", "Region", "Variable", "Unit"]), + yearly_dfs + ) + df.to_csv( + snakemake.output.ariadne_variables, + index=False + ) \ No newline at end of file From f566bc3b65f05c879cbe7a2d5a51bc026b893f2a Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 29 Feb 2024 17:33:24 +0100 Subject: [PATCH 141/669] automated ariadne outputs working --- workflow/Snakefile | 18 +- workflow/scripts/export_ariadne_variables.py | 914 ++++++++++++++++++- workflow/scripts/plot_ariadne_variables.py | 174 ++++ 3 files changed, 1099 insertions(+), 7 deletions(-) create mode 100644 workflow/scripts/plot_ariadne_variables.py diff --git a/workflow/Snakefile b/workflow/Snakefile index 2466bd108..9a9b542f3 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -240,7 +240,6 @@ rule export_ariadne_variables: **config["scenario"] ), networks=expand( - #RESULTS + RESULTS + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", **config["scenario"], allow_missing=True, @@ -255,6 +254,19 @@ rule export_ariadne_variables: script: "scripts/export_ariadne_variables.py" -rule ariadne: + +rule plot_ariadne_variables: input: - ariadne_variables=RESULTS + "ariadne/ariadne_variables.csv" \ No newline at end of file + ariadne_variables=RESULTS + "ariadne/ariadne_variables.csv" + output: + primary_energy=RESULTS + "ariadne/primary_energy.png", + primary_energy_detailed=RESULTS + "ariadne/primary_energy_detailed.png", + secondary_energy=RESULTS + "ariadne/secondary_energy.png", + secondary_energy_detailed=RESULTS + "ariadne/secondary_energy_detailed.png", + final_energy=RESULTS + "ariadne/final_energy.png", + final_energy_detailed=RESULTS + "ariadne/final_energy_detailed.png", + capacity=RESULTS + "ariadne/capacity.png", + capacity_detailed=RESULTS + "ariadne/capacity_detailed.png", + script: + "scripts/plot_ariadne_variables.py" + diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index da6e8959c..891521f83 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -16,7 +16,31 @@ #n.statistics.withdrawal(bus_carrier="land transport oil", groupby=groupby, aggregate_time=False).filter(like="DE1 0",axis=0) - +def _get_t_sum(df, df_t, carrier, region, snapshot_weightings, port): + if type(carrier) == list: + return sum( + [ + _get_t_sum( + df, df_t, car, region, snapshot_weightings, port + ) for car in carrier + ] + ) + idx = df[df.carrier == carrier].filter(like=region, axis=0).index + + return df_t[port][idx].multiply( + snapshot_weightings, + axis=0, + ).values.sum() + +def sum_load(n, carrier, region): + return MWh2PJ * _get_t_sum( + n.loads, + n.loads_t, + carrier, + region, + n.snapshot_weightings.generators, + "p", + ) def get_capacities_electricity(n, region): @@ -483,15 +507,897 @@ def get_capacities_other(n, region): return var +def get_primary_energy(n, region): + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } + + var = pd.Series() + + EU_oil_supply = n.statistics.supply(bus_carrier="oil") + oil_fossil_fraction = ( + EU_oil_supply.get("Generator").get("oil") + / EU_oil_supply.sum() + ) # TODO Would be desirable to resolve this regionally + + oil_usage = n.statistics.withdrawal( + bus_carrier="oil", + **kwargs + ).filter( + like=region + ).groupby( + "carrier" + ).sum().multiply(oil_fossil_fraction).multiply(MWh2PJ) + + ## Primary Energy + + var["Primary Energy|Oil|Heat"] = \ + oil_usage.filter(like="oil boiler").sum() + + + var["Primary Energy|Oil|Electricity"] = \ + oil_usage.get("oil") + # This will get the oil store as well, but it should be 0 + + var["Primary Energy|Oil"] = ( + var["Primary Energy|Oil|Electricity"] + + var["Primary Energy|Oil|Heat"] + + oil_usage.reindex( + [ + "land transport oil", + "agriculture machinery oil", + "shipping oil", + "kerosene for aviation", + "naphtha for industry" + ], + ).sum() + ) + assert isclose(var["Primary Energy|Oil"], oil_usage.sum()) + + # !! TODO since gas is now regionally resolved we + # compute the reginoal gas supply + regional_gas_supply = n.statistics.supply( + bus_carrier="gas", + **kwargs, + ).filter( + like=region + ).groupby( + ["component", "carrier"] + ).sum().drop([ + "Store", + ("Link", "gas pipeline"), + ("Link", "gas pipeline new"), + ]) + + gas_fossil_fraction = ( + regional_gas_supply.get("Generator").get("gas") + / regional_gas_supply.sum() + ) + # Eventhough biogas gets routed through the EU gas bus, + # it should be counted separately as Primary Energy|Biomass + gas_usage = n.statistics.withdrawal( + bus_carrier="gas", + **kwargs, + ).filter( + like=region + ).groupby( + ["component", "carrier"], + ).sum().drop([ + "Store", + ("Link", "gas pipeline"), + ("Link", "gas pipeline new"), + ]).groupby( + "carrier" + ).sum().multiply(gas_fossil_fraction).multiply(MWh2PJ) + + var["Primary Energy|Gas|Heat"] = \ + gas_usage.filter(like="gas boiler").sum() + + var["Primary Energy|Gas|Electricity"] = \ + gas_usage.reindex( + [ + 'CCGT', + 'OCGT', + 'urban central gas CHP', + 'urban central gas CHP CC', + ], + ).sum() + # Adding the CHPs to electricity, see also Capacity|Electricity|Gas + # Q: pypsa to iamc SPLITS the CHPS. TODO Should we do the same? + + var["Primary Energy|Gas|Hydrogen"] = \ + gas_usage.filter(like="SMR").sum() + + var["Primary Energy|Gas"] = ( + var["Primary Energy|Gas|Heat"] + + var["Primary Energy|Gas|Electricity"] + + var["Primary Energy|Gas|Hydrogen"] + + gas_usage.filter(like="gas for industry").sum() + ) + + assert isclose( + var["Primary Energy|Gas"], + gas_usage.sum(), + ) + # ! There are CC sub-categories that could be used + + coal_usage = n.statistics.withdrawal( + bus_carrier=["lignite", "coal"], + **kwargs, + ).filter( + like=region + ).groupby( + "carrier" + ).sum().multiply(MWh2PJ) + + var["Primary Energy|Coal|Hard Coal"] = \ + coal_usage.get("coal", 0) + + var["Primary Energy|Coal|Lignite"] = \ + coal_usage.get("lignite", 0) + + var["Primary Energy|Coal|Electricity"] = \ + var["Primary Energy|Coal|Hard Coal"] + \ + var["Primary Energy|Coal|Lignite"] + + var["Primary Energy|Coal"] = ( + var["Primary Energy|Coal|Electricity"] + + coal_usage.get("coal for industry", 0) + ) + + assert isclose(var["Primary Energy|Coal"], coal_usage.sum()) + + var["Primary Energy|Fossil"] = ( + var["Primary Energy|Coal"] + + var["Primary Energy|Gas"] + + var["Primary Energy|Oil"] + ) + + biomass_usage = n.statistics.withdrawal( + bus_carrier=["solid biomass", "biogas"], + **kwargs, + ).filter( + like=region + ).groupby( + "carrier" + ).sum().multiply(MWh2PJ) + + + var["Primary Energy|Biomass|w/ CCS"] = \ + biomass_usage[biomass_usage.index.str.contains("CC")].sum() + + var["Primary Energy|Biomass|w/o CCS"] = \ + biomass_usage[~biomass_usage.index.str.contains("CC")].sum() + + var["Primary Energy|Biomass|Electricity"] = \ + biomass_usage.filter(like="CHP").sum() + # !!! ADDING CHP ONLY TO ELECTRICITY INSTEAD OF SPLITTING, CORRECT? + var["Primary Energy|Biomass|Heat"] = \ + biomass_usage.filter(like="boiler").sum() + + # var["Primary Energy|Biomass|Gases"] = \ + # Gases are only E-Fuels in AriadneDB + # Not possibly in an easy way because biogas to gas goes to the + # gas bus, where it mixes with fossil imports + + var["Primary Energy|Biomass"] = ( + var["Primary Energy|Biomass|Electricity"] + + var["Primary Energy|Biomass|Heat"] + + biomass_usage.filter(like="solid biomass for industry").sum() + + biomass_usage.filter(like="biogas to gas").sum() + ) + + + assert isclose( + var["Primary Energy|Biomass"], + biomass_usage.sum(), + ) + + var["Primary Energy|Nuclear"] = \ + n.statistics.withdrawal( + bus_carrier=["uranium"], + **kwargs, + ).filter( + like=region + ).groupby( + "carrier" + ).sum().multiply(MWh2PJ).get("nuclear", 0) + + + # ! This should basically be equivalent to secondary energy + renewable_electricity = n.statistics.supply( + bus_carrier=["AC", "low voltage"], + **kwargs, + ).drop([ + # Assuming renewables are only generators and StorageUnits + "Link", "Line" + ]).filter(like=region).groupby("carrier").sum().multiply(MWh2PJ) + + + solar_thermal_heat = n.statistics.supply( + bus_carrier=[ + "urban decentral heat", + "urban central heat", + "rural heat", + ], + **kwargs, + ).filter( + like=region + ).groupby("carrier").sum().filter( + like="solar thermal" + ).multiply(MWh2PJ).sum() + + var["Primary Energy|Hydro"] = \ + renewable_electricity.get([ + "ror", "PHS", "hydro", + ]).sum() + + var["Primary Energy|Solar"] = \ + renewable_electricity.filter(like="solar").sum() + \ + solar_thermal_heat + + + var["Primary Energy|Wind"] = \ + renewable_electricity.filter(like="wind").sum() + + assert isclose( + renewable_electricity.sum(), + ( + var["Primary Energy|Hydro"] + + var["Primary Energy|Solar"] + + var["Primary Energy|Wind"] + ) + ) + # Primary Energy|Other + # Not implemented + + return var + + +def get_secondary_energy(n, region): + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } + var = pd.Series() + + electricity_supply = n.statistics.supply( + bus_carrier=["low voltage", "AC"], **kwargs + ).filter(like=region).groupby( + ["carrier"] + ).sum().multiply(MWh2PJ).drop( + ["AC", "DC", "electricity distribution grid" ] + ) + + var["Secondary Energy|Electricity|Coal|Hard Coal"] = \ + electricity_supply.get("coal", 0) + + var["Secondary Energy|Electricity|Coal|Lignite"] = \ + electricity_supply.get("lignite", 0) + + var["Secondary Energy|Electricity|Coal"] = ( + var["Secondary Energy|Electricity|Coal|Hard Coal"] + + var["Secondary Energy|Electricity|Coal|Lignite"] + ) + + var["Secondary Energy|Electricity|Oil"] = \ + electricity_supply.get("oil", 0) + + var["Secondary Energy|Electricity|Gas"] = \ + electricity_supply.reindex( + [ + 'CCGT', + 'OCGT', + 'urban central gas CHP', + 'urban central gas CHP CC', + ], + ).sum() + + var["Secondary Energy|Electricity|Fossil"] = ( + var["Secondary Energy|Electricity|Gas"] + + var["Secondary Energy|Electricity|Oil"] + + var["Secondary Energy|Electricity|Coal"] + ) + + var["Secondary Energy|Electricity|Biomass|w/o CCS"] = \ + electricity_supply.get('urban central solid biomass CHP', 0) + var["Secondary Energy|Electricity|Biomass|w/ CCS"] = \ + electricity_supply.get('urban central solid biomass CHP CC', 0) + var["Secondary Energy|Electricity|Biomass"] = ( + var["Secondary Energy|Electricity|Biomass|w/o CCS"] + + var["Secondary Energy|Electricity|Biomass|w/ CCS"] + ) + # ! Biogas to gas should go into this category + # How to do that? (trace e.g., biogas to gas -> CCGT) + # If so: Should double counting with |Gas be avoided? + # -> Might use gas_fossil_fraction just like above + + + var["Secondary Energy|Electricity|Hydro"] = ( + electricity_supply.get("hydro") + + electricity_supply.get("ror") + ) + # ! Neglecting PHS here because it is storage infrastructure + + var["Secondary Energy|Electricity|Nuclear"] = \ + electricity_supply.filter(like="nuclear").sum() + var["Secondary Energy|Electricity|Solar"] = \ + electricity_supply.filter(like="solar").sum() + var["Secondary Energy|Electricity|Wind|Offshore"] = \ + electricity_supply.get("onwind") + var["Secondary Energy|Electricity|Wind|Onshore"] = \ + electricity_supply.filter(like="offwind").sum() + var["Secondary Energy|Electricity|Wind"] = ( + var["Secondary Energy|Electricity|Wind|Offshore"] + + var["Secondary Energy|Electricity|Wind|Onshore"] + ) + var["Secondary Energy|Electricity|Non-Biomass Renewables"] = ( + var["Secondary Energy|Electricity|Hydro"] + + var["Secondary Energy|Electricity|Solar"] + + var["Secondary Energy|Electricity|Wind"] + ) + + var["Secondary Energy|Electricity|Hydrogen"] = \ + electricity_supply.get("H2 Fuel Cell", 0) + # ! Add H2 Turbines if they get implemented + + var["Secondary Energy|Electricity|Curtailment"] = \ + n.statistics.curtailment( + bus_carrier=["AC", "low voltage"], **kwargs + ).filter(like=region).multiply(MWh2PJ).values.sum() + + + var["Secondary Energy|Electricity|Storage Losses"] = \ + n.statistics.withdrawal( + bus_carrier=["AC", "low voltage"], **kwargs + ).filter(like=region).groupby(["carrier"]).sum().reindex( + [ + "BEV charger", + "battery charger", + "home battery charger", + "PHS", + ] + ).subtract( + n.statistics.supply( + bus_carrier=["AC", "low voltage"], **kwargs + ).filter(like=region).groupby(["carrier"]).sum().reindex( + [ + "V2G", + "battery discharger", + "home battery discharger", + "PHS", + ] + ) + ).multiply(MWh2PJ).sum() + + var["Secondary Energy|Electricity|Transmission Losses"] = \ + n.statistics.withdrawal( + bus_carrier=["AC", "low voltage"], **kwargs + ).filter(like=region).groupby(["carrier"]).sum().get( + ["AC", "DC", "electricity distribution grid"] + ).subtract( + n.statistics.supply( + bus_carrier=["AC", "low voltage"], **kwargs + ).filter(like=region).groupby(["carrier"]).sum().get( + ["AC", "DC", "electricity distribution grid"] + ) + ).multiply(MWh2PJ).sum() + + # supply - withdrawal + # var["Secondary Energy|Electricity|Storage"] = \ + var["Secondary Energy|Electricity"] = ( + var["Secondary Energy|Electricity|Fossil"] + + var["Secondary Energy|Electricity|Biomass"] + + var["Secondary Energy|Electricity|Non-Biomass Renewables"] + + var["Secondary Energy|Electricity|Nuclear"] + #+ var["Secondary Energy|Electricity|Transmission Losses"] + #+ var["Secondary Energy|Electricity|Storage Losses"] + + var["Secondary Energy|Electricity|Hydrogen"] + ) + + assert isclose( + electricity_supply[ + ~electricity_supply.index.str.contains( + "PHS" + "|battery discharger" + "|home battery discharger" + "|V2G" + ) + ].sum(), + var["Secondary Energy|Electricity"], + ) + + heat_supply = n.statistics.supply( + bus_carrier=[ + "urban central heat", + # rural and urban decentral heat do not produce secondary energy + # "urban decentral heat", "rural heat" + ], **kwargs + ).filter(like=region).groupby( + ["carrier"] + ).sum().multiply(MWh2PJ) + + var["Secondary Energy|Heat|Gas"] = \ + heat_supply.filter(like="gas").sum() + # !!! Again, keep the CHPs in mind! + # Here the heat output is considered, but not for primary input + + + var["Secondary Energy|Heat|Biomass"] = \ + heat_supply.filter(like="biomass").sum() + # var["Secondary Energy|Heat|Coal"] = \ + # var["Secondary Energy|Heat|Geothermal"] = \ + # var["Secondary Energy|Heat|Nuclear"] = \ + # var["Secondary Energy|Heat|Other"] = \ + # ! Not implemented + + var["Secondary Energy|Heat|Oil"] = \ + heat_supply.filter(like="oil boiler").sum() + + var["Secondary Energy|Heat|Solar"] = \ + heat_supply.filter(like="solar thermal").sum() + + var["Secondary Energy|Heat|Electricity|Heat Pumps"] = \ + heat_supply.filter(like="heat pump").sum() + var["Secondary Energy|Heat|Electricity|Resistive"] = \ + heat_supply.filter(like="resistive heater").sum() + var["Secondary Energy|Heat|Electricity"] = ( + var["Secondary Energy|Heat|Electricity|Heat Pumps"] + + var["Secondary Energy|Heat|Electricity|Resistive"] + ) + var["Secondary Energy|Heat|Other"] = \ + heat_supply.reindex( + [ + "Fischer-Tropsch", + "H2 Fuel Cell", + "H2 Electrolysis", + "Sabatier", + "methanolisation", + ] + ).sum() + # TODO remember to specify in comments + var["Secondary Energy|Heat"] = ( + var["Secondary Energy|Heat|Gas"] + + var["Secondary Energy|Heat|Biomass"] + + var["Secondary Energy|Heat|Oil"] + + var["Secondary Energy|Heat|Solar"] + + var["Secondary Energy|Heat|Electricity"] + + var["Secondary Energy|Heat|Other"] + ) + assert isclose( + var["Secondary Energy|Heat"], + heat_supply[ + ~heat_supply.index.str.contains("discharger") + ].sum() + ) + + hydrogen_production = n.statistics.supply( + bus_carrier="H2", **kwargs + ).filter(like=region).groupby( + ["carrier"] + ).sum().multiply(MWh2PJ) + + var["Secondary Energy|Hydrogen|Electricity"] = \ + hydrogen_production.get('H2 Electrolysis', 0) + + var["Secondary Energy|Hydrogen|Gas"] = \ + hydrogen_production.get(["SMR","SMR CC"]).sum() + + var["Secondary Energy|Hydrogen"] = ( + var["Secondary Energy|Hydrogen|Electricity"] + + var["Secondary Energy|Hydrogen|Gas"] + ) + + assert isclose( + var["Secondary Energy|Hydrogen"], + hydrogen_production[ + ~hydrogen_production.index.isin( + ["H2", "H2 pipeline", "H2 pipeline (Kernnetz)"] + ) + ].sum() + ) + + EU_oil_supply = n.statistics.supply(bus_carrier="oil") + oil_fossil_fraction = ( + EU_oil_supply.get("Generator").get("oil") + / EU_oil_supply.sum() + ) # TODO Would be desirable to resolve this regionally + + oil_fuel_usage = n.statistics.withdrawal( + bus_carrier="oil", + **kwargs + ).filter( + like=region + ).groupby( + "carrier" + ).sum().multiply(oil_fossil_fraction).multiply(MWh2PJ).reindex( + [ + "agriculture machinery oil", + "kerosene for aviation", + "land transport oil", + "naphtha for industry", + "shipping oil" + ] + ) + + total_oil_fuel_usage = oil_fuel_usage.sum() + + var["Secondary Energy|Liquids|Oil"] = \ + total_oil_fuel_usage * oil_fossil_fraction + var["Secondary Energy|Liquids|Hydrogen"] = \ + total_oil_fuel_usage * (1 - oil_fossil_fraction) + + var["Secondary Energy|Liquids"] = ( + var["Secondary Energy|Liquids|Oil"] + + var["Secondary Energy|Liquids|Hydrogen"] + ) + + methanol_production = n.statistics.supply( + bus_carrier="methanol", **kwargs + ).filter(like=region).groupby( + ["carrier"] + ).sum().multiply(MWh2PJ) + + assert methanol_production.size <= 1 # only methanolisation + + # var["Production|Chemicals|Methanol"] = \ # here units are Mt/year + var["Secondary Energy|Other Carrier"] = \ + methanol_production.get("methanolisation", 0) + # Methanol should probably not be in Liquids + # Remeber to specify that Other Carrier == Methanol in Comments Tab + + + gas_production = n.statistics.supply( + bus_carrier="gas", **kwargs + ).filter(like=region).groupby( + ["carrier", "component"] + ).sum().multiply(MWh2PJ).drop( + ["gas pipeline", "gas pipeline new", ("gas", "Store")] + ).groupby("carrier").sum() + total_gas_production = gas_production.sum() + + gas_fuel_usage = n.statistics.withdrawal( + bus_carrier="gas", **kwargs + ).filter(like=region).groupby( + ["carrier"] + ).sum().multiply(MWh2PJ).reindex( + [ + "gas for industry", + "gas for industry CC", + "rural gas boiler", + "urban decentral gas boiler" + ] + ) # Building, Transport and Industry sectors + + total_gas_fuel_usage = gas_fuel_usage.sum() + + # Fraction supplied by Hydrogen conversion + var["Secondary Energy|Gases|Hydrogen"] = ( + total_gas_fuel_usage + * gas_production.get("Sabatier", 0) + / total_gas_production + ) + + var["Secondary Energy|Gases|Biomass"] = ( + total_gas_fuel_usage + * gas_production.filter(like="biogas to gas").sum() + / total_gas_production + ) + + var["Secondary Energy|Gases|Natural Gas"] = ( + total_gas_fuel_usage + * gas_production.get("gas") + / total_gas_production + ) + + var["Secondary Energy|Gases"] = ( + var["Secondary Energy|Gases|Hydrogen"] + + var["Secondary Energy|Gases|Biomass"] + + var["Secondary Energy|Gases|Natural Gas"] + ) + + assert isclose( + var["Secondary Energy|Gases"], + gas_fuel_usage.sum() + ) + + + return var + +def get_final_energy(n, region, _industry_demand, _energy_totals): + + + var = pd.Series() + + energy_totals = _energy_totals.loc[region[0:2]] + + industry_demand = _industry_demand.filter( + like=region, axis=0, + ).sum() + + # Q: Pypsa-eur does not strictly distinguish between energy and + # non-energy use?? + + var["Final Energy|Industry excl Non-Energy Use|Electricity"] = \ + industry_demand.get("electricity") + # or use: sum_load(n, "industry electricity", region) + + var["Final Energy|Industry excl Non-Energy Use|Heat"] = \ + industry_demand.get("low-temperature heat") + #sum_load(n, "low-temperature heat for industry", region) + + # var["Final Energy|Industry excl Non-Energy Use|Solar"] = \ + # !: Included in |Heat + + # var["Final Energy|Industry excl Non-Energy Use|Geothermal"] = \ + # Not implemented + + var["Final Energy|Industry excl Non-Energy Use|Gases"] = \ + industry_demand.get("methane") + # "gas for industry" is now regionally resolved and could be used here + + # var["Final Energy|Industry excl Non-Energy Use|Power2Heat"] = \ + # Q: misleading description + + var["Final Energy|Industry excl Non-Energy Use|Hydrogen"] = \ + industry_demand.get("hydrogen") + # or "H2 for industry" load + # TODO Is this really all energy-use? Or feedstock as well? + + + #var["Final Energy|Industry excl Non-Energy Use|Liquids"] = \ + # sum_load(n, "naphtha for industry", region) + #TODO This is plastics not liquids for industry! Look in industry demand! + + + # var["Final Energy|Industry excl Non-Energy Use|Other"] = \ + + var["Final Energy|Industry excl Non-Energy Use|Solids"] = \ + industry_demand.get(["coal", "coke", "solid biomass"]).sum() + + # Why is AMMONIA zero? Is all naphtha just plastic? + + # var["Final Energy|Industry excl Non-Energy Use|Non-Metallic Minerals"] = \ + # var["Final Energy|Industry excl Non-Energy Use|Chemicals"] = \ + # var["Final Energy|Industry excl Non-Energy Use|Steel"] = \ + # var["Final Energy|Industry excl Non-Energy Use|Steel|Primary"] = \ + # var["Final Energy|Industry excl Non-Energy Use|Steel|Secondary"] = \ + # var["Final Energy|Industry excl Non-Energy Use|Pulp and Paper"] = \ + # var["Final Energy|Industry excl Non-Energy Use|Food and Tobacco"] = \ + # var["Final Energy|Industry excl Non-Energy Use|Non-Ferrous Metals"] = \ + # var["Final Energy|Industry excl Non-Energy Use|Engineering"] = \ + # var["Final Energy|Industry excl Non-Energy Use|Vehicle Construction"] = \ + # Q: Most of these could be found somewhere, but are model inputs! + + + + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } + + # Final energy is delivered to the consumers + low_voltage_electricity = n.statistics.withdrawal( + bus_carrier="low voltage", + **kwargs, + ).filter( + like=region, + ).groupby("carrier").sum().multiply(MWh2PJ) + + var["Final Energy|Residential and Commercial|Electricity"] = \ + low_voltage_electricity[ + # carrier does not contain one of the following substrings + ~low_voltage_electricity.index.str.contains( + "urban central|industry|agriculture|charger" + # Excluding chargers (battery and EV) + ) + ].sum() + + # urban decentral heat and rural heat are delivered as different forms of energy + # (gas, oil, biomass, ...) + decentral_heat_withdrawal = n.statistics.withdrawal( + bus_carrier=["rural heat", "urban decentral heat"], + **kwargs, + ).filter( + like=region, + ).groupby("carrier").sum().multiply(MWh2PJ) + + decentral_heat_residential_and_commercial_fraction = ( + decentral_heat_withdrawal.get( + ["rural heat", "urban decentral heat"] + ).sum() / decentral_heat_withdrawal.sum() + ) + + decentral_heat_supply_rescom = n.statistics.supply( + bus_carrier=["rural heat", "urban decentral heat"], + **kwargs, + ).filter( + like=region, + ).groupby("carrier").sum().multiply(MWh2PJ).multiply( + decentral_heat_residential_and_commercial_fraction + ) + # Dischargers probably should not be considered, to avoid double counting + + var["Final Energy|Residential and Commercial|Heat"] = ( + sum_load(n, "urban central heat", region) # Maybe use n.statistics instead + + decentral_heat_supply_rescom.filter(like="solar thermal").sum() + ) + # Assuming for solar thermal secondary energy == Final energy + + var["Final Energy|Residential and Commercial|Gases"] = \ + decentral_heat_supply_rescom.filter(like="gas boiler").sum() + + # var["Final Energy|Residential and Commercial|Hydrogen"] = \ + # ! Not implemented + + var["Final Energy|Residential and Commercial|Liquids"] = \ + decentral_heat_supply_rescom.filter(like="oil boiler").sum() + + # var["Final Energy|Residential and Commercial|Other"] = \ + # var["Final Energy|Residential and Commercial|Solids|Coal"] = \ + # ! Not implemented + + var["Final Energy|Residential and Commercial|Solids"] = \ + var["Final Energy|Residential and Commercial|Solids|Biomass"] = \ + decentral_heat_supply_rescom.filter(like="biomass boiler").sum() + + # Q: Everything else seems to be not implemented + + var["Final Energy|Residential and Commercial"] = ( + var["Final Energy|Residential and Commercial|Electricity"] + + var["Final Energy|Residential and Commercial|Heat"] + + var["Final Energy|Residential and Commercial|Gases"] + + var["Final Energy|Residential and Commercial|Liquids"] + + var["Final Energy|Residential and Commercial|Solids"] + ) + + # var["Final Energy|Transportation|Other"] = \ + + var["Final Energy|Transportation|Electricity"] = \ + sum_load(n, "land transport EV", region) + + # var["Final Energy|Transportation|Gases"] = \ + # var["Final Energy|Transportation|Gases|Natural Gas"] = \ + # var["Final Energy|Transportation|Gases|Biomass"] = \ + # var["Final Energy|Transportation|Gases|Efuel"] = \ + # var["Final Energy|Transportation|Gases|Synthetic Fossil"] = \ + # ! Not implemented + + var["Final Energy|Transportation|Hydrogen"] = \ + sum_load(n, "land transport fuel cell", region) + # ?? H2 for shipping + + + international_aviation_fraction = \ + energy_totals["total international aviation"] / ( + energy_totals["total domestic aviation"] + + energy_totals["total international aviation"] + ) + international_navigation_fraction = \ + energy_totals["total international navigation"] / ( + energy_totals["total domestic navigation"] + + energy_totals["total international navigation"] + ) + + EU_oil_supply = n.statistics.supply(bus_carrier="oil") + oil_fossil_fraction = ( + EU_oil_supply.get("Generator").get("oil") + / EU_oil_supply.sum() + ) + + var["Final Energy|Transportation|Liquids"] = ( + sum_load(n, "land transport oil", region) + + ( + sum_load(n, "kerosene for aviation", region) + * (1 - international_aviation_fraction) + ) + ( + sum_load(n, ["shipping oil", "shipping methanol"], region) + * (1 - international_navigation_fraction) + ) + ) + # var["Final Energy|Transportation|Liquids|Biomass"] = \ + # var["Final Energy|Transportation|Liquids|Synthetic Fossil"] = \ + var["Final Energy|Transportation|Liquids|Petroleum"] = ( + var["Final Energy|Transportation|Liquids"] + * oil_fossil_fraction + ) + + var["Final Energy|Transportation|Liquids|Efuel"] = ( + var["Final Energy|Transportation|Liquids"] + * (1 - oil_fossil_fraction) + ) + + + var["Final Energy|Bunkers|Aviation"] = \ + var["Final Energy|Bunkers|Aviation|Liquids"] = ( + sum_load(n, "kerosene for aviation", region) + * international_aviation_fraction + ) + + + var["Final Energy|Bunkers|Navigation"] = \ + var["Final Energy|Bunkers|Navigation|Liquids"] = ( + sum_load(n, ["shipping oil", "shipping methanol"], region) + * international_navigation_fraction + ) + + # var["Final Energy|Bunkers|Navigation|Gases"] = \ + # ! Not implemented + # var["Final Energy|Bunkers|Navigation|Hydrogen"] = \ + # ! Not used + + var["Final Energy|Bunkers"] = \ + var["Final Energy|Bunkers|Navigation"] \ + + var["Final Energy|Bunkers|Aviation"] + + var["Final Energy|Transportation"] = ( + var["Final Energy|Transportation|Electricity"] + + var["Final Energy|Transportation|Liquids"] + + var["Final Energy|Transportation|Hydrogen"] + ) + + var["Final Energy|Agriculture|Electricity"] = \ + sum_load(n, "agriculture electricity", region) + var["Final Energy|Agriculture|Heat"] = \ + sum_load(n, "agriculture heat", region) + var["Final Energy|Agriculture|Liquids"] = \ + sum_load(n, "agriculture machinery oil", region) + # var["Final Energy|Agriculture|Gases"] = \ + var["Final Energy|Agriculture"] = ( + var["Final Energy|Agriculture|Electricity"] + + var["Final Energy|Agriculture|Heat"] + + var["Final Energy|Agriculture|Liquids"] + ) + + assert isclose( + var["Final Energy|Agriculture"], + energy_totals.get("total agriculture") + ) + # It's nice to do these double checks, but it's less + # straightforward for the other categories + + + # var["Final Energy"] = \ + # var["Final Energy incl Non-Energy Use incl Bunkers"] = \ + + # var["Final Energy|Non-Energy Use|Liquids"] = \ + var["Final Energy|Non-Energy Use"] = \ + industry_demand.get("naphtha") # This is essentially plastics + + # var["Final Energy|Non-Energy Use|Gases"] = \ + # var["Final Energy|Non-Energy Use|Solids"] = \ + # var["Final Energy|Non-Energy Use|Hydrogen"] = \ + # ! Not implemented + + var["Final Energy|Electricity"] = ( + var["Final Energy|Agriculture|Electricity"] + + var["Final Energy|Residential and Commercial|Electricity"] + + var["Final Energy|Transportation|Electricity"] + + var["Final Energy|Industry excl Non-Energy Use|Electricity"] + ) + + # var["Final Energy|Solids"] = \ + # var["Final Energy|Solids|Biomass"] = \ + # var["Final Energy|Gases"] = \ + # var["Final Energy|Liquids"] = \ + # var["Final Energy|Heat"] = \ + # var["Final Energy|Solar"] = \ + # var["Final Energy|Hydrogen"] = \ + # var["Final Energy|Geothermal"] = \ + # ! Not implemented + + return var + def get_ariadne_var(n, industry_demand, energy_totals, region): var = pd.concat([ get_capacities_electricity(n,region), get_capacities_heat(n,region), get_capacities_other(n,region), - #get_primary_energy(n, region), - #get_secondary_energy(n, region), - #get_final_energy(n, region, industry_demand, energy_totals), + get_primary_energy(n, region), + get_secondary_energy(n, region), + get_final_energy(n, region, industry_demand, energy_totals), #get_prices(n,region), #get_emissions ]) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py new file mode 100644 index 000000000..998c7cb49 --- /dev/null +++ b/workflow/scripts/plot_ariadne_variables.py @@ -0,0 +1,174 @@ +import pandas as pd +import matplotlib.pyplot as plt +import pyam +import os + +def ariadne_subplot(df, ax, title, select_regex="", drop_regex=""): + df = df.T.copy() + if select_regex: + df = df.filter( + regex=select_regex, + ) + if drop_regex: + df = df.filter( + regex=drop_regex, + ) + # Check that all values have the same Unit + assert df.columns.unique(level="Unit").size == 1 + + # Simplify variable names + df.columns = pd.Index( + map( + lambda x: x[0][(x[0].find("|") + 1):], + df.columns, + ), + name=df.columns.names[0], + ) + + return df.plot.area(ax=ax, title=title, legend=False) + + + +def side_by_side_plot( + df, dfhybrid, title, savepath, + rshift=1.25, **kwargs + ): + idx = df.index.intersection(dfhybrid.index) + df = df.loc[idx] + dfhybrid = dfhybrid.loc[idx] + + fig, axes = plt.subplots(ncols=2, sharey=True) + ax = ariadne_subplot(df, axes[0], "PyPSA-Eur", **kwargs) + ax2 = ariadne_subplot(dfhybrid, axes[1], "Hybrid", **kwargs) + + handles, labels = ax.get_legend_handles_labels() + labels2 = ax2.get_legend_handles_labels()[1] + assert labels == labels2 + + fig.legend( + reversed(handles), + reversed(labels), + bbox_to_anchor=(rshift,0.9) + ) + fig.suptitle(title) + title = title.replace(" ", "_") + fig.savefig(savepath, bbox_inches="tight") + return fig + +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "plot_ariadne_variables", + simpl="", + clusters=22, + opts="", + ll="v1.2", + sector_opts="None", + planning_horizons="2050", + run="240219-test/normal" + ) + + + df = pd.read_csv( + snakemake.input.ariadne_variables, + index_col=["Model", "Scenario", "Region", "Variable", "Unit"] + ).groupby(["Variable","Unit"]).sum() + + df.columns = pd.to_numeric(df.columns) + + # Set USERNAME and PASSWORD for the Ariadne DB + pyam.iiasa.set_config( + os.environ["IIASA_USERNAME"], + os.environ["IIASA_PASSWORD"], + ) + + model_df= pyam.read_iiasa( + "ariadne_intern", + model="Hybrid", + scenario="8Gt_Bal_v3", + ).timeseries() + + dfhybrid = model_df.loc[ + "Hybrid", "8Gt_Bal_v3", "Deutschland" + ][pd.to_numeric(df.keys())] + dfhybrid.index.names = df.index.names + + side_by_side_plot( + df, + dfhybrid, + "Primary Energy in PJ_yr", + savepath=snakemake.output.primary_energy, + select_regex="Primary Energy\|[^|]*$", + drop_regex="^(?!.*(Fossil)).+" + ) + + side_by_side_plot( + df, + dfhybrid, + "Detailed Primary Energy in PJ_yr", + savepath=snakemake.output.primary_energy_detailed, + select_regex="Primary Energy\|[^|]*\|[^|]*$", + drop_regex="^(?!.*(CCS)).+" + ) + + side_by_side_plot( + df, + dfhybrid, + "Secondary Energy in PJ_yr", + savepath=snakemake.output.secondary_energy, + select_regex="Secondary Energy\|[^|]*$", + ) + + side_by_side_plot( + df, + dfhybrid, + "Detailed Secondary Energy in PJ_yr", + savepath=snakemake.output.secondary_energy_detailed, + # Secondary Energy|Something|Something (exactly two pipes) + select_regex="Secondary Energy\|[^|]*\|[^|]*$", + # Not ending in Fossil or Renewables (i.e., categories) + drop_regex="^(?!.*(Fossil|Renewables|Losses)).+" + ) + + side_by_side_plot( + df, + dfhybrid, + "Final Energy in PJ_yr", + savepath=snakemake.output.final_energy, + select_regex="Final Energy\|[^|]*$", + drop_regex="^(?!.*(Electricity)).+" + ) + + side_by_side_plot( + df, + dfhybrid, + "Detailed Final Energy in PJ_yr", + savepath=snakemake.output.final_energy_detailed, + select_regex="Final Energy\|[^|]*\|[^|]*$", + rshift = 1.45, + #drop_regex="^(?!.*(Electricity)).+" + ) + + side_by_side_plot( + df, + dfhybrid, + "Capacity in GW", + savepath=snakemake.output.capacity, + select_regex="Capacity\|[^|]*$", + ) + + side_by_side_plot( + df, + dfhybrid, + "Detailed Capacity in GW", + savepath=snakemake.output.capacity_detailed, + select_regex="Capacity\|[^|]*\|[^|]*$", + drop_regex="^(?!.*(Reservoir|Converter)).+" + ) \ No newline at end of file From e57fd7c7b1565e0513382435e6f715aa886753c4 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 29 Feb 2024 17:34:10 +0100 Subject: [PATCH 142/669] add 2040&2050 back in --- config/config.yaml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 8a86e51ce..9bcf04443 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -40,9 +40,9 @@ scenario: #- 2025 - 2030 #- 2035 - #- 2040 + - 2040 #- 2045 - #- 2050 + - 2050 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" From 5b0caefdec98ccc82f5a2f61b16dca8ce28507f4 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 29 Feb 2024 17:17:15 +0100 Subject: [PATCH 143/669] add ariadne_all rule to conveniently trigger the plotting workflow --- workflow/Snakefile | 3 +++ 1 file changed, 3 insertions(+) diff --git a/workflow/Snakefile b/workflow/Snakefile index 9a9b542f3..97d29cbc0 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -270,3 +270,6 @@ rule plot_ariadne_variables: script: "scripts/plot_ariadne_variables.py" +rule ariadne_all: + input: + expand(RESULTS + "ariadne/capacity_detailed.png", run=config["run"]["name"]) \ No newline at end of file From 853dd5136e56e318d40b3443af1b0c2dabb06bcc Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 1 Mar 2024 15:19:42 +0100 Subject: [PATCH 144/669] transition co2 emission to n.statistics --- workflow/scripts/export_ariadne_variables.py | 235 ++++++++++++++++++- 1 file changed, 231 insertions(+), 4 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 891521f83..11a729337 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -42,6 +42,45 @@ def sum_load(n, carrier, region): "p", ) +def sum_co2(n, carrier, region): + if type(carrier) == list: + return sum([sum_co2(n, car, region) for car in carrier]) + try: + port = n.links.groupby( + "carrier" + ).first().loc[ + carrier + ].filter( + like="bus" + ).tolist().index("co2 atmosphere") + except KeyError: + print( + "Warning: carrier `", carrier, "` not found in network.links.carrier!", + sep="") + return 0 + + return -1 * t2Mt * _get_t_sum( + n.links, + n.links_t, + carrier, + region, + n.snapshot_weightings.generators, + f"p{port}", + ) + + +def get_total_co2(n, region): + # including international bunker fuels and negative emissions + df = n.links.filter(like=region, axis=0) + co2 = 0 + for port in [col[3:] for col in df if col.startswith("bus")]: + links = df.index[df[f"bus{port}"] == "co2 atmosphere"] + co2 -= n.links_t[f"p{port}"][links].multiply( + n.snapshot_weightings.generators, + axis=0, + ).values.sum() + return t2Mt * co2 + def get_capacities_electricity(n, region): kwargs = { @@ -1389,6 +1428,189 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): return var + +def get_emissions(n, region): + + + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } + + + var = pd.Series() + + co2_emissions = n.statistics.supply( + bus_carrier="co2",**kwargs + ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) + + co2_negative_emissions = n.statistics.withdrawal( + bus_carrier="co2",**kwargs + ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) + + co2_storage = n.statistics.supply( + bus_carrier ="co2 stored",**kwargs + ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) + ## Emissions + + var["Carbon Sequestration"] = \ + n.statistics.supply( + bus_carrier="co2 sequestered",**kwargs + ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) + + var["Carbon Sequestration|DACCS"] = \ + var["Carbon Sequestration"] * ( + co2_storage.filter(like="DAC").sum() + / co2_storage.sum() + ) + + var["Carbon Sequestration|BECCS"] = \ + var["Carbon Sequestration"] * ( + co2_storage.filter(like="bio").sum() + / co2_storage.sum() + ) + + var["Carbon Sequestration|Other"] = ( + var["Carbon Sequestration"] + - var["Carbon Sequestration|DACCS"] + - var["Carbon Sequestration|BECCS"] + ) + + + var["Emissions|CO2"] = \ + co2_emissions.sum() - co2_negative_emissions.sum() + + # ! LULUCF should also be subtracted, we get from REMIND, + # TODO how to add it here? + + # Make sure these values are about right + # var["Emissions|CO2|Energy and Industrial Processes"] = \ + # var["Emissions|CO2|Industrial Processes"] = \ + # var["Emissions|CO2|Energy"] = \ + # var["Emissions|CO2|Energy incl Bunkers"] = \ + # var["Emissions|CO2|Energy|Demand"] = \ + # var["Emissions|CO2|Energy incl Bunkers|Demand"] = \ + + # var["Emissions|CO2|Energy|Demand|Industry"] = \ + # sum_co2( + # n, + # "naphtha for industry", + # region, + # ) + # Q: these are emissions through burning of plastic waste!!! + + + var["Emissions|CO2|Energy|Demand|Residential and Commercial"] = \ + sum_co2( + n, + [ + *n.links.carrier.filter(like="oil boiler").unique(), + *n.links.carrier.filter(like="gas boiler").unique(), + # matches "gas CHP CC" as well + *n.links.carrier.filter(like="gas CHP").unique(), + ], + region + ) + # Q: are the gas CHPs for Residential and Commercial demand?? + # Q: Also residential elec demand! + + var["Emissions|CO2|Energy|Demand|Transportation"] = \ + sum_co2(n, "land transport oil", region) + + var["Emissions|CO2|Energy|Demand|Bunkers|Aviation"] = \ + sum_co2(n, "kerosene for aviation", region) + + var["Emissions|CO2|Energy|Demand|Bunkers|Navigation"] = \ + sum_co2(n, ["shipping oil", "shipping methanol"], region) + + var["Emissions|CO2|Energy|Demand|Bunkers"] = \ + var["Emissions|CO2|Energy|Demand|Bunkers|Aviation"] + \ + var["Emissions|CO2|Energy|Demand|Bunkers|Navigation"] + + var["Emissions|CO2|Energy|Demand|Other Sector"] = \ + sum_co2(n, "agriculture machinery oil", region) + + + var["Emissions|Gross Fossil CO2|Energy|Supply|Electricity"] = \ + sum_co2(n, + [ + "OCGT", + "CCGT", + "coal", + "lignite", + "oil", + "urban central gas CHP", + "urban central gas CHP CC", + ], + region, + ) + + var["Emissions|CO2|Energy|Supply|Electricity"] = ( + var["Emissions|Gross Fossil CO2|Energy|Supply|Electricity"] + + sum_co2(n, "urban central solid biomass CHP CC", region) + ) + + # Q: Where should I add the CHPs? + # ! According to Ariadne Database in the Electricity + + var["Emissions|CO2|Energy|Supply|Heat"] = \ + sum_co2(n, + [ + *n.links.carrier.filter(like="oil boiler").unique(), + *n.links.carrier.filter(like="gas boiler").unique(), + ], + region, + ) + + var["Emissions|CO2|Energy|Supply|Electricity and Heat"] = \ + var["Emissions|CO2|Energy|Supply|Heat"] + \ + var["Emissions|CO2|Energy|Supply|Electricity"] + + # var["Emissions|CO2|Supply|Non-Renewable Waste"] = \ + var["Emissions|CO2|Energy|Supply|Hydrogen"] = \ + sum_co2(n, + [ + "SMR", + "SMR CC", + ], + region, + ) + + #var["Emissions|CO2|Energy|Supply|Gases"] = \ + var["Emissions|CO2|Supply|Non-Renewable Waste"] = \ + sum_co2(n, "naphtha for industry", region) + # Q: These are plastic combustino emissions, not Gases. + # What then are gases? + + var["Emissions|CO2|Energy|Supply|Liquids"] = \ + sum_co2( + n, + [ + "agriculture machinery oil", + "kerosene for aviation", + "shipping oil", + "shipping methanol", + "land transport oil" + ], + region + ) + # Q: Some things show up on Demand as well as Supply side + + var["Emissions|CO2|Energy|Supply|Liquids and Gases"] = \ + var["Emissions|CO2|Energy|Supply|Liquids"] + # var["Emissions|CO2|Energy|Supply|Gases"] + \ + + var["Emissions|CO2|Energy|Supply"] = \ + var["Emissions|CO2|Energy|Supply|Liquids and Gases"] + \ + var["Emissions|CO2|Energy|Supply|Hydrogen"] + \ + var["Emissions|CO2|Energy|Supply|Electricity and Heat"] + # var["Emissions|CO2|Energy|Supply|Other Sector"] = \ + # var["Emissions|CO2|Energy|Supply|Solids"] = \ + # TODO Add (negative) BECCS emissions! (Use "co2 stored" and "co2 sequestered") + + + return var + def get_ariadne_var(n, industry_demand, energy_totals, region): var = pd.concat([ @@ -1498,7 +1720,12 @@ def get_data( on=["Model", "Scenario", "Region", "Variable", "Unit"]), yearly_dfs ) - df.to_csv( - snakemake.output.ariadne_variables, - index=False - ) \ No newline at end of file + debug = True + if debug: + n = networks[0] + region="DE" + if not debug: + df.to_csv( + snakemake.output.ariadne_variables, + index=False + ) \ No newline at end of file From f6ffabc9593d5a755fa67065dc3e9f518d0e8192 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 1 Mar 2024 18:41:56 +0100 Subject: [PATCH 145/669] allow landfill of plastics, and option for waste-to-energy --- config/config.yaml | 15 ++++++++++++--- config/scenarios.yaml | 2 +- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 14 insertions(+), 5 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 8a86e51ce..88ca6d184 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -5,7 +5,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: name: - - 240219-test/normal + - 240301-w2e/365H scenarios: enable: true shared_resources: true #stops recalculating @@ -40,9 +40,9 @@ scenario: #- 2025 - 2030 #- 2035 - #- 2040 + - 2040 #- 2045 - #- 2050 + - 2050 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" @@ -246,6 +246,15 @@ industry: 2040: 0.12 2045: 0.16 2050: 0.20 + HVC_environment_sequestration_fraction: + 2020: 0.1 + 2025: 0.1 + 2030: 0.12 + 2035: 0.15 + 2040: 0.18 + 2045: 0.20 + 2050: 0.20 + waste_to_energy: true # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving diff --git a/config/scenarios.yaml b/config/scenarios.yaml index f5dbdbd9d..5014bfd1a 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -11,7 +11,7 @@ # electricity: # renewable_carriers: [wind, solar] # override the list of renewable carriers -240219-test/normal: +240301-w2e/365H: clustering: temporal: resolution_sector: 365H diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index c86d2ea19..f9ca19604 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit c86d2ea19f5a1b1696442ed50bebcf9093f309a5 +Subproject commit f9ca19604bd1bc70ef0f0e16e84e1172a00fa403 From f8104e41f0dafecf5dd6bb3204b3b0b43df9b0d5 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 4 Mar 2024 19:18:50 +0100 Subject: [PATCH 146/669] added emissions exporitng --- workflow/scripts/export_ariadne_variables.py | 211 +++++++++++-------- 1 file changed, 122 insertions(+), 89 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 11a729337..6c65de7c9 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1423,15 +1423,17 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): # var["Final Energy|Heat"] = \ # var["Final Energy|Solar"] = \ # var["Final Energy|Hydrogen"] = \ + # var["Final Energy|Geothermal"] = \ # ! Not implemented return var -def get_emissions(n, region): - +def get_emissions(n, region, _energy_totals): + energy_totals = _energy_totals.loc[region[0:2]] + kwargs = { 'groupby': n.statistics.groupers.get_name_bus_and_carrier, 'nice_names': False, @@ -1456,7 +1458,7 @@ def get_emissions(n, region): var["Carbon Sequestration"] = \ n.statistics.supply( bus_carrier="co2 sequestered",**kwargs - ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) + ).filter(like=region).groupby("carrier").sum().multiply(t2Mt).sum() var["Carbon Sequestration|DACCS"] = \ var["Carbon Sequestration"] * ( @@ -1480,59 +1482,85 @@ def get_emissions(n, region): var["Emissions|CO2"] = \ co2_emissions.sum() - co2_negative_emissions.sum() - # ! LULUCF should also be subtracted, we get from REMIND, + # ! LULUCF should also be subtracted (or added??), we get from REMIND, # TODO how to add it here? # Make sure these values are about right - # var["Emissions|CO2|Energy and Industrial Processes"] = \ - # var["Emissions|CO2|Industrial Processes"] = \ - # var["Emissions|CO2|Energy"] = \ - # var["Emissions|CO2|Energy incl Bunkers"] = \ - # var["Emissions|CO2|Energy|Demand"] = \ - # var["Emissions|CO2|Energy incl Bunkers|Demand"] = \ + var["Emissions|CO2|Industrial Processes"] = \ + co2_emissions.reindex([ + "process emissions", + "process emissions CC", + ]).sum() + # !!! We do not strictly separate fuel combustion emissions from + # process emissions in industry, so some should go to: + var["Emissions|CO2|Energy|Demand|Industry"] = \ + co2_emissions.reindex([ + "gas for industry", + "gas for industry CC", + "coal for industry" + ]).sum() - co2_negative_emissions.get( + "solid biomass for industry CC", + 0, + ) - # var["Emissions|CO2|Energy|Demand|Industry"] = \ - # sum_co2( - # n, - # "naphtha for industry", - # region, - # ) - # Q: these are emissions through burning of plastic waste!!! - - - var["Emissions|CO2|Energy|Demand|Residential and Commercial"] = \ - sum_co2( - n, - [ - *n.links.carrier.filter(like="oil boiler").unique(), - *n.links.carrier.filter(like="gas boiler").unique(), - # matches "gas CHP CC" as well - *n.links.carrier.filter(like="gas CHP").unique(), - ], - region + + + var["Emissions|CO2|Energy|Demand|Residential and Commercial"] = ( + co2_emissions.filter(like="urban decentral").sum() + + co2_emissions.filter(like="rural" ).sum() + ) + + international_aviation_fraction = \ + energy_totals["total international aviation"] / ( + energy_totals["total domestic aviation"] + + energy_totals["total international aviation"] ) - # Q: are the gas CHPs for Residential and Commercial demand?? - # Q: Also residential elec demand! + international_navigation_fraction = \ + energy_totals["total international navigation"] / ( + energy_totals["total domestic navigation"] + + energy_totals["total international navigation"] + ) - var["Emissions|CO2|Energy|Demand|Transportation"] = \ - sum_co2(n, "land transport oil", region) + var["Emissions|CO2|Energy|Demand|Transportation"] = ( + co2_emissions.get("land transport oil", 0) + ( + co2_emissions.get("kerosene for aviation") + * (1 - international_aviation_fraction) + ) + ( + co2_emissions.filter(like="shipping").sum() + * (1 - international_navigation_fraction) + ) + ) - var["Emissions|CO2|Energy|Demand|Bunkers|Aviation"] = \ - sum_co2(n, "kerosene for aviation", region) - - var["Emissions|CO2|Energy|Demand|Bunkers|Navigation"] = \ - sum_co2(n, ["shipping oil", "shipping methanol"], region) + var["Emissions|CO2|Energy|Demand|Bunkers|Aviation"] = ( + co2_emissions.get("kerosene for aviation") + * international_aviation_fraction + ) + + var["Emissions|CO2|Energy|Demand|Bunkers|Navigation"] = ( + co2_emissions.filter(like="shipping").sum() + * international_navigation_fraction + ) var["Emissions|CO2|Energy|Demand|Bunkers"] = \ var["Emissions|CO2|Energy|Demand|Bunkers|Aviation"] + \ var["Emissions|CO2|Energy|Demand|Bunkers|Navigation"] var["Emissions|CO2|Energy|Demand|Other Sector"] = \ - sum_co2(n, "agriculture machinery oil", region) - + co2_emissions.get("agriculture machinery oil") + + var["Emissions|CO2|Energy|Demand"] = \ + var.get([ + "Emissions|CO2|Energy|Demand|Industry", + "Emissions|CO2|Energy|Demand|Transportation", + "Emissions|CO2|Energy|Demand|Residential and Commercial", + "Emissions|CO2|Energy|Demand|Other Sector" + ]).sum() + var["Emissions|CO2|Energy incl Bunkers|Demand"] = \ + var["Emissions|CO2|Energy|Demand"] + \ + var["Emissions|CO2|Energy|Demand|Bunkers"] var["Emissions|Gross Fossil CO2|Energy|Supply|Electricity"] = \ - sum_co2(n, + co2_emissions.reindex( [ "OCGT", "CCGT", @@ -1542,92 +1570,97 @@ def get_emissions(n, region): "urban central gas CHP", "urban central gas CHP CC", ], - region, - ) + ).sum() + # !!! Once again: Should we split CHPs??? -> see mattemost var["Emissions|CO2|Energy|Supply|Electricity"] = ( var["Emissions|Gross Fossil CO2|Energy|Supply|Electricity"] - + sum_co2(n, "urban central solid biomass CHP CC", region) + - co2_negative_emissions.get("urban central solid biomass CHP CC") ) - # Q: Where should I add the CHPs? - # ! According to Ariadne Database in the Electricity - var["Emissions|CO2|Energy|Supply|Heat"] = \ - sum_co2(n, - [ - *n.links.carrier.filter(like="oil boiler").unique(), - *n.links.carrier.filter(like="gas boiler").unique(), - ], - region, - ) + co2_emissions.filter( + like="urban central" + ).filter(like="boiler").sum() + # in 2020 there might be central oil boilers??? var["Emissions|CO2|Energy|Supply|Electricity and Heat"] = \ var["Emissions|CO2|Energy|Supply|Heat"] + \ var["Emissions|CO2|Energy|Supply|Electricity"] - # var["Emissions|CO2|Supply|Non-Renewable Waste"] = \ + var["Emissions|CO2|Energy|Supply|Hydrogen"] = \ - sum_co2(n, - [ - "SMR", - "SMR CC", - ], - region, - ) + co2_emissions.filter(like="SMR").sum() + + var["Emissions|CO2|Energy|Supply|Gases"] = \ + (-1) * co2_negative_emissions.filter( + like="biogas to gas" + ).sum() - #var["Emissions|CO2|Energy|Supply|Gases"] = \ var["Emissions|CO2|Supply|Non-Renewable Waste"] = \ - sum_co2(n, "naphtha for industry", region) - # Q: These are plastic combustino emissions, not Gases. - # What then are gases? + co2_emissions.get("naphtha for industry") - var["Emissions|CO2|Energy|Supply|Liquids"] = \ - sum_co2( - n, - [ - "agriculture machinery oil", - "kerosene for aviation", - "shipping oil", - "shipping methanol", - "land transport oil" - ], - region - ) - # Q: Some things show up on Demand as well as Supply side + # var["Emissions|CO2|Energy|Supply|Liquids"] = \ + # Our only Liquid production is Fischer-Tropsch + # -> no emissions in this category - var["Emissions|CO2|Energy|Supply|Liquids and Gases"] = \ - var["Emissions|CO2|Energy|Supply|Liquids"] + # var["Emissions|CO2|Energy|Supply|Liquids and Gases"] = \ + # var["Emissions|CO2|Energy|Supply|Liquids"] # var["Emissions|CO2|Energy|Supply|Gases"] + \ var["Emissions|CO2|Energy|Supply"] = \ - var["Emissions|CO2|Energy|Supply|Liquids and Gases"] + \ + var["Emissions|CO2|Energy|Supply|Gases"] + \ var["Emissions|CO2|Energy|Supply|Hydrogen"] + \ var["Emissions|CO2|Energy|Supply|Electricity and Heat"] + # var["Emissions|CO2|Energy|Supply|Other Sector"] = \ # var["Emissions|CO2|Energy|Supply|Solids"] = \ - # TODO Add (negative) BECCS emissions! (Use "co2 stored" and "co2 sequestered") + # TODO check that supply + demand = TOTAL + + + var["Emissions|CO2|Energy"] = \ + var["Emissions|CO2|Energy|Demand"] + \ + var["Emissions|CO2|Energy|Supply"] + + var["Emissions|CO2|Energy incl Bunkers"] = \ + var["Emissions|CO2|Energy incl Bunkers|Demand"] + \ + var["Emissions|CO2|Energy|Supply"] + + var["Emissions|CO2|Energy and Industrial Processes"] = \ + var["Emissions|CO2|Energy"] + \ + var["Emissions|CO2|Industrial Processes"] + # For 2050 something goes wrong + assert isclose( + var["Emissions|CO2"], + ( + var["Emissions|CO2|Energy and Industrial Processes"] + + var["Emissions|CO2|Energy|Demand|Bunkers"] + + var["Emissions|CO2|Supply|Non-Renewable Waste"] + - co2_negative_emissions.get("DAC", 0) + ) + ) return var def get_ariadne_var(n, industry_demand, energy_totals, region): var = pd.concat([ - get_capacities_electricity(n,region), - get_capacities_heat(n,region), - get_capacities_other(n,region), + get_capacities_electricity(n, region), + get_capacities_heat(n, region), + get_capacities_other(n, region), get_primary_energy(n, region), get_secondary_energy(n, region), get_final_energy(n, region, industry_demand, energy_totals), #get_prices(n,region), - #get_emissions + get_emissions(n, region, energy_totals) ]) - return var + + # uses the global variables model, scenario and var2unit. For now. def get_data( n, industry_demand, energy_totals, region, @@ -1722,7 +1755,7 @@ def get_data( ) debug = True if debug: - n = networks[0] + n = networks[3] region="DE" if not debug: df.to_csv( From eeafa866da0ced647d60a49af4151c17754169f1 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 5 Mar 2024 10:33:23 +0100 Subject: [PATCH 147/669] splitting CHPs for emissions --- workflow/scripts/export_ariadne_variables.py | 72 +++++++++++++++----- 1 file changed, 55 insertions(+), 17 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 6c65de7c9..71e6c0e0d 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1439,13 +1439,41 @@ def get_emissions(n, region, _energy_totals): 'nice_names': False, } - var = pd.Series() co2_emissions = n.statistics.supply( bus_carrier="co2",**kwargs ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) + + CHP_emissions = n.statistics.supply( + bus_carrier="co2",**kwargs + ).filter(like=region).filter(like="CHP").multiply(t2Mt) + + CHP_E_to_H = ( + n.links.loc[CHP_emissions.index.get_level_values("name")].efficiency + / n.links.loc[CHP_emissions.index.get_level_values("name")].efficiency2 + ) + + CHP_E_fraction = CHP_E_to_H * (1 / (CHP_E_to_H + 1)) + + negative_CHP_emissions = n.statistics.withdrawal( + bus_carrier="co2",**kwargs + ).filter(like=region).filter(like="CHP").multiply(t2Mt) + + negative_CHP_E_to_H = ( + n.links.loc[ + negative_CHP_emissions.index.get_level_values("name") + ].efficiency + / n.links.loc[ + negative_CHP_emissions.index.get_level_values("name") + ].efficiency2 + ) + + negative_CHP_E_fraction = negative_CHP_E_to_H * ( + 1 / (negative_CHP_E_to_H + 1) + ) + co2_negative_emissions = n.statistics.withdrawal( bus_carrier="co2",**kwargs ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) @@ -1453,7 +1481,6 @@ def get_emissions(n, region, _energy_totals): co2_storage = n.statistics.supply( bus_carrier ="co2 stored",**kwargs ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) - ## Emissions var["Carbon Sequestration"] = \ n.statistics.supply( @@ -1483,7 +1510,7 @@ def get_emissions(n, region, _energy_totals): co2_emissions.sum() - co2_negative_emissions.sum() # ! LULUCF should also be subtracted (or added??), we get from REMIND, - # TODO how to add it here? + # TODO how to consider it here? # Make sure these values are about right var["Emissions|CO2|Industrial Processes"] = \ @@ -1491,6 +1518,7 @@ def get_emissions(n, region, _energy_totals): "process emissions", "process emissions CC", ]).sum() + # !!! We do not strictly separate fuel combustion emissions from # process emissions in industry, so some should go to: var["Emissions|CO2|Energy|Demand|Industry"] = \ @@ -1567,22 +1595,36 @@ def get_emissions(n, region, _energy_totals): "coal", "lignite", "oil", - "urban central gas CHP", - "urban central gas CHP CC", ], - ).sum() - # !!! Once again: Should we split CHPs??? -> see mattemost - + ).sum() + CHP_emissions.multiply( + CHP_E_fraction + ).values.sum() + + + var["Emissions|CO2|Energy|Supply|Electricity"] = ( var["Emissions|Gross Fossil CO2|Energy|Supply|Electricity"] - - co2_negative_emissions.get("urban central solid biomass CHP CC") + - negative_CHP_emissions.multiply( + negative_CHP_E_fraction + ).values.sum() ) - var["Emissions|CO2|Energy|Supply|Heat"] = \ + var["Emissions|Gross Fossil CO2|Energy|Supply|Heat"] = \ co2_emissions.filter( like="urban central" - ).filter(like="boiler").sum() - # in 2020 there might be central oil boilers??? + ).filter( + like="boiler" # in 2020 there might be central oil boilers?! + ).sum() + CHP_emissions.multiply( + 1 - CHP_E_fraction + ).values.sum() + + + var["Emissions|CO2|Energy|Supply|Heat"] = ( + var["Emissions|Gross Fossil CO2|Energy|Supply|Heat"] + - negative_CHP_emissions.multiply( + 1 - negative_CHP_E_fraction + ).values.sum() + ) var["Emissions|CO2|Energy|Supply|Electricity and Heat"] = \ var["Emissions|CO2|Energy|Supply|Heat"] + \ @@ -1616,10 +1658,6 @@ def get_emissions(n, region, _energy_totals): # var["Emissions|CO2|Energy|Supply|Other Sector"] = \ # var["Emissions|CO2|Energy|Supply|Solids"] = \ - - # TODO check that supply + demand = TOTAL - - var["Emissions|CO2|Energy"] = \ var["Emissions|CO2|Energy|Demand"] + \ var["Emissions|CO2|Energy|Supply"] @@ -1631,7 +1669,7 @@ def get_emissions(n, region, _energy_totals): var["Emissions|CO2|Energy and Industrial Processes"] = \ var["Emissions|CO2|Energy"] + \ var["Emissions|CO2|Industrial Processes"] - # For 2050 something goes wrong + assert isclose( var["Emissions|CO2"], ( From ad9ac66713d514aae760be90627a73ddb7a48bce Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 5 Mar 2024 10:58:07 +0100 Subject: [PATCH 148/669] plot_co2 --- workflow/Snakefile | 4 +++ workflow/scripts/export_ariadne_variables.py | 18 +++++----- workflow/scripts/plot_ariadne_variables.py | 36 ++++++++++++++++++-- 3 files changed, 47 insertions(+), 11 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 97d29cbc0..002bac22b 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -267,6 +267,10 @@ rule plot_ariadne_variables: final_energy_detailed=RESULTS + "ariadne/final_energy_detailed.png", capacity=RESULTS + "ariadne/capacity.png", capacity_detailed=RESULTS + "ariadne/capacity_detailed.png", + energy_demand_emissions=RESULTS + "ariadne/energy_demand_emissions.png", + energy_supply_emissions=RESULTS + "ariadne/energy_supply_emissions.png", + co2_emissions=RESULTS + "ariadne/co2_emissions.png", + script: "scripts/plot_ariadne_variables.py" diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 71e6c0e0d..753e39e24 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1791,12 +1791,12 @@ def get_data( on=["Model", "Scenario", "Region", "Variable", "Unit"]), yearly_dfs ) - debug = True - if debug: - n = networks[3] - region="DE" - if not debug: - df.to_csv( - snakemake.output.ariadne_variables, - index=False - ) \ No newline at end of file + + df.to_csv( + snakemake.output.ariadne_variables, + index=False + ) + + # For debugging + n = networks[3] + region="DE" \ No newline at end of file diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 998c7cb49..1b47bc14f 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -3,7 +3,10 @@ import pyam import os -def ariadne_subplot(df, ax, title, select_regex="", drop_regex=""): +def ariadne_subplot( + df, ax, title, + select_regex="", drop_regex="", stacked=True, +): df = df.T.copy() if select_regex: df = df.filter( @@ -25,7 +28,7 @@ def ariadne_subplot(df, ax, title, select_regex="", drop_regex=""): name=df.columns.names[0], ) - return df.plot.area(ax=ax, title=title, legend=False) + return df.plot.area(ax=ax, title=title, legend=False, stacked=stacked) @@ -171,4 +174,33 @@ def side_by_side_plot( savepath=snakemake.output.capacity_detailed, select_regex="Capacity\|[^|]*\|[^|]*$", drop_regex="^(?!.*(Reservoir|Converter)).+" + ) + + side_by_side_plot( + df, + dfhybrid, + "Detailed Demand Emissions in Mt", + savepath=snakemake.output.energy_demand_emissions, + select_regex="Emissions\|CO2\|Energy\|Demand\|[^|]*$", + stacked=False, + ) + + side_by_side_plot( + df, + dfhybrid, + "Detailed Supply Emissions in Mt", + savepath=snakemake.output.energy_supply_emissions, + select_regex="Emissions\|CO2\|Energy\|Supply\|[^|]*$", + stacked=False, + drop_regex="^(?!.*(and)).+" + ) + + side_by_side_plot( + df, + dfhybrid, + "Detailed Supply Emissions in Mt", + savepath=snakemake.output.co2_emissions, + select_regex="Emissions\|CO2\|[^|]*$", + stacked=False, + #drop_regex="^(?!.*(and)).+" ) \ No newline at end of file From fecb09d82fe6d2b7ca896f0adb01cbedd91a7b35 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 5 Mar 2024 11:19:54 +0100 Subject: [PATCH 149/669] correct CHP primary energy --- workflow/scripts/export_ariadne_variables.py | 62 ++++++++++++++++---- 1 file changed, 49 insertions(+), 13 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 753e39e24..d2c9e9fb6 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -630,20 +630,37 @@ def get_primary_energy(n, region): "carrier" ).sum().multiply(gas_fossil_fraction).multiply(MWh2PJ) + + gas_CHP_usage = n.statistics.withdrawal( + bus_carrier="gas", + **kwargs, + ).filter( + like=region + ).filter( + like="gas CHP" + ).multiply(MWh2PJ) + + gas_CHP_E_to_H = ( + n.links.loc[gas_CHP_usage.index.get_level_values("name")].efficiency + / n.links.loc[gas_CHP_usage.index.get_level_values("name")].efficiency2 + ) + + gas_CHP_E_fraction = gas_CHP_E_to_H * (1 / (gas_CHP_E_to_H + 1)) + var["Primary Energy|Gas|Heat"] = \ - gas_usage.filter(like="gas boiler").sum() + gas_usage.filter(like="gas boiler").sum() + gas_CHP_usage.multiply( + 1 - gas_CHP_E_fraction + ).values.sum() var["Primary Energy|Gas|Electricity"] = \ gas_usage.reindex( [ 'CCGT', 'OCGT', - 'urban central gas CHP', - 'urban central gas CHP CC', ], - ).sum() - # Adding the CHPs to electricity, see also Capacity|Electricity|Gas - # Q: pypsa to iamc SPLITS the CHPS. TODO Should we do the same? + ).sum() + gas_CHP_usage.multiply( + gas_CHP_E_fraction + ).values.sum() var["Primary Energy|Gas|Hydrogen"] = \ gas_usage.filter(like="SMR").sum() @@ -702,6 +719,21 @@ def get_primary_energy(n, region): "carrier" ).sum().multiply(MWh2PJ) + biomass_CHP_usage = n.statistics.withdrawal( + bus_carrier="solid biomass", + **kwargs, + ).filter( + like=region + ).filter( + like="CHP" + ).multiply(MWh2PJ) + + biomass_CHP_E_to_H = ( + n.links.loc[biomass_CHP_usage.index.get_level_values("name")].efficiency + / n.links.loc[biomass_CHP_usage.index.get_level_values("name")].efficiency2 + ) + + biomass_CHP_E_fraction = biomass_CHP_E_to_H * (1 / (biomass_CHP_E_to_H + 1)) var["Primary Energy|Biomass|w/ CCS"] = \ biomass_usage[biomass_usage.index.str.contains("CC")].sum() @@ -710,10 +742,13 @@ def get_primary_energy(n, region): biomass_usage[~biomass_usage.index.str.contains("CC")].sum() var["Primary Energy|Biomass|Electricity"] = \ - biomass_usage.filter(like="CHP").sum() - # !!! ADDING CHP ONLY TO ELECTRICITY INSTEAD OF SPLITTING, CORRECT? + biomass_CHP_usage.multiply( + biomass_CHP_E_fraction + ).values.sum() var["Primary Energy|Biomass|Heat"] = \ - biomass_usage.filter(like="boiler").sum() + biomass_usage.filter(like="boiler").sum() + biomass_CHP_usage.multiply( + 1 - biomass_CHP_E_fraction + ).values.sum() # var["Primary Energy|Biomass|Gases"] = \ # Gases are only E-Fuels in AriadneDB @@ -959,9 +994,6 @@ def get_secondary_energy(n, region): var["Secondary Energy|Heat|Gas"] = \ heat_supply.filter(like="gas").sum() - # !!! Again, keep the CHPs in mind! - # Here the heat output is considered, but not for primary input - var["Secondary Energy|Heat|Biomass"] = \ heat_supply.filter(like="biomass").sum() @@ -1799,4 +1831,8 @@ def get_data( # For debugging n = networks[3] - region="DE" \ No newline at end of file + region="DE" + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } \ No newline at end of file From a4e067127ff72ae7944ca489e1a3d63ac31bdbb8 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Tue, 5 Mar 2024 17:45:33 +0100 Subject: [PATCH 150/669] add prices --- workflow/scripts/export_ariadne_variables.py | 580 ++++++++++++++++++- 1 file changed, 574 insertions(+), 6 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index d2c9e9fb6..0d565e277 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2,6 +2,8 @@ import pypsa from functools import reduce from numpy import isclose +import math +import numpy as np # Defining global varibales @@ -1713,16 +1715,581 @@ def get_emissions(n, region, _energy_totals): ) return var -def get_ariadne_var(n, industry_demand, energy_totals, region): +# functions for prices +def get_nodal_flows(n, bus_carrier, region, query='index == index or index != index'): + """ + Get the nodal flows for a given bus carrier and region. + + Parameters: + n (pypsa.Network): The PyPSA network object. + bus_carrier (str): The bus carrier for which to retrieve the nodal flows. + region (str): The region for which to retrieve the nodal flows. + query (str, optional): A query string to filter the nodal flows. Defaults to 'index == index or index != index'. + + Returns: + pandas.DataFrame: The nodal flows for the specified bus carrier and region. + """ + + groupby = n.statistics.groupers.get_name_bus_and_carrier + + result = n.statistics.withdrawal( + bus_carrier=bus_carrier, + groupby=groupby, + aggregate_time=False, + ).filter( + like=region, + axis=0, + ).query(query).groupby("bus").sum().T + + return result + + +def price_load(n, load_carrier, region): + """ + Calculate the average price of a specific load carrier in a given region. + + Parameters: + - n (pandas.DataFrame): The network model. + - load_carrier (str): The load carrier to calculate the price for. + - region (str): The region to calculate the price in. + + Returns: + - tuple: A tuple containing the average price and the total load of the specified load carrier in the region. + """ + + load = n.loads[(n.loads.carrier == load_carrier) & (n.loads.bus.str.contains(region))] + if n.loads_t.p[load.index].sum().sum() == 0: + return np.nan, 0 + result = (n.loads_t.p[load.index] * n.buses_t.marginal_price[load.bus].values).sum().sum() + result /= n.loads_t.p[load.index].sum().sum() + return result, n.loads_t.p[load.index].sum().sum() + + +def costs_gen_generators(n, region, carrier): + """ + Calculate the cost per unit of generated energy of a generators in a given region. + + Parameters: + - n (pandas.DataFrame): The network model. + - region (str): The region to consider. + - carrier (str): The carrier of the generators. + + Returns: + - tuple: A tuple containing cost and total generation of the generators. + """ + + # CAPEX + gens = n.generators[(n.generators.carrier == carrier) & (n.generators.bus.str.contains(region))] + capacity_expansion = gens.p_nom_opt - gens.p_nom + capex = (capacity_expansion * n.generators.capital_cost[capacity_expansion.index]).sum() + + # OPEX + gen = n.generators_t.p[gens.index].multiply(n.snapshot_weightings.generators, axis="index").sum() + if gen.empty or gen.sum() == 0: + return np.nan, 0 + opex = (gen * n.generators.marginal_cost[gen.index]).sum() + + result = (capex + opex) / gen.sum() + return result, gen.sum() + + +def costs_gen_links(n, region, carrier, gen_bus="p1"): + """ + Calculate the cost per unit of generated energy from a specific link. + + Parameters: + n (pypsa.Network): The PyPSA network object. + region (str): The region to consider for the links. + carrier (str): The carrier of the links. + gen_bus (str, optional): The bus where the main generation of the link takes place. Defaults to "p1". + + Returns: + tuple: A tuple containing the costs per unit of generetad energy and the total generation of the specified generator bus. + """ + + # CAPEX + links = n.links[(n.links.carrier == carrier) & (n.links.index.str.contains(region))] + capacity_expansion = links.p_nom_opt - links.p_nom + capex = (capacity_expansion * n.links.capital_cost[capacity_expansion.index]).sum() + + # OPEX + gen = abs(n.links_t[gen_bus][links.index].multiply(n.snapshot_weightings.generators, axis="index")).sum() + if gen.empty or gen.sum() == 0: + return np.nan, 0 + opex = (gen * n.links.marginal_cost[gen.index]).sum() + + # input costs and output revenues other than main generation @ gen_bus + sum = 0 + for i in range(0,4): + if f"p{i}" == gen_bus: + continue + elif links.empty: + break + elif n.links.loc[links.index][f"bus{i}"].iloc[0] == "": + break + else: + if links[f"bus{i}"].str.contains("co2").iloc[0]: + sum -= (n.links_t[f"p{i}"][links.index] * n.buses_t.marginal_price[links[f"bus{i}"]].values + ).multiply(n.snapshot_weightings.generators, axis="index" + ).sum().sum() + else: + sum += (n.links_t[f"p{i}"][links.index] * n.buses_t.marginal_price[links[f"bus{i}"]].values + ).multiply(n.snapshot_weightings.generators, axis="index" + ).sum().sum() + + result = (capex + opex + sum) / gen.sum() + return result, gen.sum() + + +def get_weighted_costs_links(carriers, n, region): + numerator = 0 + denominator = 0 + + for c in carriers: + if not math.isnan(costs_gen_links(n, region, c)[0]): + numerator += costs_gen_links(n, region, c)[0] * costs_gen_links(n, region, c)[1] + denominator += costs_gen_links(n, region, c)[1] + + if denominator == 0: + return np.nan + result = numerator / denominator + return result + +def get_weighted_costs(costs, flows): + + cleaned_costs = [] + cleaned_flows = [] + + for cost, flow in zip(costs, flows): + if not math.isnan(cost) and not math.isnan(flow) and flow != 0: + cleaned_costs.append(cost) + cleaned_flows.append(flow) + + if not cleaned_costs or not cleaned_flows: + return np.nan + + df_cleaned = pd.DataFrame({'costs': cleaned_costs, 'flows': cleaned_flows}) + result = (df_cleaned["costs"] * df_cleaned["flows"]).sum() / df_cleaned["flows"].sum() + return result + + +def get_prices(n, region, planning_horizon): + """ + Calculate the prices of various energy sources in the Ariadne model. + + Parameters: + - n (PyPSa network): The Ariadne model scenario output. + - region (str): The region for which the prices are calculated. + + Returns: + - var (pandas.Series): A series containing the calculated prices. + + This function calculates the prices of different energy sources in the Ariadne model + based on the nodal flows and marginal prices of the model. The calculated prices are + stored in a pandas Series object and returned. + """ + + var = pd.Series() + + nodal_flows_lw = get_nodal_flows( + n, "low voltage", "DE", + query = "not carrier.str.contains('agriculture')" + "& not carrier.str.contains('industry')" + "& not carrier.str.contains('urban central')" + ) + + nodal_prices_lw = n.buses_t.marginal_price[nodal_flows_lw.columns] + + # electricity price at the final level in the residential sector. Prices should include the effect of carbon prices. + var["Price|Final Energy|Residential|Electricity"] = \ + nodal_flows_lw.mul(nodal_prices_lw).sum().sum() / nodal_flows_lw.sum().sum() / MWh2GJ + + # vars: Tier 1, Category: energy(price) + + nodal_flows_bm = get_nodal_flows(n, "solid biomass", "DE") + nodal_prices_bm = n.buses_t.marginal_price[nodal_flows_bm.columns] + + # primary energy consumption of purpose-grown bioenergy crops, crop and forestry residue bioenergy, municipal solid waste bioenergy, traditional biomass, including renewable waste + var["Price|Primary Energy|Biomass"] = \ + nodal_flows_bm.mul(nodal_prices_bm).sum().sum() / nodal_flows_bm.sum().sum() / MWh2GJ + + # Price|Primary Energy|Coal + # is coal also lignite? -> yes according to michas code (coal for industry is already included as it withdraws from coal bus) + nf_coal = get_nodal_flows(n, "coal", "DE") + nodal_prices_coal = n.buses_t.marginal_price[nf_coal.columns] + coal_price = nf_coal.mul(nodal_prices_coal).sum().sum() / nf_coal.sum().sum() if nf_coal.sum().sum() > 0 else np.nan + + nf_lignite = get_nodal_flows(n, "lignite", "DE") + nodal_prices_lignite = n.buses_t.marginal_price[nf_lignite.columns] + lignite_price = nf_lignite.mul(nodal_prices_lignite).sum().sum() / nf_lignite.sum().sum() if nf_lignite.sum().sum() > 0 else np.nan + + var["Price|Primary Energy|Coal"] = \ + get_weighted_costs([coal_price, lignite_price], [nf_coal.sum().sum(), nf_lignite.sum().sum()])/ MWh2GJ + + # Price|Primary Energy|Gas + nodal_flows_gas = get_nodal_flows(n, "gas", "DE") + nodal_prices_gas = n.buses_t.marginal_price[nodal_flows_gas.columns] + + var["Price|Primary Energy|Gas"] = \ + nodal_flows_gas.mul(nodal_prices_gas).sum().sum() / nodal_flows_gas.sum().sum() / MWh2GJ + + # Price|Primary Energy|Oil + nodal_flows_oil = get_nodal_flows(n, "oil", "DE") + nodal_prices_oil = n.buses_t.marginal_price[nodal_flows_oil.columns] + + var["Price|Primary Energy|Oil"] = \ + nodal_flows_oil.mul(nodal_prices_oil).sum().sum() / nodal_flows_oil.sum().sum() /MWh2GJ + + # Price|Secondary Energy|Electricity + # electricity price at the secondary level, i.e. for large scale consumers (e.g. aluminum production). Prices should include the effect of carbon prices. + + nodal_flows_ac = get_nodal_flows( + n, "AC", "DE", + query = "not carrier.str.contains('gas')" + ) + nodal_prices_ac = n.buses_t.marginal_price[nodal_flows_ac.columns] + + var["Price|Secondary Energy|Electricity"] = \ + nodal_flows_ac.mul(nodal_prices_ac).sum().sum() / nodal_flows_ac.sum().sum() /MWh2GJ + + var["Price|Secondary Energy|Gases|Natural Gas"] = \ + costs_gen_generators(n, region ,"gas")[0] / MWh2GJ + + var["Price|Secondary Energy|Gases|Hydrogen"] = \ + costs_gen_links(n, region, "Sabatier")[0] / MWh2GJ + + var["Price|Secondary Energy|Gases|Biomass"] = \ + costs_gen_links(n, region, "biogas to gas")[0] / MWh2GJ + + # Price|Secondary Energy|Gases|Efuel + # Price for gaseous Efuels at the secondary level, i.e. for large scale consumers. Prices should include the effect of carbon prices. + # what are gaseous Efuels? + + # Price|Secondary Energy|Hydrogen + nodal_flows_h2 = get_nodal_flows( + n, "H2", "DE" + ) + nodal_prices_h2 = n.buses_t.marginal_price[nodal_flows_h2.columns] + + var["Price|Secondary Energy|Hydrogen"] = \ + nodal_flows_h2.mul(nodal_prices_h2).sum().sum() / nodal_flows_h2.sum().sum() /MWh2GJ + + # From PIK plots + # "Price|Final Energy|Residential|Hydrogen" = final energy consumption by the residential sector of hydrogen + # do we have residential applications for hydrogen? + + nf_gas_residential = get_nodal_flows( + n, "gas", "DE", + query = "carrier.str.contains('rural')" + "or carrier.str.contains('urban decentral')" + ) + nodal_prices_gas = n.buses_t.marginal_price[nf_gas_residential.columns] + + # !!! mv much higher: check carbon effect! + var["Price|Final Energy|Residential|Gases"] = \ + nf_gas_residential.mul(nodal_prices_gas).sum().sum() / nf_gas_residential.sum().sum() / MWh2GJ if nf_gas_residential.sum().sum() > 0 else np.nan + + # "Price|Final Energy|Residential|Gases|Natural Gas" ? + # "Price|Final Energy|Residential|Liquids|Biomass" x + + carriers = ['rural oil boiler', 'urban decentral oil boiler'] + var["Price|Final Energy|Residential|Liquids|Oil"] = \ + get_weighted_costs_links(carriers, n, "DE") / MWh2GJ + + var["Price|Final Energy|Residential|Liquids"] = \ + var["Price|Final Energy|Residential|Liquids|Oil"] + + carriers = ['rural biomass boiler', 'urban decentral biomass boiler'] + var["Price|Final Energy|Residential|Solids|Biomass"] = \ + get_weighted_costs_links(carriers, n, "DE") / MWh2GJ + + var["Price|Final Energy|Residential|Solids"] = \ + var["Price|Final Energy|Residential|Solids|Biomass"] + + # "Price|Final Energy|Industry|Electricity"✓ + + carriers = ['gas for industry','gas for industry CC',] + var["Price|Final Energy|Industry|Gases"] = \ + get_weighted_costs_links(carriers, n, "DE") / MWh2GJ + + # "Price|Final Energy|Industry|Heat"✓ + + var["Price|Final Energy|Industry|Liquids"] = \ + price_load(n, "naphtha for industry", region)[0] / MWh2GJ + + # "Price|Final Energy|Industry|Hydrogen"✓ + + carriers = [ 'solid biomass for industry', 'solid biomass for industry CC', 'coal for industry'] + var["Price|Final Energy|Industry|Solids"] = \ + get_weighted_costs_links(carriers, n, "DE") / MWh2GJ + + # Rest Tier 2 + # x + # Price|Final Energy|Transportation|Liquids|Petroleum + # Price|Final Energy|Transportation|Liquids|Petroleum|Sales Margin + # Price|Final Energy|Transportation|Liquids|Petroleum|Transport and Distribution + # Price|Final Energy|Transportation|Liquids|Petroleum|Carbon Price Component + # Price|Final Energy|Transportation|Liquids|Petroleum|Other Taxes + # 'land transport oil' ? + + # x + # Price|Final Energy|Transportation|Liquids|Diesel + # Price|Final Energy|Transportation|Liquids|Diesel|Sales Margin + # Price|Final Energy|Transportation|Liquids|Diesel|Transport and Distribution + # Price|Final Energy|Transportation|Liquids|Diesel|Carbon Price Component + # Price|Final Energy|Transportation|Liquids|Diesel|Other Taxes + + # Price|Final Energy|Transportation|Gases|Natural Gas + # Price|Final Energy|Transportation|Gases|Natural Gas|Sales Margin + # Price|Final Energy|Transportation|Gases|Natural Gas|Transport and Distribution + # Price|Final Energy|Transportation|Gases|Natural Gas|Carbon Price Component + # Price|Final Energy|Transportation|Gases|Natural Gas|Other Taxes + + # x + # Price|Final Energy|Transportation|Liquids|Biomass + # Price|Final Energy|Transportation|Liquids|Biomass|Sales Margin + # Price|Final Energy|Transportation|Liquids|Biomass|Transport and Distribution + # Price|Final Energy|Transportation|Liquids|Biomass|Other Taxes + + # Price|Final Energy|Transportation|Liquids|Efuel + + carriers = ["kerosene for aviation", "shipping methanol", "shipping oil"] + df = pd.DataFrame({c: price_load(n, c, "DE") for c in carriers}) + + var["Price|Final Energy|Transportation|Liquids|Efuel"] = \ + (df.iloc[0]*df.iloc[1]).sum() / df.iloc[1].sum() / MWh2GJ + + # Price|Final Energy|Transportation|Liquids|Efuel|Sales Margin + # Price|Final Energy|Transportation|Liquids|Efuel|Transport and Distribution + # Price|Final Energy|Transportation|Liquids|Efuel|Other Taxes + + # Price|Final Energy|Transportation|Gases|Efuel + # Price|Final Energy|Transportation|Gases|Efuel|Sales Margin + # Price|Final Energy|Transportation|Gases|Efuel|Transport and Distribution + # Price|Final Energy|Transportation|Gases|Efuel|Other Taxes + + # Price|Final Energy|Transportation|Hydrogen + # Price|Final Energy|Transportation|Hydrogen|Sales Margin + # Price|Final Energy|Transportation|Hydrogen|Transport and Distribution + # Price|Final Energy|Transportation|Hydrogen|Other Taxes + + # Price|Final Energy|Transportation|Electricity + + var["Price|Final Energy|Transportation|Electricity"] = \ + price_load(n, "land transport EV", region)[0] / (MWh2GJ) + + # Price|Final Energy|Transportation|Electricity|Sales Margin + # Price|Final Energy|Transportation|Electricity|Transport and Distribution + # Price|Final Energy|Transportation|Electricity|Other Taxes + + # Price|Final Energy|Residential and Commercial|Liquids|Oil + + carriers = ['rural oil boiler', 'urban decentral oil boiler'] + var["Price|Final Energy|Residential and Commercial|Liquids|Oil"] = \ + get_weighted_costs_links(carriers, n, "DE") / MWh2GJ + + # Price|Final Energy|Residential and Commercial|Liquids|Oil|Sales Margin + # Price|Final Energy|Residential and Commercial|Liquids|Oil|Transport and Distribution + # Price|Final Energy|Residential and Commercial|Liquids|Oil|Carbon Price Component + # Price|Final Energy|Residential and Commercial|Liquids|Oil|Other Taxes + + # Price|Final Energy|Residential and Commercial|Gases|Natural Gas + # cannot really be reasonably divided from non Natural Gas resources (at least no low hanging fruit :)) + # Price|Final Energy|Residential and Commercial|Gases|Natural Gas|Sales Margin + # Price|Final Energy|Residential and Commercial|Gases|Natural Gas|Transport and Distribution + # Price|Final Energy|Residential and Commercial|Gases|Natural Gas|Carbon Price Component + # Price|Final Energy|Residential and Commercial|Gases|Natural Gas|Other Taxes + + # Price|Final Energy|Residential and Commercial|Heat + nf_rc_heat = get_nodal_flows( + n, ['urban central heat', 'rural heat', 'urban decentral heat'], "DE", + query = "not carrier.str.contains('agriculture')" + "& not carrier.str.contains('industry')" + "& not carrier.str.contains('DAC')" + ) + + np_rc_heat = n.buses_t.marginal_price[nf_rc_heat.columns] + var["Price|Final Energy|Residential and Commercial|Heat"] = \ + nf_rc_heat.mul(np_rc_heat).sum().sum() / nf_rc_heat.sum().sum() / MWh2GJ + + # Price|Final Energy|Residential and Commercial|Heat|Sales Margin + # Price|Final Energy|Residential and Commercial|Heat|Transport and Distribution + # Price|Final Energy|Residential and Commercial|Heat|Other Taxes + + # Price|Final Energy|Residential and Commercial|Liquids|Biomass + # Price|Final Energy|Residential and Commercial|Liquids|Biomass|Sales Margin + # Price|Final Energy|Residential and Commercial|Liquids|Biomass|Transport and Distribution + # Price|Final Energy|Residential and Commercial|Liquids|Biomass|Other Taxes + + # Price|Final Energy|Residential and Commercial|Solids|Biomass + carriers = ['rural biomass boiler', 'urban decentral biomass boiler'] + var["Price|Final Energy|Residential and Commercial|Solids|Biomass"] = \ + get_weighted_costs_links(carriers, n, "DE") / MWh2GJ + + # Price|Final Energy|Residential and Commercial|Solids|Biomass|Sales Margin + # Price|Final Energy|Residential and Commercial|Solids|Biomass|Transport and Distribution + # Price|Final Energy|Residential and Commercial|Solids|Biomass|Other Taxes + + # Price|Final Energy|Residential and Commercial|Gases|Biomass x + # Price|Final Energy|Residential and Commercial|Gases|Biomass|Sales Margin + # Price|Final Energy|Residential and Commercial|Gases|Biomass|Transport and Distribution + # Price|Final Energy|Residential and Commercial|Gases|Biomass|Other Taxes + + # Price|Final Energy|Residential and Commercial|Liquids|Efuel x + # Price|Final Energy|Residential and Commercial|Liquids|Efuel|Sales Margin + # Price|Final Energy|Residential and Commercial|Liquids|Efuel|Transport and Distribution + # Price|Final Energy|Residential and Commercial|Liquids|Efuel|Other Taxes + + # Price|Final Energy|Residential and Commercial|Gases|Efuel x + # Price|Final Energy|Residential and Commercial|Gases|Efuel|Sales Margin + # Price|Final Energy|Residential and Commercial|Gases|Efuel|Transport and Distribution + # Price|Final Energy|Residential and Commercial|Gases|Efuel|Other Taxes + + # Price|Final Energy|Residential and Commercial|Hydrogen x + # Price|Final Energy|Residential and Commercial|Hydrogen|Sales Margin + # Price|Final Energy|Residential and Commercial|Hydrogen|Transport and Distribution + # Price|Final Energy|Residential and Commercial|Hydrogen|Other Taxes + + var["Price|Final Energy|Residential and Commercial|Electricity"] = \ + var["Price|Final Energy|Residential|Electricity"] + + # Price|Final Energy|Residential and Commercial|Electricity|Sales Margin x + # Price|Final Energy|Residential and Commercial|Electricity|Transport and Distribution + # Price|Final Energy|Residential and Commercial|Electricity|Other Taxes + var["Price|Final Energy|Industry|Electricity"] = \ + price_load(n, "industry electricity", region)[0] / (MWh2GJ) + + var["Price|Final Energy|Industry|Heat"] = \ + price_load(n, "low-temperature heat for industry", region)[0] / (MWh2GJ) + + var["Price|Final Energy|Industry|Hydrogen"] = \ + price_load(n, "H2 for industry", region)[0] / (MWh2GJ) + + var["Price|Final Energy|Industry|Solids|Coal"] = \ + price_load(n, "coal for industry", region)[0] / (MWh2GJ) + + # Price|Final Energy|Industry|Solids|Coal|Sales Margin x + # Price|Final Energy|Industry|Solids|Coal|Transport and Distribution + # Price|Final Energy|Industry|Solids|Coal|Carbon Price Component + # Price|Final Energy|Industry|Solids|Coal|Other Taxes + + # var["Price|Final Energy|Industry|Gases|Natural Gas"] ? + + # Price|Final Energy|Industry|Gases|Natural Gas|Sales Margin x + # Price|Final Energy|Industry|Gases|Natural Gas|Transport and Distribution + # Price|Final Energy|Industry|Gases|Natural Gas|Carbon Price Component + # Price|Final Energy|Industry|Gases|Natural Gas|Other Taxes + + # Price|Final Energy|Industry|Heat|Sales Margin x + # Price|Final Energy|Industry|Heat|Transport and Distribution + # Price|Final Energy|Industry|Heat|Other Taxes + + # Price|Final Energy|Industry|Liquids|Biomass x + # Price|Final Energy|Industry|Liquids|Biomass|Sales Margin + # Price|Final Energy|Industry|Liquids|Biomass|Transport and Distribution + # Price|Final Energy|Industry|Liquids|Biomass|Other Taxes + + var["Price|Final Energy|Industry|Solids|Biomass"] = \ + price_load(n, "solid biomass for industry", region)[0] / (MWh2GJ) + + # Price|Final Energy|Industry|Solids|Biomass|Sales Margin x + # Price|Final Energy|Industry|Solids|Biomass|Transport and Distribution + # Price|Final Energy|Industry|Solids|Biomass|Other Taxes + + # Price|Final Energy|Industry|Gases|Biomass ? + # Price|Final Energy|Industry|Gases|Biomass|Sales Margin + # Price|Final Energy|Industry|Gases|Biomass|Transport and Distribution + # Price|Final Energy|Industry|Gases|Biomass|Other Taxes + + var["Price|Final Energy|Industry|Liquids|Efuel"] = \ + var["Price|Final Energy|Industry|Liquids"] + + # Price|Final Energy|Industry|Liquids|Efuel|Sales Margin x + # Price|Final Energy|Industry|Liquids|Efuel|Transport and Distribution + # Price|Final Energy|Industry|Liquids|Efuel|Other Taxes + + # Price|Final Energy|Industry|Gases|Efuel x + # Price|Final Energy|Industry|Gases|Efuel|Sales Margin + # Price|Final Energy|Industry|Gases|Efuel|Transport and Distribution + # Price|Final Energy|Industry|Gases|Efuel|Other Taxes + + # Price|Final Energy|Industry|Hydrogen|Sales Margin x + # Price|Final Energy|Industry|Hydrogen|Transport and Distribution + # Price|Final Energy|Industry|Hydrogen|Other Taxes + + # Price|Final Energy|Industry|Electricity|Sales Margin x + # Price|Final Energy|Industry|Electricity|Transport and Distribution + # Price|Final Energy|Industry|Electricity|Other Taxes + + # Rest Tier3 + nodal_flows_gas = get_nodal_flows( + n, "gas", "DE", + query = "not carrier.str.contains('pipeline')" + "& not carrier == 'gas'" + "& not carrier.str.contains('rural')" + "& not carrier.str.contains('urban decentral')" + ) + nodal_prices_gas = n.buses_t.marginal_price[nodal_flows_gas.columns] + + var["Price|Secondary Energy|Gases"] = \ + nodal_flows_gas.mul(nodal_prices_gas).sum().sum() / nodal_flows_gas.sum().sum() /MWh2GJ + + nodal_flows_oil = get_nodal_flows( + n, "oil", "DE", + query = "not carrier.str.contains('rural')" + "& not carrier == 'oil'" + "& not carrier.str.contains('urban decentral')" + ) + nodal_prices_oil = n.buses_t.marginal_price[nodal_flows_oil.columns] + + var["Price|Secondary Energy|Liquids"] = \ + nodal_flows_oil.mul(nodal_prices_oil).sum().sum() / nodal_flows_oil.sum().sum() /MWh2GJ + + # Price|Final Energy|Transportation|Freight|Electricity x + # Price|Final Energy|Transportation|Freight|Gases + # Price|Final Energy|Transportation|Freight|Hydrogen + + var["Price|Final Energy|Transportation|Freight|Liquids"] = \ + var["Price|Final Energy|Transportation|Liquids|Efuel"] + + # Price|Final Energy|Transportation|Freight|Solids x + + var["Price|Final Energy|Transportation|Passenger|Electricity"] = \ + var["Price|Final Energy|Transportation|Electricity"] + + # Price|Final Energy|Transportation|Passenger|Gases + # Price|Final Energy|Transportation|Passenger|Hydrogen + var["Price|Final Energy|Transportation|Passenger|Liquids"] = \ + var["Price|Final Energy|Transportation|Liquids|Efuel"] + + # Price|Final Energy|Transportation|Passenger|Solids x + + # Price|Final Energy|Residential|Hydrogen x + # Price|Final Energy|Residential|Gases|Natural Gas ? + # Price|Final Energy|Residential|Solids|Coal x + + # Price|Final Energy|Transportation|Electricity|Carbon Price Component ? + # Price|Final Energy|Transportation|Gases|Carbon Price Component + # Price|Final Energy|Transportation|Hydrogen|Carbon Price Component + # Price|Final Energy|Transportation|Liquids|Carbon Price Component + + # adjust for inflation (EUR_2020) + inflation = 0.02 + var = var * (1 + inflation) ** (int(planning_horizon) - 2020) + + return var + + +def get_ariadne_var(n, industry_demand, energy_totals, region, planning_horizon): var = pd.concat([ get_capacities_electricity(n, region), get_capacities_heat(n, region), get_capacities_other(n, region), - get_primary_energy(n, region), + #get_primary_energy(n, region), get_secondary_energy(n, region), - get_final_energy(n, region, industry_demand, energy_totals), - #get_prices(n,region), + #get_final_energy(n, region, industry_demand, energy_totals), + get_prices(n,region, planning_horizon), get_emissions(n, region, energy_totals) ]) @@ -1733,11 +2300,11 @@ def get_ariadne_var(n, industry_demand, energy_totals, region): # uses the global variables model, scenario and var2unit. For now. def get_data( - n, industry_demand, energy_totals, region, + n, industry_demand, energy_totals, region, planning_horizon, version="0.9.0", scenario="test" ): - var = get_ariadne_var(n, industry_demand, energy_totals, region) + var = get_ariadne_var(n, industry_demand, energy_totals, region, planning_horizon) data = [] for v in var.index: @@ -1814,6 +2381,7 @@ def get_data( "DE", version=config["version"], scenario=config["run"]["name"][0], + planning_horizon=year, )) df = reduce( From c4d5c851e95c8fecd534e2806e71a7dbfa872fa9 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 5 Mar 2024 17:52:43 +0100 Subject: [PATCH 151/669] imrpoving industry final energy --- workflow/scripts/export_ariadne_variables.py | 74 +++++++++++--------- 1 file changed, 40 insertions(+), 34 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index d2c9e9fb6..0a518957b 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -413,13 +413,6 @@ def get_capacities_heat(n, region): var["Capacity|Heat|Storage Reservoir"] = \ storage_capacities.filter(like="water tanks").sum() - # Q: New technologies get added as we develop the model. - # It would be helpful to have some double-checking, e.g., - # by asserting that every technology gets added, - # or by computing the total independtly of the subtotals, - # and summing the subcategories to compare to the total - # !: For now, check the totals by summing in two different ways - var["Capacity|Heat"] = ( var["Capacity|Heat|Solar thermal"] + var["Capacity|Heat|Resistive heater"] + @@ -751,7 +744,7 @@ def get_primary_energy(n, region): ).values.sum() # var["Primary Energy|Biomass|Gases"] = \ - # Gases are only E-Fuels in AriadneDB + # In this case Gases are only E-Fuels in AriadneDB # Not possibly in an easy way because biogas to gas goes to the # gas bus, where it mixes with fossil imports @@ -986,7 +979,6 @@ def get_secondary_energy(n, region): bus_carrier=[ "urban central heat", # rural and urban decentral heat do not produce secondary energy - # "urban decentral heat", "rural heat" ], **kwargs ).filter(like=region).groupby( ["carrier"] @@ -997,6 +989,7 @@ def get_secondary_energy(n, region): var["Secondary Energy|Heat|Biomass"] = \ heat_supply.filter(like="biomass").sum() + # var["Secondary Energy|Heat|Coal"] = \ # var["Secondary Energy|Heat|Geothermal"] = \ # var["Secondary Energy|Heat|Nuclear"] = \ @@ -1115,7 +1108,6 @@ def get_secondary_energy(n, region): # var["Production|Chemicals|Methanol"] = \ # here units are Mt/year var["Secondary Energy|Other Carrier"] = \ methanol_production.get("methanolisation", 0) - # Methanol should probably not be in Liquids # Remeber to specify that Other Carrier == Methanol in Comments Tab @@ -1187,47 +1179,44 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): like=region, axis=0, ).sum() - # Q: Pypsa-eur does not strictly distinguish between energy and - # non-energy use?? + # !: Pypsa-eur does not strictly distinguish between energy and + # non-energy use - var["Final Energy|Industry excl Non-Energy Use|Electricity"] = \ + var["Final Energy|Industry|Electricity"] = \ industry_demand.get("electricity") # or use: sum_load(n, "industry electricity", region) - var["Final Energy|Industry excl Non-Energy Use|Heat"] = \ + var["Final Energy|Industry|Heat"] = \ industry_demand.get("low-temperature heat") - #sum_load(n, "low-temperature heat for industry", region) - # var["Final Energy|Industry excl Non-Energy Use|Solar"] = \ + # var["Final Energy|Industry|Solar"] = \ # !: Included in |Heat - # var["Final Energy|Industry excl Non-Energy Use|Geothermal"] = \ + # var["Final Energy|Industry|Geothermal"] = \ # Not implemented - var["Final Energy|Industry excl Non-Energy Use|Gases"] = \ + var["Final Energy|Industry|Gases"] = \ industry_demand.get("methane") # "gas for industry" is now regionally resolved and could be used here - # var["Final Energy|Industry excl Non-Energy Use|Power2Heat"] = \ + # var["Final Energy|Industry|Power2Heat"] = \ # Q: misleading description - var["Final Energy|Industry excl Non-Energy Use|Hydrogen"] = \ + var["Final Energy|Industry|Hydrogen"] = \ industry_demand.get("hydrogen") - # or "H2 for industry" load - # TODO Is this really all energy-use? Or feedstock as well? - #var["Final Energy|Industry excl Non-Energy Use|Liquids"] = \ - # sum_load(n, "naphtha for industry", region) + var["Final Energy|Industry|Liquids"] = \ + sum_load(n, "naphtha for industry", region) #TODO This is plastics not liquids for industry! Look in industry demand! - # var["Final Energy|Industry excl Non-Energy Use|Other"] = \ + # var["Final Energy|Industry|Other"] = \ - var["Final Energy|Industry excl Non-Energy Use|Solids"] = \ + var["Final Energy|Industry|Solids"] = \ industry_demand.get(["coal", "coke", "solid biomass"]).sum() - # Why is AMMONIA zero? Is all naphtha just plastic? + # Why is AMMONIA zero? # var["Final Energy|Industry excl Non-Energy Use|Non-Metallic Minerals"] = \ # var["Final Energy|Industry excl Non-Energy Use|Chemicals"] = \ @@ -1432,9 +1421,10 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): # var["Final Energy"] = \ # var["Final Energy incl Non-Energy Use incl Bunkers"] = \ - # var["Final Energy|Non-Energy Use|Liquids"] = \ - var["Final Energy|Non-Energy Use"] = \ - industry_demand.get("naphtha") # This is essentially plastics + #var["Final Energy|Non-Energy Use|Liquids"] = \ + #var["Final Energy|Non-Energy Use"] = \ + # industry_demand.get("naphtha") # This is essentially plastics + # Not sure if this is correct here # var["Final Energy|Non-Energy Use|Gases"] = \ # var["Final Energy|Non-Energy Use|Solids"] = \ @@ -1445,20 +1435,38 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): var["Final Energy|Agriculture|Electricity"] + var["Final Energy|Residential and Commercial|Electricity"] + var["Final Energy|Transportation|Electricity"] - + var["Final Energy|Industry excl Non-Energy Use|Electricity"] + + var["Final Energy|Industry|Electricity"] ) # var["Final Energy|Solids"] = \ # var["Final Energy|Solids|Biomass"] = \ # var["Final Energy|Gases"] = \ # var["Final Energy|Liquids"] = \ - # var["Final Energy|Heat"] = \ + var["Final Energy|Heat"] = ( + var["Final Energy|Agriculture|Heat"] + + var["Final Energy|Residential and Commercial|Heat"] + + var["Final Energy|Industry|Heat"] + ) # var["Final Energy|Solar"] = \ # var["Final Energy|Hydrogen"] = \ # var["Final Energy|Geothermal"] = \ # ! Not implemented + var["Final Energy incl Non-Energy Use incl Bunkers"] = ( + var["Final Energy|Industry"] + + var["Final Energy|Residential and Commercial"] + + var["Final Energy|Agriculture"] + + var["Final Energy|Transportation"] + + var["Final Energy|Bunkers"] + ) + + + # The general problem with final energy is that for most of these categories + # feedstocks shouls be excluded (i.e., non-energy use) + # However this is hard to do in PyPSA. + # TODO nevertheless it would be nice to do exactly that + return var @@ -1563,8 +1571,6 @@ def get_emissions(n, region, _energy_totals): 0, ) - - var["Emissions|CO2|Energy|Demand|Residential and Commercial"] = ( co2_emissions.filter(like="urban decentral").sum() + co2_emissions.filter(like="rural" ).sum() From 168a0813857cd01855e94ac8063b49ca76855e98 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 6 Mar 2024 10:44:14 +0100 Subject: [PATCH 152/669] initial commit --- workflow/scripts/export_ariadne_variables.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 0d565e277..f0855eeed 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1758,7 +1758,7 @@ def price_load(n, load_carrier, region): """ load = n.loads[(n.loads.carrier == load_carrier) & (n.loads.bus.str.contains(region))] - if n.loads_t.p[load.index].sum().sum() == 0: + if n.loads_t.p[load.index].sum().sum() < 1: return np.nan, 0 result = (n.loads_t.p[load.index] * n.buses_t.marginal_price[load.bus].values).sum().sum() result /= n.loads_t.p[load.index].sum().sum() @@ -1785,7 +1785,7 @@ def costs_gen_generators(n, region, carrier): # OPEX gen = n.generators_t.p[gens.index].multiply(n.snapshot_weightings.generators, axis="index").sum() - if gen.empty or gen.sum() == 0: + if gen.empty or gen.sum() < 1: return np.nan, 0 opex = (gen * n.generators.marginal_cost[gen.index]).sum() @@ -1814,7 +1814,7 @@ def costs_gen_links(n, region, carrier, gen_bus="p1"): # OPEX gen = abs(n.links_t[gen_bus][links.index].multiply(n.snapshot_weightings.generators, axis="index")).sum() - if gen.empty or gen.sum() == 0: + if gen.empty or gen.sum() < 1: return np.nan, 0 opex = (gen * n.links.marginal_cost[gen.index]).sum() From 2fe41d67f08ea1f573afe3c22cf6f4735822d815 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 6 Mar 2024 17:02:02 +0100 Subject: [PATCH 153/669] fix assertion error --- workflow/scripts/export_ariadne_variables.py | 21 +++++++++++++------- 1 file changed, 14 insertions(+), 7 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 0a518957b..7a1503371 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -631,7 +631,7 @@ def get_primary_energy(n, region): like=region ).filter( like="gas CHP" - ).multiply(MWh2PJ) + ).multiply(gas_fossil_fraction).multiply(MWh2PJ) gas_CHP_E_to_H = ( n.links.loc[gas_CHP_usage.index.get_level_values("name")].efficiency @@ -1170,6 +1170,10 @@ def get_secondary_energy(n, region): def get_final_energy(n, region, _industry_demand, _energy_totals): + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } var = pd.Series() @@ -1230,12 +1234,15 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): # var["Final Energy|Industry excl Non-Energy Use|Vehicle Construction"] = \ # Q: Most of these could be found somewhere, but are model inputs! - - - kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, - } + var["Final Energy|Industry"] = \ + var.get([ + "Final Energy|Industry|Electricity", + "Final Energy|Industry|Heat", + "Final Energy|Industry|Gases", + "Final Energy|Industry|Hydrogen", + "Final Energy|Industry|Liquids", + "Final Energy|Industry|Solids", + ]) # Final energy is delivered to the consumers low_voltage_electricity = n.statistics.withdrawal( From 8b453927b2faa2dc3bf4478dead1d95bd64af322 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 6 Mar 2024 18:05:16 +0100 Subject: [PATCH 154/669] fix issue caused by last fix --- workflow/scripts/export_ariadne_variables.py | 2 +- workflow/scripts/plot_ariadne_variables.py | 8 ++++++++ 2 files changed, 9 insertions(+), 1 deletion(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 7a1503371..4c0117fe8 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1242,7 +1242,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): "Final Energy|Industry|Hydrogen", "Final Energy|Industry|Liquids", "Final Energy|Industry|Solids", - ]) + ]).sum() # Final energy is delivered to the consumers low_voltage_electricity = n.statistics.withdrawal( diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 1b47bc14f..68fd7f2ce 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -103,6 +103,14 @@ def side_by_side_plot( ][pd.to_numeric(df.keys())] dfhybrid.index.names = df.index.names + idx = df.index.intersection(dfhybrid.index) + print( + "Dropping variables missing in `Hybrid`:", + df.index.difference(dfhybrid.index), + ) + df = df.loc[idx] + dfhybrid = dfhybrid.loc[idx] + side_by_side_plot( df, dfhybrid, From a434f31163f62db374395bc5c9b1521e7d4d6cb6 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 7 Mar 2024 10:30:51 +0100 Subject: [PATCH 155/669] switch to remind for plots --- workflow/scripts/plot_ariadne_variables.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 68fd7f2ce..84093d4a7 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -42,7 +42,7 @@ def side_by_side_plot( fig, axes = plt.subplots(ncols=2, sharey=True) ax = ariadne_subplot(df, axes[0], "PyPSA-Eur", **kwargs) - ax2 = ariadne_subplot(dfhybrid, axes[1], "Hybrid", **kwargs) + ax2 = ariadne_subplot(dfhybrid, axes[1], "REMIND-EU v1.1", **kwargs) handles, labels = ax.get_legend_handles_labels() labels2 = ax2.get_legend_handles_labels()[1] @@ -94,12 +94,12 @@ def side_by_side_plot( model_df= pyam.read_iiasa( "ariadne_intern", - model="Hybrid", + model="REMIND-EU v1.1", scenario="8Gt_Bal_v3", ).timeseries() dfhybrid = model_df.loc[ - "Hybrid", "8Gt_Bal_v3", "Deutschland" + "REMIND-EU v1.1", "8Gt_Bal_v3", "Deutschland" ][pd.to_numeric(df.keys())] dfhybrid.index.names = df.index.names From d2760321c5e5e978d4ce4481fab082581b9ff52c Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 7 Mar 2024 10:36:18 +0100 Subject: [PATCH 156/669] rename plot title --- workflow/scripts/plot_ariadne_variables.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 84093d4a7..6ca1146f7 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -206,7 +206,7 @@ def side_by_side_plot( side_by_side_plot( df, dfhybrid, - "Detailed Supply Emissions in Mt", + "Detailed Emissions in Mt", savepath=snakemake.output.co2_emissions, select_regex="Emissions\|CO2\|[^|]*$", stacked=False, From 7589e5f02c750707df70f88940725f816841d478 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 7 Mar 2024 12:12:25 +0100 Subject: [PATCH 157/669] first plotting of prices --- workflow/scripts/export_ariadne_variables.py | 27 +++--- workflow/scripts/plot_ariadne_variables.py | 91 +++++++++++++++++++- 2 files changed, 100 insertions(+), 18 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index f0855eeed..e164a61e3 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -765,10 +765,10 @@ def get_primary_energy(n, region): ) - assert isclose( - var["Primary Energy|Biomass"], - biomass_usage.sum(), - ) + # assert isclose( + # var["Primary Energy|Biomass"], + # biomass_usage.sum(), + # ) var["Primary Energy|Nuclear"] = \ n.statistics.withdrawal( @@ -1873,7 +1873,7 @@ def get_weighted_costs(costs, flows): return result -def get_prices(n, region, planning_horizon): +def get_prices(n, region): """ Calculate the prices of various energy sources in the Ariadne model. @@ -2273,23 +2273,19 @@ def get_prices(n, region, planning_horizon): # Price|Final Energy|Transportation|Hydrogen|Carbon Price Component # Price|Final Energy|Transportation|Liquids|Carbon Price Component - # adjust for inflation (EUR_2020) - inflation = 0.02 - var = var * (1 + inflation) ** (int(planning_horizon) - 2020) - return var -def get_ariadne_var(n, industry_demand, energy_totals, region, planning_horizon): +def get_ariadne_var(n, industry_demand, energy_totals, region): var = pd.concat([ get_capacities_electricity(n, region), get_capacities_heat(n, region), get_capacities_other(n, region), - #get_primary_energy(n, region), + get_primary_energy(n, region), get_secondary_energy(n, region), - #get_final_energy(n, region, industry_demand, energy_totals), - get_prices(n,region, planning_horizon), + get_final_energy(n, region, industry_demand, energy_totals), + get_prices(n,region), get_emissions(n, region, energy_totals) ]) @@ -2300,11 +2296,11 @@ def get_ariadne_var(n, industry_demand, energy_totals, region, planning_horizon) # uses the global variables model, scenario and var2unit. For now. def get_data( - n, industry_demand, energy_totals, region, planning_horizon, + n, industry_demand, energy_totals, region, version="0.9.0", scenario="test" ): - var = get_ariadne_var(n, industry_demand, energy_totals, region, planning_horizon) + var = get_ariadne_var(n, industry_demand, energy_totals, region) data = [] for v in var.index: @@ -2381,7 +2377,6 @@ def get_data( "DE", version=config["version"], scenario=config["run"]["name"][0], - planning_horizon=year, )) df = reduce( diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 1b47bc14f..2cf085f6a 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -58,6 +58,46 @@ def side_by_side_plot( fig.savefig(savepath, bbox_inches="tight") return fig +def within_plot(df, df2, + title, savepath, + select_regex="", drop_regex="",**kwargs + ): + + df = df.T.copy() + if select_regex: + df = df.filter( + regex=select_regex, + ) + if drop_regex: + df = df.filter( + regex=drop_regex, + ) + + n = df.shape[1] + rows = n // 2 + n % 2 + + fig, axes = plt.subplots(rows, 2, figsize=(10, 5 * rows)) + axes = axes.flatten() + + for i, var in enumerate(df.columns.get_level_values("Variable")): + + axes[i].plot(df.xs(var, axis=1, level=0), label="PyPSA-Eur") + if var in dfremind.index.get_level_values("variable"): + axes[i].plot(df2.T.xs(var, axis=1, level=0), label="Remind") + axes[i].set_title(var) + axes[i].legend() + + # Remove the last subplot if there's an odd number of plots + if n % 2 != 0: + fig.delaxes(axes[-1]) + + plt.suptitle(title, fontsize="xx-large") + plt.tight_layout() + plt.close() + fig.savefig(savepath, bbox_inches="tight") + + return fig + if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -94,8 +134,9 @@ def side_by_side_plot( model_df= pyam.read_iiasa( "ariadne_intern", - model="Hybrid", + model=["Hybrid", "REMIND-EU v1.1"], scenario="8Gt_Bal_v3", + region="Deutschland", ).timeseries() dfhybrid = model_df.loc[ @@ -103,6 +144,12 @@ def side_by_side_plot( ][pd.to_numeric(df.keys())] dfhybrid.index.names = df.index.names + dfremind = model_df.loc[ + "REMIND-EU v1.1", "8Gt_Bal_v3", "Deutschland" + ][pd.to_numeric(df.keys())] + dfhybrid.index.names = df.index.names + + side_by_side_plot( df, dfhybrid, @@ -203,4 +250,44 @@ def side_by_side_plot( select_regex="Emissions\|CO2\|[^|]*$", stacked=False, #drop_regex="^(?!.*(and)).+" - ) \ No newline at end of file + ) + + within_plot( + df, + dfremind, + title = "Price|Primary Energy", + savepath=snakemake.output.primary_energy_price, + select_regex="Price\|Primary Energy\|[^|]*$" + ) + + within_plot( + df, + dfremind, + title = "Price|Secondary Energy", + savepath="", + select_regex="Price\|Secondary Energy\|[^|]*$" + ) + + within_plot( + df, + dfremind, + title = "Price|Final Energy|Residential", + savepath="", + select_regex="Price\|Final Energy\|Residential\|[^|]*$" + ) + + within_plot( + df, + dfremind, + title = "Price|Final Energy|Industry", + savepath="", + select_regex="Price\|Final Energy\|Industry\|[^|]*$" + ) + + within_plot( + df[df.index.get_level_values("Variable").str.startswith('Price')], + dfremind, + title = "All prices", + savepath="", + ) + From 82236fc664b8cdd46ea43b3557a5e34dac58ba4f Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 7 Mar 2024 13:52:13 +0100 Subject: [PATCH 158/669] plotting prices basic functionality --- workflow/Snakefile | 8 ++++- workflow/scripts/plot_ariadne_variables.py | 37 +++++++++++++++------- 2 files changed, 33 insertions(+), 12 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 002bac22b..ed56b0922 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -270,7 +270,13 @@ rule plot_ariadne_variables: energy_demand_emissions=RESULTS + "ariadne/energy_demand_emissions.png", energy_supply_emissions=RESULTS + "ariadne/energy_supply_emissions.png", co2_emissions=RESULTS + "ariadne/co2_emissions.png", - + primary_energy_price = RESULTS + "ariadne/prices/primary_energy_price.png", + secondary_energy_price = RESULTS + "ariadne/prices/secondary_energy_price.png", + final_energy_residential_price = RESULTS + "ariadne/prices/final_energy_residential_price.png", + final_energy_industry_price = RESULTS + "ariadne/prices/final_energy_industry_price.png", + final_energy_transportation_price = RESULTS + "ariadne/prices/final_energy_transportation_price.png", + final_energy_residential_commercial_price = RESULTS + "ariadne/prices/final_energy_residential_commercial_price.png", + all_prices = RESULTS + "ariadne/prices/all_prices.png", script: "scripts/plot_ariadne_variables.py" diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 2cf085f6a..6a310798d 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -91,7 +91,7 @@ def within_plot(df, df2, if n % 2 != 0: fig.delaxes(axes[-1]) - plt.suptitle(title, fontsize="xx-large") + plt.suptitle(title, fontsize="xx-large", y=1.0) plt.tight_layout() plt.close() fig.savefig(savepath, bbox_inches="tight") @@ -261,33 +261,48 @@ def within_plot(df, df2, ) within_plot( - df, + df[df.index.get_level_values("Variable").str.startswith("Price|Secondary Energy")], dfremind, title = "Price|Secondary Energy", - savepath="", - select_regex="Price\|Secondary Energy\|[^|]*$" + savepath=snakemake.output.secondary_energy_price, ) within_plot( - df, + df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Residential")], dfremind, title = "Price|Final Energy|Residential", - savepath="", - select_regex="Price\|Final Energy\|Residential\|[^|]*$" + savepath=snakemake.output.final_energy_residential_price, + #select_regex="Price\|Final Energy\|Residential\|[^|]*$" ) within_plot( - df, + df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Industry")], dfremind, title = "Price|Final Energy|Industry", - savepath="", - select_regex="Price\|Final Energy\|Industry\|[^|]*$" + savepath=snakemake.output.final_energy_industry_price, + #select_regex="Price\|Final Energy\|Industry\|[^|]*$" + ) + + within_plot( + df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Transportation")], + dfremind, + title = "Price|Final Energy|Transportation", + savepath=snakemake.output.final_energy_transportation_price, + #select_regex="Price\|Final Energy\|Industry\|[^|]*$" + ) + + within_plot( + df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Residential and Commercial")], + dfremind, + title = "Price|Final Energy|Residential and Commercial", + savepath=snakemake.output.final_energy_residential_commercial_price, + #select_regex="Price\|Final Energy\|Industry\|[^|]*$" ) within_plot( df[df.index.get_level_values("Variable").str.startswith('Price')], dfremind, title = "All prices", - savepath="", + savepath=snakemake.output.all_prices, ) From 749d4c79a70c56648c4a88b86f673b6091f8e024 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 5 Mar 2024 17:52:43 +0100 Subject: [PATCH 159/669] imrpoving industry final energy --- workflow/scripts/export_ariadne_variables.py | 74 +++++++++++--------- 1 file changed, 40 insertions(+), 34 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index e164a61e3..2e4f6464b 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -415,13 +415,6 @@ def get_capacities_heat(n, region): var["Capacity|Heat|Storage Reservoir"] = \ storage_capacities.filter(like="water tanks").sum() - # Q: New technologies get added as we develop the model. - # It would be helpful to have some double-checking, e.g., - # by asserting that every technology gets added, - # or by computing the total independtly of the subtotals, - # and summing the subcategories to compare to the total - # !: For now, check the totals by summing in two different ways - var["Capacity|Heat"] = ( var["Capacity|Heat|Solar thermal"] + var["Capacity|Heat|Resistive heater"] + @@ -753,7 +746,7 @@ def get_primary_energy(n, region): ).values.sum() # var["Primary Energy|Biomass|Gases"] = \ - # Gases are only E-Fuels in AriadneDB + # In this case Gases are only E-Fuels in AriadneDB # Not possibly in an easy way because biogas to gas goes to the # gas bus, where it mixes with fossil imports @@ -988,7 +981,6 @@ def get_secondary_energy(n, region): bus_carrier=[ "urban central heat", # rural and urban decentral heat do not produce secondary energy - # "urban decentral heat", "rural heat" ], **kwargs ).filter(like=region).groupby( ["carrier"] @@ -999,6 +991,7 @@ def get_secondary_energy(n, region): var["Secondary Energy|Heat|Biomass"] = \ heat_supply.filter(like="biomass").sum() + # var["Secondary Energy|Heat|Coal"] = \ # var["Secondary Energy|Heat|Geothermal"] = \ # var["Secondary Energy|Heat|Nuclear"] = \ @@ -1117,7 +1110,6 @@ def get_secondary_energy(n, region): # var["Production|Chemicals|Methanol"] = \ # here units are Mt/year var["Secondary Energy|Other Carrier"] = \ methanol_production.get("methanolisation", 0) - # Methanol should probably not be in Liquids # Remeber to specify that Other Carrier == Methanol in Comments Tab @@ -1189,47 +1181,44 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): like=region, axis=0, ).sum() - # Q: Pypsa-eur does not strictly distinguish between energy and - # non-energy use?? + # !: Pypsa-eur does not strictly distinguish between energy and + # non-energy use - var["Final Energy|Industry excl Non-Energy Use|Electricity"] = \ + var["Final Energy|Industry|Electricity"] = \ industry_demand.get("electricity") # or use: sum_load(n, "industry electricity", region) - var["Final Energy|Industry excl Non-Energy Use|Heat"] = \ + var["Final Energy|Industry|Heat"] = \ industry_demand.get("low-temperature heat") - #sum_load(n, "low-temperature heat for industry", region) - # var["Final Energy|Industry excl Non-Energy Use|Solar"] = \ + # var["Final Energy|Industry|Solar"] = \ # !: Included in |Heat - # var["Final Energy|Industry excl Non-Energy Use|Geothermal"] = \ + # var["Final Energy|Industry|Geothermal"] = \ # Not implemented - var["Final Energy|Industry excl Non-Energy Use|Gases"] = \ + var["Final Energy|Industry|Gases"] = \ industry_demand.get("methane") # "gas for industry" is now regionally resolved and could be used here - # var["Final Energy|Industry excl Non-Energy Use|Power2Heat"] = \ + # var["Final Energy|Industry|Power2Heat"] = \ # Q: misleading description - var["Final Energy|Industry excl Non-Energy Use|Hydrogen"] = \ + var["Final Energy|Industry|Hydrogen"] = \ industry_demand.get("hydrogen") - # or "H2 for industry" load - # TODO Is this really all energy-use? Or feedstock as well? - #var["Final Energy|Industry excl Non-Energy Use|Liquids"] = \ - # sum_load(n, "naphtha for industry", region) + var["Final Energy|Industry|Liquids"] = \ + sum_load(n, "naphtha for industry", region) #TODO This is plastics not liquids for industry! Look in industry demand! - # var["Final Energy|Industry excl Non-Energy Use|Other"] = \ + # var["Final Energy|Industry|Other"] = \ - var["Final Energy|Industry excl Non-Energy Use|Solids"] = \ + var["Final Energy|Industry|Solids"] = \ industry_demand.get(["coal", "coke", "solid biomass"]).sum() - # Why is AMMONIA zero? Is all naphtha just plastic? + # Why is AMMONIA zero? # var["Final Energy|Industry excl Non-Energy Use|Non-Metallic Minerals"] = \ # var["Final Energy|Industry excl Non-Energy Use|Chemicals"] = \ @@ -1434,9 +1423,10 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): # var["Final Energy"] = \ # var["Final Energy incl Non-Energy Use incl Bunkers"] = \ - # var["Final Energy|Non-Energy Use|Liquids"] = \ - var["Final Energy|Non-Energy Use"] = \ - industry_demand.get("naphtha") # This is essentially plastics + #var["Final Energy|Non-Energy Use|Liquids"] = \ + #var["Final Energy|Non-Energy Use"] = \ + # industry_demand.get("naphtha") # This is essentially plastics + # Not sure if this is correct here # var["Final Energy|Non-Energy Use|Gases"] = \ # var["Final Energy|Non-Energy Use|Solids"] = \ @@ -1447,20 +1437,38 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): var["Final Energy|Agriculture|Electricity"] + var["Final Energy|Residential and Commercial|Electricity"] + var["Final Energy|Transportation|Electricity"] - + var["Final Energy|Industry excl Non-Energy Use|Electricity"] + + var["Final Energy|Industry|Electricity"] ) # var["Final Energy|Solids"] = \ # var["Final Energy|Solids|Biomass"] = \ # var["Final Energy|Gases"] = \ # var["Final Energy|Liquids"] = \ - # var["Final Energy|Heat"] = \ + var["Final Energy|Heat"] = ( + var["Final Energy|Agriculture|Heat"] + + var["Final Energy|Residential and Commercial|Heat"] + + var["Final Energy|Industry|Heat"] + ) # var["Final Energy|Solar"] = \ # var["Final Energy|Hydrogen"] = \ # var["Final Energy|Geothermal"] = \ # ! Not implemented + var["Final Energy incl Non-Energy Use incl Bunkers"] = ( + var["Final Energy|Industry"] + + var["Final Energy|Residential and Commercial"] + + var["Final Energy|Agriculture"] + + var["Final Energy|Transportation"] + + var["Final Energy|Bunkers"] + ) + + + # The general problem with final energy is that for most of these categories + # feedstocks shouls be excluded (i.e., non-energy use) + # However this is hard to do in PyPSA. + # TODO nevertheless it would be nice to do exactly that + return var @@ -1565,8 +1573,6 @@ def get_emissions(n, region, _energy_totals): 0, ) - - var["Emissions|CO2|Energy|Demand|Residential and Commercial"] = ( co2_emissions.filter(like="urban decentral").sum() + co2_emissions.filter(like="rural" ).sum() From d6d0fd53df5674795524ee935a9f8bab56d12d11 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 6 Mar 2024 17:02:02 +0100 Subject: [PATCH 160/669] fix assertion error --- workflow/scripts/export_ariadne_variables.py | 21 +++++++++++++------- 1 file changed, 14 insertions(+), 7 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 2e4f6464b..93ac33978 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -633,7 +633,7 @@ def get_primary_energy(n, region): like=region ).filter( like="gas CHP" - ).multiply(MWh2PJ) + ).multiply(gas_fossil_fraction).multiply(MWh2PJ) gas_CHP_E_to_H = ( n.links.loc[gas_CHP_usage.index.get_level_values("name")].efficiency @@ -1172,6 +1172,10 @@ def get_secondary_energy(n, region): def get_final_energy(n, region, _industry_demand, _energy_totals): + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } var = pd.Series() @@ -1232,12 +1236,15 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): # var["Final Energy|Industry excl Non-Energy Use|Vehicle Construction"] = \ # Q: Most of these could be found somewhere, but are model inputs! - - - kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, - } + var["Final Energy|Industry"] = \ + var.get([ + "Final Energy|Industry|Electricity", + "Final Energy|Industry|Heat", + "Final Energy|Industry|Gases", + "Final Energy|Industry|Hydrogen", + "Final Energy|Industry|Liquids", + "Final Energy|Industry|Solids", + ]) # Final energy is delivered to the consumers low_voltage_electricity = n.statistics.withdrawal( From 2f2cf927bc5607953bdf56d3deb8445ad3194004 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 6 Mar 2024 18:05:16 +0100 Subject: [PATCH 161/669] fix issue caused by last fix --- workflow/scripts/export_ariadne_variables.py | 2 +- workflow/scripts/plot_ariadne_variables.py | 8 ++++++++ 2 files changed, 9 insertions(+), 1 deletion(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 93ac33978..b8c11f7c4 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1244,7 +1244,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): "Final Energy|Industry|Hydrogen", "Final Energy|Industry|Liquids", "Final Energy|Industry|Solids", - ]) + ]).sum() # Final energy is delivered to the consumers low_voltage_electricity = n.statistics.withdrawal( diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 6a310798d..89ec39cf1 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -144,6 +144,14 @@ def within_plot(df, df2, ][pd.to_numeric(df.keys())] dfhybrid.index.names = df.index.names + idx = df.index.intersection(dfhybrid.index) + print( + "Dropping variables missing in `Hybrid`:", + df.index.difference(dfhybrid.index), + ) + df = df.loc[idx] + dfhybrid = dfhybrid.loc[idx] + dfremind = model_df.loc[ "REMIND-EU v1.1", "8Gt_Bal_v3", "Deutschland" ][pd.to_numeric(df.keys())] From 21ba31a6a918004b26a4166ef663913acc225118 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 7 Mar 2024 10:30:51 +0100 Subject: [PATCH 162/669] switch to remind for plots --- workflow/scripts/plot_ariadne_variables.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 89ec39cf1..94d3e2b02 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -42,7 +42,7 @@ def side_by_side_plot( fig, axes = plt.subplots(ncols=2, sharey=True) ax = ariadne_subplot(df, axes[0], "PyPSA-Eur", **kwargs) - ax2 = ariadne_subplot(dfhybrid, axes[1], "Hybrid", **kwargs) + ax2 = ariadne_subplot(dfhybrid, axes[1], "REMIND-EU v1.1", **kwargs) handles, labels = ax.get_legend_handles_labels() labels2 = ax2.get_legend_handles_labels()[1] @@ -140,7 +140,7 @@ def within_plot(df, df2, ).timeseries() dfhybrid = model_df.loc[ - "Hybrid", "8Gt_Bal_v3", "Deutschland" + "REMIND-EU v1.1", "8Gt_Bal_v3", "Deutschland" ][pd.to_numeric(df.keys())] dfhybrid.index.names = df.index.names From f8e414ba52fe610ac74b65aadf041660ff37289b Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 7 Mar 2024 10:36:18 +0100 Subject: [PATCH 163/669] rename plot title --- workflow/scripts/plot_ariadne_variables.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 94d3e2b02..da566718e 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -253,7 +253,7 @@ def within_plot(df, df2, side_by_side_plot( df, dfhybrid, - "Detailed Supply Emissions in Mt", + "Detailed Emissions in Mt", savepath=snakemake.output.co2_emissions, select_regex="Emissions\|CO2\|[^|]*$", stacked=False, From f549808dce390ca6aeea8422f2e4bf2cc20f309d Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 6 Mar 2024 17:02:02 +0100 Subject: [PATCH 164/669] fix assertion error --- workflow/scripts/export_ariadne_variables.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index b8c11f7c4..9d6db932b 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -634,6 +634,7 @@ def get_primary_energy(n, region): ).filter( like="gas CHP" ).multiply(gas_fossil_fraction).multiply(MWh2PJ) + ).multiply(gas_fossil_fraction).multiply(MWh2PJ) gas_CHP_E_to_H = ( n.links.loc[gas_CHP_usage.index.get_level_values("name")].efficiency @@ -1176,6 +1177,10 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): 'groupby': n.statistics.groupers.get_name_bus_and_carrier, 'nice_names': False, } + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } var = pd.Series() @@ -1244,7 +1249,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): "Final Energy|Industry|Hydrogen", "Final Energy|Industry|Liquids", "Final Energy|Industry|Solids", - ]).sum() + ]) # Final energy is delivered to the consumers low_voltage_electricity = n.statistics.withdrawal( From 4fa4adc2e0cbc19326b6420ee34f4b198d373867 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 6 Mar 2024 18:05:16 +0100 Subject: [PATCH 165/669] fix issue caused by last fix --- workflow/scripts/export_ariadne_variables.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 9d6db932b..3c0669e1e 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1249,7 +1249,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): "Final Energy|Industry|Hydrogen", "Final Energy|Industry|Liquids", "Final Energy|Industry|Solids", - ]) + ]).sum() # Final energy is delivered to the consumers low_voltage_electricity = n.statistics.withdrawal( From 390d2e0f1fbe404c15edcc9f604bdd2dda62d78a Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 7 Mar 2024 10:30:51 +0100 Subject: [PATCH 166/669] switch to remind for plots --- workflow/scripts/plot_ariadne_variables.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index da566718e..e046a83e1 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -43,6 +43,7 @@ def side_by_side_plot( fig, axes = plt.subplots(ncols=2, sharey=True) ax = ariadne_subplot(df, axes[0], "PyPSA-Eur", **kwargs) ax2 = ariadne_subplot(dfhybrid, axes[1], "REMIND-EU v1.1", **kwargs) + ax2 = ariadne_subplot(dfhybrid, axes[1], "REMIND-EU v1.1", **kwargs) handles, labels = ax.get_legend_handles_labels() labels2 = ax2.get_legend_handles_labels()[1] @@ -141,6 +142,7 @@ def within_plot(df, df2, dfhybrid = model_df.loc[ "REMIND-EU v1.1", "8Gt_Bal_v3", "Deutschland" + "REMIND-EU v1.1", "8Gt_Bal_v3", "Deutschland" ][pd.to_numeric(df.keys())] dfhybrid.index.names = df.index.names From 727f9d89c361eb17c6395ca75b4329d3a2b32451 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 7 Mar 2024 15:00:00 +0100 Subject: [PATCH 167/669] minor fixes --- workflow/scripts/export_ariadne_variables.py | 1 - workflow/scripts/plot_ariadne_variables.py | 14 ++------------ 2 files changed, 2 insertions(+), 13 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 3c0669e1e..3d17ee5de 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -634,7 +634,6 @@ def get_primary_energy(n, region): ).filter( like="gas CHP" ).multiply(gas_fossil_fraction).multiply(MWh2PJ) - ).multiply(gas_fossil_fraction).multiply(MWh2PJ) gas_CHP_E_to_H = ( n.links.loc[gas_CHP_usage.index.get_level_values("name")].efficiency diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index e046a83e1..51d6184bc 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -43,7 +43,6 @@ def side_by_side_plot( fig, axes = plt.subplots(ncols=2, sharey=True) ax = ariadne_subplot(df, axes[0], "PyPSA-Eur", **kwargs) ax2 = ariadne_subplot(dfhybrid, axes[1], "REMIND-EU v1.1", **kwargs) - ax2 = ariadne_subplot(dfhybrid, axes[1], "REMIND-EU v1.1", **kwargs) handles, labels = ax.get_legend_handles_labels() labels2 = ax2.get_legend_handles_labels()[1] @@ -83,7 +82,7 @@ def within_plot(df, df2, for i, var in enumerate(df.columns.get_level_values("Variable")): axes[i].plot(df.xs(var, axis=1, level=0), label="PyPSA-Eur") - if var in dfremind.index.get_level_values("variable"): + if var in df2.index.get_level_values("variable"): axes[i].plot(df2.T.xs(var, axis=1, level=0), label="Remind") axes[i].set_title(var) axes[i].legend() @@ -141,19 +140,10 @@ def within_plot(df, df2, ).timeseries() dfhybrid = model_df.loc[ - "REMIND-EU v1.1", "8Gt_Bal_v3", "Deutschland" - "REMIND-EU v1.1", "8Gt_Bal_v3", "Deutschland" + "Hybrid", "8Gt_Bal_v3", "Deutschland" ][pd.to_numeric(df.keys())] dfhybrid.index.names = df.index.names - idx = df.index.intersection(dfhybrid.index) - print( - "Dropping variables missing in `Hybrid`:", - df.index.difference(dfhybrid.index), - ) - df = df.loc[idx] - dfhybrid = dfhybrid.loc[idx] - dfremind = model_df.loc[ "REMIND-EU v1.1", "8Gt_Bal_v3", "Deutschland" ][pd.to_numeric(df.keys())] From de1224b3c9dfc5ac798b492407a86c832e934e05 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 7 Mar 2024 15:30:47 +0100 Subject: [PATCH 168/669] static download of Ariadne DB, sector specific usage of Leitmodelle --- config/config.yaml | 8 +-- workflow/Snakefile | 13 ++--- workflow/scripts/modify_energy_totals.py | 6 ++- workflow/scripts/modify_existing_heating.py | 50 +++++++++++++------ workflow/scripts/retrieve_ariadne_database.py | 22 ++++++++ .../scripts/retrieve_ariadne_scenario_data.py | 18 ------- 6 files changed, 73 insertions(+), 44 deletions(-) create mode 100644 workflow/scripts/retrieve_ariadne_database.py delete mode 100644 workflow/scripts/retrieve_ariadne_scenario_data.py diff --git a/config/config.yaml b/config/config.yaml index 8a86e51ce..3ac8f2101 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -13,10 +13,10 @@ run: iiasa_database: - db_name: ariadne_intern - model_name: Hybrid - scenario: 8Gt_EnSec - region: Deutschland + # db_name: ariadne_intern + # model_name: Hybrid + scenario: 8Gt_Bal_v3 + # region: Deutschland # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight diff --git a/workflow/Snakefile b/workflow/Snakefile index b960ddef6..5c17c05e7 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -84,18 +84,19 @@ rule clean: print("Data downloaded to data/ has not been cleaned.") -rule retrieve_ariadne_scenario_data: +rule retrieve_ariadne_database: params: iiasa_usr=os.environ["IIASA_USERNAME"], iiasa_pwd=os.environ["IIASA_PASSWORD"] output: - data=resources("ariadne_scenario_data.csv") + data=resources("ariadne_database.csv"), log: - "logs/retrieve_ariadne_scenario_data.log" + "logs/retrieve_ariadne_database.log" resources: mem_mb=1000 script: - "scripts/retrieve_ariadne_scenario_data.py" + "scripts/retrieve_ariadne_database.py" + #if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", True): # @@ -151,7 +152,7 @@ use rule solve_sector_network_myopic from pypsaeur with: rule modify_existing_heating: input: - ariadne=resources("ariadne_scenario_data.csv"), + ariadne=resources("ariadne_database.csv"), existing_heating="data/existing_infrastructure/existing_heating_raw.csv", output: existing_heating=resources("existing_heating.csv"), @@ -171,7 +172,7 @@ use rule build_existing_heating_distribution from pypsaeur with: rule modify_energy_totals: input: - ariadne=resources("ariadne_scenario_data.csv"), + ariadne=resources("ariadne_database.csv"), energy_totals=resources("energy_totals.csv"), output: energy_totals=resources("energy_totals-modified.csv"), diff --git a/workflow/scripts/modify_energy_totals.py b/workflow/scripts/modify_energy_totals.py index 57387a554..2e4db522c 100644 --- a/workflow/scripts/modify_energy_totals.py +++ b/workflow/scripts/modify_energy_totals.py @@ -6,7 +6,9 @@ energy_totals = pd.read_csv(snakemake.input.energy_totals, index_col=0) -ariadne = pd.read_csv(snakemake.input.ariadne, - index_col=0) +ariadne = pd.read_csv( + snakemake.input.ariadne, + index_col=["model", "scenario", "region", "variable", "unit"] +) energy_totals.to_csv(snakemake.output.energy_totals) diff --git a/workflow/scripts/modify_existing_heating.py b/workflow/scripts/modify_existing_heating.py index f529fc9df..f63fc05ea 100644 --- a/workflow/scripts/modify_existing_heating.py +++ b/workflow/scripts/modify_existing_heating.py @@ -2,30 +2,52 @@ import pandas as pd +leitmodell="REMod v1.0" existing_heating = pd.read_csv(snakemake.input.existing_heating, index_col=0) -ariadne = pd.read_csv(snakemake.input.ariadne, - index_col=0) - -print("before",existing_heating.loc["Germany"]) - -mapping = {"gas boiler" : "Gas Boiler", - "oil boiler" : "Oil Boiler", - "air heat pump" : "Heat Pump|Electrical|Air", - "ground heat pump" : "Heat Pump|Electrical|Ground", - "biomass boiler" : "Biomass Boiler"} +ariadne = pd.read_csv( + snakemake.input.ariadne, + index_col=["model", "scenario", "region", "variable", "unit"] +).loc[ + leitmodell, + snakemake.config["iiasa_database"]["scenario"], + "Deutschland", + :, + "million", +] + +print( + "Heating demand before modification:", + existing_heating.loc["Germany"], sep="\n") + +mapping = { + "gas boiler" : "Gas Boiler", + "oil boiler" : "Oil Boiler", + "air heat pump" : "Heat Pump|Electrical|Air", + "ground heat pump" : "Heat Pump|Electrical|Ground", + "biomass boiler" : "Biomass Boiler", +} year = "2020" for tech in mapping: - stock = ariadne.at[f"Stock|Space Heating|{mapping[tech]}",year] - peak = stock*existing_heating.loc["Germany"].sum()/ariadne.at[f"Stock|Space Heating",year] - existing_heating.at["Germany",tech] = peak + stock = ariadne.at[ + f"Stock|Space Heating|{mapping[tech]}", + year, + ] + + peak = ( + stock * existing_heating.loc["Germany"].sum() + / ariadne.at[f"Stock|Space Heating", year] + + ) + existing_heating.at["Germany", tech] = peak -print("before",existing_heating.loc["Germany"]) +print(f"Heating demand after modification with {leitmodell}:", + existing_heating.loc["Germany"], sep="\n") existing_heating.to_csv(snakemake.output.existing_heating) diff --git a/workflow/scripts/retrieve_ariadne_database.py b/workflow/scripts/retrieve_ariadne_database.py new file mode 100644 index 000000000..0fc9d31fa --- /dev/null +++ b/workflow/scripts/retrieve_ariadne_database.py @@ -0,0 +1,22 @@ +import pyam + +pyam.iiasa.set_config(snakemake.params.iiasa_usr, snakemake.params.iiasa_pwd) + +db = pyam.read_iiasa( + "ariadne_intern", + model=[# Download only the Leitmodelle + "Hybrid", + "REMIND-EU v1.1", + 'REMod v1.0', + 'TIMES PanEU v1.0', + 'FORECAST v1.0', + 'DEMO v1', + ], + scenario=[# Download only the most recent iterations of scenarios + "8Gt_Bal_v3", + "8Gt_Elec_v3", + "8Gt_H2_v3", + ], +) + +db.timeseries().to_csv(snakemake.output.data) diff --git a/workflow/scripts/retrieve_ariadne_scenario_data.py b/workflow/scripts/retrieve_ariadne_scenario_data.py deleted file mode 100644 index e847efb98..000000000 --- a/workflow/scripts/retrieve_ariadne_scenario_data.py +++ /dev/null @@ -1,18 +0,0 @@ - - -import pyam - -pyam.iiasa.set_config(snakemake.params.iiasa_usr, snakemake.params.iiasa_pwd) - - -model_raw = pyam.read_iiasa(snakemake.config["iiasa_database"]["db_name"], - model=snakemake.config["iiasa_database"]["model_name"], - scenario=snakemake.config["iiasa_database"]["scenario"]) - -model_df = model_raw.timeseries() - -model_df = model_df.loc[snakemake.config["iiasa_database"]["model_name"], - snakemake.config["iiasa_database"]["scenario"], - snakemake.config["iiasa_database"]["region"]] - -model_df.to_csv(snakemake.output.data) From d18f577381e91c86bc9e4459db98cdead9e76bcb Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 7 Mar 2024 18:34:50 +0100 Subject: [PATCH 169/669] fix assertion error --- workflow/scripts/plot_ariadne_variables.py | 25 +++++++++++----------- 1 file changed, 13 insertions(+), 12 deletions(-) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 949c75dc1..f6ff5792e 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -82,8 +82,8 @@ def within_plot(df, df2, for i, var in enumerate(df.columns.get_level_values("Variable")): axes[i].plot(df.xs(var, axis=1, level=0), label="PyPSA-Eur") - if var in df2.index.get_level_values("variable"): - axes[i].plot(df2.T.xs(var, axis=1, level=0), label="Remind") + if var in df2.index.get_level_values("Variable"): + axes[i].plot(df2.T.xs(var, axis=1, level=0), label="REMIND-EU") axes[i].set_title(var) axes[i].legend() @@ -132,23 +132,22 @@ def within_plot(df, df2, os.environ["IIASA_PASSWORD"], ) - model_df= pyam.read_iiasa( + model_df = pyam.read_iiasa( "ariadne_intern", - model="REMIND-EU v1.1", scenario="8Gt_Bal_v3", region="Deutschland", ).timeseries() - + leitmodell="REMIND-EU v1.1" dfremind = model_df.loc[ - "REMIND-EU v1.1", "8Gt_Bal_v3", "Deutschland" + leitmodell, "8Gt_Bal_v3", "Deutschland" ][pd.to_numeric(df.keys())] dfremind.index.names = df.index.names idx = df.index.intersection(dfremind.index) print( - "Dropping variables missing in `Hybrid`:", + f"Dropping variables missing in {leitmodell}:", df.index.difference(dfremind.index), ) df = df.loc[idx] @@ -160,7 +159,7 @@ def within_plot(df, df2, "Primary Energy in PJ_yr", savepath=snakemake.output.primary_energy, select_regex="Primary Energy\|[^|]*$", - drop_regex="^(?!.*(Fossil)).+" + drop_regex="^(?!.*(Fossil|Price)).+" ) side_by_side_plot( @@ -169,7 +168,7 @@ def within_plot(df, df2, "Detailed Primary Energy in PJ_yr", savepath=snakemake.output.primary_energy_detailed, select_regex="Primary Energy\|[^|]*\|[^|]*$", - drop_regex="^(?!.*(CCS)).+" + drop_regex="^(?!.*(CCS|Price)).+" ) side_by_side_plot( @@ -178,6 +177,8 @@ def within_plot(df, df2, "Secondary Energy in PJ_yr", savepath=snakemake.output.secondary_energy, select_regex="Secondary Energy\|[^|]*$", + drop_regex="^(?!.*(Price)).+" + ) side_by_side_plot( @@ -188,7 +189,7 @@ def within_plot(df, df2, # Secondary Energy|Something|Something (exactly two pipes) select_regex="Secondary Energy\|[^|]*\|[^|]*$", # Not ending in Fossil or Renewables (i.e., categories) - drop_regex="^(?!.*(Fossil|Renewables|Losses)).+" + drop_regex="^(?!.*(Fossil|Renewables|Losses|Price)).+" ) side_by_side_plot( @@ -197,7 +198,7 @@ def within_plot(df, df2, "Final Energy in PJ_yr", savepath=snakemake.output.final_energy, select_regex="Final Energy\|[^|]*$", - drop_regex="^(?!.*(Electricity)).+" + drop_regex="^(?!.*(Electricity|Price)).+" ) side_by_side_plot( @@ -207,7 +208,7 @@ def within_plot(df, df2, savepath=snakemake.output.final_energy_detailed, select_regex="Final Energy\|[^|]*\|[^|]*$", rshift = 1.45, - #drop_regex="^(?!.*(Electricity)).+" + drop_regex="^(?!.*(Price)).+" ) side_by_side_plot( From d53b923e619666041e5e245c22bf9a57e8c6caed Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Mon, 11 Mar 2024 08:51:46 +0100 Subject: [PATCH 170/669] update to snakemake v8 --- config/config.yaml | 4 ++-- environment.yaml | 7 ++++++- workflow/Snakefile | 13 +++++-------- workflow/scripts/build_wasserstoff_kernnetz.py | 4 ++-- 4 files changed, 15 insertions(+), 13 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 09aaf2013..bc5afe1da 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -218,8 +218,8 @@ industry: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving solving: - walltime: "12:00:00" - mem: 140000 #30000 is OK for 22 nodes, 365H; 140000 for 22 nodes 3H; 400000 for 44 nodes 3H + runtime: 12h + mem_mb: 140000 #30000 is OK for 22 nodes, 365H; 140000 for 22 nodes 3H; 400000 for 44 nodes 3H options: load_shedding: false diff --git a/environment.yaml b/environment.yaml index 8090944ca..b67bfaefd 100644 --- a/environment.yaml +++ b/environment.yaml @@ -18,7 +18,7 @@ dependencies: - openpyxl!=3.1.1 - pycountry - seaborn -- snakemake-minimal>=7.7.0 +- snakemake-minimal>=8.5 - memory_profiler - yaml - pytables @@ -61,5 +61,10 @@ dependencies: - descartes - rasterio!=1.2.10 +- pip: + - snakemake-storage-plugin-http + - snakemake-executor-plugin-slurm + - snakemake-executor-plugin-cluster-generic + diff --git a/workflow/Snakefile b/workflow/Snakefile index 5fd73ab16..f58885133 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -2,9 +2,9 @@ # # SPDX-License-Identifier: MIT -from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider +from snakemake.utils import min_version -HTTP = HTTPRemoteProvider() +min_version("8.5") configfile: "workflow/submodules/pypsa-eur/config/config.default.yaml" configfile: "config/config.yaml" @@ -164,20 +164,17 @@ if config["wasserstoff_kernnetz"]["enable"]: rule build_wasserstoff_kernnetz: input: - wasserstoff_kernnetz_1=HTTP.remote( + wasserstoff_kernnetz_1=storage( "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage2_Leitungsmeldungen_weiterer_potenzieller_Wasserstoffnetzbetreiber_Veroeffentlichung_final.xlsx", keep_local=True, - static=True, ), - wasserstoff_kernnetz_2=HTTP.remote( + wasserstoff_kernnetz_2=storage( "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage3_FNB_Massnahmenliste_Veroeffentlichung_final.xlsx", keep_local=True, - static=True, ), - gadm=HTTP.remote( + gadm=storage( "https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_DEU_1.json.zip", keep_local=True, - static=True ), locations="data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", output: diff --git a/workflow/scripts/build_wasserstoff_kernnetz.py b/workflow/scripts/build_wasserstoff_kernnetz.py index 98e7c3166..0d0597570 100644 --- a/workflow/scripts/build_wasserstoff_kernnetz.py +++ b/workflow/scripts/build_wasserstoff_kernnetz.py @@ -382,8 +382,8 @@ def assign_locations(df, locations): logging.basicConfig(level=snakemake.config["logging"]["level"]) wasserstoff_kernnetz = load_and_merge_raw( - snakemake.input.wasserstoff_kernnetz_1[0], - snakemake.input.wasserstoff_kernnetz_2[0], + snakemake.input.wasserstoff_kernnetz_1, + snakemake.input.wasserstoff_kernnetz_2, ) wasserstoff_kernnetz = prepare_dataset(wasserstoff_kernnetz) From 38c9ab2b021d0a6e8be0d68a8049c984333eeb50 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Mon, 11 Mar 2024 15:51:00 +0100 Subject: [PATCH 171/669] changed CAPEX logic --- workflow/scripts/export_ariadne_variables.py | 43 ++++++++++---------- 1 file changed, 21 insertions(+), 22 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index b8c11f7c4..98f971ffc 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1790,17 +1790,17 @@ def costs_gen_generators(n, region, carrier): Returns: - tuple: A tuple containing cost and total generation of the generators. """ - - # CAPEX + gens = n.generators[(n.generators.carrier == carrier) & (n.generators.bus.str.contains(region))] - capacity_expansion = gens.p_nom_opt - gens.p_nom - capex = (capacity_expansion * n.generators.capital_cost[capacity_expansion.index]).sum() - - # OPEX gen = n.generators_t.p[gens.index].multiply(n.snapshot_weightings.generators, axis="index").sum() if gen.empty or gen.sum() < 1: return np.nan, 0 - opex = (gen * n.generators.marginal_cost[gen.index]).sum() + + # CAPEX + capex = (gens.p_nom_opt * gens.capital_cost).sum() + + # OPEX + opex = (gen * gens.marginal_cost).sum() result = (capex + opex) / gen.sum() return result, gen.sum() @@ -1820,20 +1820,21 @@ def costs_gen_links(n, region, carrier, gen_bus="p1"): tuple: A tuple containing the costs per unit of generetad energy and the total generation of the specified generator bus. """ - # CAPEX links = n.links[(n.links.carrier == carrier) & (n.links.index.str.contains(region))] - capacity_expansion = links.p_nom_opt - links.p_nom - capex = (capacity_expansion * n.links.capital_cost[capacity_expansion.index]).sum() - - # OPEX gen = abs(n.links_t[gen_bus][links.index].multiply(n.snapshot_weightings.generators, axis="index")).sum() if gen.empty or gen.sum() < 1: return np.nan, 0 - opex = (gen * n.links.marginal_cost[gen.index]).sum() + + # CAPEX + capex = (links.p_nom_opt * links.capital_cost).sum() + + # OPEX + input = abs(n.links_t["p0"][links.index].multiply(n.snapshot_weightings.generators, axis="index")).sum() + opex = (input * links.marginal_cost).sum() # input costs and output revenues other than main generation @ gen_bus sum = 0 - for i in range(0,4): + for i in range(0,5): if f"p{i}" == gen_bus: continue elif links.empty: @@ -1841,14 +1842,12 @@ def costs_gen_links(n, region, carrier, gen_bus="p1"): elif n.links.loc[links.index][f"bus{i}"].iloc[0] == "": break else: - if links[f"bus{i}"].str.contains("co2").iloc[0]: - sum -= (n.links_t[f"p{i}"][links.index] * n.buses_t.marginal_price[links[f"bus{i}"]].values - ).multiply(n.snapshot_weightings.generators, axis="index" - ).sum().sum() - else: - sum += (n.links_t[f"p{i}"][links.index] * n.buses_t.marginal_price[links[f"bus{i}"]].values - ).multiply(n.snapshot_weightings.generators, axis="index" - ).sum().sum() + update_cost = \ + (n.links_t[f"p{i}"][links.index] * \ + n.buses_t.marginal_price[links[f"bus{i}"]].values + ).multiply(n.snapshot_weightings.generators, axis="index" + ).sum().sum() + sum = sum + update_cost result = (capex + opex + sum) / gen.sum() return result, gen.sum() From 0ce98d612606159396f6d6617f890bfb5850029d Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Mon, 11 Mar 2024 18:02:31 +0100 Subject: [PATCH 172/669] adjustments to new scenario management --- workflow/Snakefile | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 56c3a3d74..94a99ff4c 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -103,10 +103,18 @@ rule retrieve_ariadne_scenario_data: # output: # resources("costs_{year}-original.csv"), +def input_profile_offwind(w): + return { + f"profile_{tech}": resources(f"profile_{tech}.nc") + for tech in ["offwind-ac", "offwind-dc"] + if (tech in config["electricity"]["renewable_carriers"]) + } + use rule prepare_sector_network from pypsaeur with: input: + unpack(input_profile_offwind), **{k: v for k, v in rules.prepare_sector_network.input.items() if k != "costs"}, - costs=resources("modified-costs_{planning_horizons}.csv"), + costs=resources("modified-costs_{planning_horizons}.csv"), rule modify_cost_data: input: From 7a77957c33c213d529e6412e109c6921c2d92b72 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Mon, 11 Mar 2024 18:04:10 +0100 Subject: [PATCH 173/669] update to new ariadne2 branch --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index c86d2ea19..1a3181def 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit c86d2ea19f5a1b1696442ed50bebcf9093f309a5 +Subproject commit 1a3181def294dd1f3f75343aea2b93d31c5b59ff From 434b22a331be59bb56d99df8d1950f7b41cf79b0 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Tue, 12 Mar 2024 12:15:14 +0100 Subject: [PATCH 174/669] feedback from Micha --- workflow/scripts/export_ariadne_variables.py | 80 +++++++++++--------- workflow/scripts/plot_ariadne_variables.py | 2 +- 2 files changed, 45 insertions(+), 37 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 98f971ffc..ef57b948e 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1771,11 +1771,11 @@ def price_load(n, load_carrier, region): """ load = n.loads[(n.loads.carrier == load_carrier) & (n.loads.bus.str.contains(region))] - if n.loads_t.p[load.index].sum().sum() < 1: + if n.loads_t.p[load.index].values.sum() < 1: return np.nan, 0 - result = (n.loads_t.p[load.index] * n.buses_t.marginal_price[load.bus].values).sum().sum() - result /= n.loads_t.p[load.index].sum().sum() - return result, n.loads_t.p[load.index].sum().sum() + result = (n.loads_t.p[load.index] * n.buses_t.marginal_price[load.bus].values).values.sum() + result /= n.loads_t.p[load.index].values.sum() + return result, n.loads_t.p[load.index].values.sum() def costs_gen_generators(n, region, carrier): @@ -1846,7 +1846,7 @@ def costs_gen_links(n, region, carrier, gen_bus="p1"): (n.links_t[f"p{i}"][links.index] * \ n.buses_t.marginal_price[links[f"bus{i}"]].values ).multiply(n.snapshot_weightings.generators, axis="index" - ).sum().sum() + ).values.sum() sum = sum + update_cost result = (capex + opex + sum) / gen.sum() @@ -1857,10 +1857,11 @@ def get_weighted_costs_links(carriers, n, region): numerator = 0 denominator = 0 - for c in carriers: - if not math.isnan(costs_gen_links(n, region, c)[0]): - numerator += costs_gen_links(n, region, c)[0] * costs_gen_links(n, region, c)[1] - denominator += costs_gen_links(n, region, c)[1] + for c in carriers: + cost_gen = costs_gen_links(n, region, c) + if not math.isnan(cost_gen[0]): + numerator += cost_gen[0] * cost_gen[1] + denominator += cost_gen[1] if denominator == 0: return np.nan @@ -1914,7 +1915,7 @@ def get_prices(n, region): # electricity price at the final level in the residential sector. Prices should include the effect of carbon prices. var["Price|Final Energy|Residential|Electricity"] = \ - nodal_flows_lw.mul(nodal_prices_lw).sum().sum() / nodal_flows_lw.sum().sum() / MWh2GJ + nodal_flows_lw.mul(nodal_prices_lw).values.sum() / nodal_flows_lw.values.sum() / MWh2GJ # vars: Tier 1, Category: energy(price) @@ -1923,34 +1924,34 @@ def get_prices(n, region): # primary energy consumption of purpose-grown bioenergy crops, crop and forestry residue bioenergy, municipal solid waste bioenergy, traditional biomass, including renewable waste var["Price|Primary Energy|Biomass"] = \ - nodal_flows_bm.mul(nodal_prices_bm).sum().sum() / nodal_flows_bm.sum().sum() / MWh2GJ + nodal_flows_bm.mul(nodal_prices_bm).values.sum() / nodal_flows_bm.values.sum() / MWh2GJ # Price|Primary Energy|Coal # is coal also lignite? -> yes according to michas code (coal for industry is already included as it withdraws from coal bus) nf_coal = get_nodal_flows(n, "coal", "DE") nodal_prices_coal = n.buses_t.marginal_price[nf_coal.columns] - coal_price = nf_coal.mul(nodal_prices_coal).sum().sum() / nf_coal.sum().sum() if nf_coal.sum().sum() > 0 else np.nan + coal_price = nf_coal.mul(nodal_prices_coal).values.sum() / nf_coal.values.sum() if nf_coal.values.sum() > 0 else np.nan nf_lignite = get_nodal_flows(n, "lignite", "DE") nodal_prices_lignite = n.buses_t.marginal_price[nf_lignite.columns] - lignite_price = nf_lignite.mul(nodal_prices_lignite).sum().sum() / nf_lignite.sum().sum() if nf_lignite.sum().sum() > 0 else np.nan + lignite_price = nf_lignite.mul(nodal_prices_lignite).values.sum() / nf_lignite.values.sum() if nf_lignite.values.sum() > 0 else np.nan var["Price|Primary Energy|Coal"] = \ - get_weighted_costs([coal_price, lignite_price], [nf_coal.sum().sum(), nf_lignite.sum().sum()])/ MWh2GJ + get_weighted_costs([coal_price, lignite_price], [nf_coal.values.sum(), nf_lignite.values.sum()])/ MWh2GJ # Price|Primary Energy|Gas nodal_flows_gas = get_nodal_flows(n, "gas", "DE") nodal_prices_gas = n.buses_t.marginal_price[nodal_flows_gas.columns] var["Price|Primary Energy|Gas"] = \ - nodal_flows_gas.mul(nodal_prices_gas).sum().sum() / nodal_flows_gas.sum().sum() / MWh2GJ + nodal_flows_gas.mul(nodal_prices_gas).values.sum() / nodal_flows_gas.values.sum() / MWh2GJ # Price|Primary Energy|Oil nodal_flows_oil = get_nodal_flows(n, "oil", "DE") nodal_prices_oil = n.buses_t.marginal_price[nodal_flows_oil.columns] var["Price|Primary Energy|Oil"] = \ - nodal_flows_oil.mul(nodal_prices_oil).sum().sum() / nodal_flows_oil.sum().sum() /MWh2GJ + nodal_flows_oil.mul(nodal_prices_oil).values.sum() / nodal_flows_oil.values.sum() /MWh2GJ # Price|Secondary Energy|Electricity # electricity price at the secondary level, i.e. for large scale consumers (e.g. aluminum production). Prices should include the effect of carbon prices. @@ -1962,7 +1963,7 @@ def get_prices(n, region): nodal_prices_ac = n.buses_t.marginal_price[nodal_flows_ac.columns] var["Price|Secondary Energy|Electricity"] = \ - nodal_flows_ac.mul(nodal_prices_ac).sum().sum() / nodal_flows_ac.sum().sum() /MWh2GJ + nodal_flows_ac.mul(nodal_prices_ac).values.sum() / nodal_flows_ac.values.sum() /MWh2GJ var["Price|Secondary Energy|Gases|Natural Gas"] = \ costs_gen_generators(n, region ,"gas")[0] / MWh2GJ @@ -1984,7 +1985,7 @@ def get_prices(n, region): nodal_prices_h2 = n.buses_t.marginal_price[nodal_flows_h2.columns] var["Price|Secondary Energy|Hydrogen"] = \ - nodal_flows_h2.mul(nodal_prices_h2).sum().sum() / nodal_flows_h2.sum().sum() /MWh2GJ + nodal_flows_h2.mul(nodal_prices_h2).values.sum() / nodal_flows_h2.values.sum() /MWh2GJ # From PIK plots # "Price|Final Energy|Residential|Hydrogen" = final energy consumption by the residential sector of hydrogen @@ -1999,30 +2000,33 @@ def get_prices(n, region): # !!! mv much higher: check carbon effect! var["Price|Final Energy|Residential|Gases"] = \ - nf_gas_residential.mul(nodal_prices_gas).sum().sum() / nf_gas_residential.sum().sum() / MWh2GJ if nf_gas_residential.sum().sum() > 0 else np.nan + nf_gas_residential.mul(nodal_prices_gas).values.sum() / nf_gas_residential.values.sum() / MWh2GJ if nf_gas_residential.values.sum() > 0 else np.nan # "Price|Final Energy|Residential|Gases|Natural Gas" ? # "Price|Final Energy|Residential|Liquids|Biomass" x - carriers = ['rural oil boiler', 'urban decentral oil boiler'] var["Price|Final Energy|Residential|Liquids|Oil"] = \ - get_weighted_costs_links(carriers, n, "DE") / MWh2GJ + get_weighted_costs_links( + ['rural oil boiler', 'urban decentral oil boiler'], + n, "DE") / MWh2GJ var["Price|Final Energy|Residential|Liquids"] = \ var["Price|Final Energy|Residential|Liquids|Oil"] - carriers = ['rural biomass boiler', 'urban decentral biomass boiler'] var["Price|Final Energy|Residential|Solids|Biomass"] = \ - get_weighted_costs_links(carriers, n, "DE") / MWh2GJ + get_weighted_costs_links( + ['rural biomass boiler', 'urban decentral biomass boiler'], + n, "DE") / MWh2GJ var["Price|Final Energy|Residential|Solids"] = \ var["Price|Final Energy|Residential|Solids|Biomass"] # "Price|Final Energy|Industry|Electricity"✓ - carriers = ['gas for industry','gas for industry CC',] var["Price|Final Energy|Industry|Gases"] = \ - get_weighted_costs_links(carriers, n, "DE") / MWh2GJ + get_weighted_costs_links( + ['gas for industry','gas for industry CC'], + n, "DE") / MWh2GJ # "Price|Final Energy|Industry|Heat"✓ @@ -2031,9 +2035,10 @@ def get_prices(n, region): # "Price|Final Energy|Industry|Hydrogen"✓ - carriers = [ 'solid biomass for industry', 'solid biomass for industry CC', 'coal for industry'] var["Price|Final Energy|Industry|Solids"] = \ - get_weighted_costs_links(carriers, n, "DE") / MWh2GJ + get_weighted_costs_links( + [ 'solid biomass for industry', 'solid biomass for industry CC', 'coal for industry'], + n, "DE") / MWh2GJ # Rest Tier 2 # x @@ -2065,8 +2070,8 @@ def get_prices(n, region): # Price|Final Energy|Transportation|Liquids|Efuel - carriers = ["kerosene for aviation", "shipping methanol", "shipping oil"] - df = pd.DataFrame({c: price_load(n, c, "DE") for c in carriers}) + df = pd.DataFrame({c: price_load(n, c, "DE") for c in \ + ["kerosene for aviation", "shipping methanol", "shipping oil"]}) var["Price|Final Energy|Transportation|Liquids|Efuel"] = \ (df.iloc[0]*df.iloc[1]).sum() / df.iloc[1].sum() / MWh2GJ @@ -2096,9 +2101,10 @@ def get_prices(n, region): # Price|Final Energy|Residential and Commercial|Liquids|Oil - carriers = ['rural oil boiler', 'urban decentral oil boiler'] var["Price|Final Energy|Residential and Commercial|Liquids|Oil"] = \ - get_weighted_costs_links(carriers, n, "DE") / MWh2GJ + get_weighted_costs_links( + ['rural oil boiler', 'urban decentral oil boiler'], + n, "DE") / MWh2GJ # Price|Final Energy|Residential and Commercial|Liquids|Oil|Sales Margin # Price|Final Energy|Residential and Commercial|Liquids|Oil|Transport and Distribution @@ -2122,7 +2128,7 @@ def get_prices(n, region): np_rc_heat = n.buses_t.marginal_price[nf_rc_heat.columns] var["Price|Final Energy|Residential and Commercial|Heat"] = \ - nf_rc_heat.mul(np_rc_heat).sum().sum() / nf_rc_heat.sum().sum() / MWh2GJ + nf_rc_heat.mul(np_rc_heat).values.sum() / nf_rc_heat.values.sum() / MWh2GJ # Price|Final Energy|Residential and Commercial|Heat|Sales Margin # Price|Final Energy|Residential and Commercial|Heat|Transport and Distribution @@ -2134,9 +2140,11 @@ def get_prices(n, region): # Price|Final Energy|Residential and Commercial|Liquids|Biomass|Other Taxes # Price|Final Energy|Residential and Commercial|Solids|Biomass - carriers = ['rural biomass boiler', 'urban decentral biomass boiler'] + var["Price|Final Energy|Residential and Commercial|Solids|Biomass"] = \ - get_weighted_costs_links(carriers, n, "DE") / MWh2GJ + get_weighted_costs_links( + ['rural biomass boiler', 'urban decentral biomass boiler'], + n, "DE") / MWh2GJ # Price|Final Energy|Residential and Commercial|Solids|Biomass|Sales Margin # Price|Final Energy|Residential and Commercial|Solids|Biomass|Transport and Distribution @@ -2244,7 +2252,7 @@ def get_prices(n, region): nodal_prices_gas = n.buses_t.marginal_price[nodal_flows_gas.columns] var["Price|Secondary Energy|Gases"] = \ - nodal_flows_gas.mul(nodal_prices_gas).sum().sum() / nodal_flows_gas.sum().sum() /MWh2GJ + nodal_flows_gas.mul(nodal_prices_gas).values.sum() / nodal_flows_gas.values.sum() /MWh2GJ nodal_flows_oil = get_nodal_flows( n, "oil", "DE", @@ -2255,7 +2263,7 @@ def get_prices(n, region): nodal_prices_oil = n.buses_t.marginal_price[nodal_flows_oil.columns] var["Price|Secondary Energy|Liquids"] = \ - nodal_flows_oil.mul(nodal_prices_oil).sum().sum() / nodal_flows_oil.sum().sum() /MWh2GJ + nodal_flows_oil.mul(nodal_prices_oil).values.sum() / nodal_flows_oil.values.sum() /MWh2GJ # Price|Final Energy|Transportation|Freight|Electricity x # Price|Final Energy|Transportation|Freight|Gases diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index f6ff5792e..998c5d4c0 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -91,7 +91,7 @@ def within_plot(df, df2, if n % 2 != 0: fig.delaxes(axes[-1]) - plt.suptitle(title, fontsize="xx-large", y=1.0) + plt.suptitle(title + " in EUR_2020/GJ", fontsize="xx-large", y=1.0) plt.tight_layout() plt.close() fig.savefig(savepath, bbox_inches="tight") From 2db769ee8c1b6c6443d0fce995636fd1a5512b30 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 12 Mar 2024 15:04:06 +0100 Subject: [PATCH 175/669] "DE" -> region --- workflow/scripts/export_ariadne_variables.py | 70 +++++++++++--------- 1 file changed, 38 insertions(+), 32 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index ef57b948e..f38ca9ce4 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1791,8 +1791,10 @@ def costs_gen_generators(n, region, carrier): - tuple: A tuple containing cost and total generation of the generators. """ - gens = n.generators[(n.generators.carrier == carrier) & (n.generators.bus.str.contains(region))] - gen = n.generators_t.p[gens.index].multiply(n.snapshot_weightings.generators, axis="index").sum() + gens = n.generators[(n.generators.carrier == carrier) + & (n.generators.bus.str.contains(region))] + gen = n.generators_t.p[gens.index].multiply( + n.snapshot_weightings.generators, axis="index").sum() if gen.empty or gen.sum() < 1: return np.nan, 0 @@ -1820,8 +1822,10 @@ def costs_gen_links(n, region, carrier, gen_bus="p1"): tuple: A tuple containing the costs per unit of generetad energy and the total generation of the specified generator bus. """ - links = n.links[(n.links.carrier == carrier) & (n.links.index.str.contains(region))] - gen = abs(n.links_t[gen_bus][links.index].multiply(n.snapshot_weightings.generators, axis="index")).sum() + links = n.links[(n.links.carrier == carrier) + & (n.links.index.str.contains(region))] + gen = abs(n.links_t[gen_bus][links.index].multiply( + n.snapshot_weightings.generators, axis="index")).sum() if gen.empty or gen.sum() < 1: return np.nan, 0 @@ -1829,7 +1833,8 @@ def costs_gen_links(n, region, carrier, gen_bus="p1"): capex = (links.p_nom_opt * links.capital_cost).sum() # OPEX - input = abs(n.links_t["p0"][links.index].multiply(n.snapshot_weightings.generators, axis="index")).sum() + input = abs(n.links_t["p0"][links.index].multiply( + n.snapshot_weightings.generators, axis="index")).sum() opex = (input * links.marginal_cost).sum() # input costs and output revenues other than main generation @ gen_bus @@ -1842,11 +1847,12 @@ def costs_gen_links(n, region, carrier, gen_bus="p1"): elif n.links.loc[links.index][f"bus{i}"].iloc[0] == "": break else: - update_cost = \ - (n.links_t[f"p{i}"][links.index] * \ - n.buses_t.marginal_price[links[f"bus{i}"]].values - ).multiply(n.snapshot_weightings.generators, axis="index" - ).values.sum() + update_cost = ( + n.links_t[f"p{i}"][links.index] + * n.buses_t.marginal_price[links[f"bus{i}"]].values + ).multiply( + n.snapshot_weightings.generators, axis="index" + ).values.sum() sum = sum + update_cost result = (capex + opex + sum) / gen.sum() @@ -1904,22 +1910,22 @@ def get_prices(n, region): var = pd.Series() - nodal_flows_lw = get_nodal_flows( - n, "low voltage", "DE", + nodal_flows_lv = get_nodal_flows( + n, "low voltage", region, query = "not carrier.str.contains('agriculture')" "& not carrier.str.contains('industry')" "& not carrier.str.contains('urban central')" ) - nodal_prices_lw = n.buses_t.marginal_price[nodal_flows_lw.columns] + nodal_prices_lv = n.buses_t.marginal_price[nodal_flows_lv.columns] # electricity price at the final level in the residential sector. Prices should include the effect of carbon prices. var["Price|Final Energy|Residential|Electricity"] = \ - nodal_flows_lw.mul(nodal_prices_lw).values.sum() / nodal_flows_lw.values.sum() / MWh2GJ + nodal_flows_lv.mul(nodal_prices_lv).values.sum() / nodal_flows_lv.values.sum() / MWh2GJ # vars: Tier 1, Category: energy(price) - nodal_flows_bm = get_nodal_flows(n, "solid biomass", "DE") + nodal_flows_bm = get_nodal_flows(n, "solid biomass", region) nodal_prices_bm = n.buses_t.marginal_price[nodal_flows_bm.columns] # primary energy consumption of purpose-grown bioenergy crops, crop and forestry residue bioenergy, municipal solid waste bioenergy, traditional biomass, including renewable waste @@ -1928,11 +1934,11 @@ def get_prices(n, region): # Price|Primary Energy|Coal # is coal also lignite? -> yes according to michas code (coal for industry is already included as it withdraws from coal bus) - nf_coal = get_nodal_flows(n, "coal", "DE") + nf_coal = get_nodal_flows(n, "coal", region) nodal_prices_coal = n.buses_t.marginal_price[nf_coal.columns] coal_price = nf_coal.mul(nodal_prices_coal).values.sum() / nf_coal.values.sum() if nf_coal.values.sum() > 0 else np.nan - nf_lignite = get_nodal_flows(n, "lignite", "DE") + nf_lignite = get_nodal_flows(n, "lignite", region) nodal_prices_lignite = n.buses_t.marginal_price[nf_lignite.columns] lignite_price = nf_lignite.mul(nodal_prices_lignite).values.sum() / nf_lignite.values.sum() if nf_lignite.values.sum() > 0 else np.nan @@ -1940,14 +1946,14 @@ def get_prices(n, region): get_weighted_costs([coal_price, lignite_price], [nf_coal.values.sum(), nf_lignite.values.sum()])/ MWh2GJ # Price|Primary Energy|Gas - nodal_flows_gas = get_nodal_flows(n, "gas", "DE") + nodal_flows_gas = get_nodal_flows(n, "gas", region) nodal_prices_gas = n.buses_t.marginal_price[nodal_flows_gas.columns] var["Price|Primary Energy|Gas"] = \ nodal_flows_gas.mul(nodal_prices_gas).values.sum() / nodal_flows_gas.values.sum() / MWh2GJ # Price|Primary Energy|Oil - nodal_flows_oil = get_nodal_flows(n, "oil", "DE") + nodal_flows_oil = get_nodal_flows(n, "oil", region) nodal_prices_oil = n.buses_t.marginal_price[nodal_flows_oil.columns] var["Price|Primary Energy|Oil"] = \ @@ -1957,7 +1963,7 @@ def get_prices(n, region): # electricity price at the secondary level, i.e. for large scale consumers (e.g. aluminum production). Prices should include the effect of carbon prices. nodal_flows_ac = get_nodal_flows( - n, "AC", "DE", + n, "AC", region, query = "not carrier.str.contains('gas')" ) nodal_prices_ac = n.buses_t.marginal_price[nodal_flows_ac.columns] @@ -1980,7 +1986,7 @@ def get_prices(n, region): # Price|Secondary Energy|Hydrogen nodal_flows_h2 = get_nodal_flows( - n, "H2", "DE" + n, "H2", region ) nodal_prices_h2 = n.buses_t.marginal_price[nodal_flows_h2.columns] @@ -1992,7 +1998,7 @@ def get_prices(n, region): # do we have residential applications for hydrogen? nf_gas_residential = get_nodal_flows( - n, "gas", "DE", + n, "gas", region, query = "carrier.str.contains('rural')" "or carrier.str.contains('urban decentral')" ) @@ -2008,7 +2014,7 @@ def get_prices(n, region): var["Price|Final Energy|Residential|Liquids|Oil"] = \ get_weighted_costs_links( ['rural oil boiler', 'urban decentral oil boiler'], - n, "DE") / MWh2GJ + n, region) / MWh2GJ var["Price|Final Energy|Residential|Liquids"] = \ var["Price|Final Energy|Residential|Liquids|Oil"] @@ -2016,7 +2022,7 @@ def get_prices(n, region): var["Price|Final Energy|Residential|Solids|Biomass"] = \ get_weighted_costs_links( ['rural biomass boiler', 'urban decentral biomass boiler'], - n, "DE") / MWh2GJ + n, region) / MWh2GJ var["Price|Final Energy|Residential|Solids"] = \ var["Price|Final Energy|Residential|Solids|Biomass"] @@ -2026,7 +2032,7 @@ def get_prices(n, region): var["Price|Final Energy|Industry|Gases"] = \ get_weighted_costs_links( ['gas for industry','gas for industry CC'], - n, "DE") / MWh2GJ + n, region) / MWh2GJ # "Price|Final Energy|Industry|Heat"✓ @@ -2038,7 +2044,7 @@ def get_prices(n, region): var["Price|Final Energy|Industry|Solids"] = \ get_weighted_costs_links( [ 'solid biomass for industry', 'solid biomass for industry CC', 'coal for industry'], - n, "DE") / MWh2GJ + n, region) / MWh2GJ # Rest Tier 2 # x @@ -2070,7 +2076,7 @@ def get_prices(n, region): # Price|Final Energy|Transportation|Liquids|Efuel - df = pd.DataFrame({c: price_load(n, c, "DE") for c in \ + df = pd.DataFrame({c: price_load(n, c, region) for c in \ ["kerosene for aviation", "shipping methanol", "shipping oil"]}) var["Price|Final Energy|Transportation|Liquids|Efuel"] = \ @@ -2104,7 +2110,7 @@ def get_prices(n, region): var["Price|Final Energy|Residential and Commercial|Liquids|Oil"] = \ get_weighted_costs_links( ['rural oil boiler', 'urban decentral oil boiler'], - n, "DE") / MWh2GJ + n, region) / MWh2GJ # Price|Final Energy|Residential and Commercial|Liquids|Oil|Sales Margin # Price|Final Energy|Residential and Commercial|Liquids|Oil|Transport and Distribution @@ -2120,7 +2126,7 @@ def get_prices(n, region): # Price|Final Energy|Residential and Commercial|Heat nf_rc_heat = get_nodal_flows( - n, ['urban central heat', 'rural heat', 'urban decentral heat'], "DE", + n, ['urban central heat', 'rural heat', 'urban decentral heat'], region, query = "not carrier.str.contains('agriculture')" "& not carrier.str.contains('industry')" "& not carrier.str.contains('DAC')" @@ -2144,7 +2150,7 @@ def get_prices(n, region): var["Price|Final Energy|Residential and Commercial|Solids|Biomass"] = \ get_weighted_costs_links( ['rural biomass boiler', 'urban decentral biomass boiler'], - n, "DE") / MWh2GJ + n, region) / MWh2GJ # Price|Final Energy|Residential and Commercial|Solids|Biomass|Sales Margin # Price|Final Energy|Residential and Commercial|Solids|Biomass|Transport and Distribution @@ -2243,7 +2249,7 @@ def get_prices(n, region): # Rest Tier3 nodal_flows_gas = get_nodal_flows( - n, "gas", "DE", + n, "gas", region, query = "not carrier.str.contains('pipeline')" "& not carrier == 'gas'" "& not carrier.str.contains('rural')" @@ -2255,7 +2261,7 @@ def get_prices(n, region): nodal_flows_gas.mul(nodal_prices_gas).values.sum() / nodal_flows_gas.values.sum() /MWh2GJ nodal_flows_oil = get_nodal_flows( - n, "oil", "DE", + n, "oil", region, query = "not carrier.str.contains('rural')" "& not carrier == 'oil'" "& not carrier.str.contains('urban decentral')" From 2ad9e1aa3c50fd660d8a31f48b723c7d0e484e79 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 14 Mar 2024 09:54:17 +0100 Subject: [PATCH 176/669] Adding comments --- workflow/scripts/build_existing_chp_de.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py index 09a0fec20..a7e8a1353 100644 --- a/workflow/scripts/build_existing_chp_de.py +++ b/workflow/scripts/build_existing_chp_de.py @@ -29,8 +29,8 @@ def clean_data(combustion, biomass, geodata): data = pd.concat([biomass, combustion], join='inner', ignore_index=True) - data['IndustryStatus'] = data['Einsatzort'].str.contains('Industrie') - data['IndustryStatus'] = data['IndustryStatus'].fillna(False) + data['IndustryStatus'] = data['Einsatzort'].str.contains('Industrie').fillna(False) + # Get only CHP plants CHP_raw = data.query("ThermischeNutzleistung > 0").copy() CHP_raw.NameKraftwerk = CHP_raw.NameKraftwerk.fillna(CHP_raw.EinheitMastrNummer) @@ -53,13 +53,13 @@ def clean_data(combustion, biomass, geodata): CHP_sel.DateIn = CHP_sel.DateIn.str[:4].astype(float) CHP_sel.DateOut = CHP_sel.DateOut.str[:4].astype(float) - # delete duplicates - compromise only when KwkMastrNummer and Bruttoleistung is the same + # delete duplicates identified by KwkMastrNummer strategies = { "Name": "first", "Fueltype": "first", "Technology": "first", - "Capacity": "mean", - "Capacity_thermal": "mean", + "Capacity": "mean", # dataset duplicates full KWK capacity for each block + "Capacity_thermal": "mean", # dataset duplicates full KWK capacity for each block "DateIn": "mean", "DateOut": "mean", "Postleitzahl": "first", From bbfecad2c885f3ef409d7854664236147cbc1ba8 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 14 Mar 2024 10:18:45 +0100 Subject: [PATCH 177/669] update pypsa-eur submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 53e52bab1..72ef2d0b4 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 53e52bab1d8ac6f6832dcd882f20dbe72944d893 +Subproject commit 72ef2d0b4298df4383ed68152ddb928687da3194 From 67f68a11c458570c689c55f6193822c110377618 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 14 Mar 2024 13:48:13 +0100 Subject: [PATCH 178/669] work on capacity additions --- workflow/scripts/export_ariadne_variables.py | 380 ++++++++++--------- 1 file changed, 196 insertions(+), 184 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 4c0117fe8..1d70447c6 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -81,97 +81,127 @@ def get_total_co2(n, region): ).values.sum() return t2Mt * co2 -def get_capacities_electricity(n, region): + +def get_capacities(n, region): + return _get_capacities(n, region, n.statistics.optimal_capacity) + +def get_installed_capacities(n, region): + return _get_capacities(n, region, + n.statistics.installed_capacity, cap_string="Installed Capacity|") + +def get_capacity_additions_simple(n, region): + caps = get_capacities(n, region) + incaps = get_installed_capacities(n, region) + return pd.Series(data = caps.values - incaps.values, + index = "Capacity Additions" + caps.index.str[8:]) + + + +def get_capacity_additions(n, region): + def _f(*args, **kwargs): + return n.statistics.optimal_capacity(*args, **kwargs).sub( + n.statistics.installed_capacity(*args, **kwargs), fill_value=0) + return _get_capacities(n, region, _f, cap_string="Capacity Additions Sub|") + +def get_capacity_additions_nstat(n, region): + def _f(*args, **kwargs): + kwargs.pop("storage", None) + return n.statistics.expanded_capacity(*args, **kwargs) + return _get_capacities(n, region, _f, cap_string="Capacity Additions Nstat|") + +def _get_capacities(n, region, cap_func, cap_string="Capacity|"): kwargs = { 'groupby': n.statistics.groupers.get_name_bus_and_carrier, 'nice_names': False, } + var = pd.Series() - capacities_electricity = n.statistics.optimal_capacity( + capacities_electricity = cap_func( bus_carrier=["AC", "low voltage"], **kwargs, ).filter(like=region).groupby("carrier").sum().drop( # transmission capacities ["AC", "DC", "electricity distribution grid"], + errors="ignore", ).multiply(MW2GW) - var["Capacity|Electricity|Biomass|w/ CCS"] = \ - capacities_electricity.get('urban central solid biomass CHP CC') + var[cap_string + "Electricity|Biomass|w/ CCS"] = \ + capacities_electricity.get('urban central solid biomass CHP CC', 0) - var["Capacity|Electricity|Biomass|w/o CCS"] = \ - capacities_electricity.get('urban central solid biomass CHP') + var[cap_string + "Electricity|Biomass|w/o CCS"] = \ + capacities_electricity.get('urban central solid biomass CHP', 0) - var["Capacity|Electricity|Biomass|Solids"] = \ + var[cap_string + "Electricity|Biomass|Solids"] = \ var[[ - "Capacity|Electricity|Biomass|w/ CCS", - "Capacity|Electricity|Biomass|w/o CCS", + cap_string + "Electricity|Biomass|w/ CCS", + cap_string + "Electricity|Biomass|w/o CCS", ]].sum() # Ariadne does no checks, so we implement our own? - assert var["Capacity|Electricity|Biomass|Solids"] == \ + assert var[cap_string + "Electricity|Biomass|Solids"] == \ capacities_electricity.filter(like="solid biomass").sum() - var["Capacity|Electricity|Biomass"] = \ - var["Capacity|Electricity|Biomass|Solids"] + var[cap_string + "Electricity|Biomass"] = \ + var[cap_string + "Electricity|Biomass|Solids"] - var["Capacity|Electricity|Coal|Hard Coal"] = \ + var[cap_string + "Electricity|Coal|Hard Coal"] = \ capacities_electricity.get('coal', 0) - var["Capacity|Electricity|Coal|Lignite"] = \ + var[cap_string + "Electricity|Coal|Lignite"] = \ capacities_electricity.get('lignite', 0) - # var["Capacity|Electricity|Coal|Hard Coal|w/ CCS"] = - # var["Capacity|Electricity|Coal|Hard Coal|w/o CCS"] = - # var["Capacity|Electricity|Coal|Lignite|w/ CCS"] = - # var["Capacity|Electricity|Coal|Lignite|w/o CCS"] = - # var["Capacity|Electricity|Coal|w/ CCS"] = - # var["Capacity|Electricity|Coal|w/o CCS"] = + # var[cap_string + "Electricity|Coal|Hard Coal|w/ CCS"] = + # var[cap_string + "Electricity|Coal|Hard Coal|w/o CCS"] = + # var[cap_string + "Electricity|Coal|Lignite|w/ CCS"] = + # var[cap_string + "Electricity|Coal|Lignite|w/o CCS"] = + # var[cap_string + "Electricity|Coal|w/ CCS"] = + # var[cap_string + "Electricity|Coal|w/o CCS"] = # Q: CCS for coal Implemented, but not activated, should we use it? # !: No, because of Kohleausstieg # > config: coal_cc - var["Capacity|Electricity|Coal"] = \ + var[cap_string + "Electricity|Coal"] = \ var[[ - "Capacity|Electricity|Coal|Lignite", - "Capacity|Electricity|Coal|Hard Coal", + cap_string + "Electricity|Coal|Lignite", + cap_string + "Electricity|Coal|Hard Coal", ]].sum() - # var["Capacity|Electricity|Gas|CC|w/ CCS"] = - # var["Capacity|Electricity|Gas|CC|w/o CCS"] = + # var[cap_string + "Electricity|Gas|CC|w/ CCS"] = + # var[cap_string + "Electricity|Gas|CC|w/o CCS"] = # ! Not implemented, rarely used - var["Capacity|Electricity|Gas|CC"] = \ + var[cap_string + "Electricity|Gas|CC"] = \ capacities_electricity.get('CCGT') - var["Capacity|Electricity|Gas|OC"] = \ + var[cap_string + "Electricity|Gas|OC"] = \ capacities_electricity.get('OCGT') - var["Capacity|Electricity|Gas|w/ CCS"] = \ - capacities_electricity.get('urban central gas CHP CC') + var[cap_string + "Electricity|Gas|w/ CCS"] = \ + capacities_electricity.get('urban central gas CHP CC',0) - var["Capacity|Electricity|Gas|w/o CCS"] = \ - capacities_electricity.get('urban central gas CHP') + \ + var[cap_string + "Electricity|Gas|w/o CCS"] = \ + capacities_electricity.get('urban central gas CHP',0) + \ var[[ - "Capacity|Electricity|Gas|CC", - "Capacity|Electricity|Gas|OC", + cap_string + "Electricity|Gas|CC", + cap_string + "Electricity|Gas|OC", ]].sum() - var["Capacity|Electricity|Gas"] = \ + var[cap_string + "Electricity|Gas"] = \ var[[ - "Capacity|Electricity|Gas|w/ CCS", - "Capacity|Electricity|Gas|w/o CCS", + cap_string + "Electricity|Gas|w/ CCS", + cap_string + "Electricity|Gas|w/o CCS", ]].sum() - # var["Capacity|Electricity|Geothermal"] = + # var[cap_string + "Electricity|Geothermal"] = # ! Not implemented - var["Capacity|Electricity|Hydro"] = \ + var[cap_string + "Electricity|Hydro"] = \ pd.Series({ c: capacities_electricity.get(c) for c in ["ror", "hydro"] @@ -179,139 +209,139 @@ def get_capacities_electricity(n, region): # Q!: Not counting PHS here, because it is a true storage, # as opposed to hydro - # var["Capacity|Electricity|Hydrogen|CC"] = + # var[cap_string + "Electricity|Hydrogen|CC"] = # ! Not implemented - # var["Capacity|Electricity|Hydrogen|OC"] = + # var[cap_string + "Electricity|Hydrogen|OC"] = # Q: "H2-turbine" # Q: What about retrofitted gas power plants? -> Lisa - var["Capacity|Electricity|Hydrogen|FC"] = \ + var[cap_string + "Electricity|Hydrogen|FC"] = \ capacities_electricity.get("H2 Fuel Cell") - var["Capacity|Electricity|Hydrogen"] = \ - var["Capacity|Electricity|Hydrogen|FC"] + var[cap_string + "Electricity|Hydrogen"] = \ + var[cap_string + "Electricity|Hydrogen|FC"] - # var["Capacity|Electricity|Non-Renewable Waste"] = + # var[cap_string + "Electricity|Non-Renewable Waste"] = # ! Not implemented - var["Capacity|Electricity|Nuclear"] = \ + var[cap_string + "Electricity|Nuclear"] = \ capacities_electricity.get("nuclear", 0) - # var["Capacity|Electricity|Ocean"] = + # var[cap_string + "Electricity|Ocean"] = # ! Not implemented - # var["Capacity|Electricity|Oil|w/ CCS"] = - # var["Capacity|Electricity|Oil|w/o CCS"] = + # var[cap_string + "Electricity|Oil|w/ CCS"] = + # var[cap_string + "Electricity|Oil|w/o CCS"] = # ! Not implemented - var["Capacity|Electricity|Oil"] = \ + var[cap_string + "Electricity|Oil"] = \ capacities_electricity.get("oil") - var["Capacity|Electricity|Solar|PV|Rooftop"] = \ - capacities_electricity.get("solar rooftop") + var[cap_string + "Electricity|Solar|PV|Rooftop"] = \ + capacities_electricity.get("solar rooftop", 0) - var["Capacity|Electricity|Solar|PV|Open Field"] = \ + var[cap_string + "Electricity|Solar|PV|Open Field"] = \ capacities_electricity.get("solar") - var["Capacity|Electricity|Solar|PV"] = \ + var[cap_string + "Electricity|Solar|PV"] = \ var[[ - "Capacity|Electricity|Solar|PV|Open Field", - "Capacity|Electricity|Solar|PV|Rooftop", + cap_string + "Electricity|Solar|PV|Open Field", + cap_string + "Electricity|Solar|PV|Rooftop", ]].sum() - # var["Capacity|Electricity|Solar|CSP"] = + # var[cap_string + "Electricity|Solar|CSP"] = # ! not implemented - var["Capacity|Electricity|Solar"] = \ - var["Capacity|Electricity|Solar|PV"] + var[cap_string + "Electricity|Solar"] = \ + var[cap_string + "Electricity|Solar|PV"] - var["Capacity|Electricity|Wind|Offshore"] = \ + var[cap_string + "Electricity|Wind|Offshore"] = \ capacities_electricity.get( ["offwind", "offwind-ac", "offwind-dc"] ).sum() # !: take care of "offwind" -> "offwind-ac"/"offwind-dc" - var["Capacity|Electricity|Wind|Onshore"] = \ + var[cap_string + "Electricity|Wind|Onshore"] = \ capacities_electricity.get("onwind") - var["Capacity|Electricity|Wind"] = \ + var[cap_string + "Electricity|Wind"] = \ capacities_electricity.filter(like="wind").sum() - assert var["Capacity|Electricity|Wind"] == \ + assert var[cap_string + "Electricity|Wind"] == \ var[[ - "Capacity|Electricity|Wind|Offshore", - "Capacity|Electricity|Wind|Onshore", + cap_string + "Electricity|Wind|Offshore", + cap_string + "Electricity|Wind|Onshore", ]].sum() - # var["Capacity|Electricity|Storage Converter|CAES"] = + # var[cap_string + "Electricity|Storage Converter|CAES"] = # ! Not implemented - var["Capacity|Electricity|Storage Converter|Hydro Dam Reservoir"] = \ - capacities_electricity.get('hydro') + var[cap_string + "Electricity|Storage Converter|Hydro Dam Reservoir"] = \ + capacities_electricity.get('hydro',0) - var["Capacity|Electricity|Storage Converter|Pump Hydro"] = \ - capacities_electricity.get('PHS') + var[cap_string + "Electricity|Storage Converter|Pump Hydro"] = \ + capacities_electricity.get('PHS',0) - var["Capacity|Electricity|Storage Converter|Stationary Batteries"] = \ - capacities_electricity.get("battery discharger") + \ - capacities_electricity.get("home battery discharger") + var[cap_string + "Electricity|Storage Converter|Stationary Batteries"] = \ + capacities_electricity.get("battery discharger",0) + \ + capacities_electricity.get("home battery discharger",0) - var["Capacity|Electricity|Storage Converter|Vehicles"] = \ + var[cap_string + "Electricity|Storage Converter|Vehicles"] = \ capacities_electricity.get("V2G", 0) - var["Capacity|Electricity|Storage Converter"] = \ + var[cap_string + "Electricity|Storage Converter"] = \ var[[ - "Capacity|Electricity|Storage Converter|Hydro Dam Reservoir", - "Capacity|Electricity|Storage Converter|Pump Hydro", - "Capacity|Electricity|Storage Converter|Stationary Batteries", - "Capacity|Electricity|Storage Converter|Vehicles", + cap_string + "Electricity|Storage Converter|Hydro Dam Reservoir", + cap_string + "Electricity|Storage Converter|Pump Hydro", + cap_string + "Electricity|Storage Converter|Stationary Batteries", + cap_string + "Electricity|Storage Converter|Vehicles", ]].sum() - storage_capacities = n.statistics.optimal_capacity( + storage_capacities = cap_func( storage=True, **kwargs, ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) - # var["Capacity|Electricity|Storage Reservoir|CAES"] = + # var[cap_string + "Electricity|Storage Reservoir|CAES"] = # ! Not implemented - var["Capacity|Electricity|Storage Reservoir|Hydro Dam Reservoir"] = \ + var[cap_string + "Electricity|Storage Reservoir|Hydro Dam Reservoir"] = \ storage_capacities.get("hydro") - var["Capacity|Electricity|Storage Reservoir|Pump Hydro"] = \ + var[cap_string + "Electricity|Storage Reservoir|Pump Hydro"] = \ storage_capacities.get("PHS") - var["Capacity|Electricity|Storage Reservoir|Stationary Batteries"] = \ + var[cap_string + "Electricity|Storage Reservoir|Stationary Batteries"] = \ pd.Series({ c: storage_capacities.get(c) for c in ["battery", "home battery"] }).sum() - var["Capacity|Electricity|Storage Reservoir|Vehicles"] = \ + var[cap_string + "Electricity|Storage Reservoir|Vehicles"] = \ storage_capacities.get("Li ion", 0) - var["Capacity|Electricity|Storage Reservoir"] = \ + var[cap_string + "Electricity|Storage Reservoir"] = \ var[[ - "Capacity|Electricity|Storage Reservoir|Hydro Dam Reservoir", - "Capacity|Electricity|Storage Reservoir|Pump Hydro", - "Capacity|Electricity|Storage Reservoir|Stationary Batteries", - "Capacity|Electricity|Storage Reservoir|Vehicles", + cap_string + "Electricity|Storage Reservoir|Hydro Dam Reservoir", + cap_string + "Electricity|Storage Reservoir|Pump Hydro", + cap_string + "Electricity|Storage Reservoir|Stationary Batteries", + cap_string + "Electricity|Storage Reservoir|Vehicles", ]].sum() - var["Capacity|Electricity"] = \ + var[cap_string + "Electricity"] = \ var[[ - "Capacity|Electricity|Wind", - "Capacity|Electricity|Solar", - "Capacity|Electricity|Oil", - "Capacity|Electricity|Coal", - "Capacity|Electricity|Gas", - "Capacity|Electricity|Biomass", - "Capacity|Electricity|Hydro", - "Capacity|Electricity|Hydrogen", - "Capacity|Electricity|Nuclear", + cap_string + "Electricity|Wind", + cap_string + "Electricity|Solar", + cap_string + "Electricity|Oil", + cap_string + "Electricity|Coal", + cap_string + "Electricity|Gas", + cap_string + "Electricity|Biomass", + cap_string + "Electricity|Hydro", + cap_string + "Electricity|Hydrogen", + cap_string + "Electricity|Nuclear", ]].sum() # Test if we forgot something @@ -324,22 +354,11 @@ def get_capacities_electricity(n, region): ] if col in capacities_electricity.index ] assert isclose( - var["Capacity|Electricity"], + var[cap_string + "Electricity"], capacities_electricity.drop(_drop_idx).sum(), ) - - return var - -def get_capacities_heat(n, region): - - kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, - } - - var = pd.Series() - capacities_heat = n.statistics.optimal_capacity( + capacities_heat = cap_func( bus_carrier=[ "urban central heat", "urban decentral heat", @@ -347,11 +366,12 @@ def get_capacities_heat(n, region): ], **kwargs, ).filter(like=region).groupby("carrier").sum().drop( - ["urban central heat vent"] + ["urban central heat vent"], + errors="ignore", # drop existing labels or do nothing ).multiply(MW2GW) - var["Capacity|Heat|Solar thermal"] = \ + var[cap_string + "Heat|Solar thermal"] = \ capacities_heat.filter(like="solar thermal").sum() # TODO Ariadne DB distinguishes between Heat and Decentral Heat! # We should probably change all capacities here?! @@ -360,25 +380,25 @@ def get_capacities_heat(n, region): # We could be much more detailed for the heat sector (as for electricity) # if desired by Ariadne # - var["Capacity|Heat|Biomass|w/ CCS"] = \ - capacities_heat.get('urban central solid biomass CHP CC') - var["Capacity|Heat|Biomass|w/o CCS"] = \ + var[cap_string + "Heat|Biomass|w/ CCS"] = \ + capacities_heat.get('urban central solid biomass CHP CC',0) + var[cap_string + "Heat|Biomass|w/o CCS"] = \ capacities_heat.get('urban central solid biomass CHP') \ + capacities_heat.filter(like="biomass boiler").sum() - var["Capacity|Heat|Biomass"] = \ - var["Capacity|Heat|Biomass|w/ CCS"] + \ - var["Capacity|Heat|Biomass|w/o CCS"] + var[cap_string + "Heat|Biomass"] = \ + var[cap_string + "Heat|Biomass|w/ CCS"] + \ + var[cap_string + "Heat|Biomass|w/o CCS"] assert isclose( - var["Capacity|Heat|Biomass"], + var[cap_string + "Heat|Biomass"], capacities_heat.filter(like="biomass").sum() ) - var["Capacity|Heat|Resistive heater"] = \ + var[cap_string + "Heat|Resistive heater"] = \ capacities_heat.filter(like="resistive heater").sum() - var["Capacity|Heat|Processes"] = \ + var[cap_string + "Heat|Processes"] = \ pd.Series({c: capacities_heat.get(c) for c in [ "Fischer-Tropsch", "H2 Electrolysis", @@ -389,89 +409,78 @@ def get_capacities_heat(n, region): # !!! Missing in the Ariadne database - var["Capacity|Heat|Gas"] = \ + var[cap_string + "Heat|Gas"] = \ capacities_heat.filter(like="gas boiler").sum() \ + capacities_heat.filter(like="gas CHP").sum() - # var["Capacity|Heat|Geothermal"] = + # var[cap_string + "Heat|Geothermal"] = # ! Not implemented - var["Capacity|Heat|Heat pump"] = \ + var[cap_string + "Heat|Heat pump"] = \ capacities_heat.filter(like="heat pump").sum() - var["Capacity|Heat|Oil"] = \ + var[cap_string + "Heat|Oil"] = \ capacities_heat.filter(like="oil boiler").sum() - var["Capacity|Heat|Storage Converter"] = \ + var[cap_string + "Heat|Storage Converter"] = \ capacities_heat.filter(like="water tanks discharger").sum() - storage_capacities = n.statistics.optimal_capacity( + storage_capacities = cap_func( storage=True, **kwargs, ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) - var["Capacity|Heat|Storage Reservoir"] = \ + var[cap_string + "Heat|Storage Reservoir"] = \ storage_capacities.filter(like="water tanks").sum() - var["Capacity|Heat"] = ( - var["Capacity|Heat|Solar thermal"] + - var["Capacity|Heat|Resistive heater"] + - var["Capacity|Heat|Biomass"] + - var["Capacity|Heat|Oil"] + - var["Capacity|Heat|Gas"] + - var["Capacity|Heat|Processes"] + - #var["Capacity|Heat|Hydrogen"] + - var["Capacity|Heat|Heat pump"] + var[cap_string + "Heat"] = ( + var[cap_string + "Heat|Solar thermal"] + + var[cap_string + "Heat|Resistive heater"] + + var[cap_string + "Heat|Biomass"] + + var[cap_string + "Heat|Oil"] + + var[cap_string + "Heat|Gas"] + + var[cap_string + "Heat|Processes"] + + #var[cap_string + "Heat|Hydrogen"] + + var[cap_string + "Heat|Heat pump"] ) assert isclose( - var["Capacity|Heat"], + var[cap_string + "Heat"], capacities_heat[ # exclude storage converters (i.e., dischargers) ~capacities_heat.index.str.contains("discharger") ].sum() ) - return var - - -def get_capacities_other(n, region): - kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, - } - - var = pd.Series() - - capacities_h2 = n.statistics.optimal_capacity( + capacities_h2 = cap_func( bus_carrier="H2", **kwargs, ).filter( like=region ).groupby("carrier").sum().multiply(MW2GW) - var["Capacity|Hydrogen|Gas|w/ CCS"] = \ - capacities_h2.get("SMR CC") + var[cap_string + "Hydrogen|Gas|w/ CCS"] = \ + capacities_h2.get("SMR CC",0) - var["Capacity|Hydrogen|Gas|w/o CCS"] = \ - capacities_h2.get("SMR") + var[cap_string + "Hydrogen|Gas|w/o CCS"] = \ + capacities_h2.get("SMR",0) - var["Capacity|Hydrogen|Gas"] = \ + var[cap_string + "Hydrogen|Gas"] = \ capacities_h2.filter(like="SMR").sum() - assert var["Capacity|Hydrogen|Gas"] == \ - var["Capacity|Hydrogen|Gas|w/ CCS"] + \ - var["Capacity|Hydrogen|Gas|w/o CCS"] + assert var[cap_string + "Hydrogen|Gas"] == \ + var[cap_string + "Hydrogen|Gas|w/ CCS"] + \ + var[cap_string + "Hydrogen|Gas|w/o CCS"] - var["Capacity|Hydrogen|Electricity"] = \ + var[cap_string + "Hydrogen|Electricity"] = \ capacities_h2.get("H2 Electrolysis", 0) - var["Capacity|Hydrogen"] = ( - var["Capacity|Hydrogen|Electricity"] - + var["Capacity|Hydrogen|Gas"] + var[cap_string + "Hydrogen"] = ( + var[cap_string + "Hydrogen|Electricity"] + + var[cap_string + "Hydrogen|Gas"] ) assert isclose( - var["Capacity|Hydrogen"], + var[cap_string + "Hydrogen"], capacities_h2.reindex([ "H2 Electrolysis", "SMR", @@ -479,17 +488,17 @@ def get_capacities_other(n, region): ]).sum(), # if technology not build, reindex returns NaN ) - storage_capacities = n.statistics.optimal_capacity( + storage_capacities = cap_func( storage=True, **kwargs, ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) - var["Capacity|Hydrogen|Reservoir"] = \ + var[cap_string + "Hydrogen|Reservoir"] = \ storage_capacities.get("H2") - capacities_gas = n.statistics.optimal_capacity( + capacities_gas = cap_func( bus_carrier="gas", **kwargs, ).filter( @@ -497,44 +506,45 @@ def get_capacities_other(n, region): ).groupby("carrier").sum().drop( # Drop Import (Generator, gas), Storage (Store, gas), # and Transmission capacities - ["gas", "gas pipeline", "gas pipeline new"] + ["gas", "gas pipeline", "gas pipeline new"], + errors="ignore", ).multiply(MW2GW) - var["Capacity|Gases|Hydrogen"] = \ + var[cap_string + "Gases|Hydrogen"] = \ capacities_gas.get("Sabatier", 0) - var["Capacity|Gases|Biomass"] = \ + var[cap_string + "Gases|Biomass"] = \ capacities_gas.reindex([ "biogas to gas", "biogas to gas CC", ]).sum() - var["Capacity|Gases"] = ( - var["Capacity|Gases|Hydrogen"] + - var["Capacity|Gases|Biomass"] + var[cap_string + "Gases"] = ( + var[cap_string + "Gases|Hydrogen"] + + var[cap_string + "Gases|Biomass"] ) assert isclose( - var["Capacity|Gases"], + var[cap_string + "Gases"], capacities_gas.sum(), ) - capacities_liquids = n.statistics.optimal_capacity( + capacities_liquids = cap_func( bus_carrier=["oil", "methanol"], **kwargs, ).filter( like=region ).groupby("carrier").sum().multiply(MW2GW) - var["Capacity|Liquids|Hydrogen"] = \ - capacities_liquids.get("Fischer-Tropsch") + \ + var[cap_string + "Liquids|Hydrogen"] = \ + capacities_liquids.get("Fischer-Tropsch",0) + \ capacities_liquids.get("methanolisation", 0) - var["Capacity|Liquids"] = var["Capacity|Liquids|Hydrogen"] + var[cap_string + "Liquids"] = var[cap_string + "Liquids|Hydrogen"] assert isclose( - var["Capacity|Liquids"], capacities_liquids.sum(), + var[cap_string + "Liquids"], capacities_liquids.sum(), ) return var @@ -834,7 +844,7 @@ def get_secondary_energy(n, region): ).filter(like=region).groupby( ["carrier"] ).sum().multiply(MWh2PJ).drop( - ["AC", "DC", "electricity distribution grid" ] + ["AC", "DC", "electricity distribution grid"], ) var["Secondary Energy|Electricity|Coal|Hard Coal"] = \ @@ -1729,9 +1739,11 @@ def get_emissions(n, region, _energy_totals): def get_ariadne_var(n, industry_demand, energy_totals, region): var = pd.concat([ - get_capacities_electricity(n, region), - get_capacities_heat(n, region), - get_capacities_other(n, region), + get_capacities(n, region), + get_capacity_additions_simple(n,region), + get_installed_capacities(n,region), + #get_capacity_additions(n, region), + #get_capacity_additions_nstat(n, region), get_primary_energy(n, region), get_secondary_energy(n, region), get_final_energy(n, region, industry_demand, energy_totals), From 3e52e9021edc761fa5de7be5569228b48f646e12 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 14 Mar 2024 16:48:50 +0100 Subject: [PATCH 179/669] initial commit setting up scenario yamls for ariadne main scenarios --- config/config.yaml | 83 ++--- config/scenarios.yaml | 346 ++++++++++++++++++- workflow/Snakefile | 22 ++ workflow/scripts/additional_functionality.py | 122 ++++++- workflow/scripts/build_scenarios.py | 143 ++++++++ workflow/scripts/check_sector_ratios.py | 34 ++ workflow/scripts/modify_prenetwork.py | 55 ++- 7 files changed, 741 insertions(+), 64 deletions(-) create mode 100644 workflow/scripts/build_scenarios.py create mode 100644 workflow/scripts/check_sector_ratios.py diff --git a/config/config.yaml b/config/config.yaml index 8a86e51ce..d3c0e9062 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -5,13 +5,18 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: name: - - 240219-test/normal + - KN2045_Bal_v4 + - KN2045_Elec_v4 + - KN2045_H2_v4 + # - KN2045plus_EasyRide + # - KN2045plus_LowDemand + # - KN2045minus_WorstCase + # - KN2045minus_SupplyFocus scenarios: enable: true shared_resources: true #stops recalculating disable_progressbar: true - iiasa_database: db_name: ariadne_intern model_name: Hybrid @@ -101,45 +106,32 @@ co2_budget_national: 2050: DE: -0.024 -limits_min: - Generator: - onwind: - DE: - 2020: 50 - 2025: 60 - 2030: 100 - 2035: 120 - 2040: 160 - 2045: 170 - 2050: 180 - offwind: - DE: - 2020: 1 - 2025: 7 - 2030: 20 - 2035: 25 - 2040: 25 - 2045: 25 - 2050: 25 - solar: - DE: - 2020: 50 - 2025: 80 - 2030: 215 - 2035: 250 - 2040: 300 - 2045: 350 - 2050: 400 - Link: - H2 Electrolysis: - DE: - 2020: 0 - 2025: 1 - 2030: 10 - 2035: 20 - 2040: 50 - 2045: 60 - 2050: 80 +limits_capacity_min: + Generator: + onwind: + DE: + 2020: 48 + 2025: 61 + 2030: 115 # Wind-an-Land Law + 2035: 157 # Wind-an-Land Law + 2040: 160 # Wind-an-Land Law + 2045: 160 + offwind: + DE: + 2020: 7.77 + 2025: 8 + 2030: 30 # Wind-auf-See Law + 2035: 40 # 40 Wind-auf-See Law + 2040: 41 #55 + 2045: 70 #70 Wind-auf-See Law + solar: + DE: + 2020: 59 + 2025: 94.7 + 2030: 215 # PV strategy + 2035: 307.5 + 2040: 400 # PV strategy + 2045: 400 h2_import_max: DE: @@ -172,6 +164,15 @@ first_technology_occurrence: H2 Electrolysis: 2025 H2 pipeline retrofitted: 2025 +renewable: + offwind-ac: + capacity_per_sqkm: 8 + offwind-dc: + capacity_per_sqkm: 8 + +costs: + version: v0.8.0 + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: district_heating: diff --git a/config/scenarios.yaml b/config/scenarios.yaml index f5dbdbd9d..05a19c71c 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -3,27 +3,341 @@ # # SPDX-License-Identifier: MIT -# This file is used to define the scenarios that are run by snakemake. Each entry on the first level is a scenario. Each scenario can contain configuration overrides with respect to the config/config.yaml settings. -# -# Example -# -# custom-scenario: # name of the scenario -# electricity: -# renewable_carriers: [wind, solar] # override the list of renewable carriers +KN2045_Bal_v4: +# Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren +# Breites Energieträgerportfolio in der Endenergie (Strom, Wasserstoff, synthetische Kraftstoffe) +# Ausbau der erneuerbare Stromerzeugung erreicht politisch gesetzte Ziele +# Importe erneuerbar erzeugter Energien auf mittlerem Niveau +# dient als Referenzszenario in der Familie der Ariadne-Szenarien + + clustering: + temporal: + resolution_sector: 365H + + iiasa_database: + db_name: ariadne_intern + model_name: Hybrid # should be Leitmodell + scenario: 8Gt_EnSec # should be consistent with KN2045_Bal_v4 + region: Deutschland + + # boundary condition of maximum volumes + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 # scenario guidelines + # constrain hydrogen import in TWh + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 15 # scenario guidelines + 2035: 115 + 2040: 220 + 2045: 325 # scenario guidelines + # import of h2 derivatives in TWh + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 # scenario guidelines + 2035: 105 + 2040: 200 + 2045: 300 # scenario guidelines + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 # scenario guidelines + 2035: 130 + 2040: 215 + 2045: 300 # scenario guidelines + # boundary condition of minimum volumes + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 + # sector boundary conditions + sector: + # technology mix in transportation from "REMIND Hybrid 8Gt_Bal_v3" + land_transport_fuel_cell_share: + 2020: 0.004 + 2025: 0.036 + 2030: 0.067 + 2035: 0.048 + 2040: 0.025 + 2045: 0.009 + land_transport_electric_share: + 2020: 0.005 + 2025: 0.061 + 2030: 0.243 + 2035: 0.520 + 2040: 0.740 + 2045: 0.874 + land_transport_ice_share: + 2020: 0.991 + 2025: 0.903 + 2030: 0.690 + 2035: 0.432 + 2040: 0.235 + 2045: 0.118 + # technology mix in navigation + shipping_hydrogen_share: + 2020: 0.000 + 2025: 0.000 + 2030: 0.024 + 2035: 0.052 + 2040: 0.080 + 2045: 0.114 + shipping_methanol_share: + 2020: 0.000 + 2025: 0.000 + 2030: 0.000 + 2035: 0.000 + 2040: 0.000 + 2045: 0.000 + shipping_oil_share: + 2020: 1.000 + 2025: 1.000 + 2030: 0.976 + 2035: 0.948 + 2040: 0.920 + 2045: 0.886 + +############################################################################################################ + +KN2045_Elec_v4: +# Fokus auf dem Hochlauf von Technologien zur direkten Elektrifizierung der Sektoren +# Strom als präferierter Energieträger in der Endenergie, andere Energieträger ergänzend, wo nötig (Wasserstoff, synthetische Kraftstoffe) +# Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele +# Importe erneuerbar erzeugter Energien auf mittlerem Niveau -240219-test/normal: clustering: temporal: resolution_sector: 365H -hydrogen: + iiasa_database: + db_name: ariadne_intern + model_name: Hybrid # should be Leitmodell + scenario: 8Gt_EnSec # should be consistent with KN2045_Elec_v4 + region: Deutschland + + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 50 + 2040: 100 + 2045: 150 # scenario guidelines + # constrain hydrogen import in TWh + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 10 # scenario guidelines + 2035: 90 + 2040: 170 + 2045: 250 # scenario guidelines + # import of h2 derivatives in TWh + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 # scenario guidelines + 2035: 70 + 2040: 130 + 2045: 200 # scenario guidelines + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 # scenario guidelines + 2035: 95 + 2040: 145 + 2045: 200 # scenario guidelines + # boundary condition of minimum volumes + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 + + sector: + # technology mix in transportation from "REMIND Hybrid 8Gt_Bal_v3" + land_transport_fuel_cell_share: + 2020: 0.004 + 2025: 0.036 + 2030: 0.067 + 2035: 0.048 + 2040: 0.025 + 2045: 0.009 + land_transport_electric_share: + 2020: 0.005 + 2025: 0.061 + 2030: 0.243 + 2035: 0.520 + 2040: 0.740 + 2045: 0.874 + land_transport_ice_share: + 2020: 0.991 + 2025: 0.903 + 2030: 0.690 + 2035: 0.432 + 2040: 0.235 + 2045: 0.118 + + shipping_hydrogen_share: + 2020: 0.000 + 2025: 0.000 + 2030: 0.024 + 2035: 0.052 + 2040: 0.080 + 2045: 0.114 + shipping_methanol_share: + 2020: 0.000 + 2025: 0.000 + 2030: 0.000 + 2035: 0.000 + 2040: 0.000 + 2045: 0.000 + shipping_oil_share: + 2020: 1.000 + 2025: 1.000 + 2030: 0.976 + 2035: 0.948 + 2040: 0.920 + 2045: 0.886 + +############################################################################################################ + +KN2045_H2_v4: +# Fokus stärker auf dem Hochlauf von Technologien zur indirekten Elektrifizierung der Sektoren +# Verstärkter Einsatz von Wasserstoff und synthetischen Kraftstoffen - erneuerbar erzeugt und auch importiert +# Direkte Elektrifizierung spielt dennoch wesentliche Rolle bei der Dekarbonisierung der Endenergie +# Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele + clustering: temporal: resolution_sector: 365H - limits_min: - Link: - H2 Electrolysis: - DE: - 2040: 100 - 2045: 120 - 2050: 160 + + iiasa_database: + db_name: ariadne_intern + model_name: Hybrid # should be Leitmodell + scenario: 8Gt_EnSec # should be consistent with KN2045_Elec_v4 + region: Deutschland + + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 30 + 2040: 70 + 2045: 100 # scenario guidelines + # constrain hydrogen import in TWh + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 45 # scenario guidelines + 2035: 155 + 2040: 265 + 2045: 400 # scenario guidelines + # import of h2 derivatives in TWh + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 # scenario guidelines + 2035: 140 + 2040: 270 + 2045: 400 # scenario guidelines + electrolysis: + DE: + 2025: 5 + 2030: 45 # scenario guidelines + 2035: 160 + 2040: 275 + 2045: 400 # scenario guidelines + + limits_volume_min: + electrolysis: + DE: + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 200 + + sector: + # technology mix in transportation from "REMIND Hybrid 8Gt_Bal_v3" + land_transport_fuel_cell_share: + 2020: 0.004 + 2025: 0.036 + 2030: 0.067 + 2035: 0.048 + 2040: 0.025 + 2045: 0.009 + land_transport_electric_share: + 2020: 0.005 + 2025: 0.061 + 2030: 0.243 + 2035: 0.520 + 2040: 0.740 + 2045: 0.874 + land_transport_ice_share: + 2020: 0.991 + 2025: 0.903 + 2030: 0.690 + 2035: 0.432 + 2040: 0.235 + 2045: 0.118 + # technology mix in navigation + shipping_hydrogen_share: + 2020: 0.000 + 2025: 0.000 + 2030: 0.024 + 2035: 0.052 + 2040: 0.080 + 2045: 0.114 + shipping_methanol_share: + 2020: 0.000 + 2025: 0.000 + 2030: 0.000 + 2035: 0.000 + 2040: 0.000 + 2045: 0.000 + shipping_oil_share: + 2020: 1.000 + 2025: 1.000 + 2030: 0.976 + 2035: 0.948 + 2040: 0.920 + 2045: 0.886 + +# KN2045plus_EasyRide: + +# KN2045plus_LowDemand: + +# KN2045minus_WorstCase: + +# KN2045minus_SupplyFocus: diff --git a/workflow/Snakefile b/workflow/Snakefile index b960ddef6..f5de0bed8 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -221,3 +221,25 @@ if config["wasserstoff_kernnetz"]["enable"]: clustered_h2_network="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", script: "scripts/cluster_wasserstoff_kernnetz.py" + +rule build_scenarios: + params: + iiasa_usr=os.environ["IIASA_USERNAME"], + iiasa_pwd=os.environ["IIASA_PASSWORD"], + iiasa_model=config["iiasa_database"]["model_name"], + iiasa_scenario=config["iiasa_database"]["scenario"], + scenario_name=config["run"]["name"], + input: + "config/scenarios.yaml" + log: + "logs/build_scenarios.log" + script: + "scripts/build_scenarios.py" + +rule check_sector_ratios: + input: + network=RESULTS + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + log: + "logs/check_sector_ratios.log" + script: + "scripts/check_sector_ratios.py" \ No newline at end of file diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 72be8f98e..18b7e4bcf 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -11,13 +11,13 @@ def add_min_limits(n, snapshots, investment_year, config): - for c in n.iterate_components(config["limits_min"]): + for c in n.iterate_components(config["limits_capacity_min"]): logger.info(f"Adding minimum constraints for {c.list_name}") - for carrier in config["limits_min"][c.name]: + for carrier in config["limits_capacity_min"][c.name]: - for ct in config["limits_min"][c.name][carrier]: - limit = 1e3*config["limits_min"][c.name][carrier][ct][investment_year] + for ct in config["limits_capacity_min"][c.name][carrier]: + limit = 1e3*config["limits_capacity_min"][c.name][carrier][ct][investment_year] logger.info(f"Adding constraint on {c.name} {carrier} capacity in {ct} to be greater than {limit} MW") @@ -49,8 +49,8 @@ def add_min_limits(n, snapshots, investment_year, config): def h2_import_limits(n, snapshots, investment_year, config): - for ct in config["h2_import_max"]: - limit = config["h2_import_max"][ct][investment_year]*1e6 + for ct in config["limits_volume_max"]["h2_import"]: + limit = config["limits_volume_max"]["h2_import"][ct][investment_year]*1e6 logger.info(f"limiting H2 imports in {ct} to {limit/1e6} TWh/a") @@ -76,6 +76,81 @@ def h2_import_limits(n, snapshots, investment_year, config): carrier_attribute="", ) +def h2_production_limits(n, snapshots, investment_year, config): + + for ct in config["limits_volume_max"]["electrolysis"]: + if ct not in config["limits_volume_min"]["electrolysis"]: + logger.warning(f"no lower limit for H2 electrolysis in {ct} assuming 0 TWh/a") + limit_lower = 0 + else: + limit_lower = config["limits_volume_min"]["electrolysis"][ct][investment_year]*1e6 + + limit_upper = config["limits_volume_max"]["electrolysis"][ct][investment_year]*1e6 + + logger.info(f"limiting H2 electrolysis in DE between {limit_lower/1e6} and {limit_upper/1e6} TWh/a") + + production = n.links[(n.links.carrier == "H2 Electrolysis") & (n.links.bus0.str.contains(ct))].index + + lhs = (n.model["Link-p"].loc[:, production]*n.snapshot_weightings.generators).sum() + + cname_upper = f"H2_production_limit_upper-{ct}" + cname_lower = f"H2_production_limit_lower-{ct}" + + n.model.add_constraints( + lhs <= limit_upper, name=f"GlobalConstraint-{cname_upper}" + ) + + n.model.add_constraints( + lhs >= limit_lower, name=f"GlobalConstraint-{cname_lower}" + ) + + n.add( + "GlobalConstraint", + cname_upper, + constant=limit_upper, + sense="<=", + type="", + carrier_attribute="", + ) + n.add( + "GlobalConstraint", + cname_lower, + constant=limit_lower, + sense=">=", + type="", + carrier_attribute="", + ) + + +def electricity_import_limits(n, snapshots, investment_year, config): + + for ct in config["limits_volume_max"]["electricity_import"]: + limit = config["limits_volume_max"]["electricity_import"][ct][investment_year]*1e6 + + logger.info(f"limiting electricity imports in {ct} to {limit/1e6} TWh/a") + + incoming = n.links.index[((n.links.carrier == "DC") | (n.links.carrier == "AC")) & (n.links.bus0.str[:2] != ct) & (n.links.bus1.str[:2] == ct)] + outgoing = n.links.index[((n.links.carrier == "DC") | (n.links.carrier == "AC")) & (n.links.bus0.str[:2] == ct) & (n.links.bus1.str[:2] != ct)] + + incoming_p = (n.model["Link-p"].loc[:, incoming]*n.snapshot_weightings.generators).sum() + outgoing_p = (n.model["Link-p"].loc[:, outgoing]*n.snapshot_weightings.generators).sum() + + lhs = incoming_p - outgoing_p + + cname = f"Electricity_import_limit-{ct}" + + n.model.add_constraints( + lhs <= limit, name=f"GlobalConstraint-{cname}" + ) + n.add( + "GlobalConstraint", + cname, + constant=limit, + sense="<=", + type="", + carrier_attribute="", + ) + def add_co2limit_country(n, limit_countries, snakemake): """ @@ -206,6 +281,34 @@ def force_boiler_profiles_existing_per_boiler(n): n.links["fixed_profile_scaling_opt"] = 0. +def add_h2_derivate_limit(n, snapshots, investment_year, config): + + for ct in config["limits_volume_max"]["h2_derivate_import"]: + limit = config["limits_volume_max"]["h2_derivate_import"][ct][investment_year]*1e6 + + logger.info(f"limiting H2 derivate imports in {ct} to {limit/1e6} TWh/a") + + incoming = n.links.index[n.links.index.str.contains("EU renewable oil -> DE renewable oil")] + outgoing = n.links.index[n.links.index.str.contains("DE renewable oil -> EU oil")] + + incoming_p = (n.model["Link-p"].loc[:, incoming]*n.snapshot_weightings.generators).sum() + outgoing_p = (n.model["Link-p"].loc[:, outgoing]*n.snapshot_weightings.generators).sum() + + lhs = incoming_p - outgoing_p + + cname = f"H2_derivate_import_limit-{ct}" + + n.model.add_constraints( + lhs <= limit, name=f"GlobalConstraint-{cname}" + ) + n.add( + "GlobalConstraint", + cname, + constant=limit, + sense="<=", + type="", + carrier_attribute="", + ) def additional_functionality(n, snapshots, snakemake): @@ -218,6 +321,13 @@ def additional_functionality(n, snapshots, snakemake): h2_import_limits(n, snapshots, investment_year, snakemake.config) + electricity_import_limits(n, snapshots, investment_year, snakemake.config) + + if investment_year >= 2025: + h2_production_limits(n, snapshots, investment_year, snakemake.config) + + add_h2_derivate_limit(n, snapshots, investment_year, snakemake.config) + #force_boiler_profiles_existing_per_load(n) force_boiler_profiles_existing_per_boiler(n) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py new file mode 100644 index 000000000..4a2a5f340 --- /dev/null +++ b/workflow/scripts/build_scenarios.py @@ -0,0 +1,143 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2024- The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT + +# This script reads in data from the IIASA database to create the scenario.yaml file + +import pyam +import pandas as pd +import os + +def get_shares(df): + # Get share of vehicles for transport sector - meglecting heavy duty vehicles + total_transport = df.loc["Stock|Transportation|LDV"] + tech_transport = df.loc[["Stock|Transportation|LDV|ICE", + "Stock|Transportation|LDV|BEV", + "Stock|Transportation|LDV|PHEV",]] + + transport_share = tech_transport / total_transport + transport_share = transport_share[[2020, 2025, 2030, 2035, 2040, 2045]] + transport_share.reset_index(drop=True, inplace=True) + transport_share.set_index(pd.Index(["ICE", "BEV", "PHEV"]), inplace=True) + + # Get share of Navigation fuels + total_navigation = df.loc[["Final Energy|Bunkers|Navigation", + "Final Energy|Transportation|Domestic Navigation"]].sum(axis=0) + navigation_liquid = df.loc[["Final Energy|Bunkers|Navigation", + "Final Energy|Transportation|Domestic Navigation|Liquids"]].sum() + navigation_h2 = df.loc[["Final Energy|Transportation|Domestic Navigation|Hydrogen"]] + + h2_share = navigation_h2 / total_navigation + liquid_share = pd.DataFrame(navigation_liquid / total_navigation, columns=['Oil']).transpose() + + h2_share.reset_index(drop=True, inplace=True) + h2_share.set_index(pd.Index(["H2"]), inplace=True) + naval_share = pd.concat([liquid_share, h2_share]) + naval_share.loc["MeOH"] = 0.0 + naval_share = naval_share[[2020, 2025, 2030, 2035, 2040, 2045]] + + return transport_share, naval_share + + +def write_to_scenario_yaml(output, scenario, transport_share, naval_share): + # write the data to the output file + with open(output, 'r') as f: + lines = f.readlines() + + #get first occurence of scenario + first = lines.index(scenario + ":\n") + + mapping_transport = { + 'PHEV': 'land_transport_fuel_cell_share', + 'BEV': 'land_transport_electric_share', + 'ICE': 'land_transport_ice_share' + } + + # transport sector + start_index = [] + for i, line in enumerate(lines): + if line.strip() == "land_transport_fuel_cell_share:": + start_index.append(i) + elif line.strip() == "land_transport_electric_share:": + start_index.append(i) + elif line.strip() == "land_transport_ice_share:": + start_index.append(i) + + numb = next((i for i, num in enumerate(start_index) if num > first), None) + start_index = start_index[numb : numb+ 3] + + j = 0 + # Modify the content accordingly + for key in mapping_transport.keys(): + idx = start_index[j] + 1 + for col in transport_share.columns: + if pd.notnull(transport_share.loc[key, col]): + lines[idx] = f" {col}: {transport_share.loc[key, col]:.3f}\n" + idx += 1 + j += 1 + + # naval sector + mapping_navigation = { + 'H2': 'shipping_hydrogen_share', + 'MeOH': 'shipping_methanol_share', + 'Oil': 'shipping_oil_share', + } + + # transport sector + start_index = [] + for i, line in enumerate(lines): + if line.strip() == "shipping_hydrogen_share:": + start_index.append(i) + elif line.strip() == "shipping_methanol_share:": + start_index.append(i) + elif line.strip() == "shipping_oil_share:": + start_index.append(i) + + numb = next((i for i, num in enumerate(start_index) if num > first), None) + start_index = start_index[numb : numb+ 3] + + j = 0 + # Modify the content accordingly + for key in mapping_navigation.keys(): + idx = start_index[j] + 1 + for col in naval_share.columns: + if pd.notnull(naval_share.loc[key, col]): + lines[idx] = f" {col}: {naval_share.loc[key, col]:.3f}\n" + idx += 1 + j += 1 + + # Write the modified content back to the file + with open(output, 'w') as f: + f.writelines(lines) + +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake("build_scenarios") + + # Set USERNAME and PASSWORD for the Ariadne DB + pyam.iiasa.set_config( + snakemake.params.iiasa_usr, + snakemake.params.iiasa_pwd, + ) + + model_df= pyam.read_iiasa( + "ariadne_intern", + model=snakemake.params.iiasa_model, + scenario=snakemake.params.iiasa_scenario, + ).timeseries() + + df = model_df.loc[snakemake.params.iiasa_model, snakemake.params.iiasa_scenario, "Deutschland"] + + transport_share, naval_share = get_shares(df) + + scenario = snakemake.params.scenario_name[0] + output = snakemake.input[0] + write_to_scenario_yaml(output, scenario, transport_share, naval_share) \ No newline at end of file diff --git a/workflow/scripts/check_sector_ratios.py b/workflow/scripts/check_sector_ratios.py new file mode 100644 index 000000000..59abbcdc8 --- /dev/null +++ b/workflow/scripts/check_sector_ratios.py @@ -0,0 +1,34 @@ +import logging + +import pandas as pd + +import pypsa + +logger = logging.getLogger(__name__) + +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "check_sector_ratios", + simpl="", + clusters=22, + opts="", + ll="v1.2", + sector_opts="None", + planning_horizons="2030", + run="KN2045_Bal_v4" + ) + logger.info("Check sector ratios") + + n = pypsa.Network(snakemake.input.network) + + # check the heating sector + + # check the industry sector \ No newline at end of file diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 4d6dda83a..2b646e3cc 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -234,6 +234,57 @@ def add_wasserstoff_kernnetz(n, wkn, costs): # from 2030 onwards all pipes are extendable (except from the ones the model build up before and the kernnetz lines) +def unravel_oilbus(n): + """ + Unravel European oil bus to enable energy balances for import of oil products. + + """ + logger.info("Unraveling oil bus") + # add buses + n.add("Bus", "DE oil") + n.add("Bus", "DE renewable oil") + n.add("Bus", "EU renewable oil") + + # add one generator for DE oil + n.add("Generator", + name="DE oil", + bus="DE oil", + carrier="oil", + p_nom_extendable=True, + marginal_cost=n.generators.loc["EU oil"].marginal_cost, + ) + + # change links from EU oil to DE oil + german_oil_links = n.links[(n.links.bus0=="EU oil") & (n.links.index.str.contains("DE"))].index + german_FT_links = n.links[(n.links.bus1=="EU oil") & (n.links.index.str.contains("DE"))].index + n.links.loc[german_oil_links, "bus0"] = "DE oil" + n.links.loc[german_FT_links, "bus1"] = "DE renewable oil" + + # change FT links in rest of Europe + europ_FT_links = n.links[n.links.bus1=="EU oil"].index + n.links.loc[europ_FT_links, "bus1"] = "EU renewable oil" + + # add links between oil buses + n.madd( + "Link", + ["EU renewable oil -> DE renewable oil", "EU renewable oil -> EU oil", "DE renewable oil -> DE oil"], + bus0=["EU renewable oil", "EU renewable oil", "DE renewable oil"], + bus1=["DE renewable oil", "EU oil", "DE oil"], + carrier="oil", + p_nom=1e9, + p_min_pu=0, + ) + + # add stores + n.madd( + "Store", + ["DE oil Store", "DE renewable oil Store", "EU renewable oil Store"], + bus=["DE oil", "DE renewable oil", "EU renewable oil"], + carrier="oil", + e_nom_extendable=True, + e_cyclic=True, + capital_cost=0.02, + ) if __name__ == "__main__": if "snakemake" not in globals(): @@ -279,9 +330,11 @@ def add_wasserstoff_kernnetz(n, wkn, costs): first_technology_occurrence(n) + unravel_oilbus(n) + if snakemake.config["wasserstoff_kernnetz"]["enable"]: fn = snakemake.input.wkn wkn = pd.read_csv(fn, index_col=0) add_wasserstoff_kernnetz(n, wkn, costs) - + n.links.reversed = n.links.reversed.astype(float) n.export_to_netcdf(snakemake.output.network) From b98199827796a4e608254df18dce71c09b3223ee Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 15 Mar 2024 11:03:00 +0100 Subject: [PATCH 180/669] adding plot colors --- config/config.yaml | 2 ++ workflow/submodules/pypsa-eur | 2 +- 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index d3c0e9062..636b32529 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -260,6 +260,8 @@ plotting: tech_colors: load: "#111100" H2 pipeline (Kernnetz): '#6b3161' + fossil oil import: '#c9c9c9' + e-fuels: '#c9c9c9' countries: - all - DE diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index c86d2ea19..d9116c80b 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit c86d2ea19f5a1b1696442ed50bebcf9093f309a5 +Subproject commit d9116c80bb52adbb284213619e4b7bcf22fe081e From f12f7e51bf89b2b2849efd96575b9c7419671e58 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 15 Mar 2024 11:27:55 +0100 Subject: [PATCH 181/669] distinguish between fossil oil import, oil and e-fuels --- config/config.yaml | 13 ++++---- workflow/scripts/additional_functionality.py | 2 +- workflow/scripts/modify_prenetwork.py | 31 +++++++++++++------- 3 files changed, 27 insertions(+), 19 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 636b32529..f3cd28418 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -6,8 +6,8 @@ run: name: - KN2045_Bal_v4 - - KN2045_Elec_v4 - - KN2045_H2_v4 + # - KN2045_Elec_v4 + # - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase @@ -42,12 +42,11 @@ scenario: - none planning_horizons: - 2020 - #- 2025 + - 2025 - 2030 - #- 2035 - #- 2040 - #- 2045 - #- 2050 + - 2035 + - 2040 + - 2045 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 18b7e4bcf..a39521681 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -288,7 +288,7 @@ def add_h2_derivate_limit(n, snapshots, investment_year, config): logger.info(f"limiting H2 derivate imports in {ct} to {limit/1e6} TWh/a") - incoming = n.links.index[n.links.index.str.contains("EU renewable oil -> DE renewable oil")] + incoming = n.links.index[n.links.index.str.contains("EU renewable oil -> DE oil")] outgoing = n.links.index[n.links.index.str.contains("DE renewable oil -> EU oil")] incoming_p = (n.model["Link-p"].loc[:, incoming]*n.snapshot_weightings.generators).sum() diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 2b646e3cc..a7579588b 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -241,15 +241,15 @@ def unravel_oilbus(n): """ logger.info("Unraveling oil bus") # add buses - n.add("Bus", "DE oil") - n.add("Bus", "DE renewable oil") - n.add("Bus", "EU renewable oil") + n.add("Bus", "DE oil", carrier="oil") + n.add("Bus", "DE renewable oil", carrier="e-fuels") + n.add("Bus", "EU renewable oil", carrier="e-fuels") # add one generator for DE oil n.add("Generator", name="DE oil", bus="DE oil", - carrier="oil", + carrier="fossil oil import", p_nom_extendable=True, marginal_cost=n.generators.loc["EU oil"].marginal_cost, ) @@ -267,20 +267,29 @@ def unravel_oilbus(n): # add links between oil buses n.madd( "Link", - ["EU renewable oil -> DE renewable oil", "EU renewable oil -> EU oil", "DE renewable oil -> DE oil"], - bus0=["EU renewable oil", "EU renewable oil", "DE renewable oil"], - bus1=["DE renewable oil", "EU oil", "DE oil"], - carrier="oil", + ["EU renewable oil -> DE oil", "EU renewable oil -> EU oil", "DE renewable oil -> DE oil", "DE renewable oil -> EU oil"], + bus0=["EU renewable oil", "EU renewable oil", "DE renewable oil", "DE renewable oil"], + bus1=["DE renewable oil", "EU oil", "DE oil", "EU oil"], + carrier="e-fuels", p_nom=1e9, p_min_pu=0, ) # add stores + n.add("Store", + "DE oil Store", + bus="DE oil", + carrier="oil", + e_nom_extendable=True, + e_cyclic=True, + capital_cost=0.02, + ) + n.madd( "Store", - ["DE oil Store", "DE renewable oil Store", "EU renewable oil Store"], - bus=["DE oil", "DE renewable oil", "EU renewable oil"], - carrier="oil", + ["DE renewable oil Store", "EU renewable oil Store"], + bus=["DE renewable oil", "EU renewable oil"], + carrier="e-fuels", e_nom_extendable=True, e_cyclic=True, capital_cost=0.02, From 5663fe96dc2f7d3367270865b34ada3ffa2d55ce Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 15 Mar 2024 13:48:50 +0100 Subject: [PATCH 182/669] update environment --- environment.yaml | 35 ++++++++++++++++------------------- 1 file changed, 16 insertions(+), 19 deletions(-) diff --git a/environment.yaml b/environment.yaml index a250b6717..b39e84443 100644 --- a/environment.yaml +++ b/environment.yaml @@ -7,13 +7,12 @@ dependencies: - python>=3.8 - pip -- pre-commit -- black - -- jupyter -- jupyterlab +- atlite>=0.2.9 +- pypsa>=0.27.0 +- linopy +- dask - # Dependencies of the workflow itself + # Dependencies of the workflow itself (see pypsa-eur) - xlrd - openpyxl!=3.1.1 - pycountry @@ -25,20 +24,17 @@ dependencies: - lxml - powerplantmatching>=0.5.11 - numpy -- pandas>=1.4 +- pandas>=2.1 - geopandas>=0.11.0 -- atlite>=0.2.9 -- dask -- xarray +- xarray>=2023.11.0 - rioxarray - netcdf4 - networkx - scipy +- glpk - shapely>=2.0 -- pyomo -- gurobi -- ipopt -- matplotlib<3.6 +- pyscipopt +- matplotlib - proj - fiona - country_converter @@ -48,10 +44,11 @@ dependencies: - tabula-py - pyxlsb - graphviz -- tsam>=1.1.0 -- pypsa>=0.27.0 -- highs +- pre-commit + + # Ariadne specific - pyam +- gurobi # Keep in conda environment when calling ipython - ipython @@ -62,9 +59,9 @@ dependencies: - rasterio!=1.2.10 - pip: + - tsam>=2.3.1 - snakemake-storage-plugin-http - snakemake-executor-plugin-slurm - snakemake-executor-plugin-cluster-generic - - + - highspy From 649afb34ec97f2d006120fe4e0ae4cdf0108e273 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 15 Mar 2024 15:03:51 +0100 Subject: [PATCH 183/669] using yaml package for scenario writing --- config/config.yaml | 2 +- config/scenarios.yaml | 372 ++++++++++++---------------- workflow/scripts/build_scenarios.py | 79 ++---- 3 files changed, 175 insertions(+), 278 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 34202e0b0..84dbdf0f3 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -170,7 +170,7 @@ renewable: capacity_per_sqkm: 8 costs: - version: v0.8.0 + version: v0.8.1 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: diff --git a/config/scenarios.yaml b/config/scenarios.yaml index 05a19c71c..9f587cff3 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -1,28 +1,13 @@ -# -*- coding: utf-8 -*- -# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors -# -# SPDX-License-Identifier: MIT - KN2045_Bal_v4: -# Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren -# Breites Energieträgerportfolio in der Endenergie (Strom, Wasserstoff, synthetische Kraftstoffe) -# Ausbau der erneuerbare Stromerzeugung erreicht politisch gesetzte Ziele -# Importe erneuerbar erzeugter Energien auf mittlerem Niveau -# dient als Referenzszenario in der Familie der Ariadne-Szenarien - clustering: temporal: resolution_sector: 365H - iiasa_database: db_name: ariadne_intern - model_name: Hybrid # should be Leitmodell - scenario: 8Gt_EnSec # should be consistent with KN2045_Bal_v4 + model_name: Hybrid region: Deutschland - - # boundary condition of maximum volumes + scenario: 8Gt_EnSec limits_volume_max: - # constrain electricity import in TWh electricity_import: DE: 2020: 0 @@ -30,34 +15,31 @@ KN2045_Bal_v4: 2030: 0 2035: 40 2040: 80 - 2045: 125 # scenario guidelines - # constrain hydrogen import in TWh - h2_import: + 2045: 125 + electrolysis: DE: 2020: 0 2025: 5 - 2030: 15 # scenario guidelines - 2035: 115 - 2040: 220 - 2045: 325 # scenario guidelines - # import of h2 derivatives in TWh + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 h2_derivate_import: DE: 2020: 0 2025: 0 - 2030: 10 # scenario guidelines + 2030: 10 2035: 105 2040: 200 - 2045: 300 # scenario guidelines - electrolysis: + 2045: 300 + h2_import: DE: 2020: 0 2025: 5 - 2030: 45 # scenario guidelines - 2035: 130 - 2040: 215 - 2045: 300 # scenario guidelines - # boundary condition of minimum volumes + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 limits_volume_min: electrolysis: DE: @@ -67,73 +49,60 @@ KN2045_Bal_v4: 2035: 0 2040: 0 2045: 0 - # sector boundary conditions sector: - # technology mix in transportation from "REMIND Hybrid 8Gt_Bal_v3" + land_transport_electric_share: + land_transport_electric_share: null + 2020: 0.0047 + 2025: 0.0608 + 2030: 0.2722 + 2035: 0.5577 + 2040: 0.7713 + 2045: 0.8931 land_transport_fuel_cell_share: 2020: 0.004 - 2025: 0.036 - 2030: 0.067 - 2035: 0.048 - 2040: 0.025 - 2045: 0.009 - land_transport_electric_share: - 2020: 0.005 - 2025: 0.061 - 2030: 0.243 - 2035: 0.520 - 2040: 0.740 - 2045: 0.874 + 2025: 0.0351 + 2030: 0.0664 + 2035: 0.0462 + 2040: 0.0235 + 2045: 0.0076 land_transport_ice_share: - 2020: 0.991 - 2025: 0.903 - 2030: 0.690 - 2035: 0.432 - 2040: 0.235 - 2045: 0.118 - # technology mix in navigation + 2020: 0.9913 + 2025: 0.9041 + 2030: 0.6614 + 2035: 0.3961 + 2040: 0.2052 + 2045: 0.0993 shipping_hydrogen_share: - 2020: 0.000 - 2025: 0.000 - 2030: 0.024 - 2035: 0.052 - 2040: 0.080 - 2045: 0.114 + 2020: 0.0 + 2025: 0.0 + 2030: 0.0218 + 2035: 0.0504 + 2040: 0.0804 + 2045: 0.0937 shipping_methanol_share: - 2020: 0.000 - 2025: 0.000 - 2030: 0.000 - 2035: 0.000 - 2040: 0.000 - 2045: 0.000 + 2020: 0.0 + 2025: 0.0 + 2030: 0.0 + 2035: 0.0 + 2040: 0.0 + 2045: 0.0 shipping_oil_share: - 2020: 1.000 - 2025: 1.000 - 2030: 0.976 - 2035: 0.948 - 2040: 0.920 - 2045: 0.886 - -############################################################################################################ - + 2020: 1.0 + 2025: 1.0 + 2030: 0.9782 + 2035: 0.9496 + 2040: 0.9196 + 2045: 0.9063 KN2045_Elec_v4: -# Fokus auf dem Hochlauf von Technologien zur direkten Elektrifizierung der Sektoren -# Strom als präferierter Energieträger in der Endenergie, andere Energieträger ergänzend, wo nötig (Wasserstoff, synthetische Kraftstoffe) -# Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele -# Importe erneuerbar erzeugter Energien auf mittlerem Niveau - clustering: temporal: resolution_sector: 365H - iiasa_database: db_name: ariadne_intern - model_name: Hybrid # should be Leitmodell - scenario: 8Gt_EnSec # should be consistent with KN2045_Elec_v4 + model_name: Hybrid region: Deutschland - + scenario: 8Gt_EnSec limits_volume_max: - # constrain electricity import in TWh electricity_import: DE: 2020: 0 @@ -141,34 +110,31 @@ KN2045_Elec_v4: 2030: 0 2035: 50 2040: 100 - 2045: 150 # scenario guidelines - # constrain hydrogen import in TWh - h2_import: + 2045: 150 + electrolysis: DE: 2020: 0 2025: 5 - 2030: 10 # scenario guidelines - 2035: 90 - 2040: 170 - 2045: 250 # scenario guidelines - # import of h2 derivatives in TWh + 2030: 45 + 2035: 95 + 2040: 145 + 2045: 200 h2_derivate_import: DE: 2020: 0 2025: 0 - 2030: 10 # scenario guidelines + 2030: 10 2035: 70 2040: 130 - 2045: 200 # scenario guidelines - electrolysis: + 2045: 200 + h2_import: DE: 2020: 0 2025: 5 - 2030: 45 # scenario guidelines - 2035: 95 - 2040: 145 - 2045: 200 # scenario guidelines - # boundary condition of minimum volumes + 2030: 10 + 2035: 90 + 2040: 170 + 2045: 250 limits_volume_min: electrolysis: DE: @@ -178,73 +144,59 @@ KN2045_Elec_v4: 2035: 0 2040: 0 2045: 0 - sector: - # technology mix in transportation from "REMIND Hybrid 8Gt_Bal_v3" + land_transport_electric_share: + 2020: 0.0047 + 2025: 0.0608 + 2030: 0.2722 + 2035: 0.5577 + 2040: 0.7713 + 2045: 0.8931 land_transport_fuel_cell_share: 2020: 0.004 - 2025: 0.036 - 2030: 0.067 - 2035: 0.048 - 2040: 0.025 - 2045: 0.009 - land_transport_electric_share: - 2020: 0.005 - 2025: 0.061 - 2030: 0.243 - 2035: 0.520 - 2040: 0.740 - 2045: 0.874 + 2025: 0.0351 + 2030: 0.0664 + 2035: 0.0462 + 2040: 0.0235 + 2045: 0.0076 land_transport_ice_share: - 2020: 0.991 - 2025: 0.903 - 2030: 0.690 - 2035: 0.432 - 2040: 0.235 - 2045: 0.118 - + 2020: 0.9913 + 2025: 0.9041 + 2030: 0.6614 + 2035: 0.3961 + 2040: 0.2052 + 2045: 0.0993 shipping_hydrogen_share: - 2020: 0.000 - 2025: 0.000 - 2030: 0.024 - 2035: 0.052 - 2040: 0.080 - 2045: 0.114 + 2020: 0.0 + 2025: 0.0 + 2030: 0.0218 + 2035: 0.0504 + 2040: 0.0804 + 2045: 0.0937 shipping_methanol_share: - 2020: 0.000 - 2025: 0.000 - 2030: 0.000 - 2035: 0.000 - 2040: 0.000 - 2045: 0.000 + 2020: 0.0 + 2025: 0.0 + 2030: 0.0 + 2035: 0.0 + 2040: 0.0 + 2045: 0.0 shipping_oil_share: - 2020: 1.000 - 2025: 1.000 - 2030: 0.976 - 2035: 0.948 - 2040: 0.920 - 2045: 0.886 - -############################################################################################################ - + 2020: 1.0 + 2025: 1.0 + 2030: 0.9782 + 2035: 0.9496 + 2040: 0.9196 + 2045: 0.9063 KN2045_H2_v4: -# Fokus stärker auf dem Hochlauf von Technologien zur indirekten Elektrifizierung der Sektoren -# Verstärkter Einsatz von Wasserstoff und synthetischen Kraftstoffen - erneuerbar erzeugt und auch importiert -# Direkte Elektrifizierung spielt dennoch wesentliche Rolle bei der Dekarbonisierung der Endenergie -# Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele - clustering: temporal: resolution_sector: 365H - iiasa_database: db_name: ariadne_intern - model_name: Hybrid # should be Leitmodell - scenario: 8Gt_EnSec # should be consistent with KN2045_Elec_v4 + model_name: Hybrid region: Deutschland - + scenario: 8Gt_EnSec limits_volume_max: - # constrain electricity import in TWh electricity_import: DE: 2020: 0 @@ -252,33 +204,30 @@ KN2045_H2_v4: 2030: 0 2035: 30 2040: 70 - 2045: 100 # scenario guidelines - # constrain hydrogen import in TWh - h2_import: + 2045: 100 + electrolysis: DE: - 2020: 0 2025: 5 - 2030: 45 # scenario guidelines - 2035: 155 - 2040: 265 - 2045: 400 # scenario guidelines - # import of h2 derivatives in TWh + 2030: 45 + 2035: 160 + 2040: 275 + 2045: 400 h2_derivate_import: DE: 2020: 0 2025: 0 - 2030: 10 # scenario guidelines + 2030: 10 2035: 140 2040: 270 - 2045: 400 # scenario guidelines - electrolysis: + 2045: 400 + h2_import: DE: + 2020: 0 2025: 5 - 2030: 45 # scenario guidelines - 2035: 160 - 2040: 275 - 2045: 400 # scenario guidelines - + 2030: 45 + 2035: 155 + 2040: 265 + 2045: 400 limits_volume_min: electrolysis: DE: @@ -287,57 +236,46 @@ KN2045_H2_v4: 2035: 0 2040: 0 2045: 200 - sector: - # technology mix in transportation from "REMIND Hybrid 8Gt_Bal_v3" + land_transport_electric_share: + 2020: 0.0047 + 2025: 0.0608 + 2030: 0.2722 + 2035: 0.5577 + 2040: 0.7713 + 2045: 0.8931 land_transport_fuel_cell_share: 2020: 0.004 - 2025: 0.036 - 2030: 0.067 - 2035: 0.048 - 2040: 0.025 - 2045: 0.009 - land_transport_electric_share: - 2020: 0.005 - 2025: 0.061 - 2030: 0.243 - 2035: 0.520 - 2040: 0.740 - 2045: 0.874 + 2025: 0.0351 + 2030: 0.0664 + 2035: 0.0462 + 2040: 0.0235 + 2045: 0.0076 land_transport_ice_share: - 2020: 0.991 - 2025: 0.903 - 2030: 0.690 - 2035: 0.432 - 2040: 0.235 - 2045: 0.118 - # technology mix in navigation + 2020: 0.9913 + 2025: 0.9041 + 2030: 0.6614 + 2035: 0.3961 + 2040: 0.2052 + 2045: 0.0993 shipping_hydrogen_share: - 2020: 0.000 - 2025: 0.000 - 2030: 0.024 - 2035: 0.052 - 2040: 0.080 - 2045: 0.114 + 2020: 0.0 + 2025: 0.0 + 2030: 0.0218 + 2035: 0.0504 + 2040: 0.0804 + 2045: 0.0937 shipping_methanol_share: - 2020: 0.000 - 2025: 0.000 - 2030: 0.000 - 2035: 0.000 - 2040: 0.000 - 2045: 0.000 + 2020: 0.0 + 2025: 0.0 + 2030: 0.0 + 2035: 0.0 + 2040: 0.0 + 2045: 0.0 shipping_oil_share: - 2020: 1.000 - 2025: 1.000 - 2030: 0.976 - 2035: 0.948 - 2040: 0.920 - 2045: 0.886 - -# KN2045plus_EasyRide: - -# KN2045plus_LowDemand: - -# KN2045minus_WorstCase: - -# KN2045minus_SupplyFocus: + 2020: 1.0 + 2025: 1.0 + 2030: 0.9782 + 2035: 0.9496 + 2040: 0.9196 + 2045: 0.9063 diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 4a2a5f340..6d8c28b2e 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -6,6 +6,7 @@ # This script reads in data from the IIASA database to create the scenario.yaml file import pyam +import yaml import pandas as pd import os @@ -40,76 +41,34 @@ def get_shares(df): return transport_share, naval_share -def write_to_scenario_yaml(output, scenario, transport_share, naval_share): - # write the data to the output file - with open(output, 'r') as f: - lines = f.readlines() - - #get first occurence of scenario - first = lines.index(scenario + ":\n") +def write_to_scenario_yaml(output, scenarios, transport_share, naval_share): + # read in yaml file + with open("config/scenarios.yaml", 'r') as file: + config = yaml.safe_load(file) mapping_transport = { 'PHEV': 'land_transport_fuel_cell_share', 'BEV': 'land_transport_electric_share', 'ICE': 'land_transport_ice_share' } - - # transport sector - start_index = [] - for i, line in enumerate(lines): - if line.strip() == "land_transport_fuel_cell_share:": - start_index.append(i) - elif line.strip() == "land_transport_electric_share:": - start_index.append(i) - elif line.strip() == "land_transport_ice_share:": - start_index.append(i) - - numb = next((i for i, num in enumerate(start_index) if num > first), None) - start_index = start_index[numb : numb+ 3] - - j = 0 - # Modify the content accordingly - for key in mapping_transport.keys(): - idx = start_index[j] + 1 - for col in transport_share.columns: - if pd.notnull(transport_share.loc[key, col]): - lines[idx] = f" {col}: {transport_share.loc[key, col]:.3f}\n" - idx += 1 - j += 1 - - # naval sector mapping_navigation = { 'H2': 'shipping_hydrogen_share', 'MeOH': 'shipping_methanol_share', 'Oil': 'shipping_oil_share', } - - # transport sector - start_index = [] - for i, line in enumerate(lines): - if line.strip() == "shipping_hydrogen_share:": - start_index.append(i) - elif line.strip() == "shipping_methanol_share:": - start_index.append(i) - elif line.strip() == "shipping_oil_share:": - start_index.append(i) - - numb = next((i for i, num in enumerate(start_index) if num > first), None) - start_index = start_index[numb : numb+ 3] - - j = 0 - # Modify the content accordingly - for key in mapping_navigation.keys(): - idx = start_index[j] + 1 - for col in naval_share.columns: - if pd.notnull(naval_share.loc[key, col]): - lines[idx] = f" {col}: {naval_share.loc[key, col]:.3f}\n" - idx += 1 - j += 1 + + for scenario in scenarios: + for key in mapping_transport.keys(): + for year in transport_share.columns: + config[scenario]["sector"][mapping_transport[key]][year] = round(transport_share.loc[key, year].item(), 4) + for key in mapping_navigation.keys(): + for year in naval_share.columns: + config[scenario]["sector"][mapping_navigation[key]][year] = round(naval_share.loc[key, year].item(), 4) - # Write the modified content back to the file - with open(output, 'w') as f: - f.writelines(lines) + # write back to yaml file + with open(output, 'w') as file: + yaml.dump(config, file) + if __name__ == "__main__": if "snakemake" not in globals(): @@ -138,6 +97,6 @@ def write_to_scenario_yaml(output, scenario, transport_share, naval_share): transport_share, naval_share = get_shares(df) - scenario = snakemake.params.scenario_name[0] + scenarios = snakemake.params.scenario_name output = snakemake.input[0] - write_to_scenario_yaml(output, scenario, transport_share, naval_share) \ No newline at end of file + write_to_scenario_yaml(output, scenarios, transport_share, naval_share) \ No newline at end of file From 9dd71c0cd84a4dd5df16edd319229832dd766aaa Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 15 Mar 2024 15:05:57 +0100 Subject: [PATCH 184/669] close to EEG2023 ziele --- config/config.yaml | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 34202e0b0..343b8e670 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -121,16 +121,20 @@ limits_capacity_min: 2025: 8 2030: 30 # Wind-auf-See Law 2035: 40 # 40 Wind-auf-See Law - 2040: 41 #55 + # assuming at least 1/3 of difference reached in 2040 + 2040: 50 2045: 70 #70 Wind-auf-See Law solar: DE: 2020: 59 - 2025: 94.7 + # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, + # assuming at least 1/3 of difference reached in 2025 + 2025: 101 2030: 215 # PV strategy - 2035: 307.5 + 2035: 309 2040: 400 # PV strategy 2045: 400 + # What about the EEG2023 "Strommengenpfad"? h2_import_max: DE: @@ -170,7 +174,7 @@ renewable: capacity_per_sqkm: 8 costs: - version: v0.8.0 + version: v0.8.1 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: From 8ce81ab8a0bde805ca6bc513e28f38b39c30b7ff Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 15 Mar 2024 17:23:35 +0100 Subject: [PATCH 185/669] using ruamel.yaml to keep comments in the scenarios.yaml file --- config/config.yaml | 4 +- config/scenarios.yaml | 74 ++++++++++++++++++++++------- environment.yaml | 1 + workflow/scripts/build_scenarios.py | 15 +++--- 4 files changed, 67 insertions(+), 27 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 84dbdf0f3..44bd38286 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -6,8 +6,8 @@ run: name: - KN2045_Bal_v4 - # - KN2045_Elec_v4 - # - KN2045_H2_v4 + - KN2045_Elec_v4 + - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase diff --git a/config/scenarios.yaml b/config/scenarios.yaml index 9f587cff3..70d13a357 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -1,13 +1,28 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT + KN2045_Bal_v4: +# Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren +# Breites Energieträgerportfolio in der Endenergie (Strom, Wasserstoff, synthetische Kraftstoffe) +# Ausbau der erneuerbare Stromerzeugung erreicht politisch gesetzte Ziele +# Importe erneuerbar erzeugter Energien auf mittlerem Niveau +# dient als Referenzszenario in der Familie der Ariadne-Szenarien + clustering: temporal: resolution_sector: 365H + iiasa_database: db_name: ariadne_intern - model_name: Hybrid + model_name: Hybrid # should be Leitmodell + scenario: 8Gt_EnSec # should be consistent with KN2045_Bal_v4 region: Deutschland - scenario: 8Gt_EnSec + + # boundary condition of maximum volumes limits_volume_max: + # constrain electricity import in TWh electricity_import: DE: 2020: 0 @@ -49,9 +64,9 @@ KN2045_Bal_v4: 2035: 0 2040: 0 2045: 0 + # sector boundary conditions sector: land_transport_electric_share: - land_transport_electric_share: null 2020: 0.0047 2025: 0.0608 2030: 0.2722 @@ -93,16 +108,24 @@ KN2045_Bal_v4: 2035: 0.9496 2040: 0.9196 2045: 0.9063 + KN2045_Elec_v4: +# Fokus auf dem Hochlauf von Technologien zur direkten Elektrifizierung der Sektoren +# Strom als präferierter Energieträger in der Endenergie, andere Energieträger ergänzend, wo nötig (Wasserstoff, synthetische Kraftstoffe) +# Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele +# Importe erneuerbar erzeugter Energien auf mittlerem Niveau + clustering: temporal: resolution_sector: 365H + iiasa_database: db_name: ariadne_intern model_name: Hybrid region: Deutschland scenario: 8Gt_EnSec limits_volume_max: + # constrain electricity import in TWh electricity_import: DE: 2020: 0 @@ -144,6 +167,7 @@ KN2045_Elec_v4: 2035: 0 2040: 0 2045: 0 + sector: land_transport_electric_share: 2020: 0.0047 @@ -187,16 +211,25 @@ KN2045_Elec_v4: 2035: 0.9496 2040: 0.9196 2045: 0.9063 + KN2045_H2_v4: +# Fokus stärker auf dem Hochlauf von Technologien zur indirekten Elektrifizierung der Sektoren +# Verstärkter Einsatz von Wasserstoff und synthetischen Kraftstoffen - erneuerbar erzeugt und auch importiert +# Direkte Elektrifizierung spielt dennoch wesentliche Rolle bei der Dekarbonisierung der Endenergie +# Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele + clustering: temporal: resolution_sector: 365H + iiasa_database: db_name: ariadne_intern - model_name: Hybrid + model_name: Hybrid # should be Leitmodell + scenario: 8Gt_EnSec # should be consistent with KN2045_Elec_v4 region: Deutschland - scenario: 8Gt_EnSec + limits_volume_max: + # constrain electricity import in TWh electricity_import: DE: 2020: 0 @@ -204,30 +237,34 @@ KN2045_H2_v4: 2030: 0 2035: 30 2040: 70 - 2045: 100 - electrolysis: + 2045: 100 # scenario guidelines + # constrain hydrogen import in TWh + h2_import: DE: + 2020: 0 2025: 5 - 2030: 45 - 2035: 160 - 2040: 275 - 2045: 400 + 2030: 45 # scenario guidelines + 2035: 155 + 2040: 265 + 2045: 400 # scenario guidelines + # import of h2 derivatives in TWh h2_derivate_import: DE: 2020: 0 2025: 0 - 2030: 10 + 2030: 10 # scenario guidelines 2035: 140 2040: 270 - 2045: 400 - h2_import: + 2045: 400 # scenario guidelines + electrolysis: DE: 2020: 0 2025: 5 - 2030: 45 - 2035: 155 - 2040: 265 - 2045: 400 + 2030: 45 # scenario guidelines + 2035: 160 + 2040: 275 + 2045: 400 # scenario guidelines + limits_volume_min: electrolysis: DE: @@ -236,6 +273,7 @@ KN2045_H2_v4: 2035: 0 2040: 0 2045: 200 + sector: land_transport_electric_share: 2020: 0.0047 diff --git a/environment.yaml b/environment.yaml index a250b6717..637181908 100644 --- a/environment.yaml +++ b/environment.yaml @@ -52,6 +52,7 @@ dependencies: - pypsa>=0.27.0 - highs - pyam +- ruamel.yaml # Keep in conda environment when calling ipython - ipython diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 6d8c28b2e..9f1de19ca 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -6,7 +6,8 @@ # This script reads in data from the IIASA database to create the scenario.yaml file import pyam -import yaml +import ruamel.yaml +from pathlib import Path import pandas as pd import os @@ -43,8 +44,9 @@ def get_shares(df): def write_to_scenario_yaml(output, scenarios, transport_share, naval_share): # read in yaml file - with open("config/scenarios.yaml", 'r') as file: - config = yaml.safe_load(file) + yaml = ruamel.yaml.YAML() + file_path = Path(output) + config = yaml.load(file_path) mapping_transport = { 'PHEV': 'land_transport_fuel_cell_share', @@ -64,10 +66,9 @@ def write_to_scenario_yaml(output, scenarios, transport_share, naval_share): for key in mapping_navigation.keys(): for year in naval_share.columns: config[scenario]["sector"][mapping_navigation[key]][year] = round(naval_share.loc[key, year].item(), 4) - - # write back to yaml file - with open(output, 'w') as file: - yaml.dump(config, file) + + # write back to yaml file + yaml.dump(config, file_path) if __name__ == "__main__": From 1a0f0496942183d54a1276fdc6220781449d0307 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 18 Mar 2024 12:44:23 +0100 Subject: [PATCH 186/669] fix oil link --- workflow/scripts/modify_prenetwork.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index a7579588b..3e081f177 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -269,7 +269,7 @@ def unravel_oilbus(n): "Link", ["EU renewable oil -> DE oil", "EU renewable oil -> EU oil", "DE renewable oil -> DE oil", "DE renewable oil -> EU oil"], bus0=["EU renewable oil", "EU renewable oil", "DE renewable oil", "DE renewable oil"], - bus1=["DE renewable oil", "EU oil", "DE oil", "EU oil"], + bus1=["DE oil", "EU oil", "DE oil", "EU oil"], carrier="e-fuels", p_nom=1e9, p_min_pu=0, From 417903775d54f6b9bf9342557ec8880aa0179385 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 18 Mar 2024 13:02:44 +0100 Subject: [PATCH 187/669] rename e-fuels -> renewable oil --- config/config.yaml | 2 +- workflow/scripts/modify_prenetwork.py | 8 ++++---- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 63a759c31..efd93544c 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -264,7 +264,7 @@ plotting: load: "#111100" H2 pipeline (Kernnetz): '#6b3161' fossil oil import: '#c9c9c9' - e-fuels: '#c9c9c9' + renewable oil: '#c9c9c9' countries: - all - DE diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 3e081f177..cca268182 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -242,8 +242,8 @@ def unravel_oilbus(n): logger.info("Unraveling oil bus") # add buses n.add("Bus", "DE oil", carrier="oil") - n.add("Bus", "DE renewable oil", carrier="e-fuels") - n.add("Bus", "EU renewable oil", carrier="e-fuels") + n.add("Bus", "DE renewable oil", carrier="renewable oil") + n.add("Bus", "EU renewable oil", carrier="renewable oil") # add one generator for DE oil n.add("Generator", @@ -270,7 +270,7 @@ def unravel_oilbus(n): ["EU renewable oil -> DE oil", "EU renewable oil -> EU oil", "DE renewable oil -> DE oil", "DE renewable oil -> EU oil"], bus0=["EU renewable oil", "EU renewable oil", "DE renewable oil", "DE renewable oil"], bus1=["DE oil", "EU oil", "DE oil", "EU oil"], - carrier="e-fuels", + carrier="renewable oil", p_nom=1e9, p_min_pu=0, ) @@ -289,7 +289,7 @@ def unravel_oilbus(n): "Store", ["DE renewable oil Store", "EU renewable oil Store"], bus=["DE renewable oil", "EU renewable oil"], - carrier="e-fuels", + carrier="renewable oil", e_nom_extendable=True, e_cyclic=True, capital_cost=0.02, From a0f9be7e1fd3030a848392560fde249e7f84aa94 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 7 Mar 2024 15:30:47 +0100 Subject: [PATCH 188/669] static download of Ariadne DB, sector specific usage of Leitmodelle --- config/config.yaml | 8 +-- workflow/Snakefile | 13 ++--- workflow/scripts/modify_energy_totals.py | 6 ++- workflow/scripts/modify_existing_heating.py | 50 +++++++++++++------ workflow/scripts/retrieve_ariadne_database.py | 22 ++++++++ .../scripts/retrieve_ariadne_scenario_data.py | 18 ------- 6 files changed, 73 insertions(+), 44 deletions(-) create mode 100644 workflow/scripts/retrieve_ariadne_database.py delete mode 100644 workflow/scripts/retrieve_ariadne_scenario_data.py diff --git a/config/config.yaml b/config/config.yaml index a1bc3ff76..70f357d18 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -18,10 +18,10 @@ run: disable_progressbar: true iiasa_database: - db_name: ariadne_intern - model_name: Hybrid - scenario: 8Gt_EnSec - region: Deutschland + # db_name: ariadne_intern + # model_name: Hybrid + scenario: 8Gt_Bal_v3 + # region: Deutschland # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight diff --git a/workflow/Snakefile b/workflow/Snakefile index 173c376a1..3dd28026e 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -84,18 +84,19 @@ rule clean: print("Data downloaded to data/ has not been cleaned.") -rule retrieve_ariadne_scenario_data: +rule retrieve_ariadne_database: params: iiasa_usr=os.environ["IIASA_USERNAME"], iiasa_pwd=os.environ["IIASA_PASSWORD"] output: - data=resources("ariadne_scenario_data.csv") + data=resources("ariadne_database.csv"), log: - "logs/retrieve_ariadne_scenario_data.log" + "logs/retrieve_ariadne_database.log" resources: mem_mb=1000 script: - "scripts/retrieve_ariadne_scenario_data.py" + "scripts/retrieve_ariadne_database.py" + #if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", True): # @@ -159,7 +160,7 @@ use rule solve_sector_network_myopic from pypsaeur with: rule modify_existing_heating: input: - ariadne=resources("ariadne_scenario_data.csv"), + ariadne=resources("ariadne_database.csv"), existing_heating="data/existing_infrastructure/existing_heating_raw.csv", output: existing_heating=resources("existing_heating.csv"), @@ -179,7 +180,7 @@ use rule build_existing_heating_distribution from pypsaeur with: rule modify_energy_totals: input: - ariadne=resources("ariadne_scenario_data.csv"), + ariadne=resources("ariadne_database.csv"), energy_totals=resources("energy_totals.csv"), output: energy_totals=resources("energy_totals-modified.csv"), diff --git a/workflow/scripts/modify_energy_totals.py b/workflow/scripts/modify_energy_totals.py index 57387a554..2e4db522c 100644 --- a/workflow/scripts/modify_energy_totals.py +++ b/workflow/scripts/modify_energy_totals.py @@ -6,7 +6,9 @@ energy_totals = pd.read_csv(snakemake.input.energy_totals, index_col=0) -ariadne = pd.read_csv(snakemake.input.ariadne, - index_col=0) +ariadne = pd.read_csv( + snakemake.input.ariadne, + index_col=["model", "scenario", "region", "variable", "unit"] +) energy_totals.to_csv(snakemake.output.energy_totals) diff --git a/workflow/scripts/modify_existing_heating.py b/workflow/scripts/modify_existing_heating.py index f529fc9df..f63fc05ea 100644 --- a/workflow/scripts/modify_existing_heating.py +++ b/workflow/scripts/modify_existing_heating.py @@ -2,30 +2,52 @@ import pandas as pd +leitmodell="REMod v1.0" existing_heating = pd.read_csv(snakemake.input.existing_heating, index_col=0) -ariadne = pd.read_csv(snakemake.input.ariadne, - index_col=0) - -print("before",existing_heating.loc["Germany"]) - -mapping = {"gas boiler" : "Gas Boiler", - "oil boiler" : "Oil Boiler", - "air heat pump" : "Heat Pump|Electrical|Air", - "ground heat pump" : "Heat Pump|Electrical|Ground", - "biomass boiler" : "Biomass Boiler"} +ariadne = pd.read_csv( + snakemake.input.ariadne, + index_col=["model", "scenario", "region", "variable", "unit"] +).loc[ + leitmodell, + snakemake.config["iiasa_database"]["scenario"], + "Deutschland", + :, + "million", +] + +print( + "Heating demand before modification:", + existing_heating.loc["Germany"], sep="\n") + +mapping = { + "gas boiler" : "Gas Boiler", + "oil boiler" : "Oil Boiler", + "air heat pump" : "Heat Pump|Electrical|Air", + "ground heat pump" : "Heat Pump|Electrical|Ground", + "biomass boiler" : "Biomass Boiler", +} year = "2020" for tech in mapping: - stock = ariadne.at[f"Stock|Space Heating|{mapping[tech]}",year] - peak = stock*existing_heating.loc["Germany"].sum()/ariadne.at[f"Stock|Space Heating",year] - existing_heating.at["Germany",tech] = peak + stock = ariadne.at[ + f"Stock|Space Heating|{mapping[tech]}", + year, + ] + + peak = ( + stock * existing_heating.loc["Germany"].sum() + / ariadne.at[f"Stock|Space Heating", year] + + ) + existing_heating.at["Germany", tech] = peak -print("before",existing_heating.loc["Germany"]) +print(f"Heating demand after modification with {leitmodell}:", + existing_heating.loc["Germany"], sep="\n") existing_heating.to_csv(snakemake.output.existing_heating) diff --git a/workflow/scripts/retrieve_ariadne_database.py b/workflow/scripts/retrieve_ariadne_database.py new file mode 100644 index 000000000..0fc9d31fa --- /dev/null +++ b/workflow/scripts/retrieve_ariadne_database.py @@ -0,0 +1,22 @@ +import pyam + +pyam.iiasa.set_config(snakemake.params.iiasa_usr, snakemake.params.iiasa_pwd) + +db = pyam.read_iiasa( + "ariadne_intern", + model=[# Download only the Leitmodelle + "Hybrid", + "REMIND-EU v1.1", + 'REMod v1.0', + 'TIMES PanEU v1.0', + 'FORECAST v1.0', + 'DEMO v1', + ], + scenario=[# Download only the most recent iterations of scenarios + "8Gt_Bal_v3", + "8Gt_Elec_v3", + "8Gt_H2_v3", + ], +) + +db.timeseries().to_csv(snakemake.output.data) diff --git a/workflow/scripts/retrieve_ariadne_scenario_data.py b/workflow/scripts/retrieve_ariadne_scenario_data.py deleted file mode 100644 index e847efb98..000000000 --- a/workflow/scripts/retrieve_ariadne_scenario_data.py +++ /dev/null @@ -1,18 +0,0 @@ - - -import pyam - -pyam.iiasa.set_config(snakemake.params.iiasa_usr, snakemake.params.iiasa_pwd) - - -model_raw = pyam.read_iiasa(snakemake.config["iiasa_database"]["db_name"], - model=snakemake.config["iiasa_database"]["model_name"], - scenario=snakemake.config["iiasa_database"]["scenario"]) - -model_df = model_raw.timeseries() - -model_df = model_df.loc[snakemake.config["iiasa_database"]["model_name"], - snakemake.config["iiasa_database"]["scenario"], - snakemake.config["iiasa_database"]["region"]] - -model_df.to_csv(snakemake.output.data) From 7f9a58cb2ede986b53bf58d07ca3433101666159 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 19 Mar 2024 09:03:13 +0100 Subject: [PATCH 189/669] subtracting import/adding export of synfuels from/to national CO2 target --- workflow/scripts/additional_functionality.py | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index a39521681..0d61fc75b 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -200,7 +200,13 @@ def add_co2limit_country(n, limit_countries, snakemake): lhs.append((n.model["Link-p"].loc[:, links]*efficiency*n.snapshot_weightings.generators).sum()) - lhs = sum(lhs) + incoming = n.links.index[n.links.index == "EU renewable oil -> DE oil"] + outgoing = n.links.index[n.links.index == "DE renewable oil -> EU oil"] + + incoming_p = (n.model["Link-p"].loc[:, incoming]*n.snapshot_weightings.generators).sum() + outgoing_p = (n.model["Link-p"].loc[:, outgoing]*n.snapshot_weightings.generators).sum() + + lhs = sum(lhs) + (outgoing_p - incoming_p)*0.2571 cname = f"co2_limit-{ct}" From d9ff6c80cc75d07a47e65dc248de18d68d1b0706 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 19 Mar 2024 10:10:09 +0100 Subject: [PATCH 190/669] move iiasa config --- config/config.yaml | 17 +++++++++++++---- config/scenarios.yaml | 16 ++++------------ 2 files changed, 17 insertions(+), 16 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 70f357d18..b0f9e2506 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -18,10 +18,19 @@ run: disable_progressbar: true iiasa_database: - # db_name: ariadne_intern - # model_name: Hybrid - scenario: 8Gt_Bal_v3 - # region: Deutschland + db_name: ariadne_intern + leitmodelle: + - REMIND-EU v1.1 + - REMod v1.0 + - TIMES PanEU v1.0 + - FORECAST v1.0 + - DEMO v1 + scenarios: + - 8Gt_Bal_v3 + - 8Gt_Elec_v3 + - 8Gt_H2_v3 + reference_scenario: 8Gt_Bal_v3 + region: Deutschland # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight diff --git a/config/scenarios.yaml b/config/scenarios.yaml index 70d13a357..4cf11cdb6 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -15,10 +15,7 @@ KN2045_Bal_v4: resolution_sector: 365H iiasa_database: - db_name: ariadne_intern - model_name: Hybrid # should be Leitmodell - scenario: 8Gt_EnSec # should be consistent with KN2045_Bal_v4 - region: Deutschland + reference_scenario: 8Gt_Bal_v3 # boundary condition of maximum volumes limits_volume_max: @@ -120,10 +117,8 @@ KN2045_Elec_v4: resolution_sector: 365H iiasa_database: - db_name: ariadne_intern - model_name: Hybrid - region: Deutschland - scenario: 8Gt_EnSec + reference_scenario: 8Gt_Elec_v3 + limits_volume_max: # constrain electricity import in TWh electricity_import: @@ -223,10 +218,7 @@ KN2045_H2_v4: resolution_sector: 365H iiasa_database: - db_name: ariadne_intern - model_name: Hybrid # should be Leitmodell - scenario: 8Gt_EnSec # should be consistent with KN2045_Elec_v4 - region: Deutschland + reference_scenario: 8Gt_H2_v3 limits_volume_max: # constrain electricity import in TWh From 84004ffa6da50d275a6ff1627570ccc8c3f504f7 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 19 Mar 2024 10:21:58 +0100 Subject: [PATCH 191/669] update scenario defaults --- config/scenarios.yaml | 144 +++++++++++++++++++++--------------------- 1 file changed, 72 insertions(+), 72 deletions(-) diff --git a/config/scenarios.yaml b/config/scenarios.yaml index 4cf11cdb6..d6cd269e3 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -65,46 +65,46 @@ KN2045_Bal_v4: sector: land_transport_electric_share: 2020: 0.0047 - 2025: 0.0608 - 2030: 0.2722 - 2035: 0.5577 - 2040: 0.7713 - 2045: 0.8931 + 2025: 0.0611 + 2030: 0.243 + 2035: 0.5199 + 2040: 0.74 + 2045: 0.8737 land_transport_fuel_cell_share: 2020: 0.004 - 2025: 0.0351 - 2030: 0.0664 - 2035: 0.0462 - 2040: 0.0235 - 2045: 0.0076 + 2025: 0.0362 + 2030: 0.0667 + 2035: 0.0485 + 2040: 0.0252 + 2045: 0.0085 land_transport_ice_share: 2020: 0.9913 - 2025: 0.9041 - 2030: 0.6614 - 2035: 0.3961 - 2040: 0.2052 - 2045: 0.0993 + 2025: 0.9027 + 2030: 0.6903 + 2035: 0.4316 + 2040: 0.2348 + 2045: 0.1178 shipping_hydrogen_share: 2020: 0.0 2025: 0.0 - 2030: 0.0218 - 2035: 0.0504 - 2040: 0.0804 - 2045: 0.0937 + 2030: 0.0238 + 2035: 0.0522 + 2040: 0.0802 + 2045: 0.1142 shipping_methanol_share: 2020: 0.0 2025: 0.0 2030: 0.0 2035: 0.0 - 2040: 0.0 + 2040: -0.0 2045: 0.0 shipping_oil_share: 2020: 1.0 2025: 1.0 - 2030: 0.9782 - 2035: 0.9496 - 2040: 0.9196 - 2045: 0.9063 + 2030: 0.9762 + 2035: 0.9478 + 2040: 0.9198 + 2045: 0.8858 KN2045_Elec_v4: # Fokus auf dem Hochlauf von Technologien zur direkten Elektrifizierung der Sektoren @@ -166,46 +166,46 @@ KN2045_Elec_v4: sector: land_transport_electric_share: 2020: 0.0047 - 2025: 0.0608 - 2030: 0.2722 - 2035: 0.5577 - 2040: 0.7713 - 2045: 0.8931 + 2025: 0.0611 + 2030: 0.243 + 2035: 0.5199 + 2040: 0.74 + 2045: 0.8737 land_transport_fuel_cell_share: 2020: 0.004 - 2025: 0.0351 - 2030: 0.0664 - 2035: 0.0462 - 2040: 0.0235 - 2045: 0.0076 + 2025: 0.0362 + 2030: 0.0667 + 2035: 0.0485 + 2040: 0.0252 + 2045: 0.0085 land_transport_ice_share: 2020: 0.9913 - 2025: 0.9041 - 2030: 0.6614 - 2035: 0.3961 - 2040: 0.2052 - 2045: 0.0993 + 2025: 0.9027 + 2030: 0.6903 + 2035: 0.4316 + 2040: 0.2348 + 2045: 0.1178 shipping_hydrogen_share: 2020: 0.0 2025: 0.0 - 2030: 0.0218 - 2035: 0.0504 - 2040: 0.0804 - 2045: 0.0937 + 2030: 0.0238 + 2035: 0.0522 + 2040: 0.0802 + 2045: 0.1142 shipping_methanol_share: 2020: 0.0 2025: 0.0 2030: 0.0 2035: 0.0 - 2040: 0.0 + 2040: -0.0 2045: 0.0 shipping_oil_share: 2020: 1.0 2025: 1.0 - 2030: 0.9782 - 2035: 0.9496 - 2040: 0.9196 - 2045: 0.9063 + 2030: 0.9762 + 2035: 0.9478 + 2040: 0.9198 + 2045: 0.8858 KN2045_H2_v4: # Fokus stärker auf dem Hochlauf von Technologien zur indirekten Elektrifizierung der Sektoren @@ -269,43 +269,43 @@ KN2045_H2_v4: sector: land_transport_electric_share: 2020: 0.0047 - 2025: 0.0608 - 2030: 0.2722 - 2035: 0.5577 - 2040: 0.7713 - 2045: 0.8931 + 2025: 0.0611 + 2030: 0.243 + 2035: 0.5199 + 2040: 0.74 + 2045: 0.8737 land_transport_fuel_cell_share: 2020: 0.004 - 2025: 0.0351 - 2030: 0.0664 - 2035: 0.0462 - 2040: 0.0235 - 2045: 0.0076 + 2025: 0.0362 + 2030: 0.0667 + 2035: 0.0485 + 2040: 0.0252 + 2045: 0.0085 land_transport_ice_share: 2020: 0.9913 - 2025: 0.9041 - 2030: 0.6614 - 2035: 0.3961 - 2040: 0.2052 - 2045: 0.0993 + 2025: 0.9027 + 2030: 0.6903 + 2035: 0.4316 + 2040: 0.2348 + 2045: 0.1178 shipping_hydrogen_share: 2020: 0.0 2025: 0.0 - 2030: 0.0218 - 2035: 0.0504 - 2040: 0.0804 - 2045: 0.0937 + 2030: 0.0238 + 2035: 0.0522 + 2040: 0.0802 + 2045: 0.1142 shipping_methanol_share: 2020: 0.0 2025: 0.0 2030: 0.0 2035: 0.0 - 2040: 0.0 + 2040: -0.0 2045: 0.0 shipping_oil_share: 2020: 1.0 2025: 1.0 - 2030: 0.9782 - 2035: 0.9496 - 2040: 0.9196 - 2045: 0.9063 + 2030: 0.9762 + 2035: 0.9478 + 2040: 0.9198 + 2045: 0.8858 From 60a446b46432c34da513343e2fcd8acee19aeb8c Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 19 Mar 2024 10:22:35 +0100 Subject: [PATCH 192/669] dynamic loading of ariadne inputs --- workflow/Snakefile | 11 +-- workflow/scripts/build_scenarios.py | 74 +++++++++++-------- workflow/scripts/retrieve_ariadne_database.py | 53 ++++++++----- 3 files changed, 81 insertions(+), 57 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 3dd28026e..1bd033c68 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -230,13 +230,14 @@ if config["wasserstoff_kernnetz"]["enable"]: rule build_scenarios: params: - iiasa_usr=os.environ["IIASA_USERNAME"], - iiasa_pwd=os.environ["IIASA_PASSWORD"], - iiasa_model=config["iiasa_database"]["model_name"], - iiasa_scenario=config["iiasa_database"]["scenario"], + iiasa_scenario=config["iiasa_database"]["reference_scenario"], scenario_name=config["run"]["name"], input: - "config/scenarios.yaml" + #default_scenarios_yaml="config/scenarios.default.yaml", + ariadne_database=resources("ariadne_database.csv"), + scenario_yaml=config["run"]["scenarios"]["file"], + #output: + # config["run"]["scenarios"]["file"], log: "logs/build_scenarios.log" script: diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 9f1de19ca..ef594346c 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -5,39 +5,44 @@ # This script reads in data from the IIASA database to create the scenario.yaml file -import pyam + import ruamel.yaml from pathlib import Path import pandas as pd import os -def get_shares(df): +def get_shares(df, planning_horizons): # Get share of vehicles for transport sector - meglecting heavy duty vehicles - total_transport = df.loc["Stock|Transportation|LDV"] - tech_transport = df.loc[["Stock|Transportation|LDV|ICE", - "Stock|Transportation|LDV|BEV", - "Stock|Transportation|LDV|PHEV",]] + # At the + total_transport = df.loc["DEMO v1", "Stock|Transportation|LDV"] + tech_transport = df.loc["DEMO v1"].loc[[ + "Stock|Transportation|LDV|ICE", + "Stock|Transportation|LDV|BEV", + "Stock|Transportation|LDV|PHEV", + ]] transport_share = tech_transport / total_transport - transport_share = transport_share[[2020, 2025, 2030, 2035, 2040, 2045]] - transport_share.reset_index(drop=True, inplace=True) + transport_share = transport_share[planning_horizons] transport_share.set_index(pd.Index(["ICE", "BEV", "PHEV"]), inplace=True) # Get share of Navigation fuels - total_navigation = df.loc[["Final Energy|Bunkers|Navigation", - "Final Energy|Transportation|Domestic Navigation"]].sum(axis=0) - navigation_liquid = df.loc[["Final Energy|Bunkers|Navigation", - "Final Energy|Transportation|Domestic Navigation|Liquids"]].sum() - navigation_h2 = df.loc[["Final Energy|Transportation|Domestic Navigation|Hydrogen"]] + total_navigation = \ + df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation"] + \ + df.loc["DEMO v1", "Final Energy|Transportation|Domestic Navigation"] + navigation_liquid = \ + df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation|Liquids"] + \ + df.loc["DEMO v1", "Final Energy|Transportation|Domestic Navigation|Liquids"] + + navigation_h2 = df.loc["DEMO v1", "Final Energy|Transportation|Domestic Navigation|Hydrogen"] h2_share = navigation_h2 / total_navigation - liquid_share = pd.DataFrame(navigation_liquid / total_navigation, columns=['Oil']).transpose() - - h2_share.reset_index(drop=True, inplace=True) - h2_share.set_index(pd.Index(["H2"]), inplace=True) - naval_share = pd.concat([liquid_share, h2_share]) - naval_share.loc["MeOH"] = 0.0 - naval_share = naval_share[[2020, 2025, 2030, 2035, 2040, 2045]] + liquid_share = navigation_liquid / total_navigation + methanol_share = (1 - h2_share - liquid_share).round(6) + + naval_share = pd.concat( + [liquid_share, h2_share, methanol_share]).set_index( + pd.Index(["Oil", "H2", "MeOH"]) + )[planning_horizons] return transport_share, naval_share @@ -83,21 +88,26 @@ def write_to_scenario_yaml(output, scenarios, transport_share, naval_share): snakemake = mock_snakemake("build_scenarios") # Set USERNAME and PASSWORD for the Ariadne DB - pyam.iiasa.set_config( - snakemake.params.iiasa_usr, - snakemake.params.iiasa_pwd, + ariadne = pd.read_csv( + snakemake.input.ariadne_database, + index_col=["model", "scenario", "region", "variable", "unit"] ) + ariadne.columns = ariadne.columns.astype(int) - model_df= pyam.read_iiasa( - "ariadne_intern", - model=snakemake.params.iiasa_model, - scenario=snakemake.params.iiasa_scenario, - ).timeseries() + df = ariadne.loc[ + :, + snakemake.params.iiasa_scenario, + "Deutschland"] - df = model_df.loc[snakemake.params.iiasa_model, snakemake.params.iiasa_scenario, "Deutschland"] - transport_share, naval_share = get_shares(df) + planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] + transport_share, naval_share = get_shares(df, planning_horizons) scenarios = snakemake.params.scenario_name - output = snakemake.input[0] - write_to_scenario_yaml(output, scenarios, transport_share, naval_share) \ No newline at end of file + + if "snakemake" in globals(): + filename = snakemake.input.scenario_yaml + else: + filename = "../config/scenarios.yaml" + + write_to_scenario_yaml(filename, scenarios, transport_share, naval_share) \ No newline at end of file diff --git a/workflow/scripts/retrieve_ariadne_database.py b/workflow/scripts/retrieve_ariadne_database.py index 0fc9d31fa..897ace003 100644 --- a/workflow/scripts/retrieve_ariadne_database.py +++ b/workflow/scripts/retrieve_ariadne_database.py @@ -1,22 +1,35 @@ import pyam -pyam.iiasa.set_config(snakemake.params.iiasa_usr, snakemake.params.iiasa_pwd) - -db = pyam.read_iiasa( - "ariadne_intern", - model=[# Download only the Leitmodelle - "Hybrid", - "REMIND-EU v1.1", - 'REMod v1.0', - 'TIMES PanEU v1.0', - 'FORECAST v1.0', - 'DEMO v1', - ], - scenario=[# Download only the most recent iterations of scenarios - "8Gt_Bal_v3", - "8Gt_Elec_v3", - "8Gt_H2_v3", - ], -) - -db.timeseries().to_csv(snakemake.output.data) +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake("retrieve_ariadne_database") + + pyam.iiasa.set_config(snakemake.params.iiasa_usr, snakemake.params.iiasa_pwd) + + db = pyam.read_iiasa( + "ariadne_intern", + model=[ + # "Hybrid", # Download only the Leitmodelle + "REMIND-EU v1.1", + 'REMod v1.0', + 'TIMES PanEU v1.0', + 'FORECAST v1.0', + 'DEMO v1', + ], + scenario=[# Download only the most recent iterations of scenarios + "8Gt_Bal_v3", + "8Gt_Elec_v3", + "8Gt_H2_v3", + ], + ) + + db.timeseries().to_csv(snakemake.output.data) + + From 5d16bc2ac38f47779758debf409a38ed639eea4e Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 19 Mar 2024 14:47:46 +0100 Subject: [PATCH 193/669] review fixes --- workflow/Snakefile | 5 ++--- workflow/scripts/build_scenarios.py | 17 +++++++--------- workflow/scripts/modify_existing_heating.py | 2 +- workflow/scripts/retrieve_ariadne_database.py | 20 ++++--------------- 4 files changed, 14 insertions(+), 30 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 1bd033c68..2155885f6 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -86,6 +86,8 @@ rule clean: rule retrieve_ariadne_database: params: + leitmodelle=config["iiasa_database"]["leitmodelle"], + scenarios=config["iiasa_database"]["scenarios"], iiasa_usr=os.environ["IIASA_USERNAME"], iiasa_pwd=os.environ["IIASA_PASSWORD"] output: @@ -233,11 +235,8 @@ rule build_scenarios: iiasa_scenario=config["iiasa_database"]["reference_scenario"], scenario_name=config["run"]["name"], input: - #default_scenarios_yaml="config/scenarios.default.yaml", ariadne_database=resources("ariadne_database.csv"), scenario_yaml=config["run"]["scenarios"]["file"], - #output: - # config["run"]["scenarios"]["file"], log: "logs/build_scenarios.log" script: diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index ef594346c..941b1eee2 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -12,8 +12,7 @@ import os def get_shares(df, planning_horizons): - # Get share of vehicles for transport sector - meglecting heavy duty vehicles - # At the + # Get share of vehicles for transport sector - neglecting heavy duty vehicles total_transport = df.loc["DEMO v1", "Stock|Transportation|LDV"] tech_transport = df.loc["DEMO v1"].loc[[ "Stock|Transportation|LDV|ICE", @@ -25,7 +24,7 @@ def get_shares(df, planning_horizons): transport_share = transport_share[planning_horizons] transport_share.set_index(pd.Index(["ICE", "BEV", "PHEV"]), inplace=True) - # Get share of Navigation fuels + # Get share of Navigation fuels from corresponding "Ariadne Leitmodell" total_navigation = \ df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation"] + \ df.loc["DEMO v1", "Final Energy|Transportation|Domestic Navigation"] @@ -88,13 +87,13 @@ def write_to_scenario_yaml(output, scenarios, transport_share, naval_share): snakemake = mock_snakemake("build_scenarios") # Set USERNAME and PASSWORD for the Ariadne DB - ariadne = pd.read_csv( + ariadne_db = pd.read_csv( snakemake.input.ariadne_database, index_col=["model", "scenario", "region", "variable", "unit"] ) - ariadne.columns = ariadne.columns.astype(int) + ariadne_db.columns = ariadne_db.columns.astype(int) - df = ariadne.loc[ + df = ariadne_db.loc[ :, snakemake.params.iiasa_scenario, "Deutschland"] @@ -105,9 +104,7 @@ def write_to_scenario_yaml(output, scenarios, transport_share, naval_share): scenarios = snakemake.params.scenario_name - if "snakemake" in globals(): - filename = snakemake.input.scenario_yaml - else: - filename = "../config/scenarios.yaml" + filename = snakemake.input.scenario_yaml + write_to_scenario_yaml(filename, scenarios, transport_share, naval_share) \ No newline at end of file diff --git a/workflow/scripts/modify_existing_heating.py b/workflow/scripts/modify_existing_heating.py index f63fc05ea..ae9534e71 100644 --- a/workflow/scripts/modify_existing_heating.py +++ b/workflow/scripts/modify_existing_heating.py @@ -12,7 +12,7 @@ index_col=["model", "scenario", "region", "variable", "unit"] ).loc[ leitmodell, - snakemake.config["iiasa_database"]["scenario"], + snakemake.config["iiasa_database"]["reference_scenario"], "Deutschland", :, "million", diff --git a/workflow/scripts/retrieve_ariadne_database.py b/workflow/scripts/retrieve_ariadne_database.py index 897ace003..d0ae992f3 100644 --- a/workflow/scripts/retrieve_ariadne_database.py +++ b/workflow/scripts/retrieve_ariadne_database.py @@ -15,21 +15,9 @@ db = pyam.read_iiasa( "ariadne_intern", - model=[ - # "Hybrid", # Download only the Leitmodelle - "REMIND-EU v1.1", - 'REMod v1.0', - 'TIMES PanEU v1.0', - 'FORECAST v1.0', - 'DEMO v1', - ], - scenario=[# Download only the most recent iterations of scenarios - "8Gt_Bal_v3", - "8Gt_Elec_v3", - "8Gt_H2_v3", - ], + model=snakemake.params.leitmodelle, + scenario=snakemake.params.scenarios, + # Download only the most recent iterations of scenarios ) - db.timeseries().to_csv(snakemake.output.data) - - + db.timeseries().to_csv(snakemake.output.data) \ No newline at end of file From fed808ebde64fa28f4881fb03aec8b2911e615a8 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 20 Mar 2024 16:39:30 +0100 Subject: [PATCH 194/669] adding cost data for 2019 --- ariadne-data/costs_2019-modifications.csv | 5 +++++ 1 file changed, 5 insertions(+) create mode 100644 ariadne-data/costs_2019-modifications.csv diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv new file mode 100644 index 000000000..aeead0709 --- /dev/null +++ b/ariadne-data/costs_2019-modifications.csv @@ -0,0 +1,5 @@ +technology,parameter,value,unit,source,further description +gas,fuel,16.0,EUR/MWh_th,Ariadne, +oil,fuel,33.2457,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" +coal,fuel,6.7391,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" +electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" From 4016b949d5d00a9e1373bc4bc307d5a3d67e67e7 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 21 Mar 2024 09:45:30 +0100 Subject: [PATCH 195/669] changing modify_cost_data rule --- workflow/Snakefile | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 2155885f6..5ea757984 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -122,7 +122,10 @@ use rule prepare_sector_network from pypsaeur with: rule modify_cost_data: input: costs=resources("costs_{planning_horizons}.csv"), - modifications="ariadne-data/costs_{planning_horizons}-modifications.csv", + modifications=lambda w: ( + "ariadne-data/costs_2019-modifications.csv" + if w.planning_horizons == "2020" and config["energy"]["energy_totals_year"] == 2019 + else "ariadne-data/costs_{planning_horizons}-modifications.csv") output: resources("modified-costs_{planning_horizons}.csv"), resources: From f64ae917e87315cbafc8f49dce10b2a207c10e71 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 21 Mar 2024 10:19:09 +0100 Subject: [PATCH 196/669] adding custom heat-pump costs and electricity grid costs from NEP21 --- ariadne-data/costs_2019-modifications.csv | 7 +++++++ ariadne-data/costs_2020-modifications.csv | 7 +++++++ ariadne-data/costs_2025-modifications.csv | 5 +++++ ariadne-data/costs_2030-modifications.csv | 5 +++++ ariadne-data/costs_2035-modifications.csv | 5 +++++ ariadne-data/costs_2040-modifications.csv | 5 +++++ ariadne-data/costs_2045-modifications.csv | 5 +++++ ariadne-data/costs_2050-modifications.csv | 5 +++++ 8 files changed, 44 insertions(+) diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv index aeead0709..f59927e03 100644 --- a/ariadne-data/costs_2019-modifications.csv +++ b/ariadne-data/costs_2019-modifications.csv @@ -3,3 +3,10 @@ gas,fuel,16.0,EUR/MWh_th,Ariadne, oil,fuel,33.2457,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.7391,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" +decentral air-sourced heat pump, investment, 3.319, EUR2020/kw_th, Ariadne, +decentral ground-sourced heat pump, investment, 5.340, EUR2020/kw_th, Ariadne, +electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, +HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, +HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, +HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, +HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index 4b844a51a..da49097b1 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -3,3 +3,10 @@ gas,fuel,11.2,EUR/MWh_th,Ariadne, oil,fuel,22.1982,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,5.7048,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" +decentral air-sourced heat pump, investment, 3.319, EUR2020/kw_th, Ariadne, +decentral ground-sourced heat pump, investment, 5.340, EUR2020/kw_th, Ariadne, +electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, +HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, +HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, +HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, +HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index 64e656be7..eea34760c 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -3,3 +3,8 @@ gas,fuel,40,EUR/MWh_th,Ariadne, oil,fuel,32.9876,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,10.6694,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1267,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" +electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, +HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, +HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, +HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, +HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index 3a9f92245..26eef0d11 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -3,3 +3,8 @@ gas,fuel,22.3,EUR/MWh_th,Ariadne, oil,fuel,38.821,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2056,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1083,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" +electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, +HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, +HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, +HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, +HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index c21539b55..e846bf4db 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -3,3 +3,8 @@ gas,fuel,22.4,EUR/MWh_th,Ariadne, oil,fuel,38.5629,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2601,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,900,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" +electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, +HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, +HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, +HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, +HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, \ No newline at end of file diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index c1ce3ee31..38ef139bd 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -3,3 +3,8 @@ gas,fuel,22.6,EUR/MWh_th,Ariadne, oil,fuel,38.3564,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3036,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,717,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" +electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, +HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, +HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, +HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, +HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, \ No newline at end of file diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index 877c027b0..393969870 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -3,3 +3,8 @@ gas,fuel,22.8,EUR/MWh_th,Ariadne, oil,fuel,38.0983,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3472,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,533,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" +electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, +HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, +HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, +HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, +HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index 9a57a1342..8989e7462 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -3,3 +3,8 @@ gas,fuel,22.9,EUR/MWh_th,Ariadne, oil,fuel,37.8918,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.4016,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,350,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" +electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, +HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, +HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, +HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, +HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, From d701ad8abae4c102c41b0c8220a41918f1bc1359 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 21 Mar 2024 12:17:26 +0100 Subject: [PATCH 197/669] adjustments to downloaded ariadneDB --- workflow/Snakefile | 8 ++++++-- workflow/scripts/plot_ariadne_variables.py | 14 +++++--------- 2 files changed, 11 insertions(+), 11 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 14e6a9968..76730393c 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -233,12 +233,14 @@ if config["wasserstoff_kernnetz"]["enable"]: rule download_ariadne_template: input: - HTTP.remote("https://github.com/iiasa/ariadne-intern-workflow/raw/master/attachments/2024-02-23_template_Ariadne.xlsx") + storage( + "https://github.com/iiasa/ariadne-intern-workflow/raw/master/attachments/2024-02-23_template_Ariadne.xlsx", + keep_local=True, + ) output: resources("template_ariadne_database.xlsx") run: move(input[0], output[0]) - #validate_checksum(output[0], input[0]) rule export_ariadne_variables: input: @@ -265,6 +267,7 @@ rule export_ariadne_variables: rule plot_ariadne_variables: input: + iiasa_scenario=config["iiasa_database"]["reference_scenario"], ariadne_variables=RESULTS + "ariadne/ariadne_variables.csv" output: primary_energy=RESULTS + "ariadne/primary_energy.png", @@ -291,6 +294,7 @@ rule plot_ariadne_variables: rule ariadne_all: input: expand(RESULTS + "ariadne/capacity_detailed.png", run=config["run"]["name"]) + rule build_scenarios: params: iiasa_scenario=config["iiasa_database"]["reference_scenario"], diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 998c5d4c0..d33c1d218 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -132,16 +132,12 @@ def within_plot(df, df2, os.environ["IIASA_PASSWORD"], ) - model_df = pyam.read_iiasa( - "ariadne_intern", - model="REMIND-EU v1.1", - scenario="8Gt_Bal_v3", - region="Deutschland", - ).timeseries() leitmodell="REMIND-EU v1.1" - dfremind = model_df.loc[ - leitmodell, "8Gt_Bal_v3", "Deutschland" - ][pd.to_numeric(df.keys())] + + dfremind = pd.read_csv( + snakemake.input.ariadne_database, + index_col=["model", "scenario", "region", "variable", "unit"] + ).loc[leitmodell, snakemake.params.iiasa_scenario, "Deutschland"][df.keys()] dfremind.index.names = df.index.names From 48fa2421e30f34abc73a6fc1f05813191142b0ec Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 21 Mar 2024 12:17:42 +0100 Subject: [PATCH 198/669] start with renewable oil bus --- workflow/scripts/export_ariadne_variables.py | 30 +++++++++++--------- 1 file changed, 16 insertions(+), 14 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 087b93791..bf7069ed6 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -16,8 +16,6 @@ TWh2PJ = 3.6 MWh2PJ = 3.6e-6 -#n.statistics.withdrawal(bus_carrier="land transport oil", groupby=groupby, aggregate_time=False).filter(like="DE1 0",axis=0) - def _get_t_sum(df, df_t, carrier, region, snapshot_weightings, port): if type(carrier) == list: return sum( @@ -533,22 +531,26 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): capacities_liquids = cap_func( - bus_carrier=["oil", "methanol"], + bus_carrier="renewable oil", **kwargs, ).filter( like=region ).groupby("carrier").sum().multiply(MW2GW) - + # var[cap_string + "Liquids|Hydrogen"] = \ - capacities_liquids.get("Fischer-Tropsch",0) + \ - capacities_liquids.get("methanolisation", 0) + var[cap_string + "Liquids"] = \ + capacities_liquids.get("Fischer-Tropsch",0) + + capacities_methanol = cap_func( + bus_carrier="methanol", + **kwargs, + ).filter( + like=region + ).groupby("carrier").sum().multiply(MW2GW) + # + var[cap_string + "Methanol"] = \ + capacities_methanol.get("methanolisation", 0) - var[cap_string + "Liquids"] = var[cap_string + "Liquids|Hydrogen"] - - assert isclose( - var[cap_string + "Liquids"], capacities_liquids.sum(), - ) - return var def get_primary_energy(n, region): @@ -2381,7 +2383,7 @@ def get_data( ll="v1.2", sector_opts="None", planning_horizons="2050", - run="240219-test/normal" + run="KN2045_Bal_v4" ) @@ -2431,7 +2433,7 @@ def get_data( ) # For debugging - n = networks[3] + n = networks[0] region="DE" kwargs = { 'groupby': n.statistics.groupers.get_name_bus_and_carrier, From 152271948ea1ce1c1e783c605d62f38df65e05bd Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 21 Mar 2024 12:19:02 +0100 Subject: [PATCH 199/669] remove additional fossil oil import generator again --- config/config.yaml | 1 - workflow/scripts/modify_prenetwork.py | 9 --------- 2 files changed, 10 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index b0f9e2506..f1176e44a 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -272,7 +272,6 @@ plotting: tech_colors: load: "#111100" H2 pipeline (Kernnetz): '#6b3161' - fossil oil import: '#c9c9c9' renewable oil: '#c9c9c9' countries: - all diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index cca268182..00a9e3401 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -244,15 +244,6 @@ def unravel_oilbus(n): n.add("Bus", "DE oil", carrier="oil") n.add("Bus", "DE renewable oil", carrier="renewable oil") n.add("Bus", "EU renewable oil", carrier="renewable oil") - - # add one generator for DE oil - n.add("Generator", - name="DE oil", - bus="DE oil", - carrier="fossil oil import", - p_nom_extendable=True, - marginal_cost=n.generators.loc["EU oil"].marginal_cost, - ) # change links from EU oil to DE oil german_oil_links = n.links[(n.links.bus0=="EU oil") & (n.links.index.str.contains("DE"))].index From e1e05f18e915678704e225d3e017365bb99494dd Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 21 Mar 2024 12:44:49 +0100 Subject: [PATCH 200/669] bug fix in cost data and enforcing transmission grid costs --- ariadne-data/costs_2019-modifications.csv | 14 +++++++------- ariadne-data/costs_2020-modifications.csv | 14 +++++++------- ariadne-data/costs_2025-modifications.csv | 10 +++++----- ariadne-data/costs_2030-modifications.csv | 10 +++++----- ariadne-data/costs_2035-modifications.csv | 10 +++++----- ariadne-data/costs_2040-modifications.csv | 10 +++++----- ariadne-data/costs_2045-modifications.csv | 10 +++++----- ariadne-data/costs_2050-modifications.csv | 10 +++++----- workflow/Snakefile | 1 + workflow/scripts/modify_prenetwork.py | 11 +++++++++++ 10 files changed, 56 insertions(+), 44 deletions(-) diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv index f59927e03..fbf2867d4 100644 --- a/ariadne-data/costs_2019-modifications.csv +++ b/ariadne-data/costs_2019-modifications.csv @@ -3,10 +3,10 @@ gas,fuel,16.0,EUR/MWh_th,Ariadne, oil,fuel,33.2457,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.7391,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump, investment, 3.319, EUR2020/kw_th, Ariadne, -decentral ground-sourced heat pump, investment, 5.340, EUR2020/kw_th, Ariadne, -electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, -HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, -HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, -HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, -HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, +decentral air-sourced heat pump,investment,3.319,EUR2020/kw_th,Ariadne, +decentral ground-sourced heat pump,investment,5.340,EUR2020/kw_th,Ariadne, +electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, +HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, +HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, +HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, +HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index da49097b1..a4a0a3ce2 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -3,10 +3,10 @@ gas,fuel,11.2,EUR/MWh_th,Ariadne, oil,fuel,22.1982,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,5.7048,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump, investment, 3.319, EUR2020/kw_th, Ariadne, -decentral ground-sourced heat pump, investment, 5.340, EUR2020/kw_th, Ariadne, -electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, -HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, -HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, -HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, -HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, +decentral air-sourced heat pump,investment,3.319,EUR2020/kw_th,Ariadne, +decentral ground-sourced heat pump,investment,5.340,EUR2020/kw_th,Ariadne, +electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, +HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, +HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, +HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, +HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index eea34760c..2c524f162 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,40,EUR/MWh_th,Ariadne, oil,fuel,32.9876,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,10.6694,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1267,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, -HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, -HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, -HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, -HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, +electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, +HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, +HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, +HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, +HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index 26eef0d11..486f24e1a 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.3,EUR/MWh_th,Ariadne, oil,fuel,38.821,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2056,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1083,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, -HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, -HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, -HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, -HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, +electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, +HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, +HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, +HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, +HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index e846bf4db..4563c26e5 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.4,EUR/MWh_th,Ariadne, oil,fuel,38.5629,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2601,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,900,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, -HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, -HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, -HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, -HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, \ No newline at end of file +electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, +HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, +HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, +HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, +HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, \ No newline at end of file diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index 38ef139bd..88bdf5425 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.6,EUR/MWh_th,Ariadne, oil,fuel,38.3564,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3036,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,717,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, -HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, -HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, -HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, -HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, \ No newline at end of file +electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, +HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, +HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, +HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, +HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, \ No newline at end of file diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index 393969870..fd8e7258b 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.8,EUR/MWh_th,Ariadne, oil,fuel,38.0983,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3472,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,533,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, -HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, -HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, -HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, -HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, +electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, +HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, +HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, +HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, +HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index 8989e7462..e6148e0f4 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.9,EUR/MWh_th,Ariadne, oil,fuel,37.8918,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.4016,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,350,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid, investment, 3000, EUR2020/kW, Ariadne, -HVAC overhead, investment, 736, EUR2020/MW/km, Ariadne, -HVDC inverter pair, investment, 600000, EUR2020/MW, Ariadne, -HVDC overhead, investment, 1000, EUR2020/MW/km, Ariadne, -HVDC submarine, investment, 3250, EUR2020/MW/km, Ariadne, +electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, +HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, +HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, +HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, +HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, diff --git a/workflow/Snakefile b/workflow/Snakefile index 5ea757984..818c5fac4 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -138,6 +138,7 @@ rule modify_prenetwork: params: enable_kernnetz=config["wasserstoff_kernnetz"]["enable"], costs=config["costs"], + max_hours=config["electricity"]["max_hours"], input: network=RESULTS + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index cca268182..01097499b 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -16,6 +16,7 @@ prepare_costs, lossy_bidirectional_links, ) +from add_electricity import load_costs, update_transmission_costs def first_technology_occurrence(n): @@ -346,4 +347,14 @@ def unravel_oilbus(n): wkn = pd.read_csv(fn, index_col=0) add_wasserstoff_kernnetz(n, wkn, costs) n.links.reversed = n.links.reversed.astype(float) + + costs_loaded = load_costs( + snakemake.input.costs, + snakemake.params.costs, + snakemake.params.max_hours, + nyears, + ) + + update_transmission_costs(n, costs_loaded) + n.export_to_netcdf(snakemake.output.network) From e05626701b798457b1415a5e043e3efe3ec8194b Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 21 Mar 2024 15:12:01 +0100 Subject: [PATCH 201/669] Revert "remove additional fossil oil import generator again" This reverts commit 152271948ea1ce1c1e783c605d62f38df65e05bd. --- config/config.yaml | 1 + workflow/scripts/modify_prenetwork.py | 9 +++++++++ 2 files changed, 10 insertions(+) diff --git a/config/config.yaml b/config/config.yaml index f1176e44a..b0f9e2506 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -272,6 +272,7 @@ plotting: tech_colors: load: "#111100" H2 pipeline (Kernnetz): '#6b3161' + fossil oil import: '#c9c9c9' renewable oil: '#c9c9c9' countries: - all diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 00a9e3401..cca268182 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -244,6 +244,15 @@ def unravel_oilbus(n): n.add("Bus", "DE oil", carrier="oil") n.add("Bus", "DE renewable oil", carrier="renewable oil") n.add("Bus", "EU renewable oil", carrier="renewable oil") + + # add one generator for DE oil + n.add("Generator", + name="DE oil", + bus="DE oil", + carrier="fossil oil import", + p_nom_extendable=True, + marginal_cost=n.generators.loc["EU oil"].marginal_cost, + ) # change links from EU oil to DE oil german_oil_links = n.links[(n.links.bus0=="EU oil") & (n.links.index.str.contains("DE"))].index From 041a3c2b2dfb600ef44fc96dad71808fc29ec291 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 21 Mar 2024 15:13:43 +0100 Subject: [PATCH 202/669] follow EU naming convention for oil generator --- config/config.yaml | 1 - workflow/scripts/modify_prenetwork.py | 2 +- 2 files changed, 1 insertion(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index b0f9e2506..f1176e44a 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -272,7 +272,6 @@ plotting: tech_colors: load: "#111100" H2 pipeline (Kernnetz): '#6b3161' - fossil oil import: '#c9c9c9' renewable oil: '#c9c9c9' countries: - all diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index cca268182..403b3f7da 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -249,7 +249,7 @@ def unravel_oilbus(n): n.add("Generator", name="DE oil", bus="DE oil", - carrier="fossil oil import", + carrier="oil", p_nom_extendable=True, marginal_cost=n.generators.loc["EU oil"].marginal_cost, ) From d516853363f5f1599505535c9e31695d2e662c78 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 21 Mar 2024 15:33:56 +0100 Subject: [PATCH 203/669] bug fixing the cost_xxxx.csv to modified-cost_xxxx.csv --- workflow/Snakefile | 3 ++- workflow/scripts/modify_prenetwork.py | 35 +++++++++++++++++++++++++-- 2 files changed, 35 insertions(+), 3 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 818c5fac4..471734c3f 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -139,11 +139,12 @@ rule modify_prenetwork: enable_kernnetz=config["wasserstoff_kernnetz"]["enable"], costs=config["costs"], max_hours=config["electricity"]["max_hours"], + length_factor=config["lines"]["length_factor"], input: network=RESULTS + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", wkn="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", - costs=resources("costs_{planning_horizons}.csv"), + costs=resources("modified-costs_{planning_horizons}.csv"), output: network=RESULTS + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 01097499b..ea6f6df51 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -16,7 +16,7 @@ prepare_costs, lossy_bidirectional_links, ) -from add_electricity import load_costs, update_transmission_costs +from add_electricity import load_costs def first_technology_occurrence(n): @@ -296,6 +296,35 @@ def unravel_oilbus(n): capital_cost=0.02, ) +def update_transmission_costs(n, costs, length_factor=1.0): + n.lines["capital_cost"] = ( + n.lines["length"] * length_factor * costs.at["HVAC overhead", "capital_cost"] + ) + + if n.links.empty: + return + # get all DC links that are not the reverse links + dc_b = (n.links.carrier == "DC") & ~(n.links.index.str.contains("reverse")) + + # If there are no dc links, then the 'underwater_fraction' column + # may be missing. Therefore we have to return here. + if n.links.loc[dc_b].empty: + return + + costs = ( + n.links.loc[dc_b, "length"] + * length_factor + * ( + (1.0 - n.links.loc[dc_b, "underwater_fraction"]) + * costs.at["HVDC overhead", "capital_cost"] + + n.links.loc[dc_b, "underwater_fraction"] + * costs.at["HVDC submarine", "capital_cost"] + ) + + costs.at["HVDC inverter pair", "capital_cost"] + ) + n.links.loc[dc_b, "capital_cost"] = costs + + if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -313,6 +342,7 @@ def unravel_oilbus(n): ll="v1.2", sector_opts="365H-T-H-B-I-A-solar+p3-linemaxext15", planning_horizons="2040", + run="KN2045_H2_v4" ) logger.info("Adding Ariadne-specific functionality") @@ -355,6 +385,7 @@ def unravel_oilbus(n): nyears, ) - update_transmission_costs(n, costs_loaded) + # change to NEP21 costs + update_transmission_costs(n, costs_loaded, snakemake.params.length_factor) n.export_to_netcdf(snakemake.output.network) From 98e54665abfe564f2dbf9f9d1d8bcd599757e5d1 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 21 Mar 2024 16:59:32 +0100 Subject: [PATCH 204/669] adjust to split oil bus and new DB --- workflow/Snakefile | 22 +++--- workflow/scripts/export_ariadne_variables.py | 82 ++++++++++++++------ workflow/scripts/plot_ariadne_variables.py | 14 +--- 3 files changed, 74 insertions(+), 44 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 76730393c..5f3b55bf8 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -258,7 +258,7 @@ rule export_ariadne_variables: energy_totals=resources("energy_totals.csv"), output: - ariadne_variables=RESULTS + "ariadne/ariadne_variables.csv" + exported_variables=RESULTS + "ariadne/exported_variables.csv" log: RESULTS + "logs/export_ariadne_variables.log" script: @@ -266,9 +266,11 @@ rule export_ariadne_variables: rule plot_ariadne_variables: - input: + params: iiasa_scenario=config["iiasa_database"]["reference_scenario"], - ariadne_variables=RESULTS + "ariadne/ariadne_variables.csv" + input: + exported_variables=RESULTS + "ariadne/exported_variables.csv", + ariadne_database=resources("ariadne_database.csv"), output: primary_energy=RESULTS + "ariadne/primary_energy.png", primary_energy_detailed=RESULTS + "ariadne/primary_energy_detailed.png", @@ -281,13 +283,13 @@ rule plot_ariadne_variables: energy_demand_emissions=RESULTS + "ariadne/energy_demand_emissions.png", energy_supply_emissions=RESULTS + "ariadne/energy_supply_emissions.png", co2_emissions=RESULTS + "ariadne/co2_emissions.png", - primary_energy_price = RESULTS + "ariadne/prices/primary_energy_price.png", - secondary_energy_price = RESULTS + "ariadne/prices/secondary_energy_price.png", - final_energy_residential_price = RESULTS + "ariadne/prices/final_energy_residential_price.png", - final_energy_industry_price = RESULTS + "ariadne/prices/final_energy_industry_price.png", - final_energy_transportation_price = RESULTS + "ariadne/prices/final_energy_transportation_price.png", - final_energy_residential_commercial_price = RESULTS + "ariadne/prices/final_energy_residential_commercial_price.png", - all_prices = RESULTS + "ariadne/prices/all_prices.png", + primary_energy_price = RESULTS + "ariadne/primary_energy_price.png", + secondary_energy_price = RESULTS + "ariadne/secondary_energy_price.png", + final_energy_residential_price = RESULTS + "ariadne/final_energy_residential_price.png", + final_energy_industry_price = RESULTS + "ariadne/final_energy_industry_price.png", + final_energy_transportation_price = RESULTS + "ariadne/final_energy_transportation_price.png", + final_energy_residential_commercial_price = RESULTS + "ariadne/final_energy_residential_commercial_price.png", + all_prices = RESULTS + "ariadne/all_prices.png", script: "scripts/plot_ariadne_variables.py" diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index bf7069ed6..a394388f4 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -561,11 +561,24 @@ def get_primary_energy(n, region): var = pd.Series() - EU_oil_supply = n.statistics.supply(bus_carrier="oil") + if "DE" in region: + total_oil_supply = n.statistics.supply(bus_carrier="oil", **kwargs).groupby("name").sum().get([ + "DE oil", + "DE renewable oil -> DE oil", + "EU renewable oil -> DE oil", + ]) + + else: + total_oil_supply = n.statistics.supply(bus_carrier="oil", **kwargs).groupby("name").sum().get([ + "EU oil", + "DE renewable oil -> EU oil", + "EU renewable oil -> EU oil", + ]) + oil_fossil_fraction = ( - EU_oil_supply.get("Generator").get("oil") - / EU_oil_supply.sum() - ) # TODO Would be desirable to resolve this regionally + total_oil_supply[~total_oil_supply.index.str.contains("renewable")].sum() + / total_oil_supply.sum() + ) oil_usage = n.statistics.withdrawal( bus_carrier="oil", @@ -583,7 +596,7 @@ def get_primary_energy(n, region): var["Primary Energy|Oil|Electricity"] = \ - oil_usage.get("oil") + oil_usage.get("oil", 0) # This will get the oil store as well, but it should be 0 var["Primary Energy|Oil"] = ( @@ -601,8 +614,6 @@ def get_primary_energy(n, region): ) assert isclose(var["Primary Energy|Oil"], oil_usage.sum()) - # !! TODO since gas is now regionally resolved we - # compute the reginoal gas supply regional_gas_supply = n.statistics.supply( bus_carrier="gas", **kwargs, @@ -1075,12 +1086,24 @@ def get_secondary_energy(n, region): ) ].sum() ) + if "DE" in region: + total_oil_supply = n.statistics.supply(bus_carrier="oil", **kwargs).groupby("name").sum().get([ + "DE oil", + "DE renewable oil -> DE oil", + "EU renewable oil -> DE oil", + ]) + + else: + total_oil_supply = n.statistics.supply(bus_carrier="oil", **kwargs).groupby("name").sum().get([ + "EU oil", + "DE renewable oil -> EU oil", + "EU renewable oil -> EU oil", + ]) - EU_oil_supply = n.statistics.supply(bus_carrier="oil") oil_fossil_fraction = ( - EU_oil_supply.get("Generator").get("oil") - / EU_oil_supply.sum() - ) # TODO Would be desirable to resolve this regionally + total_oil_supply[~total_oil_supply.index.str.contains("renewable")].sum() + / total_oil_supply.sum() + ) oil_fuel_usage = n.statistics.withdrawal( bus_carrier="oil", @@ -1089,7 +1112,7 @@ def get_secondary_energy(n, region): like=region ).groupby( "carrier" - ).sum().multiply(oil_fossil_fraction).multiply(MWh2PJ).reindex( + ).sum().multiply(MWh2PJ).reindex( [ "agriculture machinery oil", "kerosene for aviation", @@ -1361,11 +1384,24 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): + energy_totals["total international navigation"] ) - EU_oil_supply = n.statistics.supply(bus_carrier="oil") + if "DE" in region: + total_oil_supply = n.statistics.supply(bus_carrier="oil", **kwargs).groupby("name").sum().get([ + "DE oil", + "DE renewable oil -> DE oil", + "EU renewable oil -> DE oil", + ]) + + else: + total_oil_supply = n.statistics.supply(bus_carrier="oil", **kwargs).groupby("name").sum().get([ + "EU oil", + "DE renewable oil -> EU oil", + "EU renewable oil -> EU oil", + ]) + oil_fossil_fraction = ( - EU_oil_supply.get("Generator").get("oil") - / EU_oil_supply.sum() - ) + total_oil_supply[~total_oil_supply.index.str.contains("renewable")].sum() + / total_oil_supply.sum() + ) var["Final Energy|Transportation|Liquids"] = ( sum_load(n, "land transport oil", region) @@ -1431,13 +1467,13 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): + var["Final Energy|Agriculture|Liquids"] ) - assert isclose( - var["Final Energy|Agriculture"], - energy_totals.get("total agriculture") - ) + # assert isclose( + # var["Final Energy|Agriculture"], + # energy_totals.get("total agriculture") + # ) # It's nice to do these double checks, but it's less # straightforward for the other categories - + # !!! TODO this assert is temporarily disbaled because of https://github.com/PyPSA/pypsa-eur/issues/985 # var["Final Energy"] = \ # var["Final Energy incl Non-Energy Use incl Bunkers"] = \ @@ -2383,7 +2419,7 @@ def get_data( ll="v1.2", sector_opts="None", planning_horizons="2050", - run="KN2045_Bal_v4" + run="KN2045_H2_v4" ) @@ -2428,7 +2464,7 @@ def get_data( ) df.to_csv( - snakemake.output.ariadne_variables, + snakemake.output.exported_variables, index=False ) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index d33c1d218..41307377b 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -115,23 +115,14 @@ def within_plot(df, df2, ll="v1.2", sector_opts="None", planning_horizons="2050", - run="240219-test/normal" + run="KN2045_H2_v4" ) - df = pd.read_csv( - snakemake.input.ariadne_variables, + snakemake.input.exported_variables, index_col=["Model", "Scenario", "Region", "Variable", "Unit"] ).groupby(["Variable","Unit"]).sum() - df.columns = pd.to_numeric(df.columns) - - # Set USERNAME and PASSWORD for the Ariadne DB - pyam.iiasa.set_config( - os.environ["IIASA_USERNAME"], - os.environ["IIASA_PASSWORD"], - ) - leitmodell="REMIND-EU v1.1" dfremind = pd.read_csv( @@ -240,6 +231,7 @@ def within_plot(df, df2, savepath=snakemake.output.energy_supply_emissions, select_regex="Emissions\|CO2\|Energy\|Supply\|[^|]*$", stacked=False, + drop_regex="^(?!.*(and)).+" ) From ffeb6821d0109cf6d1344a8b7e97084cb2650589 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 22 Mar 2024 12:29:26 +0100 Subject: [PATCH 205/669] avoid planning_horizons in grouping_years --- config/config.yaml | 2 ++ workflow/scripts/export_ariadne_variables.py | 2 +- 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index f1176e44a..315d18cec 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -32,6 +32,8 @@ iiasa_database: reference_scenario: 8Gt_Bal_v3 region: Deutschland +existing_capacities: + grouping_years_power: [1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019, 2024, 2029] # avoid planning_horizons to distinguish existing from optimized capacities # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight foresight: myopic diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index a394388f4..11ab34f83 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2355,7 +2355,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, region): var = pd.concat([ get_capacities(n, region), get_capacity_additions_simple(n,region), - get_installed_capacities(n,region), + #get_installed_capacities(n,region), #get_capacity_additions(n, region), #get_capacity_additions_nstat(n, region), get_primary_energy(n, region), From b76ab8893540ca9f56818d9283201f2c4f6344b5 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 22 Mar 2024 17:42:03 +0100 Subject: [PATCH 206/669] Revert "Merge remote-tracking branch 'origin/cost_data_2019' into ariadne-export" This reverts commit b76565cb4c4f3e8914acef1a93315ba82c110a20, reversing changes made to dc957a3e14fce1ce8bb177df96e8bf33879c4fd1. --- ariadne-data/costs_2019-modifications.csv | 12 ------- ariadne-data/costs_2020-modifications.csv | 7 ---- ariadne-data/costs_2025-modifications.csv | 5 --- ariadne-data/costs_2030-modifications.csv | 5 --- ariadne-data/costs_2035-modifications.csv | 5 --- ariadne-data/costs_2040-modifications.csv | 5 --- ariadne-data/costs_2045-modifications.csv | 5 --- ariadne-data/costs_2050-modifications.csv | 5 --- workflow/Snakefile | 9 ++--- workflow/scripts/modify_prenetwork.py | 42 ----------------------- 10 files changed, 2 insertions(+), 98 deletions(-) delete mode 100644 ariadne-data/costs_2019-modifications.csv diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv deleted file mode 100644 index fbf2867d4..000000000 --- a/ariadne-data/costs_2019-modifications.csv +++ /dev/null @@ -1,12 +0,0 @@ -technology,parameter,value,unit,source,further description -gas,fuel,16.0,EUR/MWh_th,Ariadne, -oil,fuel,33.2457,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" -coal,fuel,6.7391,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" -electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,3.319,EUR2020/kw_th,Ariadne, -decentral ground-sourced heat pump,investment,5.340,EUR2020/kw_th,Ariadne, -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index a4a0a3ce2..4b844a51a 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -3,10 +3,3 @@ gas,fuel,11.2,EUR/MWh_th,Ariadne, oil,fuel,22.1982,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,5.7048,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,3.319,EUR2020/kw_th,Ariadne, -decentral ground-sourced heat pump,investment,5.340,EUR2020/kw_th,Ariadne, -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index 2c524f162..64e656be7 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -3,8 +3,3 @@ gas,fuel,40,EUR/MWh_th,Ariadne, oil,fuel,32.9876,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,10.6694,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1267,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index 486f24e1a..3a9f92245 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -3,8 +3,3 @@ gas,fuel,22.3,EUR/MWh_th,Ariadne, oil,fuel,38.821,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2056,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1083,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index 4563c26e5..c21539b55 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -3,8 +3,3 @@ gas,fuel,22.4,EUR/MWh_th,Ariadne, oil,fuel,38.5629,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2601,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,900,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, \ No newline at end of file diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index 88bdf5425..c1ce3ee31 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -3,8 +3,3 @@ gas,fuel,22.6,EUR/MWh_th,Ariadne, oil,fuel,38.3564,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3036,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,717,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, \ No newline at end of file diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index fd8e7258b..877c027b0 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -3,8 +3,3 @@ gas,fuel,22.8,EUR/MWh_th,Ariadne, oil,fuel,38.0983,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3472,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,533,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index e6148e0f4..9a57a1342 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -3,8 +3,3 @@ gas,fuel,22.9,EUR/MWh_th,Ariadne, oil,fuel,37.8918,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.4016,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,350,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, diff --git a/workflow/Snakefile b/workflow/Snakefile index f93103cae..5f3b55bf8 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -122,10 +122,7 @@ use rule prepare_sector_network from pypsaeur with: rule modify_cost_data: input: costs=resources("costs_{planning_horizons}.csv"), - modifications=lambda w: ( - "ariadne-data/costs_2019-modifications.csv" - if w.planning_horizons == "2020" and config["energy"]["energy_totals_year"] == 2019 - else "ariadne-data/costs_{planning_horizons}-modifications.csv") + modifications="ariadne-data/costs_{planning_horizons}-modifications.csv", output: resources("modified-costs_{planning_horizons}.csv"), resources: @@ -138,13 +135,11 @@ rule modify_prenetwork: params: enable_kernnetz=config["wasserstoff_kernnetz"]["enable"], costs=config["costs"], - max_hours=config["electricity"]["max_hours"], - length_factor=config["lines"]["length_factor"], input: network=RESULTS + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", wkn="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", - costs=resources("modified-costs_{planning_horizons}.csv"), + costs=resources("costs_{planning_horizons}.csv"), output: network=RESULTS + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index f4780fd93..403b3f7da 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -16,7 +16,6 @@ prepare_costs, lossy_bidirectional_links, ) -from add_electricity import load_costs def first_technology_occurrence(n): @@ -296,35 +295,6 @@ def unravel_oilbus(n): capital_cost=0.02, ) -def update_transmission_costs(n, costs, length_factor=1.0): - n.lines["capital_cost"] = ( - n.lines["length"] * length_factor * costs.at["HVAC overhead", "capital_cost"] - ) - - if n.links.empty: - return - # get all DC links that are not the reverse links - dc_b = (n.links.carrier == "DC") & ~(n.links.index.str.contains("reverse")) - - # If there are no dc links, then the 'underwater_fraction' column - # may be missing. Therefore we have to return here. - if n.links.loc[dc_b].empty: - return - - costs = ( - n.links.loc[dc_b, "length"] - * length_factor - * ( - (1.0 - n.links.loc[dc_b, "underwater_fraction"]) - * costs.at["HVDC overhead", "capital_cost"] - + n.links.loc[dc_b, "underwater_fraction"] - * costs.at["HVDC submarine", "capital_cost"] - ) - + costs.at["HVDC inverter pair", "capital_cost"] - ) - n.links.loc[dc_b, "capital_cost"] = costs - - if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -342,7 +312,6 @@ def update_transmission_costs(n, costs, length_factor=1.0): ll="v1.2", sector_opts="365H-T-H-B-I-A-solar+p3-linemaxext15", planning_horizons="2040", - run="KN2045_H2_v4" ) logger.info("Adding Ariadne-specific functionality") @@ -377,15 +346,4 @@ def update_transmission_costs(n, costs, length_factor=1.0): wkn = pd.read_csv(fn, index_col=0) add_wasserstoff_kernnetz(n, wkn, costs) n.links.reversed = n.links.reversed.astype(float) - - costs_loaded = load_costs( - snakemake.input.costs, - snakemake.params.costs, - snakemake.params.max_hours, - nyears, - ) - - # change to NEP21 costs - update_transmission_costs(n, costs_loaded, snakemake.params.length_factor) - n.export_to_netcdf(snakemake.output.network) From a3f1511fedd8b73036a7d005ccd1b6e00776b67e Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 22 Mar 2024 18:04:02 +0100 Subject: [PATCH 207/669] cleanup for export to DB --- workflow/scripts/export_ariadne_variables.py | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 11ab34f83..1eac3ebc5 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2463,6 +2463,15 @@ def get_data( yearly_dfs ) + df["Region"] = df["Region"].str.replace("DE", "Deutschland") + + print( + "Dropping variables which are not in the template:", + *df.loc[df["Unit"] == "NA"]["Variable"], + sep="\n" + ) + df.drop(df.loc[df["Unit"] == "NA"].index, inplace=True) + df.to_csv( snakemake.output.exported_variables, index=False From 4d36b249932b5dd51d4ea59be2a1667435cf89a3 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Mon, 25 Mar 2024 17:01:26 +0100 Subject: [PATCH 208/669] cost decrease of heat pumps and bug fixing --- ariadne-data/costs_2019-modifications.csv | 14 +++++++------- ariadne-data/costs_2020-modifications.csv | 14 +++++++------- ariadne-data/costs_2025-modifications.csv | 12 +++++++----- ariadne-data/costs_2030-modifications.csv | 12 +++++++----- ariadne-data/costs_2035-modifications.csv | 12 +++++++----- ariadne-data/costs_2040-modifications.csv | 12 +++++++----- ariadne-data/costs_2045-modifications.csv | 12 +++++++----- ariadne-data/costs_2050-modifications.csv | 12 +++++++----- 8 files changed, 56 insertions(+), 44 deletions(-) diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv index fbf2867d4..5279cf015 100644 --- a/ariadne-data/costs_2019-modifications.csv +++ b/ariadne-data/costs_2019-modifications.csv @@ -3,10 +3,10 @@ gas,fuel,16.0,EUR/MWh_th,Ariadne, oil,fuel,33.2457,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.7391,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,3.319,EUR2020/kw_th,Ariadne, -decentral ground-sourced heat pump,investment,5.340,EUR2020/kw_th,Ariadne, -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, +decentral air-sourced heat pump,investment,3319,EUR2020/kW_th,Ariadne database +decentral ground-sourced heat pump,investment,5340,EUR2020/kW_th,Ariadne database +electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 +HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 +HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 \ No newline at end of file diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index a4a0a3ce2..104b0b84d 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -3,10 +3,10 @@ gas,fuel,11.2,EUR/MWh_th,Ariadne, oil,fuel,22.1982,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,5.7048,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,3.319,EUR2020/kw_th,Ariadne, -decentral ground-sourced heat pump,investment,5.340,EUR2020/kw_th,Ariadne, -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, +decentral air-sourced heat pump,investment,3319,EUR2020/kW_th,Ariadne database +decentral ground-sourced heat pump,investment,5340,EUR2020/kW_th,Ariadne database +electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 +HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 +HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 \ No newline at end of file diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index 2c524f162..bc524514f 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -3,8 +3,10 @@ gas,fuel,40,EUR/MWh_th,Ariadne, oil,fuel,32.9876,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,10.6694,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1267,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, +decentral air-sourced heat pump,investment,3160,EUR2020/kW_th,Ariadne database +decentral ground-sourced heat pump,investment,5162,EUR2020/kW_th,Ariadne database +electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 +HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 +HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 \ No newline at end of file diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index 486f24e1a..6badc0026 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -3,8 +3,10 @@ gas,fuel,22.3,EUR/MWh_th,Ariadne, oil,fuel,38.821,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2056,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1083,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, +decentral air-sourced heat pump,investment,3001,EUR2020/kW_th,Ariadne database +decentral ground-sourced heat pump,investment,4984,EUR2020/kW_th,Ariadne database +electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 +HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 +HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index 4563c26e5..076b36eb4 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -3,8 +3,10 @@ gas,fuel,22.4,EUR/MWh_th,Ariadne, oil,fuel,38.5629,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2601,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,900,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, \ No newline at end of file +decentral air-sourced heat pump,investment,2922,EUR2020/kW_th,Ariadne database +decentral ground-sourced heat pump,investment,4806,EUR2020/kW_th,Ariadne database +electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 +HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 +HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 \ No newline at end of file diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index 88bdf5425..79d374d54 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -3,8 +3,10 @@ gas,fuel,22.6,EUR/MWh_th,Ariadne, oil,fuel,38.3564,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3036,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,717,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, \ No newline at end of file +decentral air-sourced heat pump,investment,2842,EUR2020/kW_th,Ariadne database +decentral ground-sourced heat pump,investment,4628,EUR2020/kW_th,Ariadne database +electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 +HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 +HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 \ No newline at end of file diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index fd8e7258b..eb3f7d5dc 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -3,8 +3,10 @@ gas,fuel,22.8,EUR/MWh_th,Ariadne, oil,fuel,38.0983,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3472,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,533,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, +decentral air-sourced heat pump,investment,2763,EUR2020/kW_th,Ariadne database +decentral ground-sourced heat pump,investment,4450,EUR2020/kW_th,Ariadne database +electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 +HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 +HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index e6148e0f4..48605b34b 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -3,8 +3,10 @@ gas,fuel,22.9,EUR/MWh_th,Ariadne, oil,fuel,37.8918,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.4016,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,350,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -electricity distribution grid,investment,3000,EUR2020/kW,Ariadne, -HVAC overhead,investment,736,EUR2020/MW/km,Ariadne, -HVDC inverter pair,investment,600000,EUR2020/MW,Ariadne, -HVDC overhead,investment,1000,EUR2020/MW/km,Ariadne, -HVDC submarine,investment,3250,EUR2020/MW/km,Ariadne, +decentral air-sourced heat pump,investment,2683,EUR2020/kW_th,Ariadne database +decentral ground-sourced heat pump,investment,4272,EUR2020/kW_th,Ariadne database +electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 +HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 +HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 From a5a658fcb872b28efd96b20d0164f3ce5ac4b171 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 25 Mar 2024 17:32:12 +0100 Subject: [PATCH 209/669] comply with ariadne db upload template --- workflow/Snakefile | 4 +-- workflow/scripts/export_ariadne_variables.py | 31 ++++++++++++-------- 2 files changed, 20 insertions(+), 15 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 5f3b55bf8..bb6d7d501 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -258,7 +258,7 @@ rule export_ariadne_variables: energy_totals=resources("energy_totals.csv"), output: - exported_variables=RESULTS + "ariadne/exported_variables.csv" + exported_variables=RESULTS + "ariadne/exported_variables.xlsx" log: RESULTS + "logs/export_ariadne_variables.log" script: @@ -269,7 +269,7 @@ rule plot_ariadne_variables: params: iiasa_scenario=config["iiasa_database"]["reference_scenario"], input: - exported_variables=RESULTS + "ariadne/exported_variables.csv", + exported_variables=RESULTS + "ariadne/exported_variables.xlsx", ariadne_database=resources("ariadne_database.csv"), output: primary_energy=RESULTS + "ariadne/primary_energy.png", diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 1eac3ebc5..9bd0af1d4 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2373,7 +2373,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, region): # uses the global variables model, scenario and var2unit. For now. def get_data( n, industry_demand, energy_totals, region, - version="0.9.0", scenario="test" + version="0.10", scenario="test" ): var = get_ariadne_var(n, industry_demand, energy_totals, region) @@ -2424,12 +2424,9 @@ def get_data( config = snakemake.config - var2unit = pd.read_excel( - snakemake.input.template, - sheet_name="variable_definitions", - index_col="Variable", - )["Unit"] - + ariadne_template = pd.read_excel( + snakemake.input.template, sheet_name=None) + var2unit = ariadne_template["variable_definitions"].set_index("Variable")["Unit"] industry_demands = [ pd.read_csv( in_dem, @@ -2463,8 +2460,8 @@ def get_data( yearly_dfs ) - df["Region"] = df["Region"].str.replace("DE", "Deutschland") - + df["Region"] = df["Region"].str.replace("DE", "DEU") + df["Model"] = "PyPSA-Eur v0.10" print( "Dropping variables which are not in the template:", *df.loc[df["Unit"] == "NA"]["Variable"], @@ -2472,10 +2469,18 @@ def get_data( ) df.drop(df.loc[df["Unit"] == "NA"].index, inplace=True) - df.to_csv( - snakemake.output.exported_variables, - index=False - ) + meta = pd.Series({ + 'Model': "PyPSA-Eur v0.10", + 'Scenario': snakemake.config["iiasa_database"]["reference_scenario"], + 'Quality Assessment': "preliminary", + 'Internal usage within Kopernikus AG Szenarien': "no", + 'Release for publication': "no", + }) + + with pd.ExcelWriter(snakemake.output.exported_variables) as writer: + df.to_excel(writer, sheet_name="data", index=False) + meta.to_frame().T.to_excel(writer, sheet_name="meta", index=False) + # For debugging n = networks[0] From 90e90cd5110a53c503a207c0e87f37be75c6b21f Mon Sep 17 00:00:00 2001 From: toniseibold Date: Mon, 25 Mar 2024 17:35:40 +0100 Subject: [PATCH 210/669] increasing wind capacity per sqkm to avoid infeasabilities --- config/config.yaml | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index b0f9e2506..098a44d7e 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -63,7 +63,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: false # set to false once initial data is retrieved + retrieve: true # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: @@ -178,9 +178,9 @@ first_technology_occurrence: renewable: offwind-ac: - capacity_per_sqkm: 8 + capacity_per_sqkm: 10 offwind-dc: - capacity_per_sqkm: 8 + capacity_per_sqkm: 10 costs: version: v0.8.1 From c00509a8a7ae70b2ef6e981ce6a8a3e4a0d7309c Mon Sep 17 00:00:00 2001 From: toniseibold Date: Mon, 25 Mar 2024 19:39:05 +0100 Subject: [PATCH 211/669] updating source of heat pump costs --- ariadne-data/costs_2019-modifications.csv | 4 ++-- ariadne-data/costs_2020-modifications.csv | 4 ++-- ariadne-data/costs_2025-modifications.csv | 4 ++-- ariadne-data/costs_2030-modifications.csv | 4 ++-- ariadne-data/costs_2035-modifications.csv | 4 ++-- ariadne-data/costs_2040-modifications.csv | 4 ++-- ariadne-data/costs_2045-modifications.csv | 4 ++-- ariadne-data/costs_2050-modifications.csv | 4 ++-- config/config.yaml | 2 +- 9 files changed, 17 insertions(+), 17 deletions(-) diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv index 5279cf015..cc1a4ae0f 100644 --- a/ariadne-data/costs_2019-modifications.csv +++ b/ariadne-data/costs_2019-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,16.0,EUR/MWh_th,Ariadne, oil,fuel,33.2457,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.7391,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,3319,EUR2020/kW_th,Ariadne database -decentral ground-sourced heat pump,investment,5340,EUR2020/kW_th,Ariadne database +decentral air-sourced heat pump,investment,3319,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf +decentral ground-sourced heat pump,investment,5340,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index 104b0b84d..fc550d052 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,11.2,EUR/MWh_th,Ariadne, oil,fuel,22.1982,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,5.7048,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,3319,EUR2020/kW_th,Ariadne database -decentral ground-sourced heat pump,investment,5340,EUR2020/kW_th,Ariadne database +decentral air-sourced heat pump,investment,3319,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf +decentral ground-sourced heat pump,investment,5340,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index bc524514f..3979fb62f 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,40,EUR/MWh_th,Ariadne, oil,fuel,32.9876,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,10.6694,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1267,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,3160,EUR2020/kW_th,Ariadne database -decentral ground-sourced heat pump,investment,5162,EUR2020/kW_th,Ariadne database +decentral air-sourced heat pump,investment,3160,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,5162,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index 6badc0026..f856ea1a2 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.3,EUR/MWh_th,Ariadne, oil,fuel,38.821,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2056,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1083,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,3001,EUR2020/kW_th,Ariadne database -decentral ground-sourced heat pump,investment,4984,EUR2020/kW_th,Ariadne database +decentral air-sourced heat pump,investment,3001,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,4984,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index 076b36eb4..0dda13290 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.4,EUR/MWh_th,Ariadne, oil,fuel,38.5629,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2601,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,900,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,2922,EUR2020/kW_th,Ariadne database -decentral ground-sourced heat pump,investment,4806,EUR2020/kW_th,Ariadne database +decentral air-sourced heat pump,investment,2922,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,4806,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index 79d374d54..74d8b8f3c 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.6,EUR/MWh_th,Ariadne, oil,fuel,38.3564,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3036,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,717,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,2842,EUR2020/kW_th,Ariadne database -decentral ground-sourced heat pump,investment,4628,EUR2020/kW_th,Ariadne database +decentral air-sourced heat pump,investment,2842,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,4628,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index eb3f7d5dc..2ddb7b1d6 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.8,EUR/MWh_th,Ariadne, oil,fuel,38.0983,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3472,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,533,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,2763,EUR2020/kW_th,Ariadne database -decentral ground-sourced heat pump,investment,4450,EUR2020/kW_th,Ariadne database +decentral air-sourced heat pump,investment,2763,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,4450,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index 48605b34b..125911dc3 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.9,EUR/MWh_th,Ariadne, oil,fuel,37.8918,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.4016,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,350,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,2683,EUR2020/kW_th,Ariadne database -decentral ground-sourced heat pump,investment,4272,EUR2020/kW_th,Ariadne database +decentral air-sourced heat pump,investment,2683,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,4272,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/config/config.yaml b/config/config.yaml index 098a44d7e..6276dbd7a 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -63,7 +63,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: true # set to false once initial data is retrieved + retrieve: false # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: From 95f7a2080b2385024e05f1f8171196a47485f23d Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 26 Mar 2024 16:19:44 +0100 Subject: [PATCH 212/669] adapt co2 targets to scenario --- config/scenarios.yaml | 48 +++++++++++++++++++++ workflow/scripts/build_scenarios.py | 67 +++++++++++++++++++++++++++-- 2 files changed, 112 insertions(+), 3 deletions(-) diff --git a/config/scenarios.yaml b/config/scenarios.yaml index d6cd269e3..3b75f5ea4 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -17,6 +17,22 @@ KN2045_Bal_v4: iiasa_database: reference_scenario: 8Gt_Bal_v3 + co2_budget_national: + 2020: + DE: 0.728 + 2025: + DE: 0.571 + 2030: + DE: 0.396 + 2035: + DE: 0.258 + 2040: + DE: 0.118 + 2045: + DE: -0.028 + 2050: + DE: -0.024 + # boundary condition of maximum volumes limits_volume_max: # constrain electricity import in TWh @@ -119,6 +135,22 @@ KN2045_Elec_v4: iiasa_database: reference_scenario: 8Gt_Elec_v3 + co2_budget_national: + 2020: + DE: 0.728 + 2025: + DE: 0.571 + 2030: + DE: 0.396 + 2035: + DE: 0.258 + 2040: + DE: 0.118 + 2045: + DE: -0.028 + 2050: + DE: -0.024 + limits_volume_max: # constrain electricity import in TWh electricity_import: @@ -220,6 +252,22 @@ KN2045_H2_v4: iiasa_database: reference_scenario: 8Gt_H2_v3 + co2_budget_national: + 2020: + DE: 0.728 + 2025: + DE: 0.573 + 2030: + DE: 0.401 + 2035: + DE: 0.265 + 2040: + DE: 0.135 + 2045: + DE: -0.011 + 2050: + DE: -0.017 + limits_volume_max: # constrain electricity import in TWh electricity_import: diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 941b1eee2..9768787d3 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -46,7 +46,64 @@ def get_shares(df, planning_horizons): return transport_share, naval_share -def write_to_scenario_yaml(output, scenarios, transport_share, naval_share): + +def get_ksg_targets(df): + # relative to the DE emissions in 1990 *including bunkers*; also + # account for non-CO2 GHG and allow extra room for international + # bunkers which are excluded from the national targets + + # Baseline emission in DE in 1990 in Mt as understood by the KSG and by PyPSA + baseline_ksg = 1251 + baseline_pypsa = 1052 + + ## GHG targets according to KSG + initial_years_ksg = pd.Series( + index = [2020, 2025, 2030], + data = [813, 643, 438], + ) + + later_years_ksg = pd.Series( + index = [2035, 2040, 2045, 2050], + data = [0.77, 0.88, 1.0, 1.0], + ) + + targets_ksg = pd.concat( + [initial_years_ksg, (1 - later_years_ksg) * baseline_ksg], + ) + + ## Compute nonco2 from Ariadne-Leitmodell (REMIND) + + co2_ksg = ( + df.loc["Emissions|CO2 incl Bunkers","Mt CO2/yr"] + - df.loc["Emissions|CO2|Land-Use Change","Mt CO2-equiv/yr"] + - df.loc["Emissions|CO2|Energy|Demand|Bunkers","Mt CO2/yr"] + ) + + ghg_ksg = ( + df.loc["Emissions|Kyoto Gases","Mt CO2-equiv/yr"] + - df.loc["Emissions|Kyoto Gases|Land-Use Change","Mt CO2-equiv/yr"] + # No Kyoto Gas emissions for Bunkers recorded in Ariadne DB + ) + + nonco2 = ghg_ksg - co2_ksg + + ## PyPSA disregards nonco2 GHG emissions, but includes bunkers + + targets_pypsa = ( + targets_ksg - nonco2 + + df.loc["Emissions|CO2|Energy|Demand|Bunkers","Mt CO2/yr"] + ) + + target_fractions_pypsa = ( + targets_pypsa.loc[targets_ksg.index] / baseline_pypsa + ) + + return target_fractions_pypsa.round(3) + + + +def write_to_scenario_yaml( + output, scenarios, transport_share, naval_share, ksg_target_fractions): # read in yaml file yaml = ruamel.yaml.YAML() file_path = Path(output) @@ -70,11 +127,14 @@ def write_to_scenario_yaml(output, scenarios, transport_share, naval_share): for key in mapping_navigation.keys(): for year in naval_share.columns: config[scenario]["sector"][mapping_navigation[key]][year] = round(naval_share.loc[key, year].item(), 4) + for year, target in ksg_target_fractions.items(): + config[scenario]["co2_budget_national"][year]["DE"] = target # write back to yaml file yaml.dump(config, file_path) + if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -98,7 +158,7 @@ def write_to_scenario_yaml(output, scenarios, transport_share, naval_share): snakemake.params.iiasa_scenario, "Deutschland"] - + ksg_target_fractions = get_ksg_targets(df.loc["REMIND-EU v1.1"]) planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] transport_share, naval_share = get_shares(df, planning_horizons) @@ -107,4 +167,5 @@ def write_to_scenario_yaml(output, scenarios, transport_share, naval_share): filename = snakemake.input.scenario_yaml - write_to_scenario_yaml(filename, scenarios, transport_share, naval_share) \ No newline at end of file + write_to_scenario_yaml( + filename, scenarios, transport_share, naval_share, ksg_target_fractions) \ No newline at end of file From 9b0a8aadb214784e1fa86942b8b1d85a896c138f Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 26 Mar 2024 16:22:15 +0100 Subject: [PATCH 213/669] remove separate co2 limit script since its now part of the workflow --- workflow/scripts/_compute_co2_targets_DE.py | 67 --------------------- 1 file changed, 67 deletions(-) delete mode 100644 workflow/scripts/_compute_co2_targets_DE.py diff --git a/workflow/scripts/_compute_co2_targets_DE.py b/workflow/scripts/_compute_co2_targets_DE.py deleted file mode 100644 index 61ba174a0..000000000 --- a/workflow/scripts/_compute_co2_targets_DE.py +++ /dev/null @@ -1,67 +0,0 @@ -import pyam -import pandas as pd -import os -# Set USERNAME and PASSWORD for the Ariadne DB -pyam.iiasa.set_config( - os.environ["IIASA_USERNAME"], - os.environ["IIASA_PASSWORD"], -) - -model_df= pyam.read_iiasa( - "ariadne_intern", - model="Hybrid", - scenario="8Gt_Bal_v3", -).timeseries() - -df = model_df.loc["Hybrid", "8Gt_Bal_v3", "Deutschland"] - -baseline_ksg = 1251 -baseline_pypsa = 1052 - -## GHG target according to KSG -initial_years_ksg = pd.Series( - index = [2020, 2025, 2030], - data = [813, 643, 438], -) - -later_years_ksg = pd.Series( - index = [2035, 2040, 2045, 2050], - data = [0.77, 0.88, 1.0, 1.0], -) - -targets_ksg = pd.concat( - [initial_years_ksg, (1 - later_years_ksg) * baseline_ksg], -) - -## Compute nonco2 from Ariadne-Hybrid model - -co2_ksg = ( - df.loc["Emissions|CO2 incl Bunkers","Mt CO2/yr"] - - df.loc["Emissions|CO2|Land-Use Change","Mt CO2-equiv/yr"] - - df.loc["Emissions|CO2|Energy|Demand|Bunkers","Mt CO2/yr"] -) - -ghg_ksg = ( - df.loc["Emissions|Kyoto Gases","Mt CO2-equiv/yr"] - - df.loc["Emissions|Kyoto Gases|Land-Use Change","Mt CO2-equiv/yr"] - # No Kyoto Gas emissions for Bunkers recorded in Ariadne DB -) - -nonco2 = ghg_ksg - co2_ksg - -## PyPSA disregards nonco2 GHG emissions, but includes bunkers - -targets_pypsa = ( - targets_ksg - nonco2 - + df.loc["Emissions|CO2|Energy|Demand|Bunkers","Mt CO2/yr"] -) - -target_fractions_pypsa = ( - targets_pypsa.loc[targets_ksg.index] / baseline_pypsa -) - -print("co2_budget_national:") - -for year in target_fractions_pypsa.index: - print(" ", year, ":", sep="") - print(" DE:", target_fractions_pypsa[year].round(3)) \ No newline at end of file From 418fbc06eb9c8f1ffe0f42c349ca881a28fbc178 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 26 Mar 2024 20:07:16 +0100 Subject: [PATCH 214/669] first outline of code structure --- workflow/Snakefile | 9 ++- .../scripts/modify_steel_cement_demand.py | 65 +++++++++++++++++++ 2 files changed, 73 insertions(+), 1 deletion(-) create mode 100644 workflow/scripts/modify_steel_cement_demand.py diff --git a/workflow/Snakefile b/workflow/Snakefile index 2155885f6..843e6f697 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -178,7 +178,14 @@ use rule build_existing_heating_distribution from pypsaeur with: **{k: v for k, v in rules.build_existing_heating_distribution.input.items() if k != "existing_heating"}, existing_heating=resources("existing_heating.csv"), - +rule modify_steel_cement_demand: + input: + ariadne=resources("ariadne_database.csv"), + industrial_production=resources("industrial_production_per_country_tomorrow_{planning_horizons}.csv"), + resources: + mem_mb=1000 + script: + "scripts/modify_steel_cement_demand.py" rule modify_energy_totals: input: diff --git a/workflow/scripts/modify_steel_cement_demand.py b/workflow/scripts/modify_steel_cement_demand.py new file mode 100644 index 000000000..93f730368 --- /dev/null +++ b/workflow/scripts/modify_steel_cement_demand.py @@ -0,0 +1,65 @@ + + +import pandas as pd + +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake("modify_steel_cement_demand", + planning_horizons=2020) + + # leitmodell for steel and cement demand + leitmodell="FORECAST v1.0" + year = int(snakemake.input.industrial_production.split("_")[-1].split(".")[0]) + existing_industry = pd.read_csv(snakemake.input.industrial_production, index_col=0) + + ariadne = pd.read_csv( + snakemake.input.ariadne, + index_col=["model", "scenario", "region", "variable", "unit"] + ).loc[ + leitmodell, + snakemake.config["iiasa_database"]["reference_scenario"], + "Deutschland", + :, + "Mt/yr", + ] + + print( + "German demand before modification", + existing_industry.loc["DE", ["Cement", "Electric arc", "Integrated steelworks", "DRI + Electric arc"]], sep="\n") + + mapping = { + "gas boiler" : "Gas Boiler", + "oil boiler" : "Oil Boiler", + "air heat pump" : "Heat Pump|Electrical|Air", + "ground heat pump" : "Heat Pump|Electrical|Ground", + "biomass boiler" : "Biomass Boiler", + } + + year = "2020" + for tech in mapping: + stock = ariadne.at[ + f"Stock|Space Heating|{mapping[tech]}", + year, + ] + + peak = ( + stock * existing_heating.loc["Germany"].sum() + / ariadne.at[f"Stock|Space Heating", year] + + ) + existing_heating.at["Germany", tech] = peak + + + + print(f"Heating demand after modification with {leitmodell}:", + existing_heating.loc["Germany"], sep="\n") + + + existing_heating.to_csv(snakemake.output.existing_heating) From 8b726b59ca112317d11bb6f2aaac959df9968271 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 27 Mar 2024 13:11:19 +0100 Subject: [PATCH 215/669] add 2050 to considered planning_horizons --- workflow/scripts/build_scenarios.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 9768787d3..029b810e3 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -159,7 +159,7 @@ def write_to_scenario_yaml( "Deutschland"] ksg_target_fractions = get_ksg_targets(df.loc["REMIND-EU v1.1"]) - planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] + planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045, 2050] transport_share, naval_share = get_shares(df, planning_horizons) scenarios = snakemake.params.scenario_name From 8287692969b09434d28ba86ff5fd37ea6d1ffb3b Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 27 Mar 2024 16:15:07 +0100 Subject: [PATCH 216/669] transition to excel format --- workflow/scripts/plot_ariadne_variables.py | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 41307377b..0e1455b1f 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -118,9 +118,11 @@ def within_plot(df, df2, run="KN2045_H2_v4" ) - df = pd.read_csv( + df = pd.read_excel( snakemake.input.exported_variables, - index_col=["Model", "Scenario", "Region", "Variable", "Unit"] + index_col=list(range(5)), + #index_col=["Model", "Scenario", "Region", "Variable", "Unit"], + sheet_name="data" ).groupby(["Variable","Unit"]).sum() leitmodell="REMIND-EU v1.1" @@ -128,7 +130,9 @@ def within_plot(df, df2, dfremind = pd.read_csv( snakemake.input.ariadne_database, index_col=["model", "scenario", "region", "variable", "unit"] - ).loc[leitmodell, snakemake.params.iiasa_scenario, "Deutschland"][df.keys()] + ).loc[ + leitmodell, snakemake.params.iiasa_scenario, "Deutschland" + ][df.keys().astype(str)] dfremind.index.names = df.index.names From 0e007fe2bafd31b4df39115070c64f0053fcc2ef Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 27 Mar 2024 16:26:10 +0100 Subject: [PATCH 217/669] small dtype fix --- workflow/scripts/plot_ariadne_variables.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 0e1455b1f..7c335c15c 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -125,6 +125,7 @@ def within_plot(df, df2, sheet_name="data" ).groupby(["Variable","Unit"]).sum() + df.columns = df.columns.astype(str) leitmodell="REMIND-EU v1.1" dfremind = pd.read_csv( @@ -132,7 +133,7 @@ def within_plot(df, df2, index_col=["model", "scenario", "region", "variable", "unit"] ).loc[ leitmodell, snakemake.params.iiasa_scenario, "Deutschland" - ][df.keys().astype(str)] + ][df.columns] dfremind.index.names = df.index.names From ce76a248fe36a3a0d338e2e2fab2eca425ca1142 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 27 Mar 2024 17:06:52 +0100 Subject: [PATCH 218/669] preliminary integration of a modified industrial production .csv --- workflow/Snakefile | 7 ++++ .../scripts/modify_steel_cement_demand.py | 41 ++++++------------- 2 files changed, 20 insertions(+), 28 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 843e6f697..f006b4cdc 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -182,11 +182,18 @@ rule modify_steel_cement_demand: input: ariadne=resources("ariadne_database.csv"), industrial_production=resources("industrial_production_per_country_tomorrow_{planning_horizons}.csv"), + output: + industrial_production=resources("industrial_production_per_country_tomorrow_{planning_horizons}-modified.csv"), resources: mem_mb=1000 script: "scripts/modify_steel_cement_demand.py" +use rule build_industrial_production_per_node from pypsaeur with: + input: + **{k: v for k, v in rules.build_industrial_production_per_node.input.items() if k != "industrial_production_per_country_tomorrow"}, + industrial_production_per_country_tomorrow=resources("industrial_production_per_country_tomorrow_{planning_horizons}-modified.csv"), + rule modify_energy_totals: input: ariadne=resources("ariadne_database.csv"), diff --git a/workflow/scripts/modify_steel_cement_demand.py b/workflow/scripts/modify_steel_cement_demand.py index 93f730368..c497f439f 100644 --- a/workflow/scripts/modify_steel_cement_demand.py +++ b/workflow/scripts/modify_steel_cement_demand.py @@ -16,7 +16,7 @@ # leitmodell for steel and cement demand leitmodell="FORECAST v1.0" - year = int(snakemake.input.industrial_production.split("_")[-1].split(".")[0]) + year = snakemake.input.industrial_production.split("_")[-1].split(".")[0] existing_industry = pd.read_csv(snakemake.input.industrial_production, index_col=0) ariadne = pd.read_csv( @@ -33,33 +33,18 @@ print( "German demand before modification", existing_industry.loc["DE", ["Cement", "Electric arc", "Integrated steelworks", "DRI + Electric arc"]], sep="\n") + # get cement and write it into the existing industry dataframe + existing_industry.loc["DE", "Cement"] = ariadne.loc["Cement", year] + + # get steel ratios from existing_industry + steel = existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] + ratio = steel/steel.sum() - mapping = { - "gas boiler" : "Gas Boiler", - "oil boiler" : "Oil Boiler", - "air heat pump" : "Heat Pump|Electrical|Air", - "ground heat pump" : "Heat Pump|Electrical|Ground", - "biomass boiler" : "Biomass Boiler", - } - - year = "2020" - for tech in mapping: - stock = ariadne.at[ - f"Stock|Space Heating|{mapping[tech]}", - year, - ] - - peak = ( - stock * existing_heating.loc["Germany"].sum() - / ariadne.at[f"Stock|Space Heating", year] - - ) - existing_heating.at["Germany", tech] = peak - - - - print(f"Heating demand after modification with {leitmodell}:", - existing_heating.loc["Germany"], sep="\n") + # multiply with steel production including primary and secondary steel since distinguishing is taken care of later + existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] = ratio * ariadne.loc["Production|Steel", year] + print( + "German demand after modification", + existing_industry.loc["DE", ["Cement", "Electric arc", "Integrated steelworks", "DRI + Electric arc"]], sep="\n") - existing_heating.to_csv(snakemake.output.existing_heating) + existing_industry.to_csv(snakemake.output.industrial_production) From fa407f0dafdf8df949f89b8c96ef46d646b4f313 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 28 Mar 2024 14:15:21 +0100 Subject: [PATCH 219/669] renaming function and adding comment --- workflow/scripts/modify_prenetwork.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index ea6f6df51..dbb32ded9 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -296,7 +296,9 @@ def unravel_oilbus(n): capital_cost=0.02, ) -def update_transmission_costs(n, costs, length_factor=1.0): +def transmission_costs_NEP(n, costs, length_factor=1.0): + # copying the the function update_transmission_costs from add_electricity + # slight change to the function so it works in modify_prenetwork n.lines["capital_cost"] = ( n.lines["length"] * length_factor * costs.at["HVAC overhead", "capital_cost"] ) @@ -386,6 +388,6 @@ def update_transmission_costs(n, costs, length_factor=1.0): ) # change to NEP21 costs - update_transmission_costs(n, costs_loaded, snakemake.params.length_factor) + transmission_costs_NEP(n, costs_loaded, snakemake.params.length_factor) n.export_to_netcdf(snakemake.output.network) From db511cded6c7fafdd545b46e0874764a539323c0 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 28 Mar 2024 14:17:36 +0100 Subject: [PATCH 220/669] renaming function --- workflow/scripts/modify_prenetwork.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index dbb32ded9..897321d2b 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -296,7 +296,7 @@ def unravel_oilbus(n): capital_cost=0.02, ) -def transmission_costs_NEP(n, costs, length_factor=1.0): +def transmission_costs_from_modified_cost_data(n, costs, length_factor=1.0): # copying the the function update_transmission_costs from add_electricity # slight change to the function so it works in modify_prenetwork n.lines["capital_cost"] = ( @@ -388,6 +388,6 @@ def transmission_costs_NEP(n, costs, length_factor=1.0): ) # change to NEP21 costs - transmission_costs_NEP(n, costs_loaded, snakemake.params.length_factor) + transmission_costs_from_modified_cost_data(n, costs_loaded, snakemake.params.length_factor) n.export_to_netcdf(snakemake.output.network) From 54d60f0cb8cd603f24c438c392c2020a44d78c04 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 28 Mar 2024 15:16:03 +0100 Subject: [PATCH 221/669] by default run all scenarios, use optimal line expansion --- config/config.yaml | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 2346d025b..836303022 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -5,8 +5,8 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: name: - # - KN2045_Bal_v4 - # - KN2045_Elec_v4 + - KN2045_Bal_v4 + - KN2045_Elec_v4 - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand @@ -42,7 +42,7 @@ scenario: simpl: - '' ll: - - v1.2 + - vopt clusters: - 22 opts: From a59e0be344888de4fe397f7b549e16ac82c4adfe Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 28 Mar 2024 15:17:40 +0100 Subject: [PATCH 222/669] pull reference scenario from yaml, not from snakemake.params --- config/scenarios.yaml | 92 ++++++++++++++--------------- workflow/Snakefile | 1 - workflow/scripts/build_scenarios.py | 45 ++++++++------ 3 files changed, 72 insertions(+), 66 deletions(-) diff --git a/config/scenarios.yaml b/config/scenarios.yaml index 3b75f5ea4..5ad1f500b 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -21,17 +21,17 @@ KN2045_Bal_v4: 2020: DE: 0.728 2025: - DE: 0.571 + DE: 0.573 2030: - DE: 0.396 + DE: 0.401 2035: - DE: 0.258 + DE: 0.265 2040: - DE: 0.118 + DE: 0.135 2045: - DE: -0.028 + DE: -0.011 2050: - DE: -0.024 + DE: -0.017 # boundary condition of maximum volumes limits_volume_max: @@ -139,17 +139,17 @@ KN2045_Elec_v4: 2020: DE: 0.728 2025: - DE: 0.571 + DE: 0.573 2030: - DE: 0.396 + DE: 0.4 2035: - DE: 0.258 + DE: 0.264 2040: - DE: 0.118 + DE: 0.13 2045: - DE: -0.028 + DE: -0.02 2050: - DE: -0.024 + DE: -0.017 limits_volume_max: # constrain electricity import in TWh @@ -198,46 +198,46 @@ KN2045_Elec_v4: sector: land_transport_electric_share: 2020: 0.0047 - 2025: 0.0611 - 2030: 0.243 - 2035: 0.5199 - 2040: 0.74 - 2045: 0.8737 + 2025: 0.0666 + 2030: 0.2905 + 2035: 0.5635 + 2040: 0.7708 + 2045: 0.8898 land_transport_fuel_cell_share: 2020: 0.004 - 2025: 0.0362 - 2030: 0.0667 - 2035: 0.0485 - 2040: 0.0252 - 2045: 0.0085 + 2025: 0.0264 + 2030: 0.032 + 2035: 0.0247 + 2040: 0.0123 + 2045: 0.004 land_transport_ice_share: 2020: 0.9913 - 2025: 0.9027 - 2030: 0.6903 - 2035: 0.4316 - 2040: 0.2348 - 2045: 0.1178 + 2025: 0.907 + 2030: 0.6775 + 2035: 0.4118 + 2040: 0.2168 + 2045: 0.1061 shipping_hydrogen_share: 2020: 0.0 2025: 0.0 2030: 0.0238 - 2035: 0.0522 - 2040: 0.0802 - 2045: 0.1142 + 2035: 0.0547 + 2040: 0.0865 + 2045: 0.1214 shipping_methanol_share: 2020: 0.0 2025: 0.0 2030: 0.0 2035: 0.0 - 2040: -0.0 + 2040: 0.0 2045: 0.0 shipping_oil_share: 2020: 1.0 2025: 1.0 2030: 0.9762 - 2035: 0.9478 - 2040: 0.9198 - 2045: 0.8858 + 2035: 0.9453 + 2040: 0.9135 + 2045: 0.8786 KN2045_H2_v4: # Fokus stärker auf dem Hochlauf von Technologien zur indirekten Elektrifizierung der Sektoren @@ -258,13 +258,13 @@ KN2045_H2_v4: 2025: DE: 0.573 2030: - DE: 0.401 + DE: 0.4 2035: - DE: 0.265 + DE: 0.264 2040: - DE: 0.135 + DE: 0.134 2045: - DE: -0.011 + DE: -0.02 2050: DE: -0.017 @@ -339,10 +339,10 @@ KN2045_H2_v4: shipping_hydrogen_share: 2020: 0.0 2025: 0.0 - 2030: 0.0238 - 2035: 0.0522 - 2040: 0.0802 - 2045: 0.1142 + 2030: 0.0247 + 2035: 0.0549 + 2040: 0.0856 + 2045: 0.1173 shipping_methanol_share: 2020: 0.0 2025: 0.0 @@ -353,7 +353,7 @@ KN2045_H2_v4: shipping_oil_share: 2020: 1.0 2025: 1.0 - 2030: 0.9762 - 2035: 0.9478 - 2040: 0.9198 - 2045: 0.8858 + 2030: 0.9753 + 2035: 0.9451 + 2040: 0.9144 + 2045: 0.8827 diff --git a/workflow/Snakefile b/workflow/Snakefile index 471734c3f..e59047176 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -237,7 +237,6 @@ if config["wasserstoff_kernnetz"]["enable"]: rule build_scenarios: params: - iiasa_scenario=config["iiasa_database"]["reference_scenario"], scenario_name=config["run"]["name"], input: ariadne_database=resources("ariadne_database.csv"), diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 029b810e3..d7ad21a93 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -103,11 +103,23 @@ def get_ksg_targets(df): def write_to_scenario_yaml( - output, scenarios, transport_share, naval_share, ksg_target_fractions): + output, scenario, df): # read in yaml file yaml = ruamel.yaml.YAML() file_path = Path(output) config = yaml.load(file_path) + reference_scenario = config[scenario]["iiasa_database"]["reference_scenario"] + + ksg_target_fractions = get_ksg_targets( + df.loc["REMIND-EU v1.1", reference_scenario] + ) + + planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] # for 2050 we still need data + + transport_share, naval_share = get_shares( + df.loc[:, reference_scenario, :], + planning_horizons, + ) mapping_transport = { 'PHEV': 'land_transport_fuel_cell_share', @@ -120,15 +132,14 @@ def write_to_scenario_yaml( 'Oil': 'shipping_oil_share', } - for scenario in scenarios: - for key in mapping_transport.keys(): - for year in transport_share.columns: - config[scenario]["sector"][mapping_transport[key]][year] = round(transport_share.loc[key, year].item(), 4) - for key in mapping_navigation.keys(): - for year in naval_share.columns: - config[scenario]["sector"][mapping_navigation[key]][year] = round(naval_share.loc[key, year].item(), 4) - for year, target in ksg_target_fractions.items(): - config[scenario]["co2_budget_national"][year]["DE"] = target + for key in mapping_transport.keys(): + for year in transport_share.columns: + config[scenario]["sector"][mapping_transport[key]][year] = round(transport_share.loc[key, year].item(), 4) + for key in mapping_navigation.keys(): + for year in naval_share.columns: + config[scenario]["sector"][mapping_navigation[key]][year] = round(naval_share.loc[key, year].item(), 4) + for year, target in ksg_target_fractions.items(): + config[scenario]["co2_budget_national"][year]["DE"] = target # write back to yaml file yaml.dump(config, file_path) @@ -155,17 +166,13 @@ def write_to_scenario_yaml( df = ariadne_db.loc[ :, - snakemake.params.iiasa_scenario, + :, "Deutschland"] - - ksg_target_fractions = get_ksg_targets(df.loc["REMIND-EU v1.1"]) - planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045, 2050] - transport_share, naval_share = get_shares(df, planning_horizons) - + scenarios = snakemake.params.scenario_name filename = snakemake.input.scenario_yaml - - write_to_scenario_yaml( - filename, scenarios, transport_share, naval_share, ksg_target_fractions) \ No newline at end of file + for scenario in scenarios: + write_to_scenario_yaml( + filename, scenario, df) \ No newline at end of file From b92f62de3a5287f519f262edd3ad2d1e755a9ff1 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 2 Apr 2024 15:50:18 +0200 Subject: [PATCH 223/669] update ariadne template --- workflow/Snakefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index bb6d7d501..f56ec3515 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -234,7 +234,7 @@ if config["wasserstoff_kernnetz"]["enable"]: rule download_ariadne_template: input: storage( - "https://github.com/iiasa/ariadne-intern-workflow/raw/master/attachments/2024-02-23_template_Ariadne.xlsx", + "https://github.com/iiasa/ariadne-intern-workflow/raw/master/attachments/2024-03-28_template_Ariadne.xlsx", keep_local=True, ) output: From 88f9540cacc649801a1dd085570bd47c8361ce14 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 2 Apr 2024 16:10:18 +0200 Subject: [PATCH 224/669] add function for fossil oil fraction --- workflow/scripts/export_ariadne_variables.py | 81 +++++++------------- 1 file changed, 29 insertions(+), 52 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 9bd0af1d4..479fd2cc5 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -16,6 +16,32 @@ TWh2PJ = 3.6 MWh2PJ = 3.6e-6 +def _get_oil_fossil_fraction(n, region, kwargs): + if "DE" in region: + total_oil_supply = n.statistics.supply( + bus_carrier="oil", **kwargs + ).groupby("name").sum().get([ + "DE oil", + "DE renewable oil -> DE oil", + "EU renewable oil -> DE oil", + ]) + + else: + total_oil_supply = n.statistics.supply( + bus_carrier="oil", **kwargs + ).groupby("name").sum().get([ + "EU oil", + "DE renewable oil -> EU oil", + "EU renewable oil -> EU oil", + ]) + + oil_fossil_fraction = ( + total_oil_supply[~total_oil_supply.index.str.contains("renewable")].sum() + / total_oil_supply.sum() + ) + + return oil_fossil_fraction + def _get_t_sum(df, df_t, carrier, region, snapshot_weightings, port): if type(carrier) == list: return sum( @@ -561,24 +587,7 @@ def get_primary_energy(n, region): var = pd.Series() - if "DE" in region: - total_oil_supply = n.statistics.supply(bus_carrier="oil", **kwargs).groupby("name").sum().get([ - "DE oil", - "DE renewable oil -> DE oil", - "EU renewable oil -> DE oil", - ]) - - else: - total_oil_supply = n.statistics.supply(bus_carrier="oil", **kwargs).groupby("name").sum().get([ - "EU oil", - "DE renewable oil -> EU oil", - "EU renewable oil -> EU oil", - ]) - - oil_fossil_fraction = ( - total_oil_supply[~total_oil_supply.index.str.contains("renewable")].sum() - / total_oil_supply.sum() - ) + oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) oil_usage = n.statistics.withdrawal( bus_carrier="oil", @@ -1086,24 +1095,9 @@ def get_secondary_energy(n, region): ) ].sum() ) - if "DE" in region: - total_oil_supply = n.statistics.supply(bus_carrier="oil", **kwargs).groupby("name").sum().get([ - "DE oil", - "DE renewable oil -> DE oil", - "EU renewable oil -> DE oil", - ]) - else: - total_oil_supply = n.statistics.supply(bus_carrier="oil", **kwargs).groupby("name").sum().get([ - "EU oil", - "DE renewable oil -> EU oil", - "EU renewable oil -> EU oil", - ]) + oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) - oil_fossil_fraction = ( - total_oil_supply[~total_oil_supply.index.str.contains("renewable")].sum() - / total_oil_supply.sum() - ) oil_fuel_usage = n.statistics.withdrawal( bus_carrier="oil", @@ -1384,24 +1378,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): + energy_totals["total international navigation"] ) - if "DE" in region: - total_oil_supply = n.statistics.supply(bus_carrier="oil", **kwargs).groupby("name").sum().get([ - "DE oil", - "DE renewable oil -> DE oil", - "EU renewable oil -> DE oil", - ]) - - else: - total_oil_supply = n.statistics.supply(bus_carrier="oil", **kwargs).groupby("name").sum().get([ - "EU oil", - "DE renewable oil -> EU oil", - "EU renewable oil -> EU oil", - ]) - - oil_fossil_fraction = ( - total_oil_supply[~total_oil_supply.index.str.contains("renewable")].sum() - / total_oil_supply.sum() - ) + oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) var["Final Energy|Transportation|Liquids"] = ( sum_load(n, "land transport oil", region) From ee1bb67c92b38eed5eff7483b42f0de8bdb60ba1 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 3 Apr 2024 08:35:48 +0200 Subject: [PATCH 225/669] first draft of trend scenario --- config/config.yaml | 10 +-- config/scenarios.yaml | 161 ++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 167 insertions(+), 4 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 836303022..4434bddcf 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -5,9 +5,10 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: name: - - KN2045_Bal_v4 - - KN2045_Elec_v4 - - KN2045_H2_v4 + - KN2045_Trend_v4 + # - KN2045_Bal_v4 + # - KN2045_Elec_v4 + # - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase @@ -25,7 +26,8 @@ iiasa_database: - TIMES PanEU v1.0 - FORECAST v1.0 - DEMO v1 - scenarios: + scenarios: + - Trend - 8Gt_Bal_v3 - 8Gt_Elec_v3 - 8Gt_H2_v3 diff --git a/config/scenarios.yaml b/config/scenarios.yaml index 3b75f5ea4..fe6c1886d 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -3,6 +3,167 @@ # # SPDX-License-Identifier: MIT +KN2045_Trend_v4: +# Trend Szenario +# Suggestion (Tom): "policy from 2030 is frozen" +# conservative development after 2030 +# fixing CO2 budget at 2030 value for 2035-2050 +# reducing VRE targets in 2030 to 75% of the target (following REMIND) +# not forcing H2 production +# orient transport transformation towards ALADIN (Fraunhofer model) results +# industry transformation towards FORECAST results +# consider not assuming Kernnetz + + clustering: + temporal: + resolution_sector: 365H + + # Kernnetz is not assumed to be built + wasserstoff_kernnetz: + enable: false + + iiasa_database: + # TODO: wait for REMod v1.0 to upload a Trend scenario + reference_scenario: Trend + + co2_budget_national: + 2020: + DE: 0.728 + 2025: + DE: 0.571 + 2030: + DE: 0.396 + 2035: + DE: 0.396 # 2030 value + 2040: + DE: 0.396 # 2030 value + 2045: + DE: 0.396 # 2030 value + 2050: + DE: 0.396 # 2030 value + + limits_capacity_min: + Generator: + onwind: + DE: + 2020: 48 + 2025: 61 + 2030: 86.5 # 75 % Wind-an-Land Law + 2035: 117.75 # 75 % Wind-an-Land Law + 2040: 120 # 75 % Wind-an-Land Law + 2045: 120 + offwind: + DE: + 2020: 7.77 + 2025: 8 + 2030: 22.5 # 75 % Wind-auf-See Law + 2035: 30 # 75 % Wind-auf-See Law assuming at least 1/3 of difference reached in 2040 + 2040: 32.5 # 75 % Wind-auf-See Law + 2045: 52.5 # 75 % Wind-auf-See Law + solar: + DE: + 2020: 59 + # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, + # assuming at least 1/3 of difference reached in 2025 + 2025: 101 + 2030: 161.25 # 75 % PV strategy + 2035: 231.75 + 2040: 300 # 75 % PV strategy + 2045: 300 + + # boundary condition of maximum volumes + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 + electrolysis: + # boundary condition lower? + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 + h2_derivate_import: + # boundary condition lower? + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 105 + 2040: 200 + 2045: 300 + h2_import: + # boundary condition lower? + DE: + 2020: 0 + 2025: 5 + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 + # sector boundary conditions + sector: + # read that in from REMod - Fraunhofer + land_transport_electric_share: + 2020: 0.0047 + 2025: 0.0611 + 2030: 0.243 + 2035: 0.5199 + 2040: 0.74 + 2045: 0.8737 + land_transport_fuel_cell_share: + 2020: 0.004 + 2025: 0.0362 + 2030: 0.0667 + 2035: 0.0485 + 2040: 0.0252 + 2045: 0.0085 + land_transport_ice_share: + 2020: 0.9913 + 2025: 0.9027 + 2030: 0.6903 + 2035: 0.4316 + 2040: 0.2348 + 2045: 0.1178 + shipping_hydrogen_share: + 2020: 0.0 + 2025: 0.0 + 2030: 0.0238 + 2035: 0.0522 + 2040: 0.0802 + 2045: 0.1142 + shipping_methanol_share: + 2020: 0.0 + 2025: 0.0 + 2030: 0.0 + 2035: 0.0 + 2040: -0.0 + 2045: 0.0 + shipping_oil_share: + 2020: 1.0 + 2025: 1.0 + 2030: 0.9762 + 2035: 0.9478 + 2040: 0.9198 + 2045: 0.8858 + KN2045_Bal_v4: # Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren # Breites Energieträgerportfolio in der Endenergie (Strom, Wasserstoff, synthetische Kraftstoffe) From 1b88b63f95a83edd9f2211c709b6f404fbabd118 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 3 Apr 2024 08:46:00 +0200 Subject: [PATCH 226/669] renaming scenario to match database convention --- config/config.yaml | 8 ++++---- config/scenarios.yaml | 2 +- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 4434bddcf..442dc0c37 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -5,10 +5,10 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: name: - - KN2045_Trend_v4 - # - KN2045_Bal_v4 - # - KN2045_Elec_v4 - # - KN2045_H2_v4 + - Trend + - KN2045_Bal_v4 + - KN2045_Elec_v4 + - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase diff --git a/config/scenarios.yaml b/config/scenarios.yaml index fe6c1886d..e170b4209 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -3,7 +3,7 @@ # # SPDX-License-Identifier: MIT -KN2045_Trend_v4: +Trend: # Trend Szenario # Suggestion (Tom): "policy from 2030 is frozen" # conservative development after 2030 From 16a59eff59345e180c4baffe7d3ea79a20ce1c10 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 3 Apr 2024 08:48:23 +0200 Subject: [PATCH 227/669] relaxing European CO2 limit --- config/scenarios.yaml | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/config/scenarios.yaml b/config/scenarios.yaml index e170b4209..f8551d90a 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -26,6 +26,15 @@ Trend: # TODO: wait for REMod v1.0 to upload a Trend scenario reference_scenario: Trend + co2_budget: + 2020: 0.800 # 20% reduction by 2020 + 2025: 0.600 + 2030: 0.450 # 55% reduction by 2030 (Ff55) + 2035: 0.450 # stagnation for the Trend scenario + 2040: 0.450 + 2045: 0.450 + 2050: 0.450 + co2_budget_national: 2020: DE: 0.728 From 796e61397cd65a37d7c6e01266560b83dcfd5cb3 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 3 Apr 2024 14:00:11 +0200 Subject: [PATCH 228/669] rename Trend->CurrentPolicies for ariadne2 --- config/config.yaml | 2 +- config/scenarios.yaml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 442dc0c37..9b98d4181 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -5,7 +5,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: name: - - Trend + - CurrentPolicies - KN2045_Bal_v4 - KN2045_Elec_v4 - KN2045_H2_v4 diff --git a/config/scenarios.yaml b/config/scenarios.yaml index f8551d90a..26a1d7730 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -3,7 +3,7 @@ # # SPDX-License-Identifier: MIT -Trend: +CurrentPolicies: # Trend Szenario # Suggestion (Tom): "policy from 2030 is frozen" # conservative development after 2030 From a41da38ae3fe833cb090475e5be1b14f2a01c92b Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 3 Apr 2024 14:38:43 +0200 Subject: [PATCH 229/669] fixing cement total and reading St_primary_fraction from FORECAST model --- config/config.yaml | 6 +- config/scenarios.yaml | 28 +++++++ workflow/Snakefile | 7 +- workflow/scripts/build_scenarios.py | 17 +++- .../scripts/modify_steel_cement_demand.py | 82 ++++++++----------- 5 files changed, 85 insertions(+), 55 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index f1176e44a..7289b51ad 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -5,9 +5,9 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: name: - # - KN2045_Bal_v4 + - KN2045_Bal_v4 # - KN2045_Elec_v4 - - KN2045_H2_v4 + # - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase @@ -63,7 +63,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: false # set to false once initial data is retrieved + retrieve: auto # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: diff --git a/config/scenarios.yaml b/config/scenarios.yaml index d6cd269e3..d6c129f51 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -105,6 +105,15 @@ KN2045_Bal_v4: 2035: 0.9478 2040: 0.9198 2045: 0.8858 + industry: + St_primary_fraction: + 2020: 0.6939 + 2025: 0.6247 + 2030: 0.5881 + 2035: 0.5432 + 2040: 0.4981 + 2045: 0.4487 + 2050: 0.3 KN2045_Elec_v4: # Fokus auf dem Hochlauf von Technologien zur direkten Elektrifizierung der Sektoren @@ -207,6 +216,16 @@ KN2045_Elec_v4: 2040: 0.9198 2045: 0.8858 + industry: + St_primary_fraction: + 2020: 0.6 + 2025: 0.55 + 2030: 0.5 + 2035: 0.45 + 2040: 0.4 + 2045: 0.35 + 2050: 0.3 + KN2045_H2_v4: # Fokus stärker auf dem Hochlauf von Technologien zur indirekten Elektrifizierung der Sektoren # Verstärkter Einsatz von Wasserstoff und synthetischen Kraftstoffen - erneuerbar erzeugt und auch importiert @@ -309,3 +328,12 @@ KN2045_H2_v4: 2035: 0.9478 2040: 0.9198 2045: 0.8858 + industry: + St_primary_fraction: + 2020: 0.6 + 2025: 0.55 + 2030: 0.5 + 2035: 0.45 + 2040: 0.4 + 2045: 0.35 + 2050: 0.3 diff --git a/workflow/Snakefile b/workflow/Snakefile index f006b4cdc..d2f7b2afe 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -148,6 +148,7 @@ rule modify_prenetwork: script: "scripts/modify_prenetwork.py" +ruleorder: modify_steel_cement_demand > build_industrial_production_per_country_tomorrow use rule solve_sector_network_myopic from pypsaeur with: params: @@ -171,8 +172,6 @@ rule modify_existing_heating: script: "scripts/modify_existing_heating.py" - - use rule build_existing_heating_distribution from pypsaeur with: input: **{k: v for k, v in rules.build_existing_heating_distribution.input.items() if k != "existing_heating"}, @@ -181,9 +180,9 @@ use rule build_existing_heating_distribution from pypsaeur with: rule modify_steel_cement_demand: input: ariadne=resources("ariadne_database.csv"), - industrial_production=resources("industrial_production_per_country_tomorrow_{planning_horizons}.csv"), + industrial_production_per_country_tomorrow=resources("industrial_production_per_country_tomorrow_{planning_horizons}.csv"), output: - industrial_production=resources("industrial_production_per_country_tomorrow_{planning_horizons}-modified.csv"), + industrial_production_per_country_tomorrow=resources("industrial_production_per_country_tomorrow_{planning_horizons}-modified.csv"), resources: mem_mb=1000 script: diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 941b1eee2..da59a8cd8 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -45,8 +45,18 @@ def get_shares(df, planning_horizons): return transport_share, naval_share +def get_primary_steel_share(df, planning_horizons): + # Get share of primary steel production + model = "FORECAST v1.0" + total_steel = df.loc[model, "Production|Steel"] + primary_steel = df.loc[model, "Production|Steel|Primary"] + + primary_steel_share = primary_steel / total_steel + primary_steel_share = primary_steel_share[planning_horizons] + + return primary_steel_share.set_index(pd.Index(["Primary_Steel_Share"])) -def write_to_scenario_yaml(output, scenarios, transport_share, naval_share): +def write_to_scenario_yaml(output, scenarios, transport_share, naval_share, st_primary_fraction): # read in yaml file yaml = ruamel.yaml.YAML() file_path = Path(output) @@ -70,6 +80,8 @@ def write_to_scenario_yaml(output, scenarios, transport_share, naval_share): for key in mapping_navigation.keys(): for year in naval_share.columns: config[scenario]["sector"][mapping_navigation[key]][year] = round(naval_share.loc[key, year].item(), 4) + for year in st_primary_fraction.columns: + config[scenario]["industry"]["St_primary_fraction"][year] = round(st_primary_fraction.loc["Primary_Steel_Share", year].item(), 4) # write back to yaml file yaml.dump(config, file_path) @@ -106,5 +118,6 @@ def write_to_scenario_yaml(output, scenarios, transport_share, naval_share): filename = snakemake.input.scenario_yaml + st_primary_fraction = get_primary_steel_share(df, planning_horizons) - write_to_scenario_yaml(filename, scenarios, transport_share, naval_share) \ No newline at end of file + write_to_scenario_yaml(filename, scenarios, transport_share, naval_share, st_primary_fraction) \ No newline at end of file diff --git a/workflow/scripts/modify_steel_cement_demand.py b/workflow/scripts/modify_steel_cement_demand.py index c497f439f..9907e6e12 100644 --- a/workflow/scripts/modify_steel_cement_demand.py +++ b/workflow/scripts/modify_steel_cement_demand.py @@ -2,49 +2,39 @@ import pandas as pd -if __name__ == "__main__": - if "snakemake" not in globals(): - import os - import sys - - path = "../submodules/pypsa-eur/scripts" - sys.path.insert(0, os.path.abspath(path)) - from _helpers import mock_snakemake - - snakemake = mock_snakemake("modify_steel_cement_demand", - planning_horizons=2020) - - # leitmodell for steel and cement demand - leitmodell="FORECAST v1.0" - year = snakemake.input.industrial_production.split("_")[-1].split(".")[0] - existing_industry = pd.read_csv(snakemake.input.industrial_production, index_col=0) - - ariadne = pd.read_csv( - snakemake.input.ariadne, - index_col=["model", "scenario", "region", "variable", "unit"] - ).loc[ - leitmodell, - snakemake.config["iiasa_database"]["reference_scenario"], - "Deutschland", - :, - "Mt/yr", - ] - - print( - "German demand before modification", - existing_industry.loc["DE", ["Cement", "Electric arc", "Integrated steelworks", "DRI + Electric arc"]], sep="\n") - # get cement and write it into the existing industry dataframe - existing_industry.loc["DE", "Cement"] = ariadne.loc["Cement", year] - - # get steel ratios from existing_industry - steel = existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] - ratio = steel/steel.sum() - - # multiply with steel production including primary and secondary steel since distinguishing is taken care of later - existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] = ratio * ariadne.loc["Production|Steel", year] - - print( - "German demand after modification", - existing_industry.loc["DE", ["Cement", "Electric arc", "Integrated steelworks", "DRI + Electric arc"]], sep="\n") - - existing_industry.to_csv(snakemake.output.industrial_production) +# leitmodell for steel and cement demand +leitmodell="FORECAST v1.0" + +year = snakemake.input.industrial_production_per_country_tomorrow.split("_")[-1].split(".")[0] + +existing_industry = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow, index_col=0) + +ariadne = pd.read_csv( + snakemake.input.ariadne, + index_col=["model", "scenario", "region", "variable", "unit"] +).loc[ + leitmodell, + snakemake.config["iiasa_database"]["reference_scenario"], + "Deutschland", + :, + "Mt/yr", +] + +print( + "German demand before modification", + existing_industry.loc["DE", ["Cement", "Electric arc", "Integrated steelworks", "DRI + Electric arc"]], sep="\n") +# get cement and write it into the existing industry dataframe +existing_industry.loc["DE", "Cement"] = ariadne.loc["Production|Non-Metallic Minerals|Cement", year] + +# get steel ratios from existing_industry +steel = existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] +ratio = steel/steel.sum() + +# multiply with steel production including primary and secondary steel since distinguishing is taken care of later +existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] = ratio * ariadne.loc["Production|Steel", year] + +print( + "German demand after modification", + existing_industry.loc["DE", ["Cement", "Electric arc", "Integrated steelworks", "DRI + Electric arc"]], sep="\n") + +existing_industry.to_csv(snakemake.output.industrial_production_per_country_tomorrow) From 689e31316506fe69aee9778238bd7cc187fb2d0b Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 3 Apr 2024 16:06:06 +0200 Subject: [PATCH 230/669] add debug switches --- config/config.yaml | 3 +++ workflow/scripts/additional_functionality.py | 22 ++++++++++++-------- 2 files changed, 16 insertions(+), 9 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 46df6812c..1ed0cd8bf 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -16,6 +16,9 @@ run: enable: true shared_resources: true #stops recalculating disable_progressbar: true + debug_co2_limit: false + debug_elec_import_limit: false + debug_h2deriv_limit: false iiasa_database: db_name: ariadne_intern diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 0d61fc75b..e553ae1e4 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -152,7 +152,7 @@ def electricity_import_limits(n, snapshots, investment_year, config): ) -def add_co2limit_country(n, limit_countries, snakemake): +def add_co2limit_country(n, limit_countries, snakemake, debug=False): """ Add a set of emissions limit constraints for specified countries. @@ -203,10 +203,11 @@ def add_co2limit_country(n, limit_countries, snakemake): incoming = n.links.index[n.links.index == "EU renewable oil -> DE oil"] outgoing = n.links.index[n.links.index == "DE renewable oil -> EU oil"] - incoming_p = (n.model["Link-p"].loc[:, incoming]*n.snapshot_weightings.generators).sum() - outgoing_p = (n.model["Link-p"].loc[:, outgoing]*n.snapshot_weightings.generators).sum() + if not debug: + lhs.append((-1*n.model["Link-p"].loc[:, incoming]*0.2571*n.snapshot_weightings.generators).sum()) + lhs.append((n.model["Link-p"].loc[:, outgoing]*0.2571*n.snapshot_weightings.generators).sum()) - lhs = sum(lhs) + (outgoing_p - incoming_p)*0.2571 + lhs = sum(lhs) cname = f"co2_limit-{ct}" @@ -326,17 +327,20 @@ def additional_functionality(n, snapshots, snakemake): add_min_limits(n, snapshots, investment_year, snakemake.config) h2_import_limits(n, snapshots, investment_year, snakemake.config) - - electricity_import_limits(n, snapshots, investment_year, snakemake.config) + + if not snakemake.config["run"]["debug_elec_import_limit"]: + electricity_import_limits(n, snapshots, investment_year, snakemake.config) if investment_year >= 2025: h2_production_limits(n, snapshots, investment_year, snakemake.config) - - add_h2_derivate_limit(n, snapshots, investment_year, snakemake.config) + + if not snakemake.config["run"]["debug_h2deriv_limit"]: + add_h2_derivate_limit(n, snapshots, investment_year, snakemake.config) #force_boiler_profiles_existing_per_load(n) force_boiler_profiles_existing_per_boiler(n) if snakemake.config["sector"]["co2_budget_national"]: limit_countries = snakemake.config["co2_budget_national"][investment_year] - add_co2limit_country(n, limit_countries, snakemake) + add_co2limit_country(n, limit_countries, snakemake, + debug=snakemake.config["run"]["debug_co2_limit"]) From b4df9fbe5c4c2d5794777549c2ae7b2ab5fe06a5 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 3 Apr 2024 16:06:17 +0200 Subject: [PATCH 231/669] minor cosmetic changes --- config/config.yaml | 1 + config/scenarios.yaml | 6 +++--- 2 files changed, 4 insertions(+), 3 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 9b98d4181..f67708c07 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -27,6 +27,7 @@ iiasa_database: - FORECAST v1.0 - DEMO v1 scenarios: + # - CurrentPolicies - Trend - 8Gt_Bal_v3 - 8Gt_Elec_v3 diff --git a/config/scenarios.yaml b/config/scenarios.yaml index 26a1d7730..4eac7ed9b 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -10,7 +10,7 @@ CurrentPolicies: # fixing CO2 budget at 2030 value for 2035-2050 # reducing VRE targets in 2030 to 75% of the target (following REMIND) # not forcing H2 production -# orient transport transformation towards ALADIN (Fraunhofer model) results +# orient transport transformation from REMod v1.0 (currently is DEMO) # industry transformation towards FORECAST results # consider not assuming Kernnetz @@ -23,8 +23,8 @@ CurrentPolicies: enable: false iiasa_database: - # TODO: wait for REMod v1.0 to upload a Trend scenario - reference_scenario: Trend + # TODO: wait for REMod v1.0 to upload a first Trend scenario + reference_scenario: Trend # CurrentPolicies once it's renamed co2_budget: 2020: 0.800 # 20% reduction by 2020 From 6064c262c5d749f66ca667f027c13de56c447f62 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 3 Apr 2024 16:07:25 +0200 Subject: [PATCH 232/669] vopt by default --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 1ed0cd8bf..dca173238 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -47,7 +47,7 @@ scenario: simpl: - '' ll: - - v1.2 + - vopt clusters: - 22 opts: From 27c484b6df3427f7f0460bc5ff8d8c6d121124c9 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 4 Apr 2024 13:22:11 +0200 Subject: [PATCH 233/669] freezing min capacity of VRE in Germany to 2030 values --- config/scenarios.yaml | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/config/scenarios.yaml b/config/scenarios.yaml index 4eac7ed9b..4cd9a0e3d 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -58,17 +58,17 @@ CurrentPolicies: 2020: 48 2025: 61 2030: 86.5 # 75 % Wind-an-Land Law - 2035: 117.75 # 75 % Wind-an-Land Law - 2040: 120 # 75 % Wind-an-Land Law - 2045: 120 + 2035: 86.5 + 2040: 86.5 + 2045: 86.5 offwind: DE: 2020: 7.77 2025: 8 2030: 22.5 # 75 % Wind-auf-See Law - 2035: 30 # 75 % Wind-auf-See Law assuming at least 1/3 of difference reached in 2040 - 2040: 32.5 # 75 % Wind-auf-See Law - 2045: 52.5 # 75 % Wind-auf-See Law + 2035: 22.5 + 2040: 22.5 + 2045: 22.5 solar: DE: 2020: 59 @@ -76,9 +76,9 @@ CurrentPolicies: # assuming at least 1/3 of difference reached in 2025 2025: 101 2030: 161.25 # 75 % PV strategy - 2035: 231.75 - 2040: 300 # 75 % PV strategy - 2045: 300 + 2035: 161.25 + 2040: 161.25 + 2045: 161.25 # boundary condition of maximum volumes limits_volume_max: From 32f1516b08416f9ee926a419626d98e7eee9c327 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 4 Apr 2024 14:09:21 +0200 Subject: [PATCH 234/669] add debug mode for unravel oilbus --- config/config.yaml | 5 +++-- workflow/scripts/modify_prenetwork.py | 3 ++- 2 files changed, 5 insertions(+), 3 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index dca173238..296591b80 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -16,9 +16,10 @@ run: enable: true shared_resources: true #stops recalculating disable_progressbar: true - debug_co2_limit: false + debug_co2_limit: true debug_elec_import_limit: false - debug_h2deriv_limit: false + debug_h2deriv_limit: true + debug_unravel_oilbus: true iiasa_database: db_name: ariadne_intern diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 403b3f7da..02833db60 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -339,7 +339,8 @@ def unravel_oilbus(n): first_technology_occurrence(n) - unravel_oilbus(n) + if not snakemake.config["run"]["debug_unravel_oilbus"]: + unravel_oilbus(n) if snakemake.config["wasserstoff_kernnetz"]["enable"]: fn = snakemake.input.wkn From 5e3519abd946db3fdbb8e3ed4d51dd20eb4ad3c4 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 4 Apr 2024 14:10:41 +0200 Subject: [PATCH 235/669] use less memory for faster queueing, run all scenarios in 3H --- config/config.yaml | 13 ++++++++++--- config/scenarios.yaml | 6 +++--- 2 files changed, 13 insertions(+), 6 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 296591b80..fe2cb376d 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -5,8 +5,8 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: name: - # - KN2045_Bal_v4 - # - KN2045_Elec_v4 + - KN2045_Bal_v4 + - KN2045_Elec_v4 - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand @@ -270,9 +270,16 @@ industry: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving solving: runtime: 12h - mem_mb: 140000 #30000 is OK for 22 nodes, 365H; 140000 for 22 nodes 3H; 400000 for 44 nodes 3H + mem_mb: 40000 #30000 is OK for 22 nodes, 365H; 140000 for 22 nodes 3H; 400000 for 44 nodes 3H options: load_shedding: false + # solver: + # options: gurobi-numeric-focus + # solver_options: + # gurobi-default: + # NumericFocus: 1 + # FeasibilityTol: 1.e-4 + # BarHomogeneous: 1 plotting: tech_colors: diff --git a/config/scenarios.yaml b/config/scenarios.yaml index 3b75f5ea4..22d9065e3 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -12,7 +12,7 @@ KN2045_Bal_v4: clustering: temporal: - resolution_sector: 365H + resolution_sector: 3H iiasa_database: reference_scenario: 8Gt_Bal_v3 @@ -130,7 +130,7 @@ KN2045_Elec_v4: clustering: temporal: - resolution_sector: 365H + resolution_sector: 3H iiasa_database: reference_scenario: 8Gt_Elec_v3 @@ -247,7 +247,7 @@ KN2045_H2_v4: clustering: temporal: - resolution_sector: 365H + resolution_sector: 3H iiasa_database: reference_scenario: 8Gt_H2_v3 From 176c75a9d6a3189e8b30990d700361368bb2926e Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 4 Apr 2024 14:10:59 +0200 Subject: [PATCH 236/669] freezing transport shares and German ksg from 2030 on --- config/scenarios.yaml | 118 ++++++++++++++-------------- workflow/Snakefile | 1 + workflow/scripts/build_scenarios.py | 19 +++-- 3 files changed, 71 insertions(+), 67 deletions(-) diff --git a/config/scenarios.yaml b/config/scenarios.yaml index 4cd9a0e3d..21dff315a 100644 --- a/config/scenarios.yaml +++ b/config/scenarios.yaml @@ -39,46 +39,46 @@ CurrentPolicies: 2020: DE: 0.728 2025: - DE: 0.571 + DE: 0.573 2030: - DE: 0.396 + DE: 0.401 2035: - DE: 0.396 # 2030 value + DE: 0.401 # 2030 value 2040: - DE: 0.396 # 2030 value + DE: 0.401 # 2030 value 2045: - DE: 0.396 # 2030 value + DE: 0.401 # 2030 value 2050: - DE: 0.396 # 2030 value + DE: 0.401 # 2030 value limits_capacity_min: - Generator: - onwind: - DE: - 2020: 48 - 2025: 61 - 2030: 86.5 # 75 % Wind-an-Land Law - 2035: 86.5 - 2040: 86.5 - 2045: 86.5 - offwind: - DE: - 2020: 7.77 - 2025: 8 - 2030: 22.5 # 75 % Wind-auf-See Law - 2035: 22.5 - 2040: 22.5 - 2045: 22.5 - solar: - DE: - 2020: 59 + Generator: + onwind: + DE: + 2020: 48 + 2025: 61 + 2030: 86.5 # 75 % Wind-an-Land Law + 2035: 86.5 + 2040: 86.5 + 2045: 86.5 + offwind: + DE: + 2020: 7.77 + 2025: 8 + 2030: 22.5 # 75 % Wind-auf-See Law + 2035: 22.5 + 2040: 22.5 + 2045: 22.5 + solar: + DE: + 2020: 59 # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, # assuming at least 1/3 of difference reached in 2025 - 2025: 101 - 2030: 161.25 # 75 % PV strategy - 2035: 161.25 - 2040: 161.25 - 2045: 161.25 + 2025: 101 + 2030: 161.25 # 75 % PV strategy + 2035: 161.25 + 2040: 161.25 + 2045: 161.25 # boundary condition of maximum volumes limits_volume_max: @@ -134,44 +134,44 @@ CurrentPolicies: 2020: 0.0047 2025: 0.0611 2030: 0.243 - 2035: 0.5199 - 2040: 0.74 - 2045: 0.8737 + 2035: 0.243 + 2040: 0.243 + 2045: 0.243 land_transport_fuel_cell_share: 2020: 0.004 2025: 0.0362 2030: 0.0667 - 2035: 0.0485 - 2040: 0.0252 - 2045: 0.0085 + 2035: 0.0667 + 2040: 0.0667 + 2045: 0.0667 land_transport_ice_share: 2020: 0.9913 2025: 0.9027 2030: 0.6903 - 2035: 0.4316 - 2040: 0.2348 - 2045: 0.1178 + 2035: 0.6903 + 2040: 0.6903 + 2045: 0.6903 shipping_hydrogen_share: 2020: 0.0 2025: 0.0 2030: 0.0238 - 2035: 0.0522 - 2040: 0.0802 - 2045: 0.1142 + 2035: 0.0238 + 2040: 0.0238 + 2045: 0.0238 shipping_methanol_share: 2020: 0.0 2025: 0.0 2030: 0.0 2035: 0.0 - 2040: -0.0 + 2040: 0.0 2045: 0.0 shipping_oil_share: 2020: 1.0 2025: 1.0 2030: 0.9762 - 2035: 0.9478 - 2040: 0.9198 - 2045: 0.8858 + 2035: 0.9762 + 2040: 0.9762 + 2045: 0.9762 KN2045_Bal_v4: # Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren @@ -191,17 +191,17 @@ KN2045_Bal_v4: 2020: DE: 0.728 2025: - DE: 0.571 + DE: 0.573 2030: - DE: 0.396 + DE: 0.401 2035: - DE: 0.258 + DE: 0.265 2040: - DE: 0.118 + DE: 0.135 2045: - DE: -0.028 + DE: -0.011 2050: - DE: -0.024 + DE: -0.017 # boundary condition of maximum volumes limits_volume_max: @@ -309,17 +309,17 @@ KN2045_Elec_v4: 2020: DE: 0.728 2025: - DE: 0.571 + DE: 0.573 2030: - DE: 0.396 + DE: 0.401 2035: - DE: 0.258 + DE: 0.265 2040: - DE: 0.118 + DE: 0.135 2045: - DE: -0.028 + DE: -0.011 2050: - DE: -0.024 + DE: -0.017 limits_volume_max: # constrain electricity import in TWh diff --git a/workflow/Snakefile b/workflow/Snakefile index 471734c3f..1662a14c3 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -239,6 +239,7 @@ rule build_scenarios: params: iiasa_scenario=config["iiasa_database"]["reference_scenario"], scenario_name=config["run"]["name"], + years=config["scenario"]["planning_horizons"], input: ariadne_database=resources("ariadne_database.csv"), scenario_yaml=config["run"]["scenarios"]["file"], diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 029b810e3..5967e6bfe 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -121,14 +121,18 @@ def write_to_scenario_yaml( } for scenario in scenarios: - for key in mapping_transport.keys(): + for key, sector_mapping in mapping_transport.items(): for year in transport_share.columns: - config[scenario]["sector"][mapping_transport[key]][year] = round(transport_share.loc[key, year].item(), 4) - for key in mapping_navigation.keys(): + target_year = 2030 if scenario == "CurrentPolicies" and int(year) > 2030 else year + config[scenario]["sector"][sector_mapping][year] = round(transport_share.loc[key, target_year].item(), 4) + for key, sector_mapping in mapping_navigation.items(): for year in naval_share.columns: - config[scenario]["sector"][mapping_navigation[key]][year] = round(naval_share.loc[key, year].item(), 4) + target_year = 2030 if scenario == "CurrentPolicies" and int(year) > 2030 else year + config[scenario]["sector"][sector_mapping][year] = round(naval_share.loc[key, target_year].item(), 4) + for year, target in ksg_target_fractions.items(): - config[scenario]["co2_budget_national"][year]["DE"] = target + target_value = float(ksg_target_fractions[2030]) if year > 2030 and scenario == "CurrentPolicies" else target + config[scenario]["co2_budget_national"][year]["DE"] = target_value # write back to yaml file yaml.dump(config, file_path) @@ -159,13 +163,12 @@ def write_to_scenario_yaml( "Deutschland"] ksg_target_fractions = get_ksg_targets(df.loc["REMIND-EU v1.1"]) - planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045, 2050] + planning_horizons = snakemake.params.years transport_share, naval_share = get_shares(df, planning_horizons) scenarios = snakemake.params.scenario_name filename = snakemake.input.scenario_yaml - write_to_scenario_yaml( - filename, scenarios, transport_share, naval_share, ksg_target_fractions) \ No newline at end of file + filename, scenarios, transport_share, naval_share, ksg_target_fractions) From 6144489117502f66d8afc909647a47cc196ce642 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 4 Apr 2024 14:45:14 +0200 Subject: [PATCH 237/669] add line that went missing --- workflow/scripts/modify_prenetwork.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 56999535f..7b75ecf60 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -17,6 +17,8 @@ lossy_bidirectional_links, ) +from add_electricity import load_costs + def first_technology_occurrence(n): """ From 9efc83315ece44809fe26678122ff61d8c6dc8f6 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 4 Apr 2024 15:09:31 +0200 Subject: [PATCH 238/669] Reapply "Merge remote-tracking branch 'origin/cost_data_2019' into ariadne-export" This reverts commit b76ab8893540ca9f56818d9283201f2c4f6344b5. --- ariadne-data/costs_2019-modifications.csv | 2 +- workflow/Snakefile | 9 +++++++-- workflow/scripts/modify_prenetwork.py | 1 + 3 files changed, 9 insertions(+), 3 deletions(-) diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv index cc1a4ae0f..36483e663 100644 --- a/ariadne-data/costs_2019-modifications.csv +++ b/ariadne-data/costs_2019-modifications.csv @@ -9,4 +9,4 @@ electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 -HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 \ No newline at end of file +HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 diff --git a/workflow/Snakefile b/workflow/Snakefile index 294db62c2..74909124b 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -122,7 +122,10 @@ use rule prepare_sector_network from pypsaeur with: rule modify_cost_data: input: costs=resources("costs_{planning_horizons}.csv"), - modifications="ariadne-data/costs_{planning_horizons}-modifications.csv", + modifications=lambda w: ( + "ariadne-data/costs_2019-modifications.csv" + if w.planning_horizons == "2020" and config["energy"]["energy_totals_year"] == 2019 + else "ariadne-data/costs_{planning_horizons}-modifications.csv") output: resources("modified-costs_{planning_horizons}.csv"), resources: @@ -135,11 +138,13 @@ rule modify_prenetwork: params: enable_kernnetz=config["wasserstoff_kernnetz"]["enable"], costs=config["costs"], + max_hours=config["electricity"]["max_hours"], + length_factor=config["lines"]["length_factor"], input: network=RESULTS + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", wkn="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", - costs=resources("costs_{planning_horizons}.csv"), + costs=resources("modified-costs_{planning_horizons}.csv"), output: network=RESULTS + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 7b75ecf60..04957fe7b 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -345,6 +345,7 @@ def transmission_costs_from_modified_cost_data(n, costs, length_factor=1.0): ll="v1.2", sector_opts="365H-T-H-B-I-A-solar+p3-linemaxext15", planning_horizons="2040", + run="KN2045_H2_v4" ) logger.info("Adding Ariadne-specific functionality") From 5925e9e53d19f63befbfa212e1ecbc698fbace33 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 8 Apr 2024 10:55:38 +0200 Subject: [PATCH 239/669] fossil fractions with the old oil bus --- workflow/scripts/export_ariadne_variables.py | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 479fd2cc5..7504338a5 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -16,7 +16,20 @@ TWh2PJ = 3.6 MWh2PJ = 3.6e-6 + def _get_oil_fossil_fraction(n, region, kwargs): + total_oil_supply = n.statistics.supply( + bus_carrier="oil", **kwargs + ).drop("Store").groupby("carrier").sum() + + oil_fossil_fraction = ( + total_oil_supply.get("oil") + / total_oil_supply.sum() + ) + + return oil_fossil_fraction + +def __get_oil_fossil_fraction(n, region, kwargs): if "DE" in region: total_oil_supply = n.statistics.supply( bus_carrier="oil", **kwargs From 1d7da33c5420a31f52a1f09b8e722c3e1ca043a6 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 10 Apr 2024 09:29:09 +0200 Subject: [PATCH 240/669] add co2 price to hydrocarbons --- workflow/scripts/export_ariadne_variables.py | 131 +++++++++++++++++-- 1 file changed, 120 insertions(+), 11 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 7504338a5..19dd71a54 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -55,6 +55,47 @@ def __get_oil_fossil_fraction(n, region, kwargs): return oil_fossil_fraction +# how to handle pipelines? +# how to account for the region? +def _get_gas_fossil_fraction(n, region, kwargs): + total_gas_supply = n.statistics.supply( + bus_carrier="gas", **kwargs + ).drop("Store").groupby("carrier").sum() + + drops = ["gas pipeline", "gas pipeline new"] + for d in drops: + if d in total_gas_supply.index: + total_gas_supply.drop(d) + + gas_fossil_fraction = ( + total_gas_supply.get("gas") + / total_gas_supply.sum() + ) + + return gas_fossil_fraction + +def _get_h2_fossil_fraction(n, region, kwargs): + total_h2_supply = n.statistics.supply( + bus_carrier="H2", **kwargs + ).drop("Store").groupby("carrier").sum() + + drops = ["H2 pipeline", "H2 pipeline (Kernnetz)"] + for d in drops: + if d in total_h2_supply.index: + total_h2_supply.drop(d) + + h2_fossil_fraction_c = ( + total_h2_supply.get(["SMR", "SMR CC"]) + / total_h2_supply.sum() + ) + + h2_fossil_fraction = \ + h2_fossil_fraction_c["SMR"] * n.links[n.links.carrier == "SMR"].efficiency.mean() \ + + h2_fossil_fraction_c["SMR CC"] * n.links[n.links.carrier == "SMR CC"].efficiency.mean() + + return h2_fossil_fraction + + def _get_t_sum(df, df_t, carrier, region, snapshot_weightings, port): if type(carrier) == list: return sum( @@ -1787,13 +1828,41 @@ def get_nodal_flows(n, bus_carrier, region, query='index == index or index != in bus_carrier=bus_carrier, groupby=groupby, aggregate_time=False, - ).filter( + ).query(query + ).groupby("bus" + ).sum().T.filter( like=region, - axis=0, - ).query(query).groupby("bus").sum().T + axis=1, + ) - return result + return result +def get_nodal_supply(n, bus_carrier, query='index == index or index != index'): + """ + Get the nodal flows for a given bus carrier and region. + + Parameters: + n (pypsa.Network): The PyPSA network object. + bus_carrier (str): The bus carrier for which to retrieve the nodal flows. + region (str): The region for which to retrieve the nodal flows. + query (str, optional): A query string to filter the nodal flows. Defaults to 'index == index or index != index'. + + Returns: + pandas.DataFrame: The nodal flows for the specified bus carrier and region. + """ + + groupby = n.statistics.groupers.get_name_bus_and_carrier + + result = n.statistics.supply( + bus_carrier=bus_carrier, + groupby=groupby, + aggregate_time=False, + ).query(query + ).groupby("bus" + ).sum().T + + return result + def price_load(n, load_carrier, region): """ @@ -1948,6 +2017,21 @@ def get_prices(n, region): var = pd.Series() + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } + + # co2 additions + co2_price = -n.global_constraints.loc["CO2Limit", "mu"] - n.global_constraints.loc["co2_limit-DE", "mu"] + # specific emissions in tons CO2/MWh (https://www.volker-quaschning.de/datserv/CO2-spez/index_e.php) + specific_emisisons = { + "oil" : 266.5e-3, + "gas" : 200.8e-3, + "hard coal" : 338.2e-3, + "lignite" : 398.7e-3, + } + nodal_flows_lv = get_nodal_flows( n, "low voltage", region, query = "not carrier.str.contains('agriculture')" @@ -1972,14 +2056,25 @@ def get_prices(n, region): # Price|Primary Energy|Coal # is coal also lignite? -> yes according to michas code (coal for industry is already included as it withdraws from coal bus) - nf_coal = get_nodal_flows(n, "coal", region) + nf_coal = get_nodal_flows(n, "coal", "EU") nodal_prices_coal = n.buses_t.marginal_price[nf_coal.columns] coal_price = nf_coal.mul(nodal_prices_coal).values.sum() / nf_coal.values.sum() if nf_coal.values.sum() > 0 else np.nan - nf_lignite = get_nodal_flows(n, "lignite", region) + nf_lignite = get_nodal_flows(n, "lignite", "EU") nodal_prices_lignite = n.buses_t.marginal_price[nf_lignite.columns] lignite_price = nf_lignite.mul(nodal_prices_lignite).values.sum() / nf_lignite.values.sum() if nf_lignite.values.sum() > 0 else np.nan + coal_fraction = nf_coal.values.sum() / (nf_coal.values.sum() + nf_lignite.values.sum()) + lignite_fraction = nf_lignite.values.sum() / (nf_coal.values.sum() + nf_lignite.values.sum()) + co2_add_coal = \ + coal_fraction * specific_emisisons["hard coal"] * co2_price \ + + lignite_fraction * specific_emisisons["lignite"] * co2_price + + + + + + var["Price|Primary Energy|Coal"] = \ get_weighted_costs([coal_price, lignite_price], [nf_coal.values.sum(), nf_lignite.values.sum()])/ MWh2GJ @@ -1987,15 +2082,25 @@ def get_prices(n, region): nodal_flows_gas = get_nodal_flows(n, "gas", region) nodal_prices_gas = n.buses_t.marginal_price[nodal_flows_gas.columns] + # co2 part + gas_fossil_fraction = _get_gas_fossil_fraction(n, region, kwargs) + co2_add_gas = gas_fossil_fraction * specific_emisisons["gas"] * co2_price + + var["Price|Primary Energy|Gas"] = \ nodal_flows_gas.mul(nodal_prices_gas).values.sum() / nodal_flows_gas.values.sum() / MWh2GJ # Price|Primary Energy|Oil - nodal_flows_oil = get_nodal_flows(n, "oil", region) + # if oil bus is unravelled change "EU" into region + nodal_flows_oil = get_nodal_flows(n, "oil", "EU") nodal_prices_oil = n.buses_t.marginal_price[nodal_flows_oil.columns] + # co2 part + oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) + co2_add_oil = oil_fossil_fraction * specific_emisisons["oil"] * co2_price + var["Price|Primary Energy|Oil"] = \ - nodal_flows_oil.mul(nodal_prices_oil).values.sum() / nodal_flows_oil.values.sum() /MWh2GJ + (nodal_flows_oil.mul(nodal_prices_oil).values.sum() / nodal_flows_oil.values.sum() + co2_add_oil) /MWh2GJ # Price|Secondary Energy|Electricity # electricity price at the secondary level, i.e. for large scale consumers (e.g. aluminum production). Prices should include the effect of carbon prices. @@ -2027,9 +2132,12 @@ def get_prices(n, region): n, "H2", region ) nodal_prices_h2 = n.buses_t.marginal_price[nodal_flows_h2.columns] + + h2_fossil_fraction = _get_h2_fossil_fraction(n, region, kwargs) + co2_add_h2 = h2_fossil_fraction * specific_emisisons["gas"] * co2_price var["Price|Secondary Energy|Hydrogen"] = \ - nodal_flows_h2.mul(nodal_prices_h2).values.sum() / nodal_flows_h2.values.sum() /MWh2GJ + (nodal_flows_h2.mul(nodal_prices_h2).values.sum() / nodal_flows_h2.values.sum() + co2_add_h2) /MWh2GJ # From PIK plots # "Price|Final Energy|Residential|Hydrogen" = final energy consumption by the residential sector of hydrogen @@ -2409,7 +2517,7 @@ def get_data( ll="v1.2", sector_opts="None", planning_horizons="2050", - run="KN2045_H2_v4" + run="KN2045_Bal_v4" ) @@ -2478,4 +2586,5 @@ def get_data( kwargs = { 'groupby': n.statistics.groupers.get_name_bus_and_carrier, 'nice_names': False, - } \ No newline at end of file + } + From 254e51c03c1e3d2d3c522b65d9da61c2cb73becb Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 10 Apr 2024 13:56:39 +0200 Subject: [PATCH 241/669] use get_rdir in Snakefile --- workflow/Snakefile | 14 ++------------ workflow/submodules/pypsa-eur | 2 +- 2 files changed, 3 insertions(+), 13 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 1662a14c3..1ff3cf45c 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -7,7 +7,7 @@ import yaml, sys sys.path.append("workflow/submodules/pypsa-eur/scripts") -from _helpers import path_provider +from _helpers import path_provider, get_rdir min_version("8.5") @@ -16,17 +16,7 @@ configfile: "config/config.yaml" configfile: "config/config.personal.yaml" run = config["run"] -scenarios = run.get("scenarios", {}) -if run["name"] and scenarios.get("enable"): - fn = Path(scenarios["file"]) - scenarios = yaml.safe_load(fn.read_text()) - RDIR = "{run}/" - if run["name"] == "all": - config["run"]["name"] = list(scenarios.keys()) -elif run["name"]: - RDIR = run["name"] + "/" -else: - RDIR = "" +RDIR = get_rdir(run) logs = path_provider("logs/", RDIR, run["shared_resources"]) benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"]) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 1a3181def..48929e8c0 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 1a3181def294dd1f3f75343aea2b93d31c5b59ff +Subproject commit 48929e8c07510335a5dca7dce7e182a6f5d77695 From c531f6268a761447433be6c037fd4b0120f98bc5 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 10 Apr 2024 14:26:28 +0200 Subject: [PATCH 242/669] create global variable for scenarios --- workflow/Snakefile | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 1ff3cf45c..9a4f50848 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -7,7 +7,7 @@ import yaml, sys sys.path.append("workflow/submodules/pypsa-eur/scripts") -from _helpers import path_provider, get_rdir +from _helpers import path_provider, get_scenarios, get_rdir min_version("8.5") @@ -16,6 +16,7 @@ configfile: "config/config.yaml" configfile: "config/config.personal.yaml" run = config["run"] +scenarios = get_scenarios(run) # global variable RDIR = get_rdir(run) logs = path_provider("logs/", RDIR, run["shared_resources"]) From ee8e4f112239afea24e491dd50266aebd14ae723 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 10 Apr 2024 16:21:21 +0200 Subject: [PATCH 243/669] adding scenarios_automated.yaml and scenarios_manual.yaml file and adaption of the build_scenarios rule --- config/scenarios_automated.yaml | 0 config/scenarios_manual.yaml | 177 ++++++++++++++++++++++++++++ workflow/Snakefile | 6 +- workflow/scripts/build_scenarios.py | 86 ++++++++------ 4 files changed, 227 insertions(+), 42 deletions(-) create mode 100644 config/scenarios_automated.yaml create mode 100644 config/scenarios_manual.yaml diff --git a/config/scenarios_automated.yaml b/config/scenarios_automated.yaml new file mode 100644 index 000000000..e69de29bb diff --git a/config/scenarios_manual.yaml b/config/scenarios_manual.yaml new file mode 100644 index 000000000..0b1e2bf1e --- /dev/null +++ b/config/scenarios_manual.yaml @@ -0,0 +1,177 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT + +KN2045_Bal_v4: +# Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren +# Breites Energieträgerportfolio in der Endenergie (Strom, Wasserstoff, synthetische Kraftstoffe) +# Ausbau der erneuerbare Stromerzeugung erreicht politisch gesetzte Ziele +# Importe erneuerbar erzeugter Energien auf mittlerem Niveau +# dient als Referenzszenario in der Familie der Ariadne-Szenarien + + clustering: + temporal: + resolution_sector: 365H + + iiasa_database: + reference_scenario: 8Gt_Bal_v3 + + # boundary condition of maximum volumes + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 105 + 2040: 200 + 2045: 300 + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 +KN2045_Elec_v4: +# Fokus auf dem Hochlauf von Technologien zur direkten Elektrifizierung der Sektoren +# Strom als präferierter Energieträger in der Endenergie, andere Energieträger ergänzend, wo nötig (Wasserstoff, synthetische Kraftstoffe) +# Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele +# Importe erneuerbar erzeugter Energien auf mittlerem Niveau + + clustering: + temporal: + resolution_sector: 365H + + iiasa_database: + reference_scenario: 8Gt_Elec_v3 + + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 50 + 2040: 100 + 2045: 150 + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 95 + 2040: 145 + 2045: 200 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 70 + 2040: 130 + 2045: 200 + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 10 + 2035: 90 + 2040: 170 + 2045: 250 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 +KN2045_H2_v4: +# Fokus stärker auf dem Hochlauf von Technologien zur indirekten Elektrifizierung der Sektoren +# Verstärkter Einsatz von Wasserstoff und synthetischen Kraftstoffen - erneuerbar erzeugt und auch importiert +# Direkte Elektrifizierung spielt dennoch wesentliche Rolle bei der Dekarbonisierung der Endenergie +# Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele + + clustering: + temporal: + resolution_sector: 365H + + iiasa_database: + reference_scenario: 8Gt_H2_v3 + + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 30 + 2040: 70 + 2045: 100 # scenario guidelines + # constrain hydrogen import in TWh + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 45 # scenario guidelines + 2035: 155 + 2040: 265 + 2045: 400 # scenario guidelines + # import of h2 derivatives in TWh + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 # scenario guidelines + 2035: 140 + 2040: 270 + 2045: 400 # scenario guidelines + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 # scenario guidelines + 2035: 160 + 2040: 275 + 2045: 400 # scenario guidelines + + limits_volume_min: + electrolysis: + DE: + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 200 \ No newline at end of file diff --git a/workflow/Snakefile b/workflow/Snakefile index e59047176..c0f6369ba 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -176,15 +176,12 @@ rule modify_existing_heating: script: "scripts/modify_existing_heating.py" - - use rule build_existing_heating_distribution from pypsaeur with: input: **{k: v for k, v in rules.build_existing_heating_distribution.input.items() if k != "existing_heating"}, existing_heating=resources("existing_heating.csv"), - rule modify_energy_totals: input: ariadne=resources("ariadne_database.csv"), @@ -237,9 +234,12 @@ if config["wasserstoff_kernnetz"]["enable"]: rule build_scenarios: params: + iiasa_scenario=config["iiasa_database"]["reference_scenario"], scenario_name=config["run"]["name"], input: ariadne_database=resources("ariadne_database.csv"), + scenario_yaml="config/scenarios_manual.yaml", + output: scenario_yaml=config["run"]["scenarios"]["file"], log: "logs/build_scenarios.log" diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index d7ad21a93..e7d95dcdf 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -103,46 +103,53 @@ def get_ksg_targets(df): def write_to_scenario_yaml( - output, scenario, df): + input, output, scenarios, df): # read in yaml file yaml = ruamel.yaml.YAML() - file_path = Path(output) + file_path = Path(input) config = yaml.load(file_path) - reference_scenario = config[scenario]["iiasa_database"]["reference_scenario"] - - ksg_target_fractions = get_ksg_targets( - df.loc["REMIND-EU v1.1", reference_scenario] - ) - - planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] # for 2050 we still need data - - transport_share, naval_share = get_shares( - df.loc[:, reference_scenario, :], - planning_horizons, - ) - - mapping_transport = { - 'PHEV': 'land_transport_fuel_cell_share', - 'BEV': 'land_transport_electric_share', - 'ICE': 'land_transport_ice_share' - } - mapping_navigation = { - 'H2': 'shipping_hydrogen_share', - 'MeOH': 'shipping_methanol_share', - 'Oil': 'shipping_oil_share', - } - - for key in mapping_transport.keys(): - for year in transport_share.columns: - config[scenario]["sector"][mapping_transport[key]][year] = round(transport_share.loc[key, year].item(), 4) - for key in mapping_navigation.keys(): - for year in naval_share.columns: - config[scenario]["sector"][mapping_navigation[key]][year] = round(naval_share.loc[key, year].item(), 4) - for year, target in ksg_target_fractions.items(): - config[scenario]["co2_budget_national"][year]["DE"] = target + for scenario in scenarios: + reference_scenario = config[scenario]["iiasa_database"]["reference_scenario"] + + ksg_target_fractions = get_ksg_targets( + df.loc["REMIND-EU v1.1", reference_scenario] + ) + + planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] # for 2050 we still need data + + transport_share, naval_share = get_shares( + df.loc[:, reference_scenario, :], + planning_horizons, + ) + + mapping_transport = { + 'PHEV': 'land_transport_fuel_cell_share', + 'BEV': 'land_transport_electric_share', + 'ICE': 'land_transport_ice_share' + } + mapping_navigation = { + 'H2': 'shipping_hydrogen_share', + 'MeOH': 'shipping_methanol_share', + 'Oil': 'shipping_oil_share', + } + # TODO: create new keys to add to the yaml file + # is deleted every time so I don't need to check if it already exists + config[scenario]["sector"] = {} + for key in mapping_transport.keys(): + config[scenario]["sector"][mapping_transport[key]] = {} + for year in transport_share.columns: + config[scenario]["sector"][mapping_transport[key]][year] = round(transport_share.loc[key, year].item(), 4) + for key in mapping_navigation.keys(): + config[scenario]["sector"][mapping_navigation[key]] = {} + for year in naval_share.columns: + config[scenario]["sector"][mapping_navigation[key]][year] = round(naval_share.loc[key, year].item(), 4) + config[scenario]["co2_budget_national"] = {} + for year, target in ksg_target_fractions.items(): + config[scenario]["co2_budget_national"][year] = {} + config[scenario]["co2_budget_national"][year]["DE"] = target # write back to yaml file - yaml.dump(config, file_path) + yaml.dump(config, Path(output)) @@ -171,8 +178,9 @@ def write_to_scenario_yaml( scenarios = snakemake.params.scenario_name - filename = snakemake.input.scenario_yaml + input = snakemake.input.scenario_yaml + output = snakemake.output.scenario_yaml - for scenario in scenarios: - write_to_scenario_yaml( - filename, scenario, df) \ No newline at end of file + # for scenario in scenarios: + write_to_scenario_yaml( + input, output, scenarios, df) From 34ceedae20f1bf8a37f5232c4ab73cb91b1f8c8a Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 10 Apr 2024 16:42:55 +0200 Subject: [PATCH 244/669] changing to name convention scenario.xxx.yaml --- .gitignore | 1 + config/config.yaml | 1 + ...utomated.yaml => scenarios.automated.yaml} | 0 ...rios_manual.yaml => scenarios.manual.yaml} | 0 config/scenarios.yaml | 359 ------------------ workflow/Snakefile | 2 +- 6 files changed, 3 insertions(+), 360 deletions(-) rename config/{scenarios_automated.yaml => scenarios.automated.yaml} (100%) rename config/{scenarios_manual.yaml => scenarios.manual.yaml} (100%) delete mode 100644 config/scenarios.yaml diff --git a/.gitignore b/.gitignore index a8e6e0122..04a93a923 100644 --- a/.gitignore +++ b/.gitignore @@ -12,6 +12,7 @@ dconf results/ resources/ data/ +config/scenarios_automated.yaml ## Core latex/pdflatex auxiliary files: *.aux diff --git a/config/config.yaml b/config/config.yaml index 836303022..a5dfd8b04 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -16,6 +16,7 @@ run: enable: true shared_resources: true #stops recalculating disable_progressbar: true + file: config/scenarios.automated.yaml iiasa_database: db_name: ariadne_intern diff --git a/config/scenarios_automated.yaml b/config/scenarios.automated.yaml similarity index 100% rename from config/scenarios_automated.yaml rename to config/scenarios.automated.yaml diff --git a/config/scenarios_manual.yaml b/config/scenarios.manual.yaml similarity index 100% rename from config/scenarios_manual.yaml rename to config/scenarios.manual.yaml diff --git a/config/scenarios.yaml b/config/scenarios.yaml deleted file mode 100644 index 5ad1f500b..000000000 --- a/config/scenarios.yaml +++ /dev/null @@ -1,359 +0,0 @@ -# -*- coding: utf-8 -*- -# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors -# -# SPDX-License-Identifier: MIT - -KN2045_Bal_v4: -# Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren -# Breites Energieträgerportfolio in der Endenergie (Strom, Wasserstoff, synthetische Kraftstoffe) -# Ausbau der erneuerbare Stromerzeugung erreicht politisch gesetzte Ziele -# Importe erneuerbar erzeugter Energien auf mittlerem Niveau -# dient als Referenzszenario in der Familie der Ariadne-Szenarien - - clustering: - temporal: - resolution_sector: 365H - - iiasa_database: - reference_scenario: 8Gt_Bal_v3 - - co2_budget_national: - 2020: - DE: 0.728 - 2025: - DE: 0.573 - 2030: - DE: 0.401 - 2035: - DE: 0.265 - 2040: - DE: 0.135 - 2045: - DE: -0.011 - 2050: - DE: -0.017 - - # boundary condition of maximum volumes - limits_volume_max: - # constrain electricity import in TWh - electricity_import: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 40 - 2040: 80 - 2045: 125 - electrolysis: - DE: - 2020: 0 - 2025: 5 - 2030: 45 - 2035: 130 - 2040: 215 - 2045: 300 - h2_derivate_import: - DE: - 2020: 0 - 2025: 0 - 2030: 10 - 2035: 105 - 2040: 200 - 2045: 300 - h2_import: - DE: - 2020: 0 - 2025: 5 - 2030: 15 - 2035: 115 - 2040: 220 - 2045: 325 - limits_volume_min: - electrolysis: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 0 - 2040: 0 - 2045: 0 - # sector boundary conditions - sector: - land_transport_electric_share: - 2020: 0.0047 - 2025: 0.0611 - 2030: 0.243 - 2035: 0.5199 - 2040: 0.74 - 2045: 0.8737 - land_transport_fuel_cell_share: - 2020: 0.004 - 2025: 0.0362 - 2030: 0.0667 - 2035: 0.0485 - 2040: 0.0252 - 2045: 0.0085 - land_transport_ice_share: - 2020: 0.9913 - 2025: 0.9027 - 2030: 0.6903 - 2035: 0.4316 - 2040: 0.2348 - 2045: 0.1178 - shipping_hydrogen_share: - 2020: 0.0 - 2025: 0.0 - 2030: 0.0238 - 2035: 0.0522 - 2040: 0.0802 - 2045: 0.1142 - shipping_methanol_share: - 2020: 0.0 - 2025: 0.0 - 2030: 0.0 - 2035: 0.0 - 2040: -0.0 - 2045: 0.0 - shipping_oil_share: - 2020: 1.0 - 2025: 1.0 - 2030: 0.9762 - 2035: 0.9478 - 2040: 0.9198 - 2045: 0.8858 - -KN2045_Elec_v4: -# Fokus auf dem Hochlauf von Technologien zur direkten Elektrifizierung der Sektoren -# Strom als präferierter Energieträger in der Endenergie, andere Energieträger ergänzend, wo nötig (Wasserstoff, synthetische Kraftstoffe) -# Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele -# Importe erneuerbar erzeugter Energien auf mittlerem Niveau - - clustering: - temporal: - resolution_sector: 365H - - iiasa_database: - reference_scenario: 8Gt_Elec_v3 - - co2_budget_national: - 2020: - DE: 0.728 - 2025: - DE: 0.573 - 2030: - DE: 0.4 - 2035: - DE: 0.264 - 2040: - DE: 0.13 - 2045: - DE: -0.02 - 2050: - DE: -0.017 - - limits_volume_max: - # constrain electricity import in TWh - electricity_import: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 50 - 2040: 100 - 2045: 150 - electrolysis: - DE: - 2020: 0 - 2025: 5 - 2030: 45 - 2035: 95 - 2040: 145 - 2045: 200 - h2_derivate_import: - DE: - 2020: 0 - 2025: 0 - 2030: 10 - 2035: 70 - 2040: 130 - 2045: 200 - h2_import: - DE: - 2020: 0 - 2025: 5 - 2030: 10 - 2035: 90 - 2040: 170 - 2045: 250 - limits_volume_min: - electrolysis: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 0 - 2040: 0 - 2045: 0 - - sector: - land_transport_electric_share: - 2020: 0.0047 - 2025: 0.0666 - 2030: 0.2905 - 2035: 0.5635 - 2040: 0.7708 - 2045: 0.8898 - land_transport_fuel_cell_share: - 2020: 0.004 - 2025: 0.0264 - 2030: 0.032 - 2035: 0.0247 - 2040: 0.0123 - 2045: 0.004 - land_transport_ice_share: - 2020: 0.9913 - 2025: 0.907 - 2030: 0.6775 - 2035: 0.4118 - 2040: 0.2168 - 2045: 0.1061 - shipping_hydrogen_share: - 2020: 0.0 - 2025: 0.0 - 2030: 0.0238 - 2035: 0.0547 - 2040: 0.0865 - 2045: 0.1214 - shipping_methanol_share: - 2020: 0.0 - 2025: 0.0 - 2030: 0.0 - 2035: 0.0 - 2040: 0.0 - 2045: 0.0 - shipping_oil_share: - 2020: 1.0 - 2025: 1.0 - 2030: 0.9762 - 2035: 0.9453 - 2040: 0.9135 - 2045: 0.8786 - -KN2045_H2_v4: -# Fokus stärker auf dem Hochlauf von Technologien zur indirekten Elektrifizierung der Sektoren -# Verstärkter Einsatz von Wasserstoff und synthetischen Kraftstoffen - erneuerbar erzeugt und auch importiert -# Direkte Elektrifizierung spielt dennoch wesentliche Rolle bei der Dekarbonisierung der Endenergie -# Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele - - clustering: - temporal: - resolution_sector: 365H - - iiasa_database: - reference_scenario: 8Gt_H2_v3 - - co2_budget_national: - 2020: - DE: 0.728 - 2025: - DE: 0.573 - 2030: - DE: 0.4 - 2035: - DE: 0.264 - 2040: - DE: 0.134 - 2045: - DE: -0.02 - 2050: - DE: -0.017 - - limits_volume_max: - # constrain electricity import in TWh - electricity_import: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 30 - 2040: 70 - 2045: 100 # scenario guidelines - # constrain hydrogen import in TWh - h2_import: - DE: - 2020: 0 - 2025: 5 - 2030: 45 # scenario guidelines - 2035: 155 - 2040: 265 - 2045: 400 # scenario guidelines - # import of h2 derivatives in TWh - h2_derivate_import: - DE: - 2020: 0 - 2025: 0 - 2030: 10 # scenario guidelines - 2035: 140 - 2040: 270 - 2045: 400 # scenario guidelines - electrolysis: - DE: - 2020: 0 - 2025: 5 - 2030: 45 # scenario guidelines - 2035: 160 - 2040: 275 - 2045: 400 # scenario guidelines - - limits_volume_min: - electrolysis: - DE: - 2025: 0 - 2030: 0 - 2035: 0 - 2040: 0 - 2045: 200 - - sector: - land_transport_electric_share: - 2020: 0.0047 - 2025: 0.0611 - 2030: 0.243 - 2035: 0.5199 - 2040: 0.74 - 2045: 0.8737 - land_transport_fuel_cell_share: - 2020: 0.004 - 2025: 0.0362 - 2030: 0.0667 - 2035: 0.0485 - 2040: 0.0252 - 2045: 0.0085 - land_transport_ice_share: - 2020: 0.9913 - 2025: 0.9027 - 2030: 0.6903 - 2035: 0.4316 - 2040: 0.2348 - 2045: 0.1178 - shipping_hydrogen_share: - 2020: 0.0 - 2025: 0.0 - 2030: 0.0247 - 2035: 0.0549 - 2040: 0.0856 - 2045: 0.1173 - shipping_methanol_share: - 2020: 0.0 - 2025: 0.0 - 2030: 0.0 - 2035: 0.0 - 2040: -0.0 - 2045: 0.0 - shipping_oil_share: - 2020: 1.0 - 2025: 1.0 - 2030: 0.9753 - 2035: 0.9451 - 2040: 0.9144 - 2045: 0.8827 diff --git a/workflow/Snakefile b/workflow/Snakefile index c0f6369ba..ac4e5e9fa 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -238,7 +238,7 @@ rule build_scenarios: scenario_name=config["run"]["name"], input: ariadne_database=resources("ariadne_database.csv"), - scenario_yaml="config/scenarios_manual.yaml", + scenario_yaml="config/scenarios.manual.yaml", output: scenario_yaml=config["run"]["scenarios"]["file"], log: From 76d36d3849e03210dd65f0db348af99fd1368492 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 10 Apr 2024 17:41:08 +0200 Subject: [PATCH 245/669] adapting the README --- README.md | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/README.md b/README.md index ac7ff60ba..e379530b9 100644 --- a/README.md +++ b/README.md @@ -55,6 +55,13 @@ Details on Python environment variables in VSCode can be found here: https://cod ## Run the analysis +Before running any scenarios, the rule `build_scenarios` must be executed. This will write the file `config/scenarios_automated.yaml` which includes transport shares and ksg goals from the iiasa database as well as the information from the file `config/scenarios_manual.yaml`. + + snakemake -call build_scenarios -f + +Note that the hierarchy of scenario files is the following: `scenarios_automated.yaml` > `config.yaml` > `config.default.yaml` +Changes in the file `scenarios_manual.yaml` are only taken into account if the rule `build_scenarios` is executed. + For the first run open config.yaml and set enable: From ee11c4c381ada59d92e5f6a15e8d0420bc34ac6a Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 11 Apr 2024 09:16:20 +0200 Subject: [PATCH 246/669] change name convention in README.md --- README.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index e379530b9..20fe3ed74 100644 --- a/README.md +++ b/README.md @@ -55,12 +55,12 @@ Details on Python environment variables in VSCode can be found here: https://cod ## Run the analysis -Before running any scenarios, the rule `build_scenarios` must be executed. This will write the file `config/scenarios_automated.yaml` which includes transport shares and ksg goals from the iiasa database as well as the information from the file `config/scenarios_manual.yaml`. +Before running any scenarios, the rule `build_scenarios` must be executed. This will write the file `config/scenarios.automated.yaml` which includes transport shares and ksg goals from the iiasa database as well as the information from the file `config/scenarios.manual.yaml`. snakemake -call build_scenarios -f -Note that the hierarchy of scenario files is the following: `scenarios_automated.yaml` > `config.yaml` > `config.default.yaml` -Changes in the file `scenarios_manual.yaml` are only taken into account if the rule `build_scenarios` is executed. +Note that the hierarchy of scenario files is the following: `scenarios.automated.yaml` > `config.yaml` > `config.default.yaml` +Changes in the file `scenarios.manual.yaml` are only taken into account if the rule `build_scenarios` is executed. For the first run open config.yaml and set From 8b14a001df927d5893008bae8e1d9f0f12b9733b Mon Sep 17 00:00:00 2001 From: Micha Date: Thu, 11 Apr 2024 13:28:33 +0200 Subject: [PATCH 247/669] change name convention in .gitignore --- .gitignore | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.gitignore b/.gitignore index 04a93a923..4cc792a6f 100644 --- a/.gitignore +++ b/.gitignore @@ -12,7 +12,7 @@ dconf results/ resources/ data/ -config/scenarios_automated.yaml +config/scenarios.automated.yaml ## Core latex/pdflatex auxiliary files: *.aux @@ -272,4 +272,4 @@ zenodo.org globalenergymonitor.org/wp-content/uploads/2023/07/Europe-Gas-Tracker-2023-03-v3.xlsx fnb-gas.de raw.githubusercontent.com -cutouts \ No newline at end of file +cutouts From f738c1479b34a647b3eac6282c1703dc6b831dc2 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 11 Apr 2024 15:10:17 +0200 Subject: [PATCH 248/669] avoid using snakemake.config in any rules --- .gitignore | 2 +- config/config.yaml | 2 +- workflow/Snakefile | 98 +++++++++++-------- .../scripts/build_wasserstoff_kernnetz.py | 2 +- .../scripts/cluster_wasserstoff_kernnetz.py | 2 +- workflow/scripts/modify_existing_heating.py | 2 +- workflow/scripts/modify_prenetwork.py | 24 ++--- 7 files changed, 74 insertions(+), 58 deletions(-) diff --git a/.gitignore b/.gitignore index 04a93a923..b7e50cd6c 100644 --- a/.gitignore +++ b/.gitignore @@ -12,7 +12,7 @@ dconf results/ resources/ data/ -config/scenarios_automated.yaml +config/scenarios.automated.yaml ## Core latex/pdflatex auxiliary files: *.aux diff --git a/config/config.yaml b/config/config.yaml index a5dfd8b04..4c108db61 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -14,9 +14,9 @@ run: # - KN2045minus_SupplyFocus scenarios: enable: true + file: config/scenarios.automated.yaml shared_resources: true #stops recalculating disable_progressbar: true - file: config/scenarios.automated.yaml iiasa_database: db_name: ariadne_intern diff --git a/workflow/Snakefile b/workflow/Snakefile index ac4e5e9fa..60d682eff 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -3,6 +3,9 @@ # SPDX-License-Identifier: MIT from snakemake.utils import min_version + +include: "submodules/pypsa-eur/rules/common.smk" + import yaml, sys sys.path.append("workflow/submodules/pypsa-eur/scripts") @@ -86,8 +89,8 @@ rule clean: rule retrieve_ariadne_database: params: - leitmodelle=config["iiasa_database"]["leitmodelle"], - scenarios=config["iiasa_database"]["scenarios"], + leitmodelle=config_provider("iiasa_database", "leitmodelle"), + scenarios=config_provider("iiasa_database", "scenarios"), iiasa_usr=os.environ["IIASA_USERNAME"], iiasa_pwd=os.environ["IIASA_PASSWORD"] output: @@ -136,14 +139,23 @@ rule modify_cost_data: rule modify_prenetwork: params: - enable_kernnetz=config["wasserstoff_kernnetz"]["enable"], - costs=config["costs"], - max_hours=config["electricity"]["max_hours"], - length_factor=config["lines"]["length_factor"], + enable_kernnetz=config_provider("wasserstoff_kernnetz", "enable"), + costs=config_provider("costs"), + max_hours=config_provider("electricity", "max_hours"), + length_factor=config_provider("lines", "length_factor"), + scenario=config_provider("iiasa_database", "reference_scenario"), + technology_occurrence=config_provider("first_technology_occurrence"), + fossil_boiler_ban=config_provider("new_decentral_fossil_boiler_ban"), + coal_ban=config_provider("coal_generation_ban"), + nuclear_ban=config_provider("nuclear_generation_ban"), + planning_horizons=config_provider("scenario", "planning_horizons"), + H2_transmission_efficiency=config_provider("sector", "transmission_efficiency", "H2 pipeline"), + H2_retrofit=config_provider("sector", "H2_retrofit"), + H2_retrofit_capacity_per_CH4=config_provider("sector", "H2_retrofit_capacity_per_CH4"), input: network=RESULTS + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", - wkn="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", + wkn=resources("wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv") if config_provider("wasserstoff_kernnetz", "enable") else [], costs=resources("modified-costs_{planning_horizons}.csv"), output: network=RESULTS @@ -166,6 +178,8 @@ use rule solve_sector_network_myopic from pypsaeur with: rule modify_existing_heating: + params: + iiasa_reference_scenario=config_provider("iiasa_database", "reference_scenario"), input: ariadne=resources("ariadne_database.csv"), existing_heating="data/existing_infrastructure/existing_heating_raw.csv", @@ -199,43 +213,45 @@ use rule build_population_weighted_energy_totals from pypsaeur with: **{k: v for k, v in rules.build_population_weighted_energy_totals.input.items() if k != "energy_totals"}, energy_totals=resources("energy_totals-modified.csv"), -if config["wasserstoff_kernnetz"]["enable"]: - - rule build_wasserstoff_kernnetz: - input: - wasserstoff_kernnetz_1=storage( - "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage2_Leitungsmeldungen_weiterer_potenzieller_Wasserstoffnetzbetreiber_Veroeffentlichung_final.xlsx", - keep_local=True, - ), - wasserstoff_kernnetz_2=storage( - "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage3_FNB_Massnahmenliste_Veroeffentlichung_final.xlsx", - keep_local=True, - ), - gadm=storage( - "https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_DEU_1.json.zip", - keep_local=True, - ), - locations="ariadne-data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", - output: - cleaned_wasserstoff_kernnetz="resources/wasserstoff_kernnetz.csv", - script: - "scripts/build_wasserstoff_kernnetz.py" - - - rule cluster_wasserstoff_kernnetz: - input: - cleaned_h2_network="resources/wasserstoff_kernnetz.csv", - regions_onshore="resources/regions_onshore_elec_s{simpl}_{clusters}.geojson", - regions_offshore="resources/regions_offshore_elec_s{simpl}_{clusters}.geojson", - output: - clustered_h2_network="resources/wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv", - script: - "scripts/cluster_wasserstoff_kernnetz.py" + +rule build_wasserstoff_kernnetz: + params: + reload_locations=config_provider("wasserstoff_kernnetz", "reload_locations"), + input: + wasserstoff_kernnetz_1=storage( + "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage2_Leitungsmeldungen_weiterer_potenzieller_Wasserstoffnetzbetreiber_Veroeffentlichung_final.xlsx", + keep_local=True, + ), + wasserstoff_kernnetz_2=storage( + "https://fnb-gas.de/wp-content/uploads/2023/11/2023_11_15_Anlage3_FNB_Massnahmenliste_Veroeffentlichung_final.xlsx", + keep_local=True, + ), + gadm=storage( + "https://geodata.ucdavis.edu/gadm/gadm4.1/json/gadm41_DEU_1.json.zip", + keep_local=True, + ), + locations="ariadne-data/wasserstoff_kernnetz/locations_wasserstoff_kernnetz.csv", + output: + cleaned_wasserstoff_kernnetz=resources("wasserstoff_kernnetz.csv"), + script: + "scripts/build_wasserstoff_kernnetz.py" + + +rule cluster_wasserstoff_kernnetz: + params: + kernnetz = config_provider("wasserstoff_kernnetz") + input: + cleaned_h2_network=resources("wasserstoff_kernnetz.csv"), + regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"), + regions_offshore=resources("regions_offshore_elec_s{simpl}_{clusters}.geojson"), + output: + clustered_h2_network=resources("wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv"), + script: + "scripts/cluster_wasserstoff_kernnetz.py" rule build_scenarios: params: - iiasa_scenario=config["iiasa_database"]["reference_scenario"], - scenario_name=config["run"]["name"], + scenario_name=config_provider("run", "name"), input: ariadne_database=resources("ariadne_database.csv"), scenario_yaml="config/scenarios.manual.yaml", diff --git a/workflow/scripts/build_wasserstoff_kernnetz.py b/workflow/scripts/build_wasserstoff_kernnetz.py index 0d0597570..b9fdfc3a4 100644 --- a/workflow/scripts/build_wasserstoff_kernnetz.py +++ b/workflow/scripts/build_wasserstoff_kernnetz.py @@ -388,7 +388,7 @@ def assign_locations(df, locations): wasserstoff_kernnetz = prepare_dataset(wasserstoff_kernnetz) - if snakemake.config["wasserstoff_kernnetz"]["reload_locations"]: + if snakemake.params.reload_locations: locations = geocode_locations(wasserstoff_kernnetz) else: locations = pd.read_csv(snakemake.input.locations, index_col=0) diff --git a/workflow/scripts/cluster_wasserstoff_kernnetz.py b/workflow/scripts/cluster_wasserstoff_kernnetz.py index 0e0aa218b..b68c958e6 100644 --- a/workflow/scripts/cluster_wasserstoff_kernnetz.py +++ b/workflow/scripts/cluster_wasserstoff_kernnetz.py @@ -166,7 +166,7 @@ def aggregate_parallel_pipes(df): snakemake.input.regions_onshore, snakemake.input.regions_offshore ) - kernnetz_cf = snakemake.config["wasserstoff_kernnetz"] + kernnetz_cf = snakemake.params.kernnetz if kernnetz_cf["divide_pipes"]: segment_length = kernnetz_cf["pipes_segment_length"] df = divide_pipes(df, segment_length=segment_length) diff --git a/workflow/scripts/modify_existing_heating.py b/workflow/scripts/modify_existing_heating.py index ae9534e71..da0753627 100644 --- a/workflow/scripts/modify_existing_heating.py +++ b/workflow/scripts/modify_existing_heating.py @@ -12,7 +12,7 @@ index_col=["model", "scenario", "region", "variable", "unit"] ).loc[ leitmodell, - snakemake.config["iiasa_database"]["reference_scenario"], + snakemake.params.iiasa_reference_scenario, "Deutschland", :, "million", diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index a55def634..f437492fc 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -25,7 +25,7 @@ def first_technology_occurrence(n): if investment year is before configured year. """ - for c, carriers in snakemake.config["first_technology_occurrence"].items(): + for c, carriers in snakemake.params.technology_occurrence.items(): for carrier, first_year in carriers.items(): if int(snakemake.wildcards.planning_horizons) < first_year: logger.info(f"{carrier} not extendable before {first_year}.") @@ -75,8 +75,8 @@ def new_boiler_ban(n): year = int(snakemake.wildcards.planning_horizons) - for ct in snakemake.config["new_decentral_fossil_boiler_ban"]: - ban_year = int(snakemake.config["new_decentral_fossil_boiler_ban"][ct]) + for ct in snakemake.params.fossil_boiler_ban: + ban_year = int(snakemake.params.fossil_boiler_ban[ct]) if ban_year < year: logger.info(f"For year {year} in {ct} implementing ban on new decentral oil & gas boilers from {ban_year}") links = n.links.index[(n.links.index.str[:2] == ct) & (n.links.index.str.contains("gas boiler") ^ n.links.index.str.contains("oil boiler")) & n.links.p_nom_extendable & ~n.links.index.str.contains("urban central")] @@ -88,8 +88,8 @@ def coal_generation_ban(n): year = int(snakemake.wildcards.planning_horizons) - for ct in snakemake.config["coal_generation_ban"]: - ban_year = int(snakemake.config["coal_generation_ban"][ct]) + for ct in snakemake.params.coal_ban: + ban_year = int(snakemake.params.coal_ban[ct]) if ban_year < year: logger.info(f"For year {year} in {ct} implementing coal and lignite ban from {ban_year}") links = n.links.index[(n.links.index.str[:2] == ct) & n.links.carrier.isin(["coal","lignite"])] @@ -101,8 +101,8 @@ def nuclear_generation_ban(n): year = int(snakemake.wildcards.planning_horizons) - for ct in snakemake.config["nuclear_generation_ban"]: - ban_year = int(snakemake.config["nuclear_generation_ban"][ct]) + for ct in snakemake.params.nuclear_ban: + ban_year = int(snakemake.params.nuclear_ban[ct]) if ban_year < year: logger.info(f"For year {year} in {ct} implementing nuclear ban from {ban_year}") links = n.links.index[(n.links.index.str[:2] == ct) & n.links.carrier.isin(["nuclear"])] @@ -160,7 +160,7 @@ def add_wasserstoff_kernnetz(n, wkn, costs): investment_year = int(snakemake.wildcards.planning_horizons) # get previous planning horizon - planning_horizons = snakemake.config["scenario"]["planning_horizons"] + planning_horizons = snakemake.params.planning_horizons i = planning_horizons.index(int(snakemake.wildcards.planning_horizons)) previous_investment_year = int(planning_horizons[i - 1]) if i != 0 else 2015 @@ -188,7 +188,7 @@ def add_wasserstoff_kernnetz(n, wkn, costs): ) # add reversed pipes and losses - losses = snakemake.config["sector"]["transmission_efficiency"]["H2 pipeline"] + losses = snakemake.params.H2_transmission_efficiency lossy_bidirectional_links(n, "H2 pipeline (Kernnetz)", losses, subset=names) # reduce the gas network capacity of retrofitted lines from kernnetz @@ -204,9 +204,9 @@ def add_wasserstoff_kernnetz(n, wkn, costs): # reduce H2 retrofitting potential from gas network for all kernnetz # pipelines which are being build in total (more conservative approach) - if not wkn.empty and snakemake.config["sector"]["H2_retrofit"]: + if not wkn.empty and snakemake.params.H2_retrofit: - conversion_rate = snakemake.config["sector"]["H2_retrofit_capacity_per_CH4"] + conversion_rate = snakemake.params.H2_retrofit_capacity_per_CH4 retrofitted_b = ( n.links.carrier == "H2 pipeline retrofitted" @@ -374,7 +374,7 @@ def transmission_costs_from_modified_cost_data(n, costs, length_factor=1.0): unravel_oilbus(n) - if snakemake.config["wasserstoff_kernnetz"]["enable"]: + if snakemake.params.enable_kernnetz: fn = snakemake.input.wkn wkn = pd.read_csv(fn, index_col=0) add_wasserstoff_kernnetz(n, wkn, costs) From fa59f1c19c7e4b09b41c9a6495ebd03ffabb592a Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 11 Apr 2024 18:31:00 +0200 Subject: [PATCH 249/669] first draft adding co2 prices to hydrocarbons --- workflow/scripts/export_ariadne_variables.py | 19 ++++++++++--------- 1 file changed, 10 insertions(+), 9 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 19dd71a54..6dacc1728 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2071,10 +2071,6 @@ def get_prices(n, region): + lignite_fraction * specific_emisisons["lignite"] * co2_price - - - - var["Price|Primary Energy|Coal"] = \ get_weighted_costs([coal_price, lignite_price], [nf_coal.values.sum(), nf_lignite.values.sum()])/ MWh2GJ @@ -2099,8 +2095,11 @@ def get_prices(n, region): oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) co2_add_oil = oil_fossil_fraction * specific_emisisons["oil"] * co2_price - var["Price|Primary Energy|Oil"] = \ + if not math.isnan(nodal_flows_oil.values.sum()): + var["Price|Primary Energy|Oil"] = \ (nodal_flows_oil.mul(nodal_prices_oil).values.sum() / nodal_flows_oil.values.sum() + co2_add_oil) /MWh2GJ + else: + var["Price|Primary Energy|Oil"] = np.nan # Price|Secondary Energy|Electricity # electricity price at the secondary level, i.e. for large scale consumers (e.g. aluminum production). Prices should include the effect of carbon prices. @@ -2121,8 +2120,10 @@ def get_prices(n, region): costs_gen_links(n, region, "Sabatier")[0] / MWh2GJ var["Price|Secondary Energy|Gases|Biomass"] = \ - costs_gen_links(n, region, "biogas to gas")[0] / MWh2GJ - + get_weighted_costs_links( + ['biogas to gas', 'biogas to gas CC'], + n, region) / MWh2GJ + # Price|Secondary Energy|Gases|Efuel # Price for gaseous Efuels at the secondary level, i.e. for large scale consumers. Prices should include the effect of carbon prices. # what are gaseous Efuels? @@ -2407,9 +2408,8 @@ def get_prices(n, region): nodal_flows_gas.mul(nodal_prices_gas).values.sum() / nodal_flows_gas.values.sum() /MWh2GJ nodal_flows_oil = get_nodal_flows( - n, "oil", region, + n, "oil", "EU", query = "not carrier.str.contains('rural')" - "& not carrier == 'oil'" "& not carrier.str.contains('urban decentral')" ) nodal_prices_oil = n.buses_t.marginal_price[nodal_flows_oil.columns] @@ -2588,3 +2588,4 @@ def get_data( 'nice_names': False, } + From 63ff14f45371c6cde7773cbe40ac7162e6a98405 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Mon, 15 Apr 2024 09:19:57 +0200 Subject: [PATCH 250/669] incorporating more industry products --- workflow/Snakefile | 6 +- workflow/scripts/modify_industry_demand.py | 82 +++++++++++++++++++ .../scripts/modify_steel_cement_demand.py | 40 --------- 3 files changed, 85 insertions(+), 43 deletions(-) create mode 100644 workflow/scripts/modify_industry_demand.py delete mode 100644 workflow/scripts/modify_steel_cement_demand.py diff --git a/workflow/Snakefile b/workflow/Snakefile index 958f59e30..1a58d570f 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -153,7 +153,7 @@ rule modify_prenetwork: script: "scripts/modify_prenetwork.py" -ruleorder: modify_steel_cement_demand > build_industrial_production_per_country_tomorrow +ruleorder: modify_industry_demand > build_industrial_production_per_country_tomorrow use rule solve_sector_network_myopic from pypsaeur with: params: @@ -182,7 +182,7 @@ use rule build_existing_heating_distribution from pypsaeur with: **{k: v for k, v in rules.build_existing_heating_distribution.input.items() if k != "existing_heating"}, existing_heating=resources("existing_heating.csv"), -rule modify_steel_cement_demand: +rule modify_industry_demand: input: ariadne=resources("ariadne_database.csv"), industrial_production_per_country_tomorrow=resources("industrial_production_per_country_tomorrow_{planning_horizons}.csv"), @@ -191,7 +191,7 @@ rule modify_steel_cement_demand: resources: mem_mb=1000 script: - "scripts/modify_steel_cement_demand.py" + "scripts/modify_industry_demand.py" use rule build_industrial_production_per_node from pypsaeur with: input: diff --git a/workflow/scripts/modify_industry_demand.py b/workflow/scripts/modify_industry_demand.py new file mode 100644 index 000000000..a7f7367e6 --- /dev/null +++ b/workflow/scripts/modify_industry_demand.py @@ -0,0 +1,82 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2023-2024 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT +""" +This script modifies the industrial production values to match the FORECAST model +This includes +- Production|Non-Metallic Minerals|Cement +- Production|Steel +- Production|Chemicals|Ammonia +- Production|Chemicals|Methanol +- Production|Non-Ferrous Metals +- Production|Pulp and Paper +""" + +import pandas as pd + +# leitmodell for industry demand +leitmodell="FORECAST v1.0" + +year = snakemake.input.industrial_production_per_country_tomorrow.split("_")[-1].split(".")[0] + +existing_industry = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow, index_col=0) + +# read in ariadne database +ariadne = pd.read_csv( + snakemake.input.ariadne, + index_col=["model", "scenario", "region", "variable", "unit"] +).loc[ + leitmodell, + snakemake.config["iiasa_database"]["reference_scenario"], + "Deutschland", + :, + "Mt/yr", +] + +print( + "German industry demand before modification", + existing_industry.loc["DE", ["Cement", + "Electric arc", + "Integrated steelworks", + "DRI + Electric arc", + "Ammonia", + "Methanol", + "Pulp production", + "Paper production", + "Ceramics & other NMM"]], sep="\n") + +# write Cement, Ammonia and Methanol directly to dataframe +existing_industry.loc["DE", "Cement"] = ariadne.loc["Production|Non-Metallic Minerals|Cement", year] +existing_industry.loc["DE", "Ammonia"] = ariadne.loc["Production|Chemicals|Ammonia", year] +existing_industry.loc["DE", "Methanol"] = ariadne.loc["Production|Chemicals|Methanol", year] + +# get ratio of pulp and paper production +pulp_ratio = existing_industry.loc["DE", "Pulp production"] / (existing_industry.loc["DE", "Pulp production"] + existing_industry.loc["DE", "Paper production"]) + +existing_industry.loc["DE", "Pulp production"] = ariadne.loc["Production|Pulp and Paper", year] * pulp_ratio +existing_industry.loc["DE", "Paper production"] = ariadne.loc["Production|Pulp and Paper", year] * (1-pulp_ratio) + +# non-metallic minerals +existing_industry.loc["DE", "Ceramics & other NMM"] = ariadne.loc["Production|Non-Metallic Minerals", year] - ariadne.loc["Production|Non-Metallic Minerals|Cement", year] + +# get steel ratios from existing_industry +steel = existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] +ratio = steel/steel.sum() + +# multiply with steel production including primary and secondary steel since distinguishing is taken care of later +existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] = ratio * ariadne.loc["Production|Steel", year] + +print( + "German demand after modification", + existing_industry.loc["DE", ["Cement", + "Electric arc", + "Integrated steelworks", + "DRI + Electric arc", + "Ammonia", + "Methanol", + "Pulp production", + "Paper production", + "Ceramics & other NMM"]], sep="\n") + +existing_industry.to_csv(snakemake.output.industrial_production_per_country_tomorrow) diff --git a/workflow/scripts/modify_steel_cement_demand.py b/workflow/scripts/modify_steel_cement_demand.py deleted file mode 100644 index 9907e6e12..000000000 --- a/workflow/scripts/modify_steel_cement_demand.py +++ /dev/null @@ -1,40 +0,0 @@ - - -import pandas as pd - -# leitmodell for steel and cement demand -leitmodell="FORECAST v1.0" - -year = snakemake.input.industrial_production_per_country_tomorrow.split("_")[-1].split(".")[0] - -existing_industry = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow, index_col=0) - -ariadne = pd.read_csv( - snakemake.input.ariadne, - index_col=["model", "scenario", "region", "variable", "unit"] -).loc[ - leitmodell, - snakemake.config["iiasa_database"]["reference_scenario"], - "Deutschland", - :, - "Mt/yr", -] - -print( - "German demand before modification", - existing_industry.loc["DE", ["Cement", "Electric arc", "Integrated steelworks", "DRI + Electric arc"]], sep="\n") -# get cement and write it into the existing industry dataframe -existing_industry.loc["DE", "Cement"] = ariadne.loc["Production|Non-Metallic Minerals|Cement", year] - -# get steel ratios from existing_industry -steel = existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] -ratio = steel/steel.sum() - -# multiply with steel production including primary and secondary steel since distinguishing is taken care of later -existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] = ratio * ariadne.loc["Production|Steel", year] - -print( - "German demand after modification", - existing_industry.loc["DE", ["Cement", "Electric arc", "Integrated steelworks", "DRI + Electric arc"]], sep="\n") - -existing_industry.to_csv(snakemake.output.industrial_production_per_country_tomorrow) From c8509e97122084e9eb2162546babc6009db90521 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 15 Apr 2024 13:56:20 +0200 Subject: [PATCH 251/669] take exogenous transport shares after 2030 from DB --- workflow/scripts/build_scenarios.py | 7 ++----- 1 file changed, 2 insertions(+), 5 deletions(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 001d9fb33..7f984e3fc 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -142,15 +142,12 @@ def write_to_scenario_yaml( for key, sector_mapping in mapping_transport.items(): config[scenario]["sector"][sector_mapping] = {} for year in transport_share.columns: - target_year = 2030 if scenario == "CurrentPolicies" and int(year) > 2030 else year - config[scenario]["sector"][sector_mapping][year] = round(transport_share.loc[key, target_year].item(), 4) + config[scenario]["sector"][sector_mapping][year] = round(transport_share.loc[key, year].item(), 4) for key, sector_mapping in mapping_navigation.items(): config[scenario]["sector"][sector_mapping] = {} - for year in naval_share.columns: - target_year = 2030 if scenario == "CurrentPolicies" and int(year) > 2030 else year - config[scenario]["sector"][sector_mapping][year] = round(naval_share.loc[key, target_year].item(), 4) + config[scenario]["sector"][sector_mapping][year] = round(naval_share.loc[key, year].item(), 4) config[scenario]["co2_budget_national"] = {} for year, target in ksg_target_fractions.items(): From 9733218c4d189c39885ed0383fd3be9339e12495 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 15 Apr 2024 13:59:02 +0200 Subject: [PATCH 252/669] do not retrieve by default --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index a3d3f9dd1..6db1e5e19 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -67,7 +67,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: auto # set to false once initial data is retrieved + retrieve: false # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: From eba8906751dca7649423b2abcb47da2389abc82f Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 15 Apr 2024 15:59:19 +0200 Subject: [PATCH 253/669] Mt -> kt conversion --- config/config.yaml | 1 + workflow/scripts/modify_industry_demand.py | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 6db1e5e19..40ac6e53d 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,6 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: + prefix: 20250415steelcement name: - CurrentPolicies - KN2045_Bal_v4 diff --git a/workflow/scripts/modify_industry_demand.py b/workflow/scripts/modify_industry_demand.py index a7f7367e6..fe2467193 100644 --- a/workflow/scripts/modify_industry_demand.py +++ b/workflow/scripts/modify_industry_demand.py @@ -32,7 +32,7 @@ "Deutschland", :, "Mt/yr", -] +].multiply(1000) print( "German industry demand before modification", From 3f75184e9e9332b8c8ab65ddf0773f047445c941 Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 15 Apr 2024 16:01:35 +0200 Subject: [PATCH 254/669] snakemake update --- workflow/Snakefile | 12 +- workflow/scripts/build_existing_chp_de.py | 135 ++++++++++++---------- 2 files changed, 78 insertions(+), 69 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index db42101e3..ae9fd95ef 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -173,10 +173,9 @@ rule modify_existing_heating: rule retrieve_mastr: input: - HTTP.remote( + storage( "https://zenodo.org/records/8225106/files/bnetza_open_mastr_2023-08-08_B.zip", keep_local=True, - static=True, ), params: "data/mastr", @@ -191,21 +190,20 @@ rule build_existing_chp_de: input: mastr_biomass="data/mastr/bnetza_open_mastr_2023-08-08_B_biomass.csv", mastr_combustion="data/mastr/bnetza_open_mastr_2023-08-08_B_combustion.csv", - plz_mapping=HTTP.remote( + plz_mapping=storage( "https://raw.githubusercontent.com/WZBSocialScienceCenter/plz_geocoord/master/plz_geocoord.csv", keep_local=True, - static=True, ), - busmap=RESOURCES + "networks/base.nc", + busmap=resources("networks/base.nc"), output: - german_chp=RESOURCES + "german_chp.csv", + german_chp=resources("german_chp.csv"), script: "scripts/build_existing_chp_de.py" use rule add_existing_baseyear from pypsaeur with: input: **rules.add_existing_baseyear.input, - custom_powerplants=RESOURCES + "german_chp.csv", + custom_powerplants=resources("german_chp.csv"), use rule build_existing_heating_distribution from pypsaeur with: input: diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py index a7e8a1353..797908132 100644 --- a/workflow/scripts/build_existing_chp_de.py +++ b/workflow/scripts/build_existing_chp_de.py @@ -24,13 +24,15 @@ def clean_data(combustion, biomass, geodata): PLZ is translated to longitude and latitude using the pyGeoDb data. """ biomass.dropna(subset="Postleitzahl", inplace=True) - biomass.rename(columns={'NameStromerzeugungseinheit': 'NameKraftwerk'}, inplace=True) - biomass['Einsatzort'] = '' + biomass.rename( + columns={"NameStromerzeugungseinheit": "NameKraftwerk"}, inplace=True + ) + biomass["Einsatzort"] = "" + + data = pd.concat([biomass, combustion], join="inner", ignore_index=True) + + data["IndustryStatus"] = data["Einsatzort"].str.contains("Industrie").fillna(False) - data = pd.concat([biomass, combustion], join='inner', ignore_index=True) - - data['IndustryStatus'] = data['Einsatzort'].str.contains('Industrie').fillna(False) - # Get only CHP plants CHP_raw = data.query("ThermischeNutzleistung > 0").copy() CHP_raw.NameKraftwerk = CHP_raw.NameKraftwerk.fillna(CHP_raw.EinheitMastrNummer) @@ -48,7 +50,7 @@ def clean_data(combustion, biomass, geodata): "IndustryStatus": "Industry", } CHP_sel = CHP_raw[rename_columns.keys()].rename(columns=rename_columns) - + # change date format CHP_sel.DateIn = CHP_sel.DateIn.str[:4].astype(float) CHP_sel.DateOut = CHP_sel.DateOut.str[:4].astype(float) @@ -58,19 +60,18 @@ def clean_data(combustion, biomass, geodata): "Name": "first", "Fueltype": "first", "Technology": "first", - "Capacity": "mean", # dataset duplicates full KWK capacity for each block - "Capacity_thermal": "mean", # dataset duplicates full KWK capacity for each block + "Capacity": "mean", # dataset duplicates full KWK capacity for each block + "Capacity_thermal": "mean", # dataset duplicates full KWK capacity for each block "DateIn": "mean", "DateOut": "mean", "Postleitzahl": "first", "Industry": "first", - } + } CHP_sel = CHP_sel.groupby("ID").agg(strategies).reset_index() # set missing information to match the powerplant data format CHP_sel[["Set", "Country", "Efficiency"]] = ["CHP", "DE", ""] CHP_sel[["lat", "lon"]] = [float("nan"), float("nan")] - # get location from PLZ CHP_sel.fillna({"lat": CHP_sel.Postleitzahl.map(geodata.lat)}, inplace=True) @@ -94,15 +95,15 @@ def clean_data(combustion, biomass, geodata): "Brennstoffzelle": "Fuel Cell", "Strilingmotor": "", "Stirlingmotor": "", - 'Kondensationsmaschine mit Entnahme': "Steam Turbine", - 'Sonstige': "", - 'Gasturbinen ohne Abhitzekessel': "OCGT", - 'Dampfmotor': "Steam Turbine", - 'Gegendruckmaschine mit Entnahme': "Steam Turbine", - 'Gegendruckmaschine ohne Entnahme':"Steam Turbine", - 'Gasturbinen mit nachgeschalteter Dampfturbine': "CCGT", - 'ORC (Organic Rankine Cycle)-Anlage': "Steam Turbine", - 'Kondensationsmaschine ohne Entnahme': "Steam Turbine", + "Kondensationsmaschine mit Entnahme": "Steam Turbine", + "Sonstige": "", + "Gasturbinen ohne Abhitzekessel": "OCGT", + "Dampfmotor": "Steam Turbine", + "Gegendruckmaschine mit Entnahme": "Steam Turbine", + "Gegendruckmaschine ohne Entnahme": "Steam Turbine", + "Gasturbinen mit nachgeschalteter Dampfturbine": "CCGT", + "ORC (Organic Rankine Cycle)-Anlage": "Steam Turbine", + "Kondensationsmaschine ohne Entnahme": "Steam Turbine", } CHP_sel.replace({"Fueltype": fueltype, "Technology": technology}, inplace=True) @@ -121,22 +122,24 @@ def lookup_geodata(missing_plz): return pd.Series((pd.NA, pd.NA)) missing_i = CHP_sel.lat.isna() | CHP_sel.lon.isna() - CHP_sel.loc[missing_i, ["lat", "lon"]] = CHP_sel.loc[missing_i, "Postleitzahl"].apply(lookup_geodata) + CHP_sel.loc[missing_i, ["lat", "lon"]] = CHP_sel.loc[ + missing_i, "Postleitzahl" + ].apply(lookup_geodata) cols = [ - 'Name', - 'Fueltype', - 'Technology', - 'Set', - 'Country', - 'Capacity', - 'Efficiency', - 'DateIn', - 'DateOut', - 'lat', - 'lon', - 'Capacity_thermal', - 'Industry', + "Name", + "Fueltype", + "Technology", + "Set", + "Country", + "Capacity", + "Efficiency", + "DateIn", + "DateOut", + "lat", + "lon", + "Capacity_thermal", + "Industry", ] # convert unit of capacities from kW to MW @@ -144,28 +147,30 @@ def lookup_geodata(missing_plz): # add missing Fueltype for plants > 100 MW fuelmap = { - 'GuD Mitte': 'Natural Gas', - 'HKW Mitte': 'Natural Gas', - 'GuD Süd': 'Natural Gas', - 'HKW Lichterfelde': 'Natural Gas', - 'GuD Niehl 2 RheinEnergie': 'Natural Gas', - 'HKW Marzahn': 'Natural Gas', - 'Gasturbinen Heizkraftwerk Nossener Brücke': 'Natural Gas', - 'SEE916495905242': 'Natural Gas', - 'HKW Leipzig Nord': 'Natural Gas', - 'HKW Reuter': 'Waste', - 'Solvay Rb Kraftwerk': 'Lignite', - 'GuD Süd Wolfsburg': 'Natural Gas', - 'GuD Erfurt Ost': 'Natural Gas', - 'KW Nord': 'Natural Gas', - 'SEE904887370686': 'Oil', - 'GuD2': 'Natural Gas', - 'Heizkrafwerk Hafen der Stadtwerke Münster GmbH': 'Waste', - 'Kraftwerk Ha': 'Natural Gas', - 'Kraftwerk HA': 'Natural Gas', - 'PKV Dampfsammelschienen-KWK-Anlage': 'Natural Gas', + "GuD Mitte": "Natural Gas", + "HKW Mitte": "Natural Gas", + "GuD Süd": "Natural Gas", + "HKW Lichterfelde": "Natural Gas", + "GuD Niehl 2 RheinEnergie": "Natural Gas", + "HKW Marzahn": "Natural Gas", + "Gasturbinen Heizkraftwerk Nossener Brücke": "Natural Gas", + "SEE916495905242": "Natural Gas", + "HKW Leipzig Nord": "Natural Gas", + "HKW Reuter": "Waste", + "Solvay Rb Kraftwerk": "Lignite", + "GuD Süd Wolfsburg": "Natural Gas", + "GuD Erfurt Ost": "Natural Gas", + "KW Nord": "Natural Gas", + "SEE904887370686": "Oil", + "GuD2": "Natural Gas", + "Heizkrafwerk Hafen der Stadtwerke Münster GmbH": "Waste", + "Kraftwerk Ha": "Natural Gas", + "Kraftwerk HA": "Natural Gas", + "PKV Dampfsammelschienen-KWK-Anlage": "Natural Gas", } - CHP_sel['Fueltype'] = CHP_sel['Name'].map(fuelmap).combine_first(CHP_sel['Fueltype']) + CHP_sel["Fueltype"] = ( + CHP_sel["Name"].map(fuelmap).combine_first(CHP_sel["Fueltype"]) + ) return CHP_sel[cols].copy() @@ -175,16 +180,20 @@ def calculate_efficiency(CHP_de): Calculate the efficiency of the CHP plants depending on Capacity and DateIn. Following Triebs et al. (https://doi.org/10.1016/j.ecmx.2020.100068) """ + def EXT(cap, year): # returns the efficiency for extraction condensing turbine - return ((44/2400) * cap + 0.125 * year - 204.75) / 100 + return ((44 / 2400) * cap + 0.125 * year - 204.75) / 100 - def BP(cap,year): + def BP(cap, year): # returns the efficiency for back pressure turbine return ((5e-3) * cap + 0.325 * year - 611.75) / 100 + # TODO: differentiate between extraction condensing turbine and back pressure turbine - CHP_de['Efficiency'] = CHP_de.apply(lambda row: BP(row['Capacity'], row['DateIn']), axis=1) - + CHP_de["Efficiency"] = CHP_de.apply( + lambda row: BP(row["Capacity"], row["DateIn"]), axis=1 + ) + return CHP_de @@ -199,14 +208,16 @@ def BP(cap,year): logging.basicConfig(level=snakemake.config["logging"]["level"]) biomass = pd.read_csv(snakemake.input.mastr_biomass, dtype={"Postleitzahl": str}) - combustion = pd.read_csv(snakemake.input.mastr_combustion, dtype={"Postleitzahl": str}) + combustion = pd.read_csv( + snakemake.input.mastr_combustion, dtype={"Postleitzahl": str} + ) geodata = pd.read_csv( - snakemake.input.plz_mapping[0], + snakemake.input.plz_mapping, index_col="plz", dtype={"plz": str}, names=["plz", "lat", "lon"], - skiprows=1 + skiprows=1, ) CHP_de = clean_data(combustion, biomass, geodata) From 1e77f3acd03e7d9897a307a588a390819717c30e Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 15 Apr 2024 16:04:18 +0200 Subject: [PATCH 255/669] changed commit pointer of sub-module to include changes in add_existing_baseyear --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 72ef2d0b4..bef81a2f2 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 72ef2d0b4298df4383ed68152ddb928687da3194 +Subproject commit bef81a2f295585190d7e779830ed0a349b78c1fd From a644d2426c6e2d03e84140b84f8520093cfba315 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Tue, 16 Apr 2024 09:37:13 +0200 Subject: [PATCH 256/669] add carbon price component where missing --- workflow/scripts/export_ariadne_variables.py | 10 +++------- 1 file changed, 3 insertions(+), 7 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 6dacc1728..116fe2ecf 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2070,9 +2070,8 @@ def get_prices(n, region): coal_fraction * specific_emisisons["hard coal"] * co2_price \ + lignite_fraction * specific_emisisons["lignite"] * co2_price - var["Price|Primary Energy|Coal"] = \ - get_weighted_costs([coal_price, lignite_price], [nf_coal.values.sum(), nf_lignite.values.sum()])/ MWh2GJ + (get_weighted_costs([coal_price, lignite_price], [nf_coal.values.sum(), nf_lignite.values.sum()]) + co2_add_coal)/ MWh2GJ # Price|Primary Energy|Gas nodal_flows_gas = get_nodal_flows(n, "gas", region) @@ -2084,7 +2083,7 @@ def get_prices(n, region): var["Price|Primary Energy|Gas"] = \ - nodal_flows_gas.mul(nodal_prices_gas).values.sum() / nodal_flows_gas.values.sum() / MWh2GJ + (nodal_flows_gas.mul(nodal_prices_gas).values.sum() / nodal_flows_gas.values.sum() + co2_add_gas) / MWh2GJ # Price|Primary Energy|Oil # if oil bus is unravelled change "EU" into region @@ -2095,11 +2094,8 @@ def get_prices(n, region): oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) co2_add_oil = oil_fossil_fraction * specific_emisisons["oil"] * co2_price - if not math.isnan(nodal_flows_oil.values.sum()): - var["Price|Primary Energy|Oil"] = \ + var["Price|Primary Energy|Oil"] = \ (nodal_flows_oil.mul(nodal_prices_oil).values.sum() / nodal_flows_oil.values.sum() + co2_add_oil) /MWh2GJ - else: - var["Price|Primary Energy|Oil"] = np.nan # Price|Secondary Energy|Electricity # electricity price at the secondary level, i.e. for large scale consumers (e.g. aluminum production). Prices should include the effect of carbon prices. From 5b3fa3d543ed08f9db6302d97c6d57c56c96170d Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 16 Apr 2024 13:32:46 +0200 Subject: [PATCH 257/669] handle missing variables in subplot --- workflow/scripts/plot_ariadne_variables.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 7c335c15c..63dace7a7 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -74,6 +74,12 @@ def within_plot(df, df2, ) n = df.shape[1] + if n == 0: + print("Warning! Apparently the variables required for this plot are missing.") + fig = plt.figure() + plt.title("Warning! Apparently the variables required for this plot are missing.") + fig.savefig(savepath, bbox_inches="tight") + return fig rows = n // 2 + n % 2 fig, axes = plt.subplots(rows, 2, figsize=(10, 5 * rows)) From c39fee4d3e71810b3b3255030a02eccc78a07068 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 16 Apr 2024 14:01:47 +0200 Subject: [PATCH 258/669] disable renewable oil stores --- config/config.yaml | 9 ++++----- config/scenarios.manual.yaml | 6 +++--- workflow/scripts/export_ariadne_variables.py | 6 +++--- workflow/scripts/modify_prenetwork.py | 18 +++++++++--------- 4 files changed, 19 insertions(+), 20 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 66796f1dc..207bf70bf 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20250415steelcement + prefix: 20250415exportmerge name: - CurrentPolicies - KN2045_Bal_v4 @@ -19,10 +19,9 @@ run: file: config/scenarios.automated.yaml shared_resources: true #stops recalculating disable_progressbar: true - debug_co2_limit: true - debug_elec_import_limit: false - debug_h2deriv_limit: true - debug_unravel_oilbus: true + debug_co2_limit: false + debug_h2deriv_limit: false + debug_unravel_oilbus: false iiasa_database: db_name: ariadne_intern diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 870162148..43c68b506 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -112,7 +112,7 @@ KN2045_Bal_v4: clustering: temporal: - resolution_sector: 3H + resolution_sector: 365H iiasa_database: reference_scenario: 8Gt_Bal_v3 @@ -169,7 +169,7 @@ KN2045_Elec_v4: clustering: temporal: - resolution_sector: 3H + resolution_sector: 365H iiasa_database: reference_scenario: 8Gt_Elec_v3 @@ -225,7 +225,7 @@ KN2045_H2_v4: clustering: temporal: - resolution_sector: 3H + resolution_sector: 365H iiasa_database: reference_scenario: 8Gt_H2_v3 diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 7504338a5..f80e4df82 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2406,10 +2406,10 @@ def get_data( simpl="", clusters=22, opts="", - ll="v1.2", + ll="vopt", sector_opts="None", - planning_horizons="2050", - run="KN2045_H2_v4" + planning_horizons="2025", + run="KN2045_Bal_v4" ) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 2d03cf551..4d0bd9709 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -287,15 +287,15 @@ def unravel_oilbus(n): capital_cost=0.02, ) - n.madd( - "Store", - ["DE renewable oil Store", "EU renewable oil Store"], - bus=["DE renewable oil", "EU renewable oil"], - carrier="renewable oil", - e_nom_extendable=True, - e_cyclic=True, - capital_cost=0.02, - ) + # n.madd( + # "Store", + # ["DE renewable oil Store", "EU renewable oil Store"], + # bus=["DE renewable oil", "EU renewable oil"], + # carrier="renewable oil", + # e_nom_extendable=True, + # e_cyclic=True, + # capital_cost=0.02, + # ) def transmission_costs_from_modified_cost_data(n, costs, length_factor=1.0): # copying the the function update_transmission_costs from add_electricity From 3e6604fc294e9fea2f0b1be7c5ee7555607836b0 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 16 Apr 2024 14:11:49 +0200 Subject: [PATCH 259/669] remove debug switch --- workflow/scripts/additional_functionality.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index e553ae1e4..f144d9524 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -328,8 +328,7 @@ def additional_functionality(n, snapshots, snakemake): h2_import_limits(n, snapshots, investment_year, snakemake.config) - if not snakemake.config["run"]["debug_elec_import_limit"]: - electricity_import_limits(n, snapshots, investment_year, snakemake.config) + electricity_import_limits(n, snapshots, investment_year, snakemake.config) if investment_year >= 2025: h2_production_limits(n, snapshots, investment_year, snakemake.config) From 6464987cf0a037467b66eb26bf7f564a27dc6d02 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 16 Apr 2024 14:19:26 +0200 Subject: [PATCH 260/669] use upstream default configs --- config/config.yaml | 7 ++----- config/scenarios.manual.yaml | 16 ---------------- 2 files changed, 2 insertions(+), 21 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 207bf70bf..a1bde58b6 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20250415exportmerge + prefix: 20250416exportmerge name: - CurrentPolicies - KN2045_Bal_v4 @@ -40,9 +40,6 @@ iiasa_database: reference_scenario: 8Gt_Bal_v3 region: Deutschland -existing_capacities: - grouping_years_power: [1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019, 2024, 2029] # avoid planning_horizons to distinguish existing from optimized capacities - # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight foresight: myopic @@ -92,7 +89,7 @@ clustering: 'PL': 0.0454 'SE': 0.0454 temporal: - resolution_sector: 3H + resolution_sector: 365H # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#co2-budget co2_budget: diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 43c68b506..fa1b3dbcf 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -13,10 +13,6 @@ CurrentPolicies: # industry transformation towards FORECAST results # consider not assuming Kernnetz - clustering: - temporal: - resolution_sector: 365H - # Kernnetz is not assumed to be built wasserstoff_kernnetz: enable: false @@ -110,10 +106,6 @@ KN2045_Bal_v4: # Importe erneuerbar erzeugter Energien auf mittlerem Niveau # dient als Referenzszenario in der Familie der Ariadne-Szenarien - clustering: - temporal: - resolution_sector: 365H - iiasa_database: reference_scenario: 8Gt_Bal_v3 @@ -167,10 +159,6 @@ KN2045_Elec_v4: # Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele # Importe erneuerbar erzeugter Energien auf mittlerem Niveau - clustering: - temporal: - resolution_sector: 365H - iiasa_database: reference_scenario: 8Gt_Elec_v3 @@ -223,10 +211,6 @@ KN2045_H2_v4: # Direkte Elektrifizierung spielt dennoch wesentliche Rolle bei der Dekarbonisierung der Endenergie # Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele - clustering: - temporal: - resolution_sector: 365H - iiasa_database: reference_scenario: 8Gt_H2_v3 From 79a5d546fd76cf23c32d50e5edf73b46676305aa Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 16 Apr 2024 14:43:58 +0200 Subject: [PATCH 261/669] initial structure of adding aviation and transport demand factors --- workflow/scripts/build_scenarios.py | 34 +++++++++++++++++++++++++++-- 1 file changed, 32 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 4170d1cd4..eea2e6ca1 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -11,7 +11,7 @@ import pandas as pd import os -def get_shares(df, planning_horizons): +def get_transport_shares(df, planning_horizons): # Get share of vehicles for transport sector - neglecting heavy duty vehicles total_transport = df.loc["DEMO v1", "Stock|Transportation|LDV"] tech_transport = df.loc["DEMO v1"].loc[[ @@ -45,6 +45,29 @@ def get_shares(df, planning_horizons): return transport_share, naval_share +def get_transport_growth(df, planning_horizons): + # Aviation growth factor - using REMIND-EU v1.1 since DEMO v1 does not include bunkers + aviation_model = "REMIND-EU v1.1" + aviation = df.loc[aviation_model,"Final Energy|Bunkers|Aviation"] + aviation = aviation[planning_horizons] + aviation.reset_index(inplace=True) + aviation.drop(columns="unit", inplace=True) + aviation_growth_factor = aviation / aviation[2020][0] + + # Transport growth factor - using DEMO v1 + # Final Energy|Transportation - Aviation, Navigation, Electric Rail + transport_model = "DEMO v1" + transport_diff = ["Final Energy|Transportation|Domestic Aviation", + "Final Energy|Transportation|Domestic Navigation", + "Final Energy|Transportation|Rail|Electricity", # following build_transport_demand.py + ] + transport = df.loc[transport_model, "Final Energy|Transportation"].sum() - df.loc[transport_model, transport_diff, :].sum() + transport = transport[planning_horizons] + transport_growth_factor = transport / transport[2020] + + return aviation_growth_factor, transport_growth_factor.to_frame().transpose() + + def get_primary_steel_share(df, planning_horizons): # Get share of primary steel production model = "FORECAST v1.0" @@ -130,11 +153,13 @@ def write_to_scenario_yaml( planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] # for 2050 we still need data - transport_share, naval_share = get_shares( + transport_share, naval_share = get_transport_shares( df.loc[:, reference_scenario, :], planning_horizons, ) + aviation_growth_factor, transport_growth_factor = get_transport_growth(df.loc[:, reference_scenario, :], planning_horizons) + mapping_transport = { 'PHEV': 'land_transport_fuel_cell_share', 'BEV': 'land_transport_electric_share', @@ -156,6 +181,11 @@ def write_to_scenario_yaml( config[scenario]["sector"][sector_mapping] = {} for year in naval_share.columns: config[scenario]["sector"][sector_mapping][year] = round(naval_share.loc[key, year].item(), 4) + config[scenario]["sector"]["land_transport_demand_factor"] = {} + config[scenario]["sector"]["aviation_demand_factor"] = {} + for year in planning_horizons: + config[scenario]["sector"]["aviation_growth_factor"][year] = round(aviation_growth_factor.loc[0, year].item(), 4) + config[scenario]["sector"]["land_transport_demand_factor"][year] = round(transport_growth_factor.loc[year].item(), 4) st_primary_fraction = get_primary_steel_share(df.loc[:, reference_scenario, :], planning_horizons) From 6b0d51f8e559d671fb822cbdd7b39626c070e48f Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 16 Apr 2024 16:29:09 +0200 Subject: [PATCH 262/669] assign locations to new oil buses --- workflow/scripts/modify_prenetwork.py | 14 +++++++++++--- 1 file changed, 11 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 4d0bd9709..e9c0a550b 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -243,9 +243,17 @@ def unravel_oilbus(n): """ logger.info("Unraveling oil bus") # add buses - n.add("Bus", "DE oil", carrier="oil") - n.add("Bus", "DE renewable oil", carrier="renewable oil") - n.add("Bus", "EU renewable oil", carrier="renewable oil") + n.add("Bus", "DE", location="DE", x=10.5, y=51.2, carrier="none") + n.add("Bus", "DE oil", location="DE", x=10.5, y=51.2, carrier="oil") + n.add("Bus", "DE renewable oil", location="DE", x=10.5, y=51.2, carrier="renewable oil") + n.add( + "Bus", + "EU renewable oil", + location="EU", + x=n.buses.loc["EU","x"], + y=n.buses.loc["EU","y"], + carrier="renewable oil" + ) # add one generator for DE oil n.add("Generator", From 5e0d8c7646205ec7599dfe380c3a3c7f91bf7883 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 17 Apr 2024 11:58:59 +0200 Subject: [PATCH 263/669] correction of transport growth factor --- workflow/scripts/build_scenarios.py | 25 +++++++++++++------------ 1 file changed, 13 insertions(+), 12 deletions(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index eea2e6ca1..a2248d03f 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -55,17 +55,18 @@ def get_transport_growth(df, planning_horizons): aviation_growth_factor = aviation / aviation[2020][0] # Transport growth factor - using DEMO v1 - # Final Energy|Transportation - Aviation, Navigation, Electric Rail transport_model = "DEMO v1" - transport_diff = ["Final Energy|Transportation|Domestic Aviation", - "Final Energy|Transportation|Domestic Navigation", - "Final Energy|Transportation|Rail|Electricity", # following build_transport_demand.py - ] - transport = df.loc[transport_model, "Final Energy|Transportation"].sum() - df.loc[transport_model, transport_diff, :].sum() - transport = transport[planning_horizons] - transport_growth_factor = transport / transport[2020] + freight = df.loc[transport_model, "Energy Service|Transportation|Freight|Road"][planning_horizons].reset_index().drop(columns="unit") + person = df.loc[transport_model, "Energy Service|Transportation|Passenger|Road"][planning_horizons].reset_index().drop(columns="unit") + freight_PJ = df.loc[transport_model, "Final Energy|Transportation|Truck"][planning_horizons].reset_index().drop(columns="unit") + person_PJ = df.loc[transport_model, "Final Energy|Transportation|LDV"][planning_horizons].reset_index().drop(columns="unit") + + transport_growth_factor = pd.DataFrame(columns=planning_horizons) + for year in planning_horizons: + share = (person_PJ.loc[0, year] / (person_PJ.loc[0, year] + freight_PJ.loc[0, year])) + transport_growth_factor.loc[0, year] = share * (person.loc[0, year] / person.loc[0, 2020]) + (1 - share) * (freight.loc[0, year] / freight.loc[0, 2020]) - return aviation_growth_factor, transport_growth_factor.to_frame().transpose() + return aviation_growth_factor, transport_growth_factor def get_primary_steel_share(df, planning_horizons): @@ -158,7 +159,7 @@ def write_to_scenario_yaml( planning_horizons, ) - aviation_growth_factor, transport_growth_factor = get_transport_growth(df.loc[:, reference_scenario, :], planning_horizons) + aviation_demand_factor, land_transport_demand_factor = get_transport_growth(df.loc[:, reference_scenario, :], planning_horizons) mapping_transport = { 'PHEV': 'land_transport_fuel_cell_share', @@ -184,8 +185,8 @@ def write_to_scenario_yaml( config[scenario]["sector"]["land_transport_demand_factor"] = {} config[scenario]["sector"]["aviation_demand_factor"] = {} for year in planning_horizons: - config[scenario]["sector"]["aviation_growth_factor"][year] = round(aviation_growth_factor.loc[0, year].item(), 4) - config[scenario]["sector"]["land_transport_demand_factor"][year] = round(transport_growth_factor.loc[year].item(), 4) + config[scenario]["sector"]["aviation_demand_factor"][year] = round(aviation_demand_factor.loc[0, year].item(), 4) + config[scenario]["sector"]["land_transport_demand_factor"][year] = round(land_transport_demand_factor.loc[0, year].item(), 4) st_primary_fraction = get_primary_steel_share(df.loc[:, reference_scenario, :], planning_horizons) From 324db50a5daa61ab4e857ce12832805ef6820dbf Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 17 Apr 2024 14:33:15 +0200 Subject: [PATCH 264/669] adjust exporter to new energy_totals --- config/config.yaml | 2 +- workflow/Snakefile | 2 ++ workflow/scripts/export_ariadne_variables.py | 7 +++++-- workflow/submodules/pypsa-eur | 2 +- 4 files changed, 9 insertions(+), 4 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index a1bde58b6..89d911fea 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20250416exportmerge + prefix: 20250417mastermerge name: - CurrentPolicies - KN2045_Bal_v4 diff --git a/workflow/Snakefile b/workflow/Snakefile index 6bb964458..899ac5739 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -269,6 +269,8 @@ rule download_ariadne_template: move(input[0], output[0]) rule export_ariadne_variables: + params: + energy_totals_year=config_provider("energy", "energy_totals_year"), input: template=resources("template_ariadne_database.xlsx"), industry_demands=expand( diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index f80e4df82..75dcc56e9 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2409,7 +2409,7 @@ def get_data( ll="vopt", sector_opts="None", planning_horizons="2025", - run="KN2045_Bal_v4" + run="CurrentPolicies" ) @@ -2426,7 +2426,10 @@ def get_data( ] energy_totals = pd.read_csv( snakemake.input.energy_totals, - index_col=0, + index_col=[0,1], + ).xs( + snakemake.params.energy_totals_year, + level="year", ).multiply(TWh2PJ) networks = [pypsa.Network(n) for n in snakemake.input.networks] diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 6334f3f51..7fd901448 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 6334f3f514bd33798dc8b3d77f492bd752c3d5f9 +Subproject commit 7fd901448af07e847f8bdade1b8d04f6d04cf097 From 25c2f2a5020b7dbb8007953186e2679cd7018c64 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 17 Apr 2024 15:03:13 +0200 Subject: [PATCH 265/669] integrate comments --- workflow/scripts/build_scenarios.py | 25 +++++++++++-------------- 1 file changed, 11 insertions(+), 14 deletions(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index a2248d03f..923be1ee1 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -49,24 +49,21 @@ def get_transport_growth(df, planning_horizons): # Aviation growth factor - using REMIND-EU v1.1 since DEMO v1 does not include bunkers aviation_model = "REMIND-EU v1.1" aviation = df.loc[aviation_model,"Final Energy|Bunkers|Aviation"] - aviation = aviation[planning_horizons] - aviation.reset_index(inplace=True) - aviation.drop(columns="unit", inplace=True) - aviation_growth_factor = aviation / aviation[2020][0] + aviation_growth_factor = aviation.loc["PJ/yr"] / aviation.loc["PJ/yr", 2020] # Transport growth factor - using DEMO v1 transport_model = "DEMO v1" - freight = df.loc[transport_model, "Energy Service|Transportation|Freight|Road"][planning_horizons].reset_index().drop(columns="unit") - person = df.loc[transport_model, "Energy Service|Transportation|Passenger|Road"][planning_horizons].reset_index().drop(columns="unit") - freight_PJ = df.loc[transport_model, "Final Energy|Transportation|Truck"][planning_horizons].reset_index().drop(columns="unit") - person_PJ = df.loc[transport_model, "Final Energy|Transportation|LDV"][planning_horizons].reset_index().drop(columns="unit") + freight = df.loc[transport_model, "Energy Service|Transportation|Freight|Road"] + person = df.loc[transport_model, "Energy Service|Transportation|Passenger|Road"] + freight_PJ = df.loc[transport_model, "Final Energy|Transportation|Truck"] + person_PJ = df.loc[transport_model, "Final Energy|Transportation|LDV"] - transport_growth_factor = pd.DataFrame(columns=planning_horizons) + transport_growth_factor = pd.Series() for year in planning_horizons: - share = (person_PJ.loc[0, year] / (person_PJ.loc[0, year] + freight_PJ.loc[0, year])) - transport_growth_factor.loc[0, year] = share * (person.loc[0, year] / person.loc[0, 2020]) + (1 - share) * (freight.loc[0, year] / freight.loc[0, 2020]) + share = (person_PJ.loc["PJ/yr", year] / (person_PJ.loc["PJ/yr", year] + freight_PJ.loc["PJ/yr", year])) + transport_growth_factor.loc[year] = share * (person.loc["bn pkm/yr", year] / person.loc["bn pkm/yr", 2020]) + (1 - share) * (freight.loc["bn tkm/yr", year] / freight.loc["bn tkm/yr", 2020]) - return aviation_growth_factor, transport_growth_factor + return aviation_growth_factor[planning_horizons].rename("aviation_growth"), transport_growth_factor.rename("land_transport_growth") def get_primary_steel_share(df, planning_horizons): @@ -185,8 +182,8 @@ def write_to_scenario_yaml( config[scenario]["sector"]["land_transport_demand_factor"] = {} config[scenario]["sector"]["aviation_demand_factor"] = {} for year in planning_horizons: - config[scenario]["sector"]["aviation_demand_factor"][year] = round(aviation_demand_factor.loc[0, year].item(), 4) - config[scenario]["sector"]["land_transport_demand_factor"][year] = round(land_transport_demand_factor.loc[0, year].item(), 4) + config[scenario]["sector"]["aviation_demand_factor"][year] = round(aviation_demand_factor.loc[year].item(), 4) + config[scenario]["sector"]["land_transport_demand_factor"][year] = round(land_transport_demand_factor.loc[year].item(), 4) st_primary_fraction = get_primary_steel_share(df.loc[:, reference_scenario, :], planning_horizons) From 4b65cec02cff6ac70b4cde7a51f325ca155c4fb9 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 17 Apr 2024 16:03:16 +0200 Subject: [PATCH 266/669] avoid planning_horizons in grouping_years_power --- config/config.yaml | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/config/config.yaml b/config/config.yaml index 89d911fea..f7f2f3748 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -64,6 +64,11 @@ scenario: - 2040 - 2045 +existing_capacities: + grouping_years_power: [1895, 1920, 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019, 2024, 2029] + grouping_years_heat: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020] # heat grouping years >= baseyear will be ignored + + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'PL', 'SE'] From 9c498a0d5af0c8276d34d6fff5d930442d12e062 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 17 Apr 2024 17:23:06 +0200 Subject: [PATCH 267/669] first steps --- config/config.yaml | 8 +- workflow/Snakefile | 9 +- workflow/scripts/export_ariadne_variables.py | 107 ++++++++++++++++++- 3 files changed, 115 insertions(+), 9 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index f7f2f3748..1711b4290 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,12 +4,12 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20250417mastermerge + prefix: 20250417exportinvestments name: - - CurrentPolicies + # - CurrentPolicies - KN2045_Bal_v4 - - KN2045_Elec_v4 - - KN2045_H2_v4 + # - KN2045_Elec_v4 + # - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase diff --git a/workflow/Snakefile b/workflow/Snakefile index 899ac5739..2230f1df8 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -270,6 +270,9 @@ rule download_ariadne_template: rule export_ariadne_variables: params: + planning_horizons = config_provider("scenario","planning_horizons") + hours=config_provider("clustering","temporal","resolution_sector"), + costs=config_provider("costs"), energy_totals_year=config_provider("energy", "energy_totals_year"), input: template=resources("template_ariadne_database.xlsx"), @@ -282,9 +285,11 @@ rule export_ariadne_variables: **config["scenario"], allow_missing=True, ), - + costs=expand( + resources("modified-costs_{planning_horizons}.csv"), + **config["scenario"], + ), energy_totals=resources("energy_totals.csv"), - output: exported_variables=RESULTS + "ariadne/exported_variables.xlsx" log: diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 75dcc56e9..6b8dff249 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -5,6 +5,12 @@ import math import numpy as np +paths = ["workflow/submodules/pypsa-eur/scripts", "../submodules/pypsa-eur/scripts"] +for path in paths: + sys.path.insert(0, os.path.abspath(path)) + +from prepare_sector_network import prepare_costs + # Defining global varibales TWh2PJ = 3.6 @@ -135,6 +141,17 @@ def get_capacity_additions_simple(n, region): index = "Capacity Additions" + caps.index.str[8:]) +def _get_capex(n, region): + def _capex(*args, **kwargs): + # call n.statistics.capex, but ignore the storage keyword + kwargs.pop("storage", None) + return n.statistics.capex(*args,**kwargs) + return _get_capacities( + n, + region, + _capex, + cap_string="Investment|" + ) def get_capacity_additions(n, region): def _f(*args, **kwargs): @@ -2339,6 +2356,76 @@ def get_prices(n, region): return var +def get_capex(n, costs, region): + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } + + var = pd.Series() + capacities_electricity = n.statistics.expanded_capacity( + bus_carrier=["AC", "low voltage"], + **kwargs, + ).filter(like=region).groupby("carrier").sum()# in bn + # var["Investment"] = + # var["Investment|Energy Supply"] = \ + var["Investment|Energy Supply|Electricity"] = \ + capex_electricity.sum() + var["Investment|Energy Supply|Electricity|Coal"] = \ + capex_electricity.reindex(["coal", "lignite"]).sum() + # var["Investment|Energy Supply|Electricity|Coal|w/ CCS"] = \ + # var["Investment|Energy Supply|Electricity|Coal|w/o CCS"] = \ + # var["Investment|Energy Supply|Electricity|Gas"] = \ + # var["Investment|Energy Supply|Electricity|Gas|w/ CCS"] = \ + # var["Investment|Energy Supply|Electricity|Gas|w/o CCS"] = \ + # var["Investment|Energy Supply|Electricity|Oil"] = \ + # var["Investment|Energy Supply|Electricity|Oil|w/ CCS"] = \ + # var["Investment|Energy Supply|Electricity|Oil|w/o CCS"] = \ + # var["Investment|Energy Supply|Electricity|Non-fossil"] = \ + # var["Investment|Energy Supply|Electricity|Biomass"] = \ + # var["Investment|Energy Supply|Electricity|Biomass|w/ CCS"] = \ + # var["Investment|Energy Supply|Electricity|Biomass|w/o CCS"] = \ + # var["Investment|Energy Supply|Electricity|Nuclear"] = \ + # var["Investment|Energy Supply|Electricity|Non-Biomass Renewables"] = \ + # var["Investment|Energy Supply|Electricity|Hydro"] = + # var["Investment|Energy Supply|Electricity|Solar"] = + # var["Investment|Energy Supply|Electricity|Wind"] = \ + # var["Investment|Energy Supply|Electricity|Geothermal"] = \ + # var["Investment|Energy Supply|Electricity|Ocean"] = + # var["Investment|Energy Supply|Electricity|Other"] = + var["Investment|Energy Supply|Electricity|Transmission and Distribution"] = ( + capacities_electricity.get("electricity distribution grid", 0) * costs.at["electricity distribution grid", "investment"] + ) + # var["Investment|Energy Supply|Electricity|Electricity Storage"] = \ + # var["Investment|Energy Supply|Hydrogen|Fossil"] = \ + # var["Investment|Energy Supply|Hydrogen|Biomass"] = \ + # var["Investment|Energy Supply|Hydrogen|Electrolysis"] = + # var["Investment|Energy Supply|Hydrogen|Other"] = \ + # var["Investment|Energy Supply|Liquids"] = \ + # var["Investment|Energy Supply|Liquids|Oil"] = \ + # var["Investment|Energy Supply|Liquids|Coal and Gas"] = \ + # var["Investment|Energy Supply|Liquids|Biomass"] = \ + # var["Investment|Energy Supply|CO2 Transport and Storage"] = + # var["Investment|Energy Supply|Other"] = + # var["Investment|Energy Efficiency"] = \ + # var["Investment|Energy Supply|Heat"] = \ + # var["Investment|Energy Supply|Hydrogen"] = \ + # var["Investment|RnD|Energy Supply"] = \ + # var["Investment|Energy Demand|Transportation"] = \ + # var["Investment|Energy Demand|Transportation|LDV"] = \ + # var["Investment|Energy Demand|Transportation|Bus"] = \ + # var["Investment|Energy Demand|Transportation|Rail"] = \ + # var["Investment|Energy Demand|Transportation|Truck"] = \ + # var["Investment|Infrastructure|Transport"] = \ + # var["Investment|Energy Demand|Residential and Commercial"] = \ + # var["Investment|Energy Demand|Residential and Commercial|Low-Efficiency Buildings"] = \ + # var["Investment|Energy Demand|Residential and Commercial|Medium-Efficiency Buildings"] = \ + # var["Investment|Energy Demand|Residential and Commercial|High-Efficiency Buildings"] = \ + # var["Investment|Energy Demand|Residential and Commercial|Building Retrofits"] = + # var["Investment|Energy Demand|Residential and Commercial|Space Heating"] = \ + # var["Investment|Infrastructure|Industry|Green"] = \ + # var["Investment|Infrastructure|Industry|Non-Green"] = \ + # var["Investment|Industry"] = \ def get_ariadne_var(n, industry_demand, energy_totals, region): @@ -2408,8 +2495,8 @@ def get_data( opts="", ll="vopt", sector_opts="None", - planning_horizons="2025", - run="CurrentPolicies" + #planning_horizons="2025", + run="KN2045_Bal_v4" ) @@ -2432,10 +2519,23 @@ def get_data( level="year", ).multiply(TWh2PJ) + nhours = int(snakemake.params.hours[0:3]) + nyears = nhours / 8760 + + costs = list(map( + lambda _costs: prepare_costs( + _costs, + snakemake.params.costs, + nyears, + ).multiply(1e-9), # in bn € + snakemake.input.costs + )) + + networks = [pypsa.Network(n) for n in snakemake.input.networks] yearly_dfs = [] - for i, year in enumerate(config["scenario"]["planning_horizons"]): + for i, year in enumerate(snakemake.params.planning_horizons): yearly_dfs.append(get_data( networks[i], industry_demands[i], @@ -2477,6 +2577,7 @@ def get_data( # For debugging n = networks[0] + c = costs[0] region="DE" kwargs = { 'groupby': n.statistics.groupers.get_name_bus_and_carrier, From 386abad21918b8a76b67af5cb7a9842f7ed5adfe Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 17 Apr 2024 17:28:15 +0200 Subject: [PATCH 268/669] adding some remarks --- workflow/scripts/export_ariadne_variables.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 6b8dff249..e54f89dd0 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2369,10 +2369,10 @@ def get_capex(n, costs, region): ).filter(like=region).groupby("carrier").sum()# in bn # var["Investment"] = # var["Investment|Energy Supply"] = \ - var["Investment|Energy Supply|Electricity"] = \ - capex_electricity.sum() - var["Investment|Energy Supply|Electricity|Coal"] = \ - capex_electricity.reindex(["coal", "lignite"]).sum() + #var["Investment|Energy Supply|Electricity"] = \ + # capex_electricity.sum() + #var["Investment|Energy Supply|Electricity|Coal"] = \ + # capex_electricity.reindex(["coal", "lignite"]).sum() # var["Investment|Energy Supply|Electricity|Coal|w/ CCS"] = \ # var["Investment|Energy Supply|Electricity|Coal|w/o CCS"] = \ # var["Investment|Energy Supply|Electricity|Gas"] = \ @@ -2395,7 +2395,7 @@ def get_capex(n, costs, region): # var["Investment|Energy Supply|Electricity|Other"] = var["Investment|Energy Supply|Electricity|Transmission and Distribution"] = ( capacities_electricity.get("electricity distribution grid", 0) * costs.at["electricity distribution grid", "investment"] - ) + ) # weirdly all of the distribution grid is listed as expanded_capacity in that year # var["Investment|Energy Supply|Electricity|Electricity Storage"] = \ # var["Investment|Energy Supply|Hydrogen|Fossil"] = \ # var["Investment|Energy Supply|Hydrogen|Biomass"] = \ From 0cc0f8fe601180b0db2219ccd2a60676b208d18c Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 18 Apr 2024 17:23:57 +0200 Subject: [PATCH 269/669] add missing comma --- workflow/Snakefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 2230f1df8..99488d4d4 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -270,7 +270,7 @@ rule download_ariadne_template: rule export_ariadne_variables: params: - planning_horizons = config_provider("scenario","planning_horizons") + planning_horizons = config_provider("scenario","planning_horizons"), hours=config_provider("clustering","temporal","resolution_sector"), costs=config_provider("costs"), energy_totals_year=config_provider("energy", "energy_totals_year"), From 8ef733bd120f892ac628df5f90ed09e94792e66a Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 19 Apr 2024 09:39:34 +0200 Subject: [PATCH 270/669] cosmetic changes --- workflow/scripts/build_scenarios.py | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 923be1ee1..5bf124698 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -48,22 +48,22 @@ def get_transport_shares(df, planning_horizons): def get_transport_growth(df, planning_horizons): # Aviation growth factor - using REMIND-EU v1.1 since DEMO v1 does not include bunkers aviation_model = "REMIND-EU v1.1" - aviation = df.loc[aviation_model,"Final Energy|Bunkers|Aviation"] - aviation_growth_factor = aviation.loc["PJ/yr"] / aviation.loc["PJ/yr", 2020] + aviation = df.loc[aviation_model,"Final Energy|Bunkers|Aviation", "PJ/yr"] + aviation_growth_factor = aviation / aviation[2020] # Transport growth factor - using DEMO v1 transport_model = "DEMO v1" - freight = df.loc[transport_model, "Energy Service|Transportation|Freight|Road"] - person = df.loc[transport_model, "Energy Service|Transportation|Passenger|Road"] - freight_PJ = df.loc[transport_model, "Final Energy|Transportation|Truck"] - person_PJ = df.loc[transport_model, "Final Energy|Transportation|LDV"] + freight = df.loc[transport_model, "Energy Service|Transportation|Freight|Road", "bn tkm/yr"] + person = df.loc[transport_model, "Energy Service|Transportation|Passenger|Road", "bn pkm/yr"] + freight_PJ = df.loc[transport_model, "Final Energy|Transportation|Truck", "PJ/yr"] + person_PJ = df.loc[transport_model, "Final Energy|Transportation|LDV", "PJ/yr"] transport_growth_factor = pd.Series() for year in planning_horizons: - share = (person_PJ.loc["PJ/yr", year] / (person_PJ.loc["PJ/yr", year] + freight_PJ.loc["PJ/yr", year])) - transport_growth_factor.loc[year] = share * (person.loc["bn pkm/yr", year] / person.loc["bn pkm/yr", 2020]) + (1 - share) * (freight.loc["bn tkm/yr", year] / freight.loc["bn tkm/yr", 2020]) + share = (person_PJ[year] / (person_PJ[year] + freight_PJ[year])) + transport_growth_factor.loc[year] = share * (person[year] / person[2020]) + (1 - share) * (freight[year] / freight[2020]) - return aviation_growth_factor[planning_horizons].rename("aviation_growth"), transport_growth_factor.rename("land_transport_growth") + return aviation_growth_factor[planning_horizons], transport_growth_factor def get_primary_steel_share(df, planning_horizons): From 3cc3fb24baf68d46cd34c5947b6e9d7fef80754e Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 19 Apr 2024 11:25:58 +0200 Subject: [PATCH 271/669] kernnetz false by default --- config/config.yaml | 4 ++-- config/scenarios.manual.yaml | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index f7f2f3748..07c137bcd 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20250417mastermerge + prefix: 20250419transportdynamic name: - CurrentPolicies - KN2045_Bal_v4 @@ -168,7 +168,7 @@ h2_import_max: 2050: 200 wasserstoff_kernnetz: - enable: true + enable: false reload_locations: false divide_pipes: true pipes_segment_length: 10 diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index fa1b3dbcf..304bdc3ce 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -15,7 +15,7 @@ CurrentPolicies: # Kernnetz is not assumed to be built wasserstoff_kernnetz: - enable: false + enable: true iiasa_database: # TODO: wait for REMod v1.0 to upload a first Trend scenario From 97f820cc036821e34c6420e1103f60cfc02a3067 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 19 Apr 2024 11:26:18 +0200 Subject: [PATCH 272/669] point to latest commit --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 7fd901448..bb4ebed63 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 7fd901448af07e847f8bdade1b8d04f6d04cf097 +Subproject commit bb4ebed632f8417a0292c446ad820d88a8759d26 From 2d12e126ef00c41f8aeb66c2475988765676ce10 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 19 Apr 2024 12:21:13 +0200 Subject: [PATCH 273/669] export grid investments --- workflow/Snakefile | 1 + workflow/scripts/export_ariadne_variables.py | 82 ++++++++++++++++---- 2 files changed, 66 insertions(+), 17 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 99488d4d4..37214afcc 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -270,6 +270,7 @@ rule download_ariadne_template: rule export_ariadne_variables: params: + dg_cost_factor=config_provider("sector", "electricity_distribution_grid_cost_factor"), planning_horizons = config_provider("scenario","planning_horizons"), hours=config_provider("clustering","temporal","resolution_sector"), costs=config_provider("costs"), diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index e54f89dd0..236e381c7 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2356,17 +2356,18 @@ def get_prices(n, region): return var -def get_capex(n, costs, region): +def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0): kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'groupby': n_pre.statistics.groupers.get_name_bus_and_carrier, 'nice_names': False, } - var = pd.Series() - capacities_electricity = n.statistics.expanded_capacity( - bus_carrier=["AC", "low voltage"], - **kwargs, - ).filter(like=region).groupby("carrier").sum()# in bn + + # capacities_electricity = n.statistics.expanded_capacity( + # bus_carrier=["AC", "low voltage"], + # **kwargs, + # ).filter(like=region).groupby("carrier").sum() # in bn + # # var["Investment"] = # var["Investment|Energy Supply"] = \ #var["Investment|Energy Supply|Electricity"] = \ @@ -2393,9 +2394,55 @@ def get_capex(n, costs, region): # var["Investment|Energy Supply|Electricity|Geothermal"] = \ # var["Investment|Energy Supply|Electricity|Ocean"] = # var["Investment|Energy Supply|Electricity|Other"] = - var["Investment|Energy Supply|Electricity|Transmission and Distribution"] = ( - capacities_electricity.get("electricity distribution grid", 0) * costs.at["electricity distribution grid", "investment"] - ) # weirdly all of the distribution grid is listed as expanded_capacity in that year + + dc_links = n.links[ + (n.links.carrier=="DC") & + (n.links.bus0 + n.links.bus1).str.contains(region) & + ~n.links.index.str.contains("reversed") + ] + dc_expansion = dc_links.p_nom_opt - n_pre.links.loc[dc_links.index].p_nom_min + + dc_new = (dc_expansion > 10) & (n_pre.links.loc[dc_links.index].p_nom_min < 10) + + dc_investments = ( + (1 - dc_links.underwater_fraction) + * dc_expansion + * costs.at["HVDC overhead", "investment"] + + + dc_links.underwater_fraction + * dc_expansion + * costs.at["HVDC submarine", "investment"] + + + dc_new * costs.at["HVDC inverter pair","investment"] + ) + + ac_lines = n.lines[(n.lines.bus0 + n.lines.bus1).str.contains(region)] + ac_expansion = ac_lines.s_nom_opt - n_pre.lines.loc[ac_lines.index].s_nom_min + ac_investments = ac_expansion * costs.at["HVAC overhead", "investment"] + var["Investment|Energy Supply|Electricity|Transmission"] = \ + dc_investments.sum() + ac_investments.sum() + + distribution_grid = n.links[ + n.links.carrier.str.contains("distribution")].filter(like="DE",axis=0) + + year = distribution_grid.build_year.max() + year_pre = (year - 5) if year > 2020 else 2020 + + dg_expansion = ( + distribution_grid.p_nom_opt.sum() + - distribution_grid[distribution_grid.build_year <= year_pre].p_nom_opt.sum() + ) + dg_investment = ( + dg_expansion + * costs.at["electricity distribution grid", "investment"] + * dg_cost_factor + ) + var["Investment|Energy Supply|Electricity|Distribution"] = \ + dg_investment + #var["Investment|Energy Supply|Electricity|Transmission and Distribution"] + # weirdly all of the distribution grid is listed as expanded_capacity in 2020 + + # var["Investment|Energy Supply|Electricity|Electricity Storage"] = \ # var["Investment|Energy Supply|Hydrogen|Fossil"] = \ # var["Investment|Energy Supply|Hydrogen|Biomass"] = \ @@ -2427,7 +2474,7 @@ def get_capex(n, costs, region): # var["Investment|Infrastructure|Industry|Non-Green"] = \ # var["Investment|Industry"] = \ -def get_ariadne_var(n, industry_demand, energy_totals, region): +def get_ariadne_var(n, industry_demand, energy_totals, costs, region): var = pd.concat([ get_capacities(n, region), @@ -2439,21 +2486,20 @@ def get_ariadne_var(n, industry_demand, energy_totals, region): get_secondary_energy(n, region), get_final_energy(n, region, industry_demand, energy_totals), get_prices(n,region), - get_emissions(n, region, energy_totals) + get_emissions(n, region, energy_totals), + get_investments(n,n,costs,region) ]) return var - - # uses the global variables model, scenario and var2unit. For now. def get_data( - n, industry_demand, energy_totals, region, + n, industry_demand, energy_totals, costs, region, version="0.10", scenario="test" ): - var = get_ariadne_var(n, industry_demand, energy_totals, region) + var = get_ariadne_var(n, industry_demand, energy_totals, costs, region) data = [] for v in var.index: @@ -2540,6 +2586,7 @@ def get_data( networks[i], industry_demands[i], energy_totals, + costs[i], "DE", version=config["version"], scenario=config["run"]["name"][0], @@ -2582,4 +2629,5 @@ def get_data( kwargs = { 'groupby': n.statistics.groupers.get_name_bus_and_carrier, 'nice_names': False, - } \ No newline at end of file + } + dg_cost_factor=snakemake.params.dg_cost_factor \ No newline at end of file From 5bc0ba4d2407a5cc1678d1f590d2075a96f91b93 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 19 Apr 2024 16:03:28 +0200 Subject: [PATCH 274/669] multiply length --- workflow/Snakefile | 1 + workflow/scripts/export_ariadne_variables.py | 21 ++++++++++++-------- 2 files changed, 14 insertions(+), 8 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 37214afcc..4967b533d 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -270,6 +270,7 @@ rule download_ariadne_template: rule export_ariadne_variables: params: + length_factor=config_provider("lines", "length_factor"), dg_cost_factor=config_provider("sector", "electricity_distribution_grid_cost_factor"), planning_horizons = config_provider("scenario","planning_horizons"), hours=config_provider("clustering","temporal","resolution_sector"), diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 236e381c7..22ac9a0c4 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -4,6 +4,7 @@ from numpy import isclose import math import numpy as np +import os paths = ["workflow/submodules/pypsa-eur/scripts", "../submodules/pypsa-eur/scripts"] for path in paths: @@ -2356,7 +2357,7 @@ def get_prices(n, region): return var -def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0): +def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1.0): kwargs = { 'groupby': n_pre.statistics.groupers.get_name_bus_and_carrier, 'nice_names': False, @@ -2404,7 +2405,7 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0): dc_new = (dc_expansion > 10) & (n_pre.links.loc[dc_links.index].p_nom_min < 10) - dc_investments = ( + dc_investments = dc_links.length * length_factor * ( (1 - dc_links.underwater_fraction) * dc_expansion * costs.at["HVDC overhead", "investment"] @@ -2412,13 +2413,12 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0): dc_links.underwater_fraction * dc_expansion * costs.at["HVDC submarine", "investment"] - + - dc_new * costs.at["HVDC inverter pair","investment"] - ) + + ) + dc_new * costs.at["HVDC inverter pair","investment"] ac_lines = n.lines[(n.lines.bus0 + n.lines.bus1).str.contains(region)] ac_expansion = ac_lines.s_nom_opt - n_pre.lines.loc[ac_lines.index].s_nom_min - ac_investments = ac_expansion * costs.at["HVAC overhead", "investment"] + ac_investments = ac_lines.length * length_factor * ac_expansion * costs.at["HVAC overhead", "investment"] var["Investment|Energy Supply|Electricity|Transmission"] = \ dc_investments.sum() + ac_investments.sum() @@ -2473,6 +2473,7 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0): # var["Investment|Infrastructure|Industry|Green"] = \ # var["Investment|Infrastructure|Industry|Non-Green"] = \ # var["Investment|Industry"] = \ + return var def get_ariadne_var(n, industry_demand, energy_totals, costs, region): @@ -2487,7 +2488,11 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region): get_final_energy(n, region, industry_demand, energy_totals), get_prices(n,region), get_emissions(n, region, energy_totals), - get_investments(n,n,costs,region) + get_investments( + n, n, costs, region, + dg_cost_factor=snakemake.params.dg_cost_factor, + length_factor=snakemake.params.length_factor + ) ]) return var @@ -2607,7 +2612,7 @@ def get_data( *df.loc[df["Unit"] == "NA"]["Variable"], sep="\n" ) - df.drop(df.loc[df["Unit"] == "NA"].index, inplace=True) + #df.drop(df.loc[df["Unit"] == "NA"].index, inplace=True) meta = pd.Series({ 'Model': "PyPSA-Eur v0.10", From 4deea9b55d39673fad6dc0798870574106cd6434 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 19 Apr 2024 16:07:11 +0200 Subject: [PATCH 275/669] remove unused code --- workflow/scripts/export_ariadne_variables.py | 13 ------------- 1 file changed, 13 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 22ac9a0c4..639dd4777 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -141,19 +141,6 @@ def get_capacity_additions_simple(n, region): return pd.Series(data = caps.values - incaps.values, index = "Capacity Additions" + caps.index.str[8:]) - -def _get_capex(n, region): - def _capex(*args, **kwargs): - # call n.statistics.capex, but ignore the storage keyword - kwargs.pop("storage", None) - return n.statistics.capex(*args,**kwargs) - return _get_capacities( - n, - region, - _capex, - cap_string="Investment|" - ) - def get_capacity_additions(n, region): def _f(*args, **kwargs): return n.statistics.optimal_capacity(*args, **kwargs).sub( From 403909608c5435405fa4148e43bb70443cf61120 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 19 Apr 2024 17:14:07 +0200 Subject: [PATCH 276/669] gas and H2 grid investments --- workflow/scripts/export_ariadne_variables.py | 54 ++++++++++++++++++-- 1 file changed, 50 insertions(+), 4 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 639dd4777..d15f0553f 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2406,8 +2406,14 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1 ac_lines = n.lines[(n.lines.bus0 + n.lines.bus1).str.contains(region)] ac_expansion = ac_lines.s_nom_opt - n_pre.lines.loc[ac_lines.index].s_nom_min ac_investments = ac_lines.length * length_factor * ac_expansion * costs.at["HVAC overhead", "investment"] + var["Investment|Energy Supply|Electricity|Transmission|AC"] = \ + ac_investments.sum() + var["Investment|Energy Supply|Electricity|Transmission|DC"] = \ + dc_investments.sum() + var["Investment|Energy Supply|Electricity|Transmission"] = \ - dc_investments.sum() + ac_investments.sum() + var["Investment|Energy Supply|Electricity|Transmission|AC"] + \ + var["Investment|Energy Supply|Electricity|Transmission|DC"] distribution_grid = n.links[ n.links.carrier.str.contains("distribution")].filter(like="DE",axis=0) @@ -2426,9 +2432,49 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1 ) var["Investment|Energy Supply|Electricity|Distribution"] = \ dg_investment - #var["Investment|Energy Supply|Electricity|Transmission and Distribution"] - # weirdly all of the distribution grid is listed as expanded_capacity in 2020 + + var["Investment|Energy Supply|Electricity|Transmission and Distribution"] = \ + var["Investment|Energy Supply|Electricity|Distribution"] + \ + var["Investment|Energy Supply|Electricity|Transmission"] + + + h2_links = n.links[ + n.links.carrier.str.contains("H2 pipeline") + & ~n.links.reversed + & (n.links.bus0 + n.links.bus1).str.contains(region) + ] + year = n.links.build_year.max() + new_h2_links = h2_links[ + ((year - 5) < h2_links.build_year) + & ( h2_links.build_year <= year)] + h2_costs = ( + new_h2_links.length * new_h2_links.p_nom_opt + * costs.at["H2 pipeline", "investment"] + ) + + var["Investment|Energy Supply|Hydrogen|Transmission"] = \ + h2_costs.sum() + + + gas_links = n.links[ + ( + ((n.links.carrier == "gas pipeline") & (n.links.build_year > 2020)) + | (n.links.carrier == "gas pipeline new") + ) + & ~n.links.reversed + & (n.links.bus0 + n.links.bus1).str.contains(region) + ] + year = n.links.build_year.max() + new_gas_links = gas_links[ + ((year - 5) < gas_links.build_year) + & (gas_links.build_year <= year)] + gas_costs = ( + new_gas_links.length * new_gas_links.p_nom_opt + * costs.at["CH4 (g) pipeline", "investment"] + ) + var["Investment|Energy Supply|Gas|Transmission"] = \ + gas_costs.sum() # var["Investment|Energy Supply|Electricity|Electricity Storage"] = \ # var["Investment|Energy Supply|Hydrogen|Fossil"] = \ @@ -2534,7 +2580,7 @@ def get_data( ll="vopt", sector_opts="None", #planning_horizons="2025", - run="KN2045_Bal_v4" + run="KN2045_Elec_v4" ) From e13ad95777852e599d099d08049513356d627f17 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 23 Apr 2024 11:21:09 +0200 Subject: [PATCH 277/669] exclude distribution grid from FE --- workflow/scripts/export_ariadne_variables.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index d15f0553f..1167b577a 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1305,7 +1305,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): low_voltage_electricity[ # carrier does not contain one of the following substrings ~low_voltage_electricity.index.str.contains( - "urban central|industry|agriculture|charger" + "urban central|industry|agriculture|charger|distribution" # Excluding chargers (battery and EV) ) ].sum() @@ -2603,7 +2603,7 @@ def get_data( level="year", ).multiply(TWh2PJ) - nhours = int(snakemake.params.hours[0:3]) + nhours = int(snakemake.params.hours[:-1]) nyears = nhours / 8760 costs = list(map( From 10121c058fcdea7c32d78cd3fade7b61c7616ff8 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 23 Apr 2024 11:22:54 +0200 Subject: [PATCH 278/669] residential includes commercial --- workflow/scripts/export_ariadne_variables.py | 30 ++++++++++---------- 1 file changed, 15 insertions(+), 15 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 1167b577a..206b54d2f 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1963,7 +1963,7 @@ def get_prices(n, region): nodal_prices_lv = n.buses_t.marginal_price[nodal_flows_lv.columns] # electricity price at the final level in the residential sector. Prices should include the effect of carbon prices. - var["Price|Final Energy|Residential|Electricity"] = \ + var["Price|Final Energy|Residential and Commercial|Electricity"] = \ nodal_flows_lv.mul(nodal_prices_lv).values.sum() / nodal_flows_lv.values.sum() / MWh2GJ # vars: Tier 1, Category: energy(price) @@ -2037,7 +2037,7 @@ def get_prices(n, region): nodal_flows_h2.mul(nodal_prices_h2).values.sum() / nodal_flows_h2.values.sum() /MWh2GJ # From PIK plots - # "Price|Final Energy|Residential|Hydrogen" = final energy consumption by the residential sector of hydrogen + # "Price|Final Energy|Residential and Commercial|Hydrogen" = final energy consumption by the residential sector of hydrogen # do we have residential applications for hydrogen? nf_gas_residential = get_nodal_flows( @@ -2048,27 +2048,27 @@ def get_prices(n, region): nodal_prices_gas = n.buses_t.marginal_price[nf_gas_residential.columns] # !!! mv much higher: check carbon effect! - var["Price|Final Energy|Residential|Gases"] = \ + var["Price|Final Energy|Residential and Commercial|Gases"] = \ nf_gas_residential.mul(nodal_prices_gas).values.sum() / nf_gas_residential.values.sum() / MWh2GJ if nf_gas_residential.values.sum() > 0 else np.nan - # "Price|Final Energy|Residential|Gases|Natural Gas" ? - # "Price|Final Energy|Residential|Liquids|Biomass" x + # "Price|Final Energy|Residential and Commercial|Gases|Natural Gas" ? + # "Price|Final Energy|Residential and Commercial|Liquids|Biomass" x - var["Price|Final Energy|Residential|Liquids|Oil"] = \ + var["Price|Final Energy|Residential and Commercial|Liquids|Oil"] = \ get_weighted_costs_links( ['rural oil boiler', 'urban decentral oil boiler'], n, region) / MWh2GJ - var["Price|Final Energy|Residential|Liquids"] = \ - var["Price|Final Energy|Residential|Liquids|Oil"] + var["Price|Final Energy|Residential and Commercial|Liquids"] = \ + var["Price|Final Energy|Residential and Commercial|Liquids|Oil"] - var["Price|Final Energy|Residential|Solids|Biomass"] = \ + var["Price|Final Energy|Residential and Commercial|Solids|Biomass"] = \ get_weighted_costs_links( ['rural biomass boiler', 'urban decentral biomass boiler'], n, region) / MWh2GJ - var["Price|Final Energy|Residential|Solids"] = \ - var["Price|Final Energy|Residential|Solids|Biomass"] + var["Price|Final Energy|Residential and Commercial|Solids"] = \ + var["Price|Final Energy|Residential and Commercial|Solids|Biomass"] # "Price|Final Energy|Industry|Electricity"✓ @@ -2220,7 +2220,7 @@ def get_prices(n, region): # Price|Final Energy|Residential and Commercial|Hydrogen|Other Taxes var["Price|Final Energy|Residential and Commercial|Electricity"] = \ - var["Price|Final Energy|Residential|Electricity"] + var["Price|Final Energy|Residential and Commercial|Electricity"] # Price|Final Energy|Residential and Commercial|Electricity|Sales Margin x # Price|Final Energy|Residential and Commercial|Electricity|Transport and Distribution @@ -2333,9 +2333,9 @@ def get_prices(n, region): # Price|Final Energy|Transportation|Passenger|Solids x - # Price|Final Energy|Residential|Hydrogen x - # Price|Final Energy|Residential|Gases|Natural Gas ? - # Price|Final Energy|Residential|Solids|Coal x + # Price|Final Energy|Residential and Commercial|Hydrogen x + # Price|Final Energy|Residential and Commercial|Gases|Natural Gas ? + # Price|Final Energy|Residential and Commercial|Solids|Coal x # Price|Final Energy|Transportation|Electricity|Carbon Price Component ? # Price|Final Energy|Transportation|Gases|Carbon Price Component From 930cee4ff5b95bb9c91862d398634ff331a2e2c7 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 23 Apr 2024 11:23:54 +0200 Subject: [PATCH 279/669] drop variables for DB export --- workflow/scripts/export_ariadne_variables.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 206b54d2f..01315113b 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2645,7 +2645,7 @@ def get_data( *df.loc[df["Unit"] == "NA"]["Variable"], sep="\n" ) - #df.drop(df.loc[df["Unit"] == "NA"].index, inplace=True) + df.drop(df.loc[df["Unit"] == "NA"].index, inplace=True) meta = pd.Series({ 'Model': "PyPSA-Eur v0.10", From c1d03590fdc203d5ca523232fc44924795023c6c Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 23 Apr 2024 11:24:57 +0200 Subject: [PATCH 280/669] allow internal usage for other groups --- workflow/scripts/export_ariadne_variables.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 01315113b..d99e9255e 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2651,7 +2651,7 @@ def get_data( 'Model': "PyPSA-Eur v0.10", 'Scenario': snakemake.config["iiasa_database"]["reference_scenario"], 'Quality Assessment': "preliminary", - 'Internal usage within Kopernikus AG Szenarien': "no", + 'Internal usage within Kopernikus AG Szenarien': "yes", 'Release for publication': "no", }) From 8bed749be0df1f526a221f6ce1b1c1bb4370d9d7 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Tue, 23 Apr 2024 11:50:42 +0200 Subject: [PATCH 281/669] excluded carbon costs for h2, changed specific emissions to model intern values --- workflow/scripts/export_ariadne_variables.py | 40 ++++---------------- 1 file changed, 7 insertions(+), 33 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 116fe2ecf..0b2035081 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -55,8 +55,6 @@ def __get_oil_fossil_fraction(n, region, kwargs): return oil_fossil_fraction -# how to handle pipelines? -# how to account for the region? def _get_gas_fossil_fraction(n, region, kwargs): total_gas_supply = n.statistics.supply( bus_carrier="gas", **kwargs @@ -74,27 +72,6 @@ def _get_gas_fossil_fraction(n, region, kwargs): return gas_fossil_fraction -def _get_h2_fossil_fraction(n, region, kwargs): - total_h2_supply = n.statistics.supply( - bus_carrier="H2", **kwargs - ).drop("Store").groupby("carrier").sum() - - drops = ["H2 pipeline", "H2 pipeline (Kernnetz)"] - for d in drops: - if d in total_h2_supply.index: - total_h2_supply.drop(d) - - h2_fossil_fraction_c = ( - total_h2_supply.get(["SMR", "SMR CC"]) - / total_h2_supply.sum() - ) - - h2_fossil_fraction = \ - h2_fossil_fraction_c["SMR"] * n.links[n.links.carrier == "SMR"].efficiency.mean() \ - + h2_fossil_fraction_c["SMR CC"] * n.links[n.links.carrier == "SMR CC"].efficiency.mean() - - return h2_fossil_fraction - def _get_t_sum(df, df_t, carrier, region, snapshot_weightings, port): if type(carrier) == list: @@ -2024,12 +2001,12 @@ def get_prices(n, region): # co2 additions co2_price = -n.global_constraints.loc["CO2Limit", "mu"] - n.global_constraints.loc["co2_limit-DE", "mu"] - # specific emissions in tons CO2/MWh (https://www.volker-quaschning.de/datserv/CO2-spez/index_e.php) + # specific emissions in tons CO2/MWh specific_emisisons = { - "oil" : 266.5e-3, - "gas" : 200.8e-3, - "hard coal" : 338.2e-3, - "lignite" : 398.7e-3, + "oil" : n.links[n.links.carrier =="oil"].efficiency2.unique().item(), + "gas" : n.links[n.links.carrier =="OCGT"].efficiency2.unique().item(), + "hard coal" : n.links[n.links.carrier =="coal"].efficiency2.unique().item(), + "lignite" : n.links[n.links.carrier =="lignite"].efficiency2.unique().item(), } nodal_flows_lv = get_nodal_flows( @@ -2124,17 +2101,14 @@ def get_prices(n, region): # Price for gaseous Efuels at the secondary level, i.e. for large scale consumers. Prices should include the effect of carbon prices. # what are gaseous Efuels? - # Price|Secondary Energy|Hydrogen + # Price|Secondary Energy|Hydrogen (carbon costs not yet included) nodal_flows_h2 = get_nodal_flows( n, "H2", region ) nodal_prices_h2 = n.buses_t.marginal_price[nodal_flows_h2.columns] - - h2_fossil_fraction = _get_h2_fossil_fraction(n, region, kwargs) - co2_add_h2 = h2_fossil_fraction * specific_emisisons["gas"] * co2_price var["Price|Secondary Energy|Hydrogen"] = \ - (nodal_flows_h2.mul(nodal_prices_h2).values.sum() / nodal_flows_h2.values.sum() + co2_add_h2) /MWh2GJ + (nodal_flows_h2.mul(nodal_prices_h2).values.sum() / nodal_flows_h2.values.sum()) /MWh2GJ # From PIK plots # "Price|Final Energy|Residential|Hydrogen" = final energy consumption by the residential sector of hydrogen From d644de95f35a5d7ed54a999b5d500c81869b6f89 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Tue, 23 Apr 2024 13:34:00 +0200 Subject: [PATCH 282/669] hard coding of specific emission values --- workflow/scripts/export_ariadne_variables.py | 29 ++++++++++---------- 1 file changed, 14 insertions(+), 15 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 0b2035081..a69f79139 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2001,12 +2001,12 @@ def get_prices(n, region): # co2 additions co2_price = -n.global_constraints.loc["CO2Limit", "mu"] - n.global_constraints.loc["co2_limit-DE", "mu"] - # specific emissions in tons CO2/MWh + # specific emissions in tons CO2/MWh according to n.links[n.links.carrier =="your_carrier].efficiency2.unique().item() specific_emisisons = { - "oil" : n.links[n.links.carrier =="oil"].efficiency2.unique().item(), - "gas" : n.links[n.links.carrier =="OCGT"].efficiency2.unique().item(), - "hard coal" : n.links[n.links.carrier =="coal"].efficiency2.unique().item(), - "lignite" : n.links[n.links.carrier =="lignite"].efficiency2.unique().item(), + "oil" : 0.2571, + "gas" : 0.198, # OCGT + "hard coal" : 0.3361, + "lignite" : 0.4069, } nodal_flows_lv = get_nodal_flows( @@ -2032,7 +2032,6 @@ def get_prices(n, region): nodal_flows_bm.mul(nodal_prices_bm).values.sum() / nodal_flows_bm.values.sum() / MWh2GJ # Price|Primary Energy|Coal - # is coal also lignite? -> yes according to michas code (coal for industry is already included as it withdraws from coal bus) nf_coal = get_nodal_flows(n, "coal", "EU") nodal_prices_coal = n.buses_t.marginal_price[nf_coal.columns] coal_price = nf_coal.mul(nodal_prices_coal).values.sum() / nf_coal.values.sum() if nf_coal.values.sum() > 0 else np.nan @@ -2048,7 +2047,7 @@ def get_prices(n, region): + lignite_fraction * specific_emisisons["lignite"] * co2_price var["Price|Primary Energy|Coal"] = \ - (get_weighted_costs([coal_price, lignite_price], [nf_coal.values.sum(), nf_lignite.values.sum()]) + co2_add_coal)/ MWh2GJ + (get_weighted_costs([coal_price, lignite_price], [nf_coal.values.sum(), nf_lignite.values.sum()]) + co2_add_coal)/ MWh2GJ # Price|Primary Energy|Gas nodal_flows_gas = get_nodal_flows(n, "gas", region) @@ -2060,7 +2059,7 @@ def get_prices(n, region): var["Price|Primary Energy|Gas"] = \ - (nodal_flows_gas.mul(nodal_prices_gas).values.sum() / nodal_flows_gas.values.sum() + co2_add_gas) / MWh2GJ + (nodal_flows_gas.mul(nodal_prices_gas).values.sum() / nodal_flows_gas.values.sum() + co2_add_gas) / MWh2GJ # Price|Primary Energy|Oil # if oil bus is unravelled change "EU" into region @@ -2072,7 +2071,7 @@ def get_prices(n, region): co2_add_oil = oil_fossil_fraction * specific_emisisons["oil"] * co2_price var["Price|Primary Energy|Oil"] = \ - (nodal_flows_oil.mul(nodal_prices_oil).values.sum() / nodal_flows_oil.values.sum() + co2_add_oil) /MWh2GJ + (nodal_flows_oil.mul(nodal_prices_oil).values.sum() / nodal_flows_oil.values.sum() + co2_add_oil) /MWh2GJ # Price|Secondary Energy|Electricity # electricity price at the secondary level, i.e. for large scale consumers (e.g. aluminum production). Prices should include the effect of carbon prices. @@ -2421,16 +2420,16 @@ def get_prices(n, region): def get_ariadne_var(n, industry_demand, energy_totals, region): var = pd.concat([ - get_capacities(n, region), - get_capacity_additions_simple(n,region), + #get_capacities(n, region), + #get_capacity_additions_simple(n,region), #get_installed_capacities(n,region), #get_capacity_additions(n, region), #get_capacity_additions_nstat(n, region), - get_primary_energy(n, region), - get_secondary_energy(n, region), - get_final_energy(n, region, industry_demand, energy_totals), + #get_primary_energy(n, region), + #get_secondary_energy(n, region), + #get_final_energy(n, region, industry_demand, energy_totals), get_prices(n,region), - get_emissions(n, region, energy_totals) + #get_emissions(n, region, energy_totals) ]) return var From a71f42ed8516945e967b541d9fe124f6234fb3ae Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 23 Apr 2024 15:04:44 +0200 Subject: [PATCH 283/669] post-discretize optimization results --- workflow/Snakefile | 1 + workflow/scripts/export_ariadne_variables.py | 40 ++++++++++++++++---- 2 files changed, 33 insertions(+), 8 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 4967b533d..13220f7d6 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -270,6 +270,7 @@ rule download_ariadne_template: rule export_ariadne_variables: params: + iiasa_scenario=config_provider("iiasa_database", "reference_scenario"), length_factor=config_provider("lines", "length_factor"), dg_cost_factor=config_provider("sector", "electricity_distribution_grid_cost_factor"), planning_horizons = config_provider("scenario","planning_horizons"), diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index d99e9255e..d443416a0 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2344,6 +2344,18 @@ def get_prices(n, region): return var + +def get_discretized_value(value, disc_int): + + if value == 0.0: + return value + + add = value - value % disc_int + value = value % disc_int + discrete = disc_int if value > 0.3 * disc_int else 0.0 + + return add + discrete + def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1.0): kwargs = { 'groupby': n_pre.statistics.groupers.get_name_bus_and_carrier, @@ -2388,9 +2400,13 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1 (n.links.bus0 + n.links.bus1).str.contains(region) & ~n.links.index.str.contains("reversed") ] - dc_expansion = dc_links.p_nom_opt - n_pre.links.loc[dc_links.index].p_nom_min - - dc_new = (dc_expansion > 10) & (n_pre.links.loc[dc_links.index].p_nom_min < 10) + dc_expansion = dc_links.p_nom_opt.apply( + lambda x: get_discretized_value(x, 2000) + ) - n_pre.links.loc[dc_links.index].p_nom_min.apply( + lambda x: get_discretized_value(x, 2000) + ) + + dc_new = (dc_expansion > 0) & (n_pre.links.loc[dc_links.index].p_nom_min > 10) dc_investments = dc_links.length * length_factor * ( (1 - dc_links.underwater_fraction) @@ -2404,7 +2420,11 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1 ) + dc_new * costs.at["HVDC inverter pair","investment"] ac_lines = n.lines[(n.lines.bus0 + n.lines.bus1).str.contains(region)] - ac_expansion = ac_lines.s_nom_opt - n_pre.lines.loc[ac_lines.index].s_nom_min + ac_expansion = ac_lines.s_nom_opt.apply( + lambda x: get_discretized_value(x, 1700) + ) - n_pre.lines.loc[ac_lines.index].s_nom_min.apply( + lambda x: get_discretized_value(x, 1700) + ) ac_investments = ac_lines.length * length_factor * ac_expansion * costs.at["HVAC overhead", "investment"] var["Investment|Energy Supply|Electricity|Transmission|AC"] = \ ac_investments.sum() @@ -2448,7 +2468,9 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1 ((year - 5) < h2_links.build_year) & ( h2_links.build_year <= year)] h2_costs = ( - new_h2_links.length * new_h2_links.p_nom_opt + new_h2_links.length * new_h2_links.p_nom_opt.apply( + lambda x: get_discretized_value(x, 1500) + ) * costs.at["H2 pipeline", "investment"] ) @@ -2469,7 +2491,9 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1 ((year - 5) < gas_links.build_year) & (gas_links.build_year <= year)] gas_costs = ( - new_gas_links.length * new_gas_links.p_nom_opt + new_gas_links.length * new_gas_links.p_nom_opt.apply( + lambda x: get_discretized_value(x, 1200) + ) * costs.at["CH4 (g) pipeline", "investment"] ) @@ -2627,7 +2651,7 @@ def get_data( costs[i], "DE", version=config["version"], - scenario=config["run"]["name"][0], + scenario=snakemake.wildcards.run, )) df = reduce( @@ -2649,7 +2673,7 @@ def get_data( meta = pd.Series({ 'Model': "PyPSA-Eur v0.10", - 'Scenario': snakemake.config["iiasa_database"]["reference_scenario"], + 'Scenario': snakemake.params.iiasa_scenario, 'Quality Assessment': "preliminary", 'Internal usage within Kopernikus AG Szenarien': "yes", 'Release for publication': "no", From a50b22fb203a03aeb551b97c6a80611f54048ba9 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 23 Apr 2024 15:07:15 +0200 Subject: [PATCH 284/669] run name is scenario name --- workflow/scripts/export_ariadne_variables.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index d443416a0..c20204459 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2673,7 +2673,7 @@ def get_data( meta = pd.Series({ 'Model': "PyPSA-Eur v0.10", - 'Scenario': snakemake.params.iiasa_scenario, + 'Scenario': snakemake.wildcards.run, 'Quality Assessment': "preliminary", 'Internal usage within Kopernikus AG Szenarien': "yes", 'Release for publication': "no", From c3d2aaa350a4833fef41f319e3d8d22e1f208611 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 23 Apr 2024 17:18:33 +0200 Subject: [PATCH 285/669] export full set of variables --- workflow/Snakefile | 3 ++- workflow/scripts/export_ariadne_variables.py | 4 ++++ 2 files changed, 6 insertions(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 13220f7d6..9cc64e850 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -294,7 +294,8 @@ rule export_ariadne_variables: ), energy_totals=resources("energy_totals.csv"), output: - exported_variables=RESULTS + "ariadne/exported_variables.xlsx" + exported_variables=RESULTS + "ariadne/exported_variables.xlsx", + exported_variables_full=RESULTS + "ariadne/exported_variables_full.xlsx", log: RESULTS + "logs/export_ariadne_variables.log" script: diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 6f9e4b702..d410c23b2 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2741,6 +2741,10 @@ def get_data( df["Region"] = df["Region"].str.replace("DE", "DEU") df["Model"] = "PyPSA-Eur v0.10" + + with pd.ExcelWriter(snakemake.output.exported_variables_full) as writer: + df.to_excel(writer, sheet_name="data", index=False) + print( "Dropping variables which are not in the template:", *df.loc[df["Unit"] == "NA"]["Variable"], From 2c64ec3cbdd195d9526319d56634c96df3bb0481 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 23 Apr 2024 17:42:31 +0200 Subject: [PATCH 286/669] improve numerical stability of unravel oil bus --- workflow/scripts/modify_prenetwork.py | 11 +---------- 1 file changed, 1 insertion(+), 10 deletions(-) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index e9c0a550b..5fdbdf7fe 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -281,7 +281,7 @@ def unravel_oilbus(n): bus0=["EU renewable oil", "EU renewable oil", "DE renewable oil", "DE renewable oil"], bus1=["DE oil", "EU oil", "DE oil", "EU oil"], carrier="renewable oil", - p_nom=1e9, + p_nom=1e6, p_min_pu=0, ) @@ -295,15 +295,6 @@ def unravel_oilbus(n): capital_cost=0.02, ) - # n.madd( - # "Store", - # ["DE renewable oil Store", "EU renewable oil Store"], - # bus=["DE renewable oil", "EU renewable oil"], - # carrier="renewable oil", - # e_nom_extendable=True, - # e_cyclic=True, - # capital_cost=0.02, - # ) def transmission_costs_from_modified_cost_data(n, costs, length_factor=1.0): # copying the the function update_transmission_costs from add_electricity From fd62aa2838ab1f630bad84f50690a3ae06bbb6bc Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 24 Apr 2024 10:28:36 +0200 Subject: [PATCH 287/669] fix CurrentPolicies co2 targets --- config/config.yaml | 6 +++--- config/scenarios.manual.yaml | 27 ++++++++++++++++++++++++++- 2 files changed, 29 insertions(+), 4 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 46d498783..5f8ac1566 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,10 +4,10 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240423exportinvestments + prefix: 20240424fixCurrentPolicies name: - # - CurrentPolicies - - KN2045_Bal_v4 + - CurrentPolicies + # - KN2045_Bal_v4 # - KN2045_Elec_v4 # - KN2045_H2_v4 # - KN2045plus_EasyRide diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 304bdc3ce..56c22ff4f 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -21,6 +21,31 @@ CurrentPolicies: # TODO: wait for REMod v1.0 to upload a first Trend scenario reference_scenario: Trend # CurrentPolicies once it's renamed + co2_budget: + 2020: 0.800 # 20% reduction by 2020 + 2025: 0.600 + 2030: 0.450 # 55% reduction by 2030 (Ff55) + 2035: 0.450 # stagnation for the Trend scenario + 2040: 0.450 + 2045: 0.450 + 2050: 0.450 + + co2_budget_national: + 2020: + DE: 0.728 + 2025: + DE: 0.573 + 2030: + DE: 0.401 + 2035: + DE: 0.401 # 2030 value + 2040: + DE: 0.401 # 2030 value + 2045: + DE: 0.401 # 2030 value + 2050: + DE: 0.401 # 2030 value + limits_capacity_min: Generator: onwind: @@ -97,7 +122,7 @@ CurrentPolicies: 2035: 0 2040: 0 2045: 0 - + KN2045_Bal_v4: # Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren From 18c1c60705286792d7caef555226b884c7c6a792 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 24 Apr 2024 10:43:22 +0200 Subject: [PATCH 288/669] make sure that co2_budget_national is taken from build_scenarios --- config/config.yaml | 20 -------------------- config/scenarios.manual.yaml | 17 +---------------- 2 files changed, 1 insertion(+), 36 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 5f8ac1566..01e368bfd 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -106,26 +106,6 @@ co2_budget: 2045: 0.050 2050: 0.000 # climate-neutral by 2050 -# calculated in workflow/scripts/_compute_co2_targets_DE.py; are -# relative to the DE emissions in 1990 *including bunkers*; also -# account for non-CO2 GHG and allow extra room for international -# bunkers which are excluded from the national targets -co2_budget_national: - 2020: - DE: 0.728 - 2025: - DE: 0.571 - 2030: - DE: 0.396 - 2035: - DE: 0.258 - 2040: - DE: 0.118 - 2045: - DE: -0.028 - 2050: - DE: -0.024 - limits_capacity_min: Generator: onwind: diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 56c22ff4f..99f8d1867 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -30,22 +30,6 @@ CurrentPolicies: 2045: 0.450 2050: 0.450 - co2_budget_national: - 2020: - DE: 0.728 - 2025: - DE: 0.573 - 2030: - DE: 0.401 - 2035: - DE: 0.401 # 2030 value - 2040: - DE: 0.401 # 2030 value - 2045: - DE: 0.401 # 2030 value - 2050: - DE: 0.401 # 2030 value - limits_capacity_min: Generator: onwind: @@ -123,6 +107,7 @@ CurrentPolicies: 2040: 0 2045: 0 + KN2045_Bal_v4: # Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren From a6b0d7c6faf2c0cf80bcdb318146308c882c20eb Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 24 Apr 2024 16:48:11 +0200 Subject: [PATCH 289/669] add export of policy carbon price variable and plot it --- workflow/Snakefile | 3 +- workflow/scripts/export_ariadne_variables.py | 11 ++++++- workflow/scripts/plot_ariadne_variables.py | 31 +++++++++++++------- 3 files changed, 32 insertions(+), 13 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 9cc64e850..e5105ea90 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -322,11 +322,12 @@ rule plot_ariadne_variables: co2_emissions=RESULTS + "ariadne/co2_emissions.png", primary_energy_price = RESULTS + "ariadne/primary_energy_price.png", secondary_energy_price = RESULTS + "ariadne/secondary_energy_price.png", - final_energy_residential_price = RESULTS + "ariadne/final_energy_residential_price.png", + #final_energy_residential_price = RESULTS + "ariadne/final_energy_residential_price.png", final_energy_industry_price = RESULTS + "ariadne/final_energy_industry_price.png", final_energy_transportation_price = RESULTS + "ariadne/final_energy_transportation_price.png", final_energy_residential_commercial_price = RESULTS + "ariadne/final_energy_residential_commercial_price.png", all_prices = RESULTS + "ariadne/all_prices.png", + policy_carbon = RESULTS + "ariadne/policy_carbon.png", script: "scripts/plot_ariadne_variables.py" diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index d410c23b2..cd4e0d101 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2609,6 +2609,14 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1 # var["Investment|Industry"] = \ return var +def get_policy(n): + var = pd.Series() + + var["Price|Carbon"] = \ + -n.global_constraints.loc["CO2Limit", "mu"] - n.global_constraints.loc["co2_limit-DE", "mu"] + + return var + def get_ariadne_var(n, industry_demand, energy_totals, costs, region): var = pd.concat([ @@ -2626,7 +2634,8 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region): n, n, costs, region, dg_cost_factor=snakemake.params.dg_cost_factor, length_factor=snakemake.params.length_factor - ) + ), + get_policy(n) ]) return var diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 63dace7a7..07c631ee7 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -60,7 +60,8 @@ def side_by_side_plot( def within_plot(df, df2, title, savepath, - select_regex="", drop_regex="",**kwargs + select_regex="", drop_regex="", + unit = "EUR_2020/GJ", **kwargs ): df = df.T.copy() @@ -75,9 +76,9 @@ def within_plot(df, df2, n = df.shape[1] if n == 0: - print("Warning! Apparently the variables required for this plot are missing.") + print(f"Warning! Apparently the variables required for this plot (({title}) are missing.") fig = plt.figure() - plt.title("Warning! Apparently the variables required for this plot are missing.") + plt.title(f"Warning! Apparently the variables required for this plot ({title}) are missing.") fig.savefig(savepath, bbox_inches="tight") return fig rows = n // 2 + n % 2 @@ -97,7 +98,7 @@ def within_plot(df, df2, if n % 2 != 0: fig.delaxes(axes[-1]) - plt.suptitle(title + " in EUR_2020/GJ", fontsize="xx-large", y=1.0) + plt.suptitle(f"{title} in ({unit})", fontsize="xx-large", y=1.0) plt.tight_layout() plt.close() fig.savefig(savepath, bbox_inches="tight") @@ -271,13 +272,13 @@ def within_plot(df, df2, savepath=snakemake.output.secondary_energy_price, ) - within_plot( - df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Residential")], - dfremind, - title = "Price|Final Energy|Residential", - savepath=snakemake.output.final_energy_residential_price, - #select_regex="Price\|Final Energy\|Residential\|[^|]*$" - ) + # within_plot( + # df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Residential")], + # dfremind, + # title = "Price|Final Energy|Residential", + # savepath=snakemake.output.final_energy_residential_price, + # #select_regex="Price\|Final Energy\|Residential\|[^|]*$" + # ) within_plot( df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Industry")], @@ -310,3 +311,11 @@ def within_plot(df, df2, savepath=snakemake.output.all_prices, ) + within_plot( + df[df.index.get_level_values("Variable").str.startswith('Price|Carbon')], + dfremind, + title = "Price of carbon", + savepath=snakemake.output.policy_carbon, + unit="EUR/tCO2" + ) + From f4a214c48bdf676b6efd78673fa1bb606b571c66 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 25 Apr 2024 13:40:48 +0200 Subject: [PATCH 290/669] add investment plot --- workflow/Snakefile | 3 ++- workflow/scripts/plot_ariadne_variables.py | 28 ++++++++++++++-------- 2 files changed, 20 insertions(+), 11 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index e5105ea90..bdbe08356 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -306,7 +306,7 @@ rule plot_ariadne_variables: params: iiasa_scenario=config_provider("iiasa_database", "reference_scenario"), input: - exported_variables=RESULTS + "ariadne/exported_variables.xlsx", + exported_variables_full=RESULTS + "ariadne/exported_variables_full.xlsx", ariadne_database=resources("ariadne_database.csv"), output: primary_energy=RESULTS + "ariadne/primary_energy.png", @@ -328,6 +328,7 @@ rule plot_ariadne_variables: final_energy_residential_commercial_price = RESULTS + "ariadne/final_energy_residential_commercial_price.png", all_prices = RESULTS + "ariadne/all_prices.png", policy_carbon = RESULTS + "ariadne/policy_carbon.png", + investment_energy_supply = RESULTS + "ariadne/investment_energy_supply.png", script: "scripts/plot_ariadne_variables.py" diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 07c631ee7..4332edf56 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -122,15 +122,15 @@ def within_plot(df, df2, ll="v1.2", sector_opts="None", planning_horizons="2050", - run="KN2045_H2_v4" + run="CurrentPolicies" ) df = pd.read_excel( - snakemake.input.exported_variables, + snakemake.input.exported_variables_full, index_col=list(range(5)), #index_col=["Model", "Scenario", "Region", "Variable", "Unit"], sheet_name="data" - ).groupby(["Variable","Unit"]).sum() + ).groupby(["Variable","Unit"], dropna=False).sum() df.columns = df.columns.astype(str) leitmodell="REMIND-EU v1.1" @@ -144,13 +144,13 @@ def within_plot(df, df2, dfremind.index.names = df.index.names - idx = df.index.intersection(dfremind.index) - print( - f"Dropping variables missing in {leitmodell}:", - df.index.difference(dfremind.index), - ) - df = df.loc[idx] - dfremind = dfremind.loc[idx] + # idx = df.index.intersection(dfremind.index) + # print( + # f"Dropping variables missing in {leitmodell}:", + # df.index.difference(dfremind.index), + # ) + # df = df.loc[idx] + # dfremind = dfremind.loc[idx] side_by_side_plot( df, @@ -319,3 +319,11 @@ def within_plot(df, df2, unit="EUR/tCO2" ) + within_plot( + df[df.index.get_level_values("Variable").str.startswith('Investment|Energy Supply')], + dfremind, + title = "Investment in Energy Supply", + savepath=snakemake.output.investment_energy_supply , + unit="billion EUR" + ) + From d7fe6bbb59b868e51cc66a7e7df3c4f5d95f0ba2 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 25 Apr 2024 16:18:02 +0200 Subject: [PATCH 291/669] plot all exported variables --- workflow/Snakefile | 7 +++ .../plot_ariadne_scenario_comparison.py | 54 +++++++++++++++++++ 2 files changed, 61 insertions(+) create mode 100644 workflow/scripts/plot_ariadne_scenario_comparison.py diff --git a/workflow/Snakefile b/workflow/Snakefile index 9cc64e850..8cff604a4 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -330,6 +330,13 @@ rule plot_ariadne_variables: script: "scripts/plot_ariadne_variables.py" + +rule plot_ariadne_scenario_comparison: + input: + expand(RESULTS + "ariadne/exported_variables_full.xlsx", run=config_provider("run", "name")) + script: + "scripts/plot_ariadne_scenario_comparison.py" + rule ariadne_all: input: expand(RESULTS + "ariadne/capacity_detailed.png", run=config_provider("run", "name")) diff --git a/workflow/scripts/plot_ariadne_scenario_comparison.py b/workflow/scripts/plot_ariadne_scenario_comparison.py new file mode 100644 index 000000000..407fb0d9d --- /dev/null +++ b/workflow/scripts/plot_ariadne_scenario_comparison.py @@ -0,0 +1,54 @@ + +import pandas as pd +import matplotlib.pyplot as plt + + +def scenario_plot(df, var): + unit = df._get_label_or_level_values("Unit")[0] + df = df.droplevel("Unit") + ax = df.T.plot( + xlabel="years", + ylabel=str(unit), + title=str(var) + ) + prefix=snakemake.config["run"]["prefix"] + var=var.replace("|","-").replace("\\","-").replace(" ","-").replace("/","-") + ax.figure.savefig( + f"results/{prefix}/ariadne_comparison/{var}") + +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "plot_ariadne_scenario_comparison", + # simpl="", + # clusters=22, + # opts="", + # ll="vopt", + # sector_opts="None", + # planning_horizons="2050", + # run="KN2045_Bal_v4" + ) + + dfs = [] + for file in snakemake.input: + _df = pd.read_excel(file, + index_col=list(range(5)), + sheet_name="data").droplevel(["Model", "Region"]) + dfs.append(_df) + + df = pd.concat(dfs, axis=0) + + + prefix=snakemake.config["run"]["prefix"] + if not os.path.exists(f"results/{prefix}/ariadne_comparison/"): + os.mkdir(f"results/{prefix}/ariadne_comparison/") + + for var in df._get_label_or_level_values("Variable"): + scenario_plot(df.xs(var, level="Variable"), var) From b2b1ff4f689bf9d2f3c9ae2344c1be59a5074c02 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 25 Apr 2024 17:03:06 +0200 Subject: [PATCH 292/669] add option to write sum into plot --- workflow/scripts/plot_ariadne_variables.py | 20 ++++++++++++++++++-- 1 file changed, 18 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 4332edf56..2a946d3ab 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -2,6 +2,7 @@ import matplotlib.pyplot as plt import pyam import os +import numpy as np def ariadne_subplot( df, ax, title, @@ -61,6 +62,7 @@ def side_by_side_plot( def within_plot(df, df2, title, savepath, select_regex="", drop_regex="", + write_sum = False, unit = "EUR_2020/GJ", **kwargs ): @@ -94,6 +96,19 @@ def within_plot(df, df2, axes[i].set_title(var) axes[i].legend() + if write_sum: + sum_df1 = round(df.xs(var, axis=1, level=0).sum().values.item(), 2) + if var in df2.index.get_level_values("Variable"): + sum_df2 = round(df2.T.xs(var, axis=1, level=0).sum().values.item(), 2) + else: + sum_df2 = np.nan + # Annotate plot with the sum of variables + sum_text = f"Sum: \nPyPSA-Eur = {sum_df1},\nREMIND-EU = {sum_df2}" + axes[i].annotate(sum_text, xy=(0, 1), xycoords='axes fraction', fontsize=12, + xytext=(5, -5), textcoords='offset points', ha='left', va='top') + + + # Remove the last subplot if there's an odd number of plots if n % 2 != 0: fig.delaxes(axes[-1]) @@ -316,7 +331,7 @@ def within_plot(df, df2, dfremind, title = "Price of carbon", savepath=snakemake.output.policy_carbon, - unit="EUR/tCO2" + unit="EUR/tCO2", ) within_plot( @@ -324,6 +339,7 @@ def within_plot(df, df2, dfremind, title = "Investment in Energy Supply", savepath=snakemake.output.investment_energy_supply , - unit="billion EUR" + unit="billion EUR", + write_sum = True, ) From 8d86bd1aa1c19cc621b4a1533e52d5cbee5a232c Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 25 Apr 2024 18:00:23 +0200 Subject: [PATCH 293/669] tight layout --- workflow/scripts/plot_ariadne_scenario_comparison.py | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/workflow/scripts/plot_ariadne_scenario_comparison.py b/workflow/scripts/plot_ariadne_scenario_comparison.py index 407fb0d9d..e84b9a2ca 100644 --- a/workflow/scripts/plot_ariadne_scenario_comparison.py +++ b/workflow/scripts/plot_ariadne_scenario_comparison.py @@ -5,6 +5,8 @@ def scenario_plot(df, var): unit = df._get_label_or_level_values("Unit")[0] + if var.startswith("Investment"): + unit = "billion EUR2020/yr" df = df.droplevel("Unit") ax = df.T.plot( xlabel="years", @@ -14,7 +16,8 @@ def scenario_plot(df, var): prefix=snakemake.config["run"]["prefix"] var=var.replace("|","-").replace("\\","-").replace(" ","-").replace("/","-") ax.figure.savefig( - f"results/{prefix}/ariadne_comparison/{var}") + f"results/{prefix}/ariadne_comparison/{var}", + bbox_inches="tight") if __name__ == "__main__": if "snakemake" not in globals(): @@ -52,3 +55,5 @@ def scenario_plot(df, var): for var in df._get_label_or_level_values("Variable"): scenario_plot(df.xs(var, level="Variable"), var) + + var = "Price|Carbon" \ No newline at end of file From 2b5cc7bf236568f248d55caee207557eab99456d Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 26 Apr 2024 18:56:47 +0200 Subject: [PATCH 294/669] latest changes to heat pump investment costs --- ariadne-data/costs_2019-modifications.csv | 4 ++-- ariadne-data/costs_2020-modifications.csv | 4 ++-- ariadne-data/costs_2025-modifications.csv | 4 ++-- ariadne-data/costs_2030-modifications.csv | 4 ++-- ariadne-data/costs_2035-modifications.csv | 4 ++-- ariadne-data/costs_2040-modifications.csv | 4 ++-- ariadne-data/costs_2045-modifications.csv | 4 ++-- ariadne-data/costs_2050-modifications.csv | 4 ++-- 8 files changed, 16 insertions(+), 16 deletions(-) diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv index 36483e663..62378f891 100644 --- a/ariadne-data/costs_2019-modifications.csv +++ b/ariadne-data/costs_2019-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,16.0,EUR/MWh_th,Ariadne, oil,fuel,33.2457,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.7391,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,3319,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf -decentral ground-sourced heat pump,investment,5340,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf +decentral air-sourced heat pump,investment,1693,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf +decentral ground-sourced heat pump,investment,2788,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index e1e6ea5cf..8d1c10be7 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,11.2,EUR/MWh_th,Ariadne, oil,fuel,22.1982,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,5.7048,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,3319,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf -decentral ground-sourced heat pump,investment,5340,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf +decentral air-sourced heat pump,investment,1693,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf +decentral ground-sourced heat pump,investment,2788,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index 5765a4e7f..05dde91b6 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,40,EUR/MWh_th,Ariadne, oil,fuel,32.9876,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,10.6694,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1267,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,3160,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA -decentral ground-sourced heat pump,investment,5162,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral air-sourced heat pump,investment,1612,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,2695,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index f856ea1a2..708000096 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.3,EUR/MWh_th,Ariadne, oil,fuel,38.821,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2056,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1083,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,3001,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA -decentral ground-sourced heat pump,investment,4984,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral air-sourced heat pump,investment,1531,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,2602,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index 3c32f468f..a21a5acea 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.4,EUR/MWh_th,Ariadne, oil,fuel,38.5629,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2601,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,900,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,2922,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA -decentral ground-sourced heat pump,investment,4806,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral air-sourced heat pump,investment,1490,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,2509,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index 3719b5c47..3b1765ee0 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.6,EUR/MWh_th,Ariadne, oil,fuel,38.3564,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3036,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,717,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,2842,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA -decentral ground-sourced heat pump,investment,4628,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral air-sourced heat pump,investment,1450,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,2416,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index 2ddb7b1d6..d7ddeac46 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.8,EUR/MWh_th,Ariadne, oil,fuel,38.0983,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3472,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,533,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,2763,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA -decentral ground-sourced heat pump,investment,4450,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral air-sourced heat pump,investment,1409,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,2323,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index 125911dc3..1bbaf7588 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.9,EUR/MWh_th,Ariadne, oil,fuel,37.8918,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.4016,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,350,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,2683,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA -decentral ground-sourced heat pump,investment,4272,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral air-sourced heat pump,investment,1369,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,2230,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 From 5dd8139779d671f3fe8ac8b75bffa4aafc7902b4 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Mon, 29 Apr 2024 11:17:52 +0200 Subject: [PATCH 295/669] Bugfix: EUR 2021 to EUR 2020 --- ariadne-data/costs_2019-modifications.csv | 4 ++-- ariadne-data/costs_2020-modifications.csv | 4 ++-- ariadne-data/costs_2025-modifications.csv | 4 ++-- ariadne-data/costs_2030-modifications.csv | 4 ++-- ariadne-data/costs_2035-modifications.csv | 4 ++-- ariadne-data/costs_2040-modifications.csv | 4 ++-- ariadne-data/costs_2045-modifications.csv | 4 ++-- ariadne-data/costs_2050-modifications.csv | 4 ++-- 8 files changed, 16 insertions(+), 16 deletions(-) diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv index 62378f891..435467373 100644 --- a/ariadne-data/costs_2019-modifications.csv +++ b/ariadne-data/costs_2019-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,16.0,EUR/MWh_th,Ariadne, oil,fuel,33.2457,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.7391,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,1693,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf -decentral ground-sourced heat pump,investment,2788,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf +decentral air-sourced heat pump,investment,1685,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf +decentral ground-sourced heat pump,investment,2774,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index 8d1c10be7..b6e07cecb 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,11.2,EUR/MWh_th,Ariadne, oil,fuel,22.1982,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,5.7048,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,1693,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf -decentral ground-sourced heat pump,investment,2788,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf +decentral air-sourced heat pump,investment,1685,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf +decentral ground-sourced heat pump,investment,2774,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index 05dde91b6..13f035ce5 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,40,EUR/MWh_th,Ariadne, oil,fuel,32.9876,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,10.6694,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1267,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,1612,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA -decentral ground-sourced heat pump,investment,2695,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf and cost reduction from DEA +decentral air-sourced heat pump,investment,1604,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,2682,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index 708000096..3f7689f80 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.3,EUR/MWh_th,Ariadne, oil,fuel,38.821,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2056,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1083,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,1531,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -decentral ground-sourced heat pump,investment,2602,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral air-sourced heat pump,investment,1523,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,2589,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index a21a5acea..92e9ff166 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.4,EUR/MWh_th,Ariadne, oil,fuel,38.5629,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.2601,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,900,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,1490,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -decentral ground-sourced heat pump,investment,2509,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral air-sourced heat pump,investment,1483,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,2497,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index 3b1765ee0..4137af4c1 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.6,EUR/MWh_th,Ariadne, oil,fuel,38.3564,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3036,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,717,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,1450,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -decentral ground-sourced heat pump,investment,2416,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral air-sourced heat pump,investment,1442,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,2404,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index d7ddeac46..3137550b2 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.8,EUR/MWh_th,Ariadne, oil,fuel,38.0983,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.3472,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,533,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,1409,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -decentral ground-sourced heat pump,investment,2323,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral air-sourced heat pump,investment,1402,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,2312,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index 1bbaf7588..ae5f0891e 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -3,8 +3,8 @@ gas,fuel,22.9,EUR/MWh_th,Ariadne, oil,fuel,37.8918,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1bbl = 1.6998MWh" coal,fuel,6.4016,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,350,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" -decentral air-sourced heat pump,investment,1369,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -decentral ground-sourced heat pump,investment,2230,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral air-sourced heat pump,investment,1362,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA +decentral ground-sourced heat pump,investment,2219,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 From 203c1a653f214c0e5b2e4c4e5bc325d10b57de04 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Mon, 29 Apr 2024 12:12:06 +0200 Subject: [PATCH 296/669] =?UTF-8?q?correcting=20NEP21=20costs=20to=202020?= =?UTF-8?q?=20=E2=82=AC?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- ariadne-data/costs_2019-modifications.csv | 10 +++++----- ariadne-data/costs_2020-modifications.csv | 10 +++++----- ariadne-data/costs_2025-modifications.csv | 10 +++++----- ariadne-data/costs_2030-modifications.csv | 10 +++++----- ariadne-data/costs_2035-modifications.csv | 10 +++++----- ariadne-data/costs_2040-modifications.csv | 10 +++++----- ariadne-data/costs_2045-modifications.csv | 10 +++++----- ariadne-data/costs_2050-modifications.csv | 10 +++++----- 8 files changed, 40 insertions(+), 40 deletions(-) diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv index 435467373..36a5786d9 100644 --- a/ariadne-data/costs_2019-modifications.csv +++ b/ariadne-data/costs_2019-modifications.csv @@ -5,8 +5,8 @@ coal,fuel,6.7391,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1685,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf decentral ground-sourced heat pump,investment,2774,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf -electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 -HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 -HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 -HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index b6e07cecb..85cb619b0 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -5,8 +5,8 @@ coal,fuel,5.7048,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1685,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf decentral ground-sourced heat pump,investment,2774,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf -electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 -HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 -HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 -HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index 13f035ce5..78b317062 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -5,8 +5,8 @@ coal,fuel,10.6694,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1267,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1604,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2682,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 -HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 -HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 -HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index 3f7689f80..6ab8b8f66 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -5,8 +5,8 @@ coal,fuel,6.2056,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1083,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1523,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2589,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 -HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 -HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 -HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index 92e9ff166..aa5ea61e8 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -5,8 +5,8 @@ coal,fuel,6.2601,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,900,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1483,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2497,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 -HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 -HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 -HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index 4137af4c1..ebed8f903 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -5,8 +5,8 @@ coal,fuel,6.3036,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,717,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1442,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2404,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 -HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 -HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 -HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index 3137550b2..3383900c9 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -5,8 +5,8 @@ coal,fuel,6.3472,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,533,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1402,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2312,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 -HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 -HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 -HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index ae5f0891e..94edd6c19 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -5,8 +5,8 @@ coal,fuel,6.4016,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,350,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1362,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2219,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,3000,EUR2020/kW,NEP2021 -HVAC overhead,investment,736,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,600000,EUR2020/MW,NEP2021 -HVDC overhead,investment,1000,EUR2020/MW/km,NEP2021 -HVDC submarine,investment,3250,EUR2020/MW/km,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 From 211930637a8a0e75c5a7b2049d0122bd091a67b4 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 2 May 2024 12:11:04 +0200 Subject: [PATCH 297/669] initial commit to specify excluded files of filesharing --- config/config.yaml | 14 ++++++++------ workflow/Snakefile | 6 +++--- 2 files changed, 11 insertions(+), 9 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 01e368bfd..a4c626af4 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -6,10 +6,10 @@ run: prefix: 20240424fixCurrentPolicies name: - - CurrentPolicies - # - KN2045_Bal_v4 - # - KN2045_Elec_v4 - # - KN2045_H2_v4 + # - CurrentPolicies + - KN2045_Bal_v4 + - KN2045_Elec_v4 + - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase @@ -17,7 +17,9 @@ run: scenarios: enable: true file: config/scenarios.automated.yaml - shared_resources: true #stops recalculating + shared_resources: base #stops recalculating + exclude: + - existing_heating.csv # specify files which should not be shared between scenarios disable_progressbar: true debug_co2_limit: false debug_h2deriv_limit: false @@ -75,7 +77,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: false # set to false once initial data is retrieved + retrieve: auto # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: diff --git a/workflow/Snakefile b/workflow/Snakefile index 9cc64e850..21a81c5dd 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -22,9 +22,9 @@ run = config["run"] scenarios = get_scenarios(run) # global variable RDIR = get_rdir(run) -logs = path_provider("logs/", RDIR, run["shared_resources"]) -benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"]) -resources = path_provider("resources/", RDIR, run["shared_resources"]) +logs = path_provider("logs/", RDIR, run["shared_resources"], run["exclude"]) +benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"], run["exclude"]) +resources = path_provider("resources/", RDIR, run["shared_resources"], run["exclude"]) RESULTS = "results/" + RDIR From 6acce8deff87ab014592dd779eaf66933b9f2749 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 2 May 2024 12:11:59 +0200 Subject: [PATCH 298/669] Revert "initial commit to specify excluded files of filesharing" This reverts commit 211930637a8a0e75c5a7b2049d0122bd091a67b4. --- config/config.yaml | 14 ++++++-------- workflow/Snakefile | 6 +++--- 2 files changed, 9 insertions(+), 11 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index a4c626af4..01e368bfd 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -6,10 +6,10 @@ run: prefix: 20240424fixCurrentPolicies name: - # - CurrentPolicies - - KN2045_Bal_v4 - - KN2045_Elec_v4 - - KN2045_H2_v4 + - CurrentPolicies + # - KN2045_Bal_v4 + # - KN2045_Elec_v4 + # - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase @@ -17,9 +17,7 @@ run: scenarios: enable: true file: config/scenarios.automated.yaml - shared_resources: base #stops recalculating - exclude: - - existing_heating.csv # specify files which should not be shared between scenarios + shared_resources: true #stops recalculating disable_progressbar: true debug_co2_limit: false debug_h2deriv_limit: false @@ -77,7 +75,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: auto # set to false once initial data is retrieved + retrieve: false # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: diff --git a/workflow/Snakefile b/workflow/Snakefile index 21a81c5dd..9cc64e850 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -22,9 +22,9 @@ run = config["run"] scenarios = get_scenarios(run) # global variable RDIR = get_rdir(run) -logs = path_provider("logs/", RDIR, run["shared_resources"], run["exclude"]) -benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"], run["exclude"]) -resources = path_provider("resources/", RDIR, run["shared_resources"], run["exclude"]) +logs = path_provider("logs/", RDIR, run["shared_resources"]) +benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"]) +resources = path_provider("resources/", RDIR, run["shared_resources"]) RESULTS = "results/" + RDIR From 6ae73f70fb908392bf9b5b2db57ce40bb2ee0faf Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 2 May 2024 13:08:45 +0200 Subject: [PATCH 299/669] rename github link --- workflow/Snakefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 9cc64e850..fa1c53175 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -260,7 +260,7 @@ rule cluster_wasserstoff_kernnetz: rule download_ariadne_template: input: storage( - "https://github.com/iiasa/ariadne-intern-workflow/raw/master/attachments/2024-03-28_template_Ariadne.xlsx", + "https://github.com/iiasa/ariadne-intern-workflow/raw/main/attachments/2024-03-28_template_Ariadne.xlsx", keep_local=True, ) output: From d7b74cb64c87cdecb86d2fd63bf571c46ab289b8 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 2 May 2024 16:14:53 +0200 Subject: [PATCH 300/669] gather all outputs in one rule --- workflow/Snakefile | 10 ++++------ workflow/scripts/plot_ariadne_scenario_comparison.py | 4 ++-- 2 files changed, 6 insertions(+), 8 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 8cff604a4..a5cac62f7 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -331,15 +331,13 @@ rule plot_ariadne_variables: "scripts/plot_ariadne_variables.py" -rule plot_ariadne_scenario_comparison: +rule ariadne_all: input: - expand(RESULTS + "ariadne/exported_variables_full.xlsx", run=config_provider("run", "name")) + expand(RESULTS + "graphs/costs.pdf", run=config["run"]["name"]), + expand(RESULTS + "ariadne/capacity_detailed.png", run=config_provider("run", "name")), + exported_variables=expand(RESULTS + "ariadne/exported_variables_full.xlsx", run=config_provider("run", "name")), script: "scripts/plot_ariadne_scenario_comparison.py" - -rule ariadne_all: - input: - expand(RESULTS + "ariadne/capacity_detailed.png", run=config_provider("run", "name")) rule build_scenarios: params: diff --git a/workflow/scripts/plot_ariadne_scenario_comparison.py b/workflow/scripts/plot_ariadne_scenario_comparison.py index e84b9a2ca..6aa97f4fb 100644 --- a/workflow/scripts/plot_ariadne_scenario_comparison.py +++ b/workflow/scripts/plot_ariadne_scenario_comparison.py @@ -29,7 +29,7 @@ def scenario_plot(df, var): from _helpers import mock_snakemake snakemake = mock_snakemake( - "plot_ariadne_scenario_comparison", + "ariadne_all", # simpl="", # clusters=22, # opts="", @@ -40,7 +40,7 @@ def scenario_plot(df, var): ) dfs = [] - for file in snakemake.input: + for file in snakemake.input.exported_variables: _df = pd.read_excel(file, index_col=list(range(5)), sheet_name="data").droplevel(["Model", "Region"]) From 2f91a0e0d6b8bf62e43d607409ce1b135071acd3 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 2 May 2024 16:35:26 +0200 Subject: [PATCH 301/669] remove unused code --- workflow/scripts/plot_ariadne_variables.py | 11 +---------- 1 file changed, 1 insertion(+), 10 deletions(-) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 2a946d3ab..790c50522 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -137,7 +137,7 @@ def within_plot(df, df2, ll="v1.2", sector_opts="None", planning_horizons="2050", - run="CurrentPolicies" + run="KN2045_Bal_v4" ) df = pd.read_excel( @@ -158,15 +158,6 @@ def within_plot(df, df2, ][df.columns] dfremind.index.names = df.index.names - - # idx = df.index.intersection(dfremind.index) - # print( - # f"Dropping variables missing in {leitmodell}:", - # df.index.difference(dfremind.index), - # ) - # df = df.loc[idx] - # dfremind = dfremind.loc[idx] - side_by_side_plot( df, dfremind, From 555878ba2dd37f4819436468a33142d9a8a7c20e Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 2 May 2024 17:33:53 +0200 Subject: [PATCH 302/669] update pyam package, change authentication process --- README.md | 21 ++++--------------- config/config.yaml | 2 +- environment.yaml | 2 +- workflow/Snakefile | 2 -- workflow/scripts/plot_ariadne_variables.py | 1 - workflow/scripts/retrieve_ariadne_database.py | 4 +--- 6 files changed, 7 insertions(+), 25 deletions(-) diff --git a/README.md b/README.md index 20fe3ed74..5e7a6aaa8 100644 --- a/README.md +++ b/README.md @@ -30,28 +30,15 @@ You need [mamba](https://mamba.readthedocs.io/en/latest/) to run the analysis. U ## Provide login details -The snakemake rule `retrieve_ariadne_scenario_data` logs into the IIASA Database. It requires a USERNAME and a PASSWORD which should be set as environment variables in your local shell configuration. To do that on Linux open your `.bashrc` with a text editor, e.g., with +The snakemake rule `retrieve_ariadne_database` logs into the IIASA Database via the [`pyam`](https://pyam-iamc.readthedocs.io/en/stable/tutorials/iiasa.html) package. The credentials for logging into this database have to be stored locally on your machine with `ixmp4`. To do this, run ``` -vim ~/.bashrc +ixmp4 login ``` -and then add the following two lines to the end of that file: - -``` -export IIASA_USERNAME='USERNAME' -export IIASA_PASSWORD='PASSWORD' -``` - -Fill in the correct login details and don't forget the quotation marks. You might have to restart your terminal session / vscode window for the new variables to become available. - -**Caution for vscode users**: If you want to use the environment variables in an Interactive Python Session, another step might be required depending on your local config. Create a file `.env` in the working directory and add the lines: -``` -IIASA_USERNAME='USERNAME' -IIASA_PASSWORD='PASSWORD' -``` -Details on Python environment variables in VSCode can be found here: https://code.visualstudio.com/docs/python/environments#_environment-variables +You will be prompted to enter your ``. +Caveat: These credentials are stored on your machine in plain text. ## Run the analysis diff --git a/config/config.yaml b/config/config.yaml index 01e368bfd..ef6cea283 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240424fixCurrentPolicies + prefix: 20240502pyamupdate name: - CurrentPolicies # - KN2045_Bal_v4 diff --git a/environment.yaml b/environment.yaml index cc44469f9..5adee2aae 100644 --- a/environment.yaml +++ b/environment.yaml @@ -47,7 +47,7 @@ dependencies: - pre-commit # Ariadne specific -- pyam +- pyam>=2.0 - ruamel.yaml - gurobi diff --git a/workflow/Snakefile b/workflow/Snakefile index eab148235..30f74d931 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -82,8 +82,6 @@ rule retrieve_ariadne_database: params: leitmodelle=config_provider("iiasa_database", "leitmodelle"), scenarios=config_provider("iiasa_database", "scenarios"), - iiasa_usr=os.environ["IIASA_USERNAME"], - iiasa_pwd=os.environ["IIASA_PASSWORD"] output: data=resources("ariadne_database.csv"), log: diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 790c50522..2eff842e2 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -1,6 +1,5 @@ import pandas as pd import matplotlib.pyplot as plt -import pyam import os import numpy as np diff --git a/workflow/scripts/retrieve_ariadne_database.py b/workflow/scripts/retrieve_ariadne_database.py index d0ae992f3..8a348b220 100644 --- a/workflow/scripts/retrieve_ariadne_database.py +++ b/workflow/scripts/retrieve_ariadne_database.py @@ -10,9 +10,7 @@ from _helpers import mock_snakemake snakemake = mock_snakemake("retrieve_ariadne_database") - - pyam.iiasa.set_config(snakemake.params.iiasa_usr, snakemake.params.iiasa_pwd) - + db = pyam.read_iiasa( "ariadne_intern", model=snakemake.params.leitmodelle, From 294b0507564f4df8ad981e9175c7dd7abd6b390d Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 3 May 2024 11:21:02 +0200 Subject: [PATCH 303/669] initial commit to specify excluded files from resource sharing --- config/config.yaml | 12 +++++++----- workflow/Snakefile | 11 +++++++---- 2 files changed, 14 insertions(+), 9 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 01e368bfd..64330d21e 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -6,10 +6,10 @@ run: prefix: 20240424fixCurrentPolicies name: - - CurrentPolicies - # - KN2045_Bal_v4 - # - KN2045_Elec_v4 - # - KN2045_H2_v4 + # - CurrentPolicies + - KN2045_Bal_v4 + - KN2045_Elec_v4 + - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase @@ -17,7 +17,9 @@ run: scenarios: enable: true file: config/scenarios.automated.yaml - shared_resources: true #stops recalculating + shared_resources: base #stops recalculating + exclude: + - existing_heating.csv # specify files which should not be shared between scenarios disable_progressbar: true debug_co2_limit: false debug_h2deriv_limit: false diff --git a/workflow/Snakefile b/workflow/Snakefile index 9cc64e850..bab139943 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -22,9 +22,9 @@ run = config["run"] scenarios = get_scenarios(run) # global variable RDIR = get_rdir(run) -logs = path_provider("logs/", RDIR, run["shared_resources"]) -benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"]) -resources = path_provider("resources/", RDIR, run["shared_resources"]) +logs = path_provider("logs/", RDIR, run["shared_resources"], run["exclude"]) +benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"], run["exclude"]) +resources = path_provider("resources/", RDIR, run["shared_resources"], run["exclude"]) RESULTS = "results/" + RDIR @@ -281,16 +281,19 @@ rule export_ariadne_variables: template=resources("template_ariadne_database.xlsx"), industry_demands=expand( resources("industrial_energy_demand_elec_s{simpl}_{clusters}_{planning_horizons}.csv"), - **config["scenario"] + **config["scenario"], + run=config["run"]["name"], ), networks=expand( RESULTS + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", **config["scenario"], + run=config["run"]["name"], allow_missing=True, ), costs=expand( resources("modified-costs_{planning_horizons}.csv"), **config["scenario"], + run=config["run"]["name"], ), energy_totals=resources("energy_totals.csv"), output: From 76aa5d05ccd56ad1ac28c886d855cd1998e49115 Mon Sep 17 00:00:00 2001 From: Julian Geis Date: Fri, 3 May 2024 13:02:27 +0200 Subject: [PATCH 304/669] Update plot_ariadne_scenario_comparison.py alter position of import os --- workflow/scripts/plot_ariadne_scenario_comparison.py | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/plot_ariadne_scenario_comparison.py b/workflow/scripts/plot_ariadne_scenario_comparison.py index 6aa97f4fb..55fd64066 100644 --- a/workflow/scripts/plot_ariadne_scenario_comparison.py +++ b/workflow/scripts/plot_ariadne_scenario_comparison.py @@ -1,7 +1,7 @@ import pandas as pd import matplotlib.pyplot as plt - +import os def scenario_plot(df, var): unit = df._get_label_or_level_values("Unit")[0] @@ -21,7 +21,6 @@ def scenario_plot(df, var): if __name__ == "__main__": if "snakemake" not in globals(): - import os import sys path = "../submodules/pypsa-eur/scripts" @@ -56,4 +55,4 @@ def scenario_plot(df, var): for var in df._get_label_or_level_values("Variable"): scenario_plot(df.xs(var, level="Variable"), var) - var = "Price|Carbon" \ No newline at end of file + var = "Price|Carbon" From 9f994638b21a139eefaa13fb698fe0141fbfe946 Mon Sep 17 00:00:00 2001 From: Julian Geis Date: Fri, 3 May 2024 13:10:39 +0200 Subject: [PATCH 305/669] no more warning and faster runtime deal with warning: /home/julian-geis/mambaforge/envs/pypsa-ariadne-2024-03/lib/python3.11/site-packages/pandas/plotting/_matplotlib/core.py:580: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`. fig = self.plt.figure(figsize=self.figsize) --- workflow/scripts/plot_ariadne_scenario_comparison.py | 1 + 1 file changed, 1 insertion(+) diff --git a/workflow/scripts/plot_ariadne_scenario_comparison.py b/workflow/scripts/plot_ariadne_scenario_comparison.py index 55fd64066..088b3d34c 100644 --- a/workflow/scripts/plot_ariadne_scenario_comparison.py +++ b/workflow/scripts/plot_ariadne_scenario_comparison.py @@ -13,6 +13,7 @@ def scenario_plot(df, var): ylabel=str(unit), title=str(var) ) + plt.close() prefix=snakemake.config["run"]["prefix"] var=var.replace("|","-").replace("\\","-").replace(" ","-").replace("/","-") ax.figure.savefig( From e125cdf52dc046ca7eddc168aa40a3e3a3f4a0f8 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 2 May 2024 13:08:45 +0200 Subject: [PATCH 306/669] rename github link --- workflow/Snakefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index bab139943..8fc0135a6 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -260,7 +260,7 @@ rule cluster_wasserstoff_kernnetz: rule download_ariadne_template: input: storage( - "https://github.com/iiasa/ariadne-intern-workflow/raw/master/attachments/2024-03-28_template_Ariadne.xlsx", + "https://github.com/iiasa/ariadne-intern-workflow/raw/main/attachments/2024-03-28_template_Ariadne.xlsx", keep_local=True, ) output: From 92fb34b9bf08a938a4896489a603d2bcdb546d4f Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 24 Apr 2024 16:48:11 +0200 Subject: [PATCH 307/669] add export of policy carbon price variable and plot it --- workflow/Snakefile | 3 +- workflow/scripts/export_ariadne_variables.py | 11 ++++++- workflow/scripts/plot_ariadne_variables.py | 31 +++++++++++++------- 3 files changed, 32 insertions(+), 13 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 8fc0135a6..511f6a776 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -325,11 +325,12 @@ rule plot_ariadne_variables: co2_emissions=RESULTS + "ariadne/co2_emissions.png", primary_energy_price = RESULTS + "ariadne/primary_energy_price.png", secondary_energy_price = RESULTS + "ariadne/secondary_energy_price.png", - final_energy_residential_price = RESULTS + "ariadne/final_energy_residential_price.png", + #final_energy_residential_price = RESULTS + "ariadne/final_energy_residential_price.png", final_energy_industry_price = RESULTS + "ariadne/final_energy_industry_price.png", final_energy_transportation_price = RESULTS + "ariadne/final_energy_transportation_price.png", final_energy_residential_commercial_price = RESULTS + "ariadne/final_energy_residential_commercial_price.png", all_prices = RESULTS + "ariadne/all_prices.png", + policy_carbon = RESULTS + "ariadne/policy_carbon.png", script: "scripts/plot_ariadne_variables.py" diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index d410c23b2..cd4e0d101 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2609,6 +2609,14 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1 # var["Investment|Industry"] = \ return var +def get_policy(n): + var = pd.Series() + + var["Price|Carbon"] = \ + -n.global_constraints.loc["CO2Limit", "mu"] - n.global_constraints.loc["co2_limit-DE", "mu"] + + return var + def get_ariadne_var(n, industry_demand, energy_totals, costs, region): var = pd.concat([ @@ -2626,7 +2634,8 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region): n, n, costs, region, dg_cost_factor=snakemake.params.dg_cost_factor, length_factor=snakemake.params.length_factor - ) + ), + get_policy(n) ]) return var diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 63dace7a7..07c631ee7 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -60,7 +60,8 @@ def side_by_side_plot( def within_plot(df, df2, title, savepath, - select_regex="", drop_regex="",**kwargs + select_regex="", drop_regex="", + unit = "EUR_2020/GJ", **kwargs ): df = df.T.copy() @@ -75,9 +76,9 @@ def within_plot(df, df2, n = df.shape[1] if n == 0: - print("Warning! Apparently the variables required for this plot are missing.") + print(f"Warning! Apparently the variables required for this plot (({title}) are missing.") fig = plt.figure() - plt.title("Warning! Apparently the variables required for this plot are missing.") + plt.title(f"Warning! Apparently the variables required for this plot ({title}) are missing.") fig.savefig(savepath, bbox_inches="tight") return fig rows = n // 2 + n % 2 @@ -97,7 +98,7 @@ def within_plot(df, df2, if n % 2 != 0: fig.delaxes(axes[-1]) - plt.suptitle(title + " in EUR_2020/GJ", fontsize="xx-large", y=1.0) + plt.suptitle(f"{title} in ({unit})", fontsize="xx-large", y=1.0) plt.tight_layout() plt.close() fig.savefig(savepath, bbox_inches="tight") @@ -271,13 +272,13 @@ def within_plot(df, df2, savepath=snakemake.output.secondary_energy_price, ) - within_plot( - df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Residential")], - dfremind, - title = "Price|Final Energy|Residential", - savepath=snakemake.output.final_energy_residential_price, - #select_regex="Price\|Final Energy\|Residential\|[^|]*$" - ) + # within_plot( + # df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Residential")], + # dfremind, + # title = "Price|Final Energy|Residential", + # savepath=snakemake.output.final_energy_residential_price, + # #select_regex="Price\|Final Energy\|Residential\|[^|]*$" + # ) within_plot( df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Industry")], @@ -310,3 +311,11 @@ def within_plot(df, df2, savepath=snakemake.output.all_prices, ) + within_plot( + df[df.index.get_level_values("Variable").str.startswith('Price|Carbon')], + dfremind, + title = "Price of carbon", + savepath=snakemake.output.policy_carbon, + unit="EUR/tCO2" + ) + From 1851a9666c3ff7f6ec5cac282218fad430b5b507 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 25 Apr 2024 13:40:48 +0200 Subject: [PATCH 308/669] add investment plot --- workflow/Snakefile | 3 ++- workflow/scripts/plot_ariadne_variables.py | 28 ++++++++++++++-------- 2 files changed, 20 insertions(+), 11 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 511f6a776..4f3967b63 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -309,7 +309,7 @@ rule plot_ariadne_variables: params: iiasa_scenario=config_provider("iiasa_database", "reference_scenario"), input: - exported_variables=RESULTS + "ariadne/exported_variables.xlsx", + exported_variables_full=RESULTS + "ariadne/exported_variables_full.xlsx", ariadne_database=resources("ariadne_database.csv"), output: primary_energy=RESULTS + "ariadne/primary_energy.png", @@ -331,6 +331,7 @@ rule plot_ariadne_variables: final_energy_residential_commercial_price = RESULTS + "ariadne/final_energy_residential_commercial_price.png", all_prices = RESULTS + "ariadne/all_prices.png", policy_carbon = RESULTS + "ariadne/policy_carbon.png", + investment_energy_supply = RESULTS + "ariadne/investment_energy_supply.png", script: "scripts/plot_ariadne_variables.py" diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 07c631ee7..4332edf56 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -122,15 +122,15 @@ def within_plot(df, df2, ll="v1.2", sector_opts="None", planning_horizons="2050", - run="KN2045_H2_v4" + run="CurrentPolicies" ) df = pd.read_excel( - snakemake.input.exported_variables, + snakemake.input.exported_variables_full, index_col=list(range(5)), #index_col=["Model", "Scenario", "Region", "Variable", "Unit"], sheet_name="data" - ).groupby(["Variable","Unit"]).sum() + ).groupby(["Variable","Unit"], dropna=False).sum() df.columns = df.columns.astype(str) leitmodell="REMIND-EU v1.1" @@ -144,13 +144,13 @@ def within_plot(df, df2, dfremind.index.names = df.index.names - idx = df.index.intersection(dfremind.index) - print( - f"Dropping variables missing in {leitmodell}:", - df.index.difference(dfremind.index), - ) - df = df.loc[idx] - dfremind = dfremind.loc[idx] + # idx = df.index.intersection(dfremind.index) + # print( + # f"Dropping variables missing in {leitmodell}:", + # df.index.difference(dfremind.index), + # ) + # df = df.loc[idx] + # dfremind = dfremind.loc[idx] side_by_side_plot( df, @@ -319,3 +319,11 @@ def within_plot(df, df2, unit="EUR/tCO2" ) + within_plot( + df[df.index.get_level_values("Variable").str.startswith('Investment|Energy Supply')], + dfremind, + title = "Investment in Energy Supply", + savepath=snakemake.output.investment_energy_supply , + unit="billion EUR" + ) + From 907017580edd59d34c5d539afaea8f91f81a2603 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 25 Apr 2024 17:03:06 +0200 Subject: [PATCH 309/669] add option to write sum into plot --- workflow/scripts/plot_ariadne_variables.py | 20 ++++++++++++++++++-- 1 file changed, 18 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 4332edf56..2a946d3ab 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -2,6 +2,7 @@ import matplotlib.pyplot as plt import pyam import os +import numpy as np def ariadne_subplot( df, ax, title, @@ -61,6 +62,7 @@ def side_by_side_plot( def within_plot(df, df2, title, savepath, select_regex="", drop_regex="", + write_sum = False, unit = "EUR_2020/GJ", **kwargs ): @@ -94,6 +96,19 @@ def within_plot(df, df2, axes[i].set_title(var) axes[i].legend() + if write_sum: + sum_df1 = round(df.xs(var, axis=1, level=0).sum().values.item(), 2) + if var in df2.index.get_level_values("Variable"): + sum_df2 = round(df2.T.xs(var, axis=1, level=0).sum().values.item(), 2) + else: + sum_df2 = np.nan + # Annotate plot with the sum of variables + sum_text = f"Sum: \nPyPSA-Eur = {sum_df1},\nREMIND-EU = {sum_df2}" + axes[i].annotate(sum_text, xy=(0, 1), xycoords='axes fraction', fontsize=12, + xytext=(5, -5), textcoords='offset points', ha='left', va='top') + + + # Remove the last subplot if there's an odd number of plots if n % 2 != 0: fig.delaxes(axes[-1]) @@ -316,7 +331,7 @@ def within_plot(df, df2, dfremind, title = "Price of carbon", savepath=snakemake.output.policy_carbon, - unit="EUR/tCO2" + unit="EUR/tCO2", ) within_plot( @@ -324,6 +339,7 @@ def within_plot(df, df2, dfremind, title = "Investment in Energy Supply", savepath=snakemake.output.investment_energy_supply , - unit="billion EUR" + unit="billion EUR", + write_sum = True, ) From cdf686f5e9d092aea124d7a8277f24efc8512b89 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 2 May 2024 16:35:26 +0200 Subject: [PATCH 310/669] remove unused code --- workflow/scripts/plot_ariadne_variables.py | 11 +---------- 1 file changed, 1 insertion(+), 10 deletions(-) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 2a946d3ab..790c50522 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -137,7 +137,7 @@ def within_plot(df, df2, ll="v1.2", sector_opts="None", planning_horizons="2050", - run="CurrentPolicies" + run="KN2045_Bal_v4" ) df = pd.read_excel( @@ -158,15 +158,6 @@ def within_plot(df, df2, ][df.columns] dfremind.index.names = df.index.names - - # idx = df.index.intersection(dfremind.index) - # print( - # f"Dropping variables missing in {leitmodell}:", - # df.index.difference(dfremind.index), - # ) - # df = df.loc[idx] - # dfremind = dfremind.loc[idx] - side_by_side_plot( df, dfremind, From a003f9ea662d56ef4992b517ca1702c29f4d51de Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 2 May 2024 17:33:53 +0200 Subject: [PATCH 311/669] update pyam package, change authentication process --- README.md | 21 ++++--------------- config/config.yaml | 2 +- environment.yaml | 2 +- workflow/Snakefile | 2 -- workflow/scripts/plot_ariadne_variables.py | 1 - workflow/scripts/retrieve_ariadne_database.py | 4 +--- 6 files changed, 7 insertions(+), 25 deletions(-) diff --git a/README.md b/README.md index 20fe3ed74..5e7a6aaa8 100644 --- a/README.md +++ b/README.md @@ -30,28 +30,15 @@ You need [mamba](https://mamba.readthedocs.io/en/latest/) to run the analysis. U ## Provide login details -The snakemake rule `retrieve_ariadne_scenario_data` logs into the IIASA Database. It requires a USERNAME and a PASSWORD which should be set as environment variables in your local shell configuration. To do that on Linux open your `.bashrc` with a text editor, e.g., with +The snakemake rule `retrieve_ariadne_database` logs into the IIASA Database via the [`pyam`](https://pyam-iamc.readthedocs.io/en/stable/tutorials/iiasa.html) package. The credentials for logging into this database have to be stored locally on your machine with `ixmp4`. To do this, run ``` -vim ~/.bashrc +ixmp4 login ``` -and then add the following two lines to the end of that file: - -``` -export IIASA_USERNAME='USERNAME' -export IIASA_PASSWORD='PASSWORD' -``` - -Fill in the correct login details and don't forget the quotation marks. You might have to restart your terminal session / vscode window for the new variables to become available. - -**Caution for vscode users**: If you want to use the environment variables in an Interactive Python Session, another step might be required depending on your local config. Create a file `.env` in the working directory and add the lines: -``` -IIASA_USERNAME='USERNAME' -IIASA_PASSWORD='PASSWORD' -``` -Details on Python environment variables in VSCode can be found here: https://code.visualstudio.com/docs/python/environments#_environment-variables +You will be prompted to enter your ``. +Caveat: These credentials are stored on your machine in plain text. ## Run the analysis diff --git a/config/config.yaml b/config/config.yaml index 64330d21e..12f3f2d93 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240424fixCurrentPolicies + prefix: 20240502pyamupdate name: # - CurrentPolicies - KN2045_Bal_v4 diff --git a/environment.yaml b/environment.yaml index cc44469f9..5adee2aae 100644 --- a/environment.yaml +++ b/environment.yaml @@ -47,7 +47,7 @@ dependencies: - pre-commit # Ariadne specific -- pyam +- pyam>=2.0 - ruamel.yaml - gurobi diff --git a/workflow/Snakefile b/workflow/Snakefile index 4f3967b63..a07bd1198 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -82,8 +82,6 @@ rule retrieve_ariadne_database: params: leitmodelle=config_provider("iiasa_database", "leitmodelle"), scenarios=config_provider("iiasa_database", "scenarios"), - iiasa_usr=os.environ["IIASA_USERNAME"], - iiasa_pwd=os.environ["IIASA_PASSWORD"] output: data=resources("ariadne_database.csv"), log: diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 790c50522..2eff842e2 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -1,6 +1,5 @@ import pandas as pd import matplotlib.pyplot as plt -import pyam import os import numpy as np diff --git a/workflow/scripts/retrieve_ariadne_database.py b/workflow/scripts/retrieve_ariadne_database.py index d0ae992f3..8a348b220 100644 --- a/workflow/scripts/retrieve_ariadne_database.py +++ b/workflow/scripts/retrieve_ariadne_database.py @@ -10,9 +10,7 @@ from _helpers import mock_snakemake snakemake = mock_snakemake("retrieve_ariadne_database") - - pyam.iiasa.set_config(snakemake.params.iiasa_usr, snakemake.params.iiasa_pwd) - + db = pyam.read_iiasa( "ariadne_intern", model=snakemake.params.leitmodelle, From c53a5f1d8bfff7a55a50f1a02cb2337dd5a6dd50 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 2 May 2024 12:11:04 +0200 Subject: [PATCH 312/669] initial commit to specify excluded files of filesharing --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 12f3f2d93..dbea24ab5 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -77,7 +77,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: false # set to false once initial data is retrieved + retrieve: auto # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: From d78fe4c48df053d848f9e5ad0d6df3946b4543ed Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 2 May 2024 12:11:59 +0200 Subject: [PATCH 313/669] Revert "initial commit to specify excluded files of filesharing" This reverts commit 211930637a8a0e75c5a7b2049d0122bd091a67b4. --- config/config.yaml | 10 +++++----- workflow/Snakefile | 6 +++--- 2 files changed, 8 insertions(+), 8 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index dbea24ab5..006a33753 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -6,10 +6,10 @@ run: prefix: 20240502pyamupdate name: - # - CurrentPolicies - - KN2045_Bal_v4 - - KN2045_Elec_v4 - - KN2045_H2_v4 + - CurrentPolicies + # - KN2045_Bal_v4 + # - KN2045_Elec_v4 + # - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase @@ -77,7 +77,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: auto # set to false once initial data is retrieved + retrieve: false # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: diff --git a/workflow/Snakefile b/workflow/Snakefile index a07bd1198..af66eb3bf 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -22,9 +22,9 @@ run = config["run"] scenarios = get_scenarios(run) # global variable RDIR = get_rdir(run) -logs = path_provider("logs/", RDIR, run["shared_resources"], run["exclude"]) -benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"], run["exclude"]) -resources = path_provider("resources/", RDIR, run["shared_resources"], run["exclude"]) +logs = path_provider("logs/", RDIR, run["shared_resources"]) +benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"]) +resources = path_provider("resources/", RDIR, run["shared_resources"]) RESULTS = "results/" + RDIR From 07be6b2d78091fa339c320cbd458e1c9741981b4 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 3 May 2024 11:21:02 +0200 Subject: [PATCH 314/669] initial commit to specify excluded files from resource sharing --- config/config.yaml | 8 ++++---- workflow/Snakefile | 6 +++--- 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 006a33753..12f3f2d93 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -6,10 +6,10 @@ run: prefix: 20240502pyamupdate name: - - CurrentPolicies - # - KN2045_Bal_v4 - # - KN2045_Elec_v4 - # - KN2045_H2_v4 + # - CurrentPolicies + - KN2045_Bal_v4 + - KN2045_Elec_v4 + - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase diff --git a/workflow/Snakefile b/workflow/Snakefile index af66eb3bf..a07bd1198 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -22,9 +22,9 @@ run = config["run"] scenarios = get_scenarios(run) # global variable RDIR = get_rdir(run) -logs = path_provider("logs/", RDIR, run["shared_resources"]) -benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"]) -resources = path_provider("resources/", RDIR, run["shared_resources"]) +logs = path_provider("logs/", RDIR, run["shared_resources"], run["exclude"]) +benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"], run["exclude"]) +resources = path_provider("resources/", RDIR, run["shared_resources"], run["exclude"]) RESULTS = "results/" + RDIR From d313fe390245bb0e74d8a7f707079901ee03913e Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 6 May 2024 17:31:34 +0200 Subject: [PATCH 315/669] Some more reporting of Final Energy categories --- config/scenarios.automated.yaml | 351 +++++++++++++++++++ workflow/scripts/export_ariadne_variables.py | 46 ++- 2 files changed, 391 insertions(+), 6 deletions(-) diff --git a/config/scenarios.automated.yaml b/config/scenarios.automated.yaml index e69de29bb..d56e47996 100644 --- a/config/scenarios.automated.yaml +++ b/config/scenarios.automated.yaml @@ -0,0 +1,351 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT +CurrentPolicies: +# Trend Szenario +# Suggestion (Tom): "policy from 2030 is frozen" +# conservative development after 2030 +# fixing CO2 budget at 2030 value for 2035-2050 +# reducing VRE targets in 2030 to 75% of the target (following REMIND) +# not forcing H2 production +# orient transport transformation from REMod v1.0 (currently is DEMO) +# industry transformation towards FORECAST results +# consider not assuming Kernnetz + + # Kernnetz is not assumed to be built + wasserstoff_kernnetz: + enable: true + + iiasa_database: + # TODO: wait for REMod v1.0 to upload a first Trend scenario + reference_scenario: Trend # CurrentPolicies once it's renamed + + co2_budget: + 2020: 0.800 # 20% reduction by 2020 + 2025: 0.600 + 2030: 0.450 # 55% reduction by 2030 (Ff55) + 2035: 0.450 # stagnation for the Trend scenario + 2040: 0.450 + 2045: 0.450 + 2050: 0.450 + + limits_capacity_min: + Generator: + onwind: + DE: + 2020: 48 + 2025: 61 + 2030: 86.5 # 75 % Wind-an-Land Law + 2035: 86.5 + 2040: 86.5 + 2045: 86.5 + offwind: + DE: + 2020: 7.77 + 2025: 8 + 2030: 22.5 # 75 % Wind-auf-See Law + 2035: 22.5 + 2040: 22.5 + 2045: 22.5 + solar: + DE: + 2020: 59 + # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, + # assuming at least 1/3 of difference reached in 2025 + 2025: 101 + 2030: 161.25 # 75 % PV strategy + 2035: 161.25 + 2040: 161.25 + 2045: 161.25 + + # boundary condition of maximum volumes + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 + electrolysis: + # boundary condition lower? + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 + h2_derivate_import: + # boundary condition lower? + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 105 + 2040: 200 + 2045: 300 + h2_import: + # boundary condition lower? + DE: + 2020: 0 + 2025: 5 + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 + + + + sector: + land_transport_fuel_cell_share: + 2020: 0.0022 + 2025: 0.0423 + 2030: 0.0897 + 2035: 0.1178 + 2040: 0.1265 + 2045: 0.1268 + land_transport_electric_share: + 2020: 0.0029 + 2025: 0.0501 + 2030: 0.1437 + 2035: 0.2538 + 2040: 0.3461 + 2045: 0.4102 + land_transport_ice_share: + 2020: 0.9949 + 2025: 0.9077 + 2030: 0.7666 + 2035: 0.6284 + 2040: 0.5274 + 2045: 0.4629 + shipping_hydrogen_share: + 2020: 0.0 + 2025: 0.0 + 2030: 0.0 + 2035: 0.0 + 2040: 0.0 + 2045: 0.0 + shipping_methanol_share: + 2020: 0.0 + 2025: 0.0 + 2030: 0.0 + 2035: 0.0 + 2040: 0.0 + 2045: 0.0 + shipping_oil_share: + 2020: 1.0 + 2025: 1.0 + 2030: 1.0 + 2035: 1.0 + 2040: 1.0 + 2045: 1.0 + land_transport_demand_factor: + 2020: 1.0 + 2025: 1.0222 + 2030: 1.0473 + 2035: 1.0871 + 2040: 1.1325 + 2045: 1.1857 + aviation_demand_factor: + 2020: 1.0 + 2025: 1.03 + 2030: 1.0334 + 2035: 1.066 + 2040: 1.138 + 2045: 1.2144 + industry: + St_primary_fraction: + 2020: 0.6896 + 2025: 0.6882 + 2030: 0.6887 + 2035: 0.6887 + 2040: 0.6876 + 2045: 0.6879 + co2_budget_national: + 2020: + DE: 0.728 + 2025: + DE: 0.573 + 2030: + DE: 0.401 + 2035: + DE: 0.401 + 2040: + DE: 0.401 + 2045: + DE: 0.401 + 2050: + DE: 0.401 +KN2045_Bal_v4: +# Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren +# Breites Energieträgerportfolio in der Endenergie (Strom, Wasserstoff, synthetische Kraftstoffe) +# Ausbau der erneuerbare Stromerzeugung erreicht politisch gesetzte Ziele +# Importe erneuerbar erzeugter Energien auf mittlerem Niveau +# dient als Referenzszenario in der Familie der Ariadne-Szenarien + + iiasa_database: + reference_scenario: 8Gt_Bal_v3 + + # boundary condition of maximum volumes + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 105 + 2040: 200 + 2045: 300 + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 +KN2045_Elec_v4: +# Fokus auf dem Hochlauf von Technologien zur direkten Elektrifizierung der Sektoren +# Strom als präferierter Energieträger in der Endenergie, andere Energieträger ergänzend, wo nötig (Wasserstoff, synthetische Kraftstoffe) +# Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele +# Importe erneuerbar erzeugter Energien auf mittlerem Niveau + + iiasa_database: + reference_scenario: 8Gt_Elec_v3 + + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 50 + 2040: 100 + 2045: 150 + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 95 + 2040: 145 + 2045: 200 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 70 + 2040: 130 + 2045: 200 + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 10 + 2035: 90 + 2040: 170 + 2045: 250 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 +KN2045_H2_v4: +# Fokus stärker auf dem Hochlauf von Technologien zur indirekten Elektrifizierung der Sektoren +# Verstärkter Einsatz von Wasserstoff und synthetischen Kraftstoffen - erneuerbar erzeugt und auch importiert +# Direkte Elektrifizierung spielt dennoch wesentliche Rolle bei der Dekarbonisierung der Endenergie +# Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele + + iiasa_database: + reference_scenario: 8Gt_H2_v3 + + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 30 + 2040: 70 + 2045: 100 # scenario guidelines + # constrain hydrogen import in TWh + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 45 # scenario guidelines + 2035: 155 + 2040: 265 + 2045: 400 # scenario guidelines + # import of h2 derivatives in TWh + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 # scenario guidelines + 2035: 140 + 2040: 270 + 2045: 400 # scenario guidelines + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 # scenario guidelines + 2035: 160 + 2040: 275 + 2045: 400 # scenario guidelines + + limits_volume_min: + electrolysis: + DE: + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 200 diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index cd4e0d101..bf0cb3711 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1284,9 +1284,18 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): # var["Final Energy|Industry|Other"] = \ - var["Final Energy|Industry|Solids"] = \ - industry_demand.get(["coal", "coke", "solid biomass"]).sum() + + + var["Final Energy|Industry|Solids|Biomass"] = \ + industry_demand.get("solid biomass") + var["Final Energy|Industry|Solids|Coal"] = \ + industry_demand.get(["coal", "coke"]).sum() + + var["Final Energy|Industry|Solids"] = \ + var["Final Energy|Industry|Solids|Biomass"] + \ + var["Final Energy|Industry|Solids|Coal"] + # Why is AMMONIA zero? # var["Final Energy|Industry excl Non-Energy Use|Non-Metallic Minerals"] = \ @@ -1508,10 +1517,35 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): + var["Final Energy|Industry|Electricity"] ) - # var["Final Energy|Solids"] = \ - # var["Final Energy|Solids|Biomass"] = \ - # var["Final Energy|Gases"] = \ - # var["Final Energy|Liquids"] = \ + + # TODO The problem with all of these is that FEEDSTOCKS have to be excluded!!! + + var["Final Energy|Solids"] = ( + # var["Final Energy|Agriculture|Solids"] + var["Final Energy|Residential and Commercial|Solids"] + + var["Final Energy|Industry|Solids"] + ) + + var["Final Energy|Solids|Biomass"] = ( + var["Final Energy|Residential and Commercial|Solids|Biomass"] + + var["Final Energy|Industry|Solids|Biomass"] + ) + + var["Final Energy|Solids|Biomass"] = \ + var["Final Energy|Industry|Solids|Coal"] + + var["Final Energy|Gases"] = ( + var["Final Energy|Residential and Commercial|Gases"] + + var["Final Energy|Industry|Gases"] + ) + + var["Final Energy|Liquids"] = ( + var["Final Energy|Agriculture|Liquids"] + + var["Final Energy|Residential and Commercial|Liquids"] + + var["Final Energy|Transportation|Liquids"] + + var["Final Energy|Industry|Liquids"] + ) + var["Final Energy|Heat"] = ( var["Final Energy|Agriculture|Heat"] + var["Final Energy|Residential and Commercial|Heat"] From 75002704a1a04045c281d794af84e50dd85091e8 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 7 May 2024 16:59:03 +0200 Subject: [PATCH 316/669] remove unused code --- workflow/scripts/export_ariadne_variables.py | 13 +------------ 1 file changed, 1 insertion(+), 12 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index bf0cb3711..d83153fe6 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -24,19 +24,8 @@ MWh2PJ = 3.6e-6 -def _get_oil_fossil_fraction(n, region, kwargs): - total_oil_supply = n.statistics.supply( - bus_carrier="oil", **kwargs - ).drop("Store").groupby("carrier").sum() - oil_fossil_fraction = ( - total_oil_supply.get("oil") - / total_oil_supply.sum() - ) - - return oil_fossil_fraction - -def __get_oil_fossil_fraction(n, region, kwargs): +def _get_oil_fossil_fraction(n, region, kwargs): if "DE" in region: total_oil_supply = n.statistics.supply( bus_carrier="oil", **kwargs From 326b3ca8b031d9831908ea2e45feb8f8c362d7ec Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 7 May 2024 17:00:08 +0200 Subject: [PATCH 317/669] improve residential heating exports --- workflow/scripts/export_ariadne_variables.py | 72 +++++++++++++++++--- 1 file changed, 62 insertions(+), 10 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index d83153fe6..3e16ace33 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1333,12 +1333,14 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): **kwargs, ).filter( like=region, - ).groupby("carrier").sum().multiply(MWh2PJ) + ).groupby("carrier").sum().drop([ # chargers affect all sectors equally + "urban decentral water tanks charger", + "rural water tanks charger", + ]).multiply(MWh2PJ) decentral_heat_residential_and_commercial_fraction = ( - decentral_heat_withdrawal.get( - ["rural heat", "urban decentral heat"] - ).sum() / decentral_heat_withdrawal.sum() + sum_load(n, ["urban decentral heat", "rural heat"], region) + / decentral_heat_withdrawal.sum() ) decentral_heat_supply_rescom = n.statistics.supply( @@ -1352,27 +1354,61 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): # Dischargers probably should not be considered, to avoid double counting var["Final Energy|Residential and Commercial|Heat"] = ( - sum_load(n, "urban central heat", region) # Maybe use n.statistics instead + sum_load(n, "urban central heat", region) # For urban central Final Energy is delivered as Heat + decentral_heat_supply_rescom.filter(like="solar thermal").sum() - ) - # Assuming for solar thermal secondary energy == Final energy + ) # Assuming for solar thermal secondary energy == Final energy + + gas_fossil_fraction = _get_gas_fossil_fraction(n, region, kwargs) + + gas_usage = n.statistics.withdrawal( + bus_carrier="gas", **kwargs + ).filter(like=region).groupby( + ["carrier"] + ).sum().multiply(MWh2PJ) + # !!! Here the final is delivered as gas, not as heat var["Final Energy|Residential and Commercial|Gases"] = \ - decentral_heat_supply_rescom.filter(like="gas boiler").sum() + gas_usage.get("urban decentral gas boiler", 0) + \ + gas_usage.get("rural gas boiler", 0) + + var["Final Energy|Residential and Commercial|Gases|Natural Gas"] = ( + var["Final Energy|Residential and Commercial|Gases"] + * gas_fossil_fraction + ) + # var["Final Energy|Residential and Commercial|Hydrogen"] = \ # ! Not implemented + oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) + oil_usage = n.statistics.withdrawal( + bus_carrier="oil", **kwargs + ).filter(like=region).groupby( + ["carrier"] + ).sum().multiply(MWh2PJ) var["Final Energy|Residential and Commercial|Liquids"] = \ - decentral_heat_supply_rescom.filter(like="oil boiler").sum() + oil_usage.get("urban decentral oil boiler", 0) + \ + oil_usage.get("rural oil boiler", 0) + + var["Final Energy|Residential and Commercial|Liquids|Petroleum"] = ( + var["Final Energy|Residential and Commercial|Liquids"] + * oil_fossil_fraction + ) # var["Final Energy|Residential and Commercial|Other"] = \ # var["Final Energy|Residential and Commercial|Solids|Coal"] = \ # ! Not implemented + biomass_usage = n.statistics.withdrawal( + bus_carrier="solid biomass", **kwargs + ).filter(like=region).groupby( + ["carrier"] + ).sum().multiply(MWh2PJ) + var["Final Energy|Residential and Commercial|Solids"] = \ var["Final Energy|Residential and Commercial|Solids|Biomass"] = \ - decentral_heat_supply_rescom.filter(like="biomass boiler").sum() + biomass_usage.get("urban decentral biomass boiler", 0) + \ + biomass_usage.get("rural biomass boiler", 0) # Q: Everything else seems to be not implemented @@ -1384,6 +1420,22 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): + var["Final Energy|Residential and Commercial|Solids"] ) + # TODO double check prices for usage of correct FE carrier + + var["Final Energy|Residential and Commercial|Space and Water Heating"] = ( + # district heating + var["Final Energy|Residential and Commercial|Heat"] + # decentral boilers + + var["Final Energy|Residential and Commercial|Gases"] + + var["Final Energy|Residential and Commercial|Liquids"] + + var["Final Energy|Residential and Commercial|Solids"] + # resistive heaters and heat pumps + + low_voltage_electricity.filter(like="rural").sum() + + low_voltage_electricity.filter(like="urban decentral").sum() + ) + + + # var["Final Energy|Transportation|Other"] = \ var["Final Energy|Transportation|Electricity"] = \ From f73056932c12e3f663a64e64439750d6a7dab000 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 7 May 2024 17:00:30 +0200 Subject: [PATCH 318/669] some additional variables --- workflow/scripts/export_ariadne_variables.py | 59 ++++++++++++++++++-- 1 file changed, 55 insertions(+), 4 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 3e16ace33..467e2b825 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -787,6 +787,9 @@ def get_primary_energy(n, region): biomass_CHP_E_fraction = biomass_CHP_E_to_H * (1 / (biomass_CHP_E_to_H + 1)) + var["Primary Energy|Biomass|Gases"] = \ + biomass_usage.filter(like="biogas to gas").sum() + var["Primary Energy|Biomass|w/ CCS"] = \ biomass_usage[biomass_usage.index.str.contains("CC")].sum() @@ -877,6 +880,15 @@ def get_primary_energy(n, region): ) # Primary Energy|Other # Not implemented + + var["Primary Energy"] = ( + var["Primary Energy|Fossil"] + + var["Primary Energy|Biomass"] + + var["Primary Energy|Hydro"] + + var["Primary Energy|Solar"] + + var["Primary Energy|Wind"] + + var["Primary Energy|Nuclear"] + ) return var @@ -1220,8 +1232,36 @@ def get_secondary_energy(n, region): var["Secondary Energy|Gases"], gas_fuel_usage.sum() ) - + electricity_withdrawal = n.statistics.withdrawal( + bus_carrier=["low voltage", "AC"], **kwargs + ).filter(like=region).groupby( + ["carrier"] + ).sum().multiply(MWh2PJ).drop( + ["AC", "DC", "electricity distribution grid"], + ) + + var["Secondary Energy Input|Electricity|Hydrogen"] = \ + electricity_withdrawal.get("H2 Electrolysis", 0) + + var["Secondary Energy Input|Electricity|Heat"] = \ + electricity_withdrawal.filter(like="urban central").sum() + + hydrogen_withdrawal = n.statistics.withdrawal( + bus_carrier="H2", **kwargs + ).filter(like=region).groupby( + ["carrier"] + ).sum().multiply(MWh2PJ) + + var["Secondary Energy Input|Hydrogen|Electricity"] = \ + hydrogen_withdrawal.get("H2 Fuel Cell", 0) + + var["Secondary Energy Input|Hydrogen|Gases"] = \ + hydrogen_withdrawal.get("Sabatier", 0) + + var["Secondary Energy Input|Hydrogen|Liquids"] = \ + hydrogen_withdrawal.get("Fischer-Tropsch", 0) + return var def get_final_energy(n, region, _industry_demand, _energy_totals): @@ -1265,6 +1305,12 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): var["Final Energy|Industry|Hydrogen"] = \ industry_demand.get("hydrogen") + oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) + var["Final Energy|Industry|Liquids|Petroleum"] = \ + sum_load(n, "naphtha for industry", region) * oil_fossil_fraction + + var["Final Energy|Industry|Liquids|Efuel"] = \ + sum_load(n, "naphtha for industry", region) * (1 - oil_fossil_fraction) var["Final Energy|Industry|Liquids"] = \ sum_load(n, "naphtha for industry", region) @@ -1813,10 +1859,11 @@ def get_emissions(n, region, _energy_totals): var["Emissions|CO2|Energy|Supply|Heat"] + \ var["Emissions|CO2|Energy|Supply|Electricity"] - var["Emissions|CO2|Energy|Supply|Hydrogen"] = \ + var["Emissions|Gross Fossil CO2|Energy|Supply|Hydrogen"] = \ co2_emissions.filter(like="SMR").sum() + var["Emissions|CO2|Energy|Supply|Gases"] = \ (-1) * co2_negative_emissions.filter( like="biogas to gas" @@ -1852,6 +1899,11 @@ def get_emissions(n, region, _energy_totals): var["Emissions|CO2|Energy and Industrial Processes"] = \ var["Emissions|CO2|Energy"] + \ var["Emissions|CO2|Industrial Processes"] + + var["Emissions|Gross Fossil CO2|Energy|Supply"] = \ + var["Emissions|Gross Fossil CO2|Energy|Supply|Electricity"] + \ + var["Emissions|Gross Fossil CO2|Energy|Supply|Heat"] + \ + var["Emissions|Gross Fossil CO2|Energy|Supply|Hydrogen"] assert isclose( var["Emissions|CO2"], @@ -2764,8 +2816,7 @@ def get_data( opts="", ll="vopt", sector_opts="None", - planning_horizons="2050", - run="KN2045_Bal_v4" + run="CurrentPolicies" ) From 116192f926f51fdb341c76ecca1e535d79af899c Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 10 May 2024 12:09:21 +0200 Subject: [PATCH 319/669] first draft of exporting non-energy variables --- workflow/Snakefile | 8 ++ workflow/scripts/export_ariadne_variables.py | 114 ++++++++++++++++++- 2 files changed, 116 insertions(+), 6 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 326925c98..d07e995d3 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -275,6 +275,7 @@ rule export_ariadne_variables: hours=config_provider("clustering","temporal","resolution_sector"), costs=config_provider("costs"), energy_totals_year=config_provider("energy", "energy_totals_year"), + HVC_primary=config_provider("industry", "HVC_primary_fraction") input: template=resources("template_ariadne_database.xlsx"), industry_demands=expand( @@ -290,6 +291,13 @@ rule export_ariadne_variables: resources("modified-costs_{planning_horizons}.csv"), **config["scenario"], ), + industrial_production_per_country_tomorrow=expand( + resources("industrial_production_per_country_tomorrow_{planning_horizons}-modified.csv"), + **config["scenario"], + ), + idees="data/bundle-sector/jrc-idees-2015", + sector_ratios=resources("industry_sector_ratios.csv"), + industrial_production=resources("industrial_production_per_country.csv"), energy_totals=resources("energy_totals.csv"), output: exported_variables=RESULTS + "ariadne/exported_variables.xlsx", diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 467e2b825..397dc014f 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -5,6 +5,8 @@ import math import numpy as np import os +from _helpers import mute_print +import re paths = ["workflow/submodules/pypsa-eur/scripts", "../submodules/pypsa-eur/scripts"] for path in paths: @@ -2744,7 +2746,105 @@ def get_policy(n): return var -def get_ariadne_var(n, industry_demand, energy_totals, costs, region): +def load_idees_data(sector, country): + sheet_names = { + "Iron and steel": "ISI", + "Chemicals Industry": "CHI", + "Non-metallic mineral products": "NMM", + "Pulp, paper and printing": "PPA", + "Food, beverages and tobacco": "FBT", + "Non Ferrous Metals": "NFM", + "Transport Equipment": "TRE", + "Machinery Equipment": "MAE", + "Textiles and leather": "TEL", + "Wood and wood products": "WWP", + "Other Industrial Sectors": "OIS", + } + year=2015 + suffixes = {"out": "", "fec": "_fec", "ued": "_ued", "emi": "_emi"} + sheets = {k: sheet_names[sector] + v for k, v in suffixes.items()} + + def usecols(x): + return isinstance(x, str) or x == year + + with mute_print(): + idees = pd.read_excel( + f"{snakemake.input.idees}/JRC-IDEES-2015_Industry_{country}.xlsx", + sheet_name=list(sheets.values()), + index_col=0, + header=0, + usecols=usecols, + ) + + for k, v in sheets.items(): + idees[k] = idees.pop(v).squeeze() + + return idees + +def get_non_energy_use(n, region, year): + var = pd.Series() + + # from build_industry_sector_ratios import load_idees_data + # read in shares of non-energy use + sector = "Chemicals Industry" + idees = load_idees_data(sector, country="DE") + + subsector = "Chemicals: Feedstock (energy used as raw material)" + s_fec = idees["fec"][13:22] + assert s_fec.index[0] == subsector + + # LPG and other feedstock materials are assimilated to naphtha + # since they will be produced through Fischer-Tropsh process + sel = ["Solids", "Refinery gas", "LPG", + "Diesel oil", "Residual fuel oil", "Other liquids"] + + naphtha = s_fec["Naphtha"] + s_fec[sel].sum() + natural_gas = s_fec["Natural gas"] + + # share of non-energy use in MWh/t_Material + sector_ratios = pd.read_csv(snakemake.input.sector_ratios, index_col=0) + share_naphtha = naphtha / sector_ratios.loc["naphtha", "HVC"] + share_natural_gas = natural_gas / sector_ratios.loc["methane", "HVC"] + # get recycling rate + share_naphtha *= snakemake.params.HVC_primary[year] + share_natural_gas *= snakemake.params.HVC_primary[year] + + ind_production = pd.read_csv(snakemake.input.industrial_production, index_col=0) + ind_production = ind_production.loc[region, "HVC"] + + non_energy_naphtha = ind_production * share_naphtha + non_energy_natural_gas = ind_production * share_natural_gas + + # get stochiometric demand of H2 for ammonia and methanol + ammonia_demand = 1.8199 # MWh/kton TODO: check this again + methanol_demand = 0.6346 # MWh/kton TODO: check this again + + # get H2 demand for ammonia and methanol production + # get right file + years = [int(re.search(r'(\d{4})-modified\.csv', filename).group(1)) for filename in snakemake.input.industrial_production_per_country_tomorrow] + index = next((idx for idx, y in enumerate(years) if y == year), None) + production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow[index], index_col=0) # kton/a + h2_demand = production.loc[region, "Ammonia"] * ammonia_demand + production.loc[region, "Methanol"] * methanol_demand + + var["Final Energy|Non-Energy Use|Gases"] = non_energy_natural_gas + h2_demand + var["Final Energy|Non-Energy Use|Gases|Biomass"] = 0 + var["Final Energy|Non-Energy Use|Gases|Efuel"] = 0 + var["Final Energy|Non-Energy Use|Gases|Natural Gas"] = non_energy_natural_gas + var["Final Energy|Non-Energy Use|Gases|Hydrogen"] = h2_demand + + var["Final Energy|Non-Energy Use|Liquids"] = non_energy_naphtha + + var["Final Energy|Non-Energy Use|Solids"] = 0 + var["Final Energy|Non-Energy Use|Solids|Coal"] = 0 + var["Final Energy|Non-Energy Use|Solids|Biomass"] = 0 + + var["Final Energy|Non-Energy Use|Hydrogen"] = h2_demand + + var["Final Energy|Non-Energy Use"] = non_energy_natural_gas + h2_demand + non_energy_naphtha + + return var + +def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): var = pd.concat([ get_capacities(n, region), @@ -2762,7 +2862,8 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region): dg_cost_factor=snakemake.params.dg_cost_factor, length_factor=snakemake.params.length_factor ), - get_policy(n) + get_policy(n), + get_non_energy_use(n, region, year) ]) return var @@ -2770,11 +2871,11 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region): # uses the global variables model, scenario and var2unit. For now. def get_data( - n, industry_demand, energy_totals, costs, region, - version="0.10", scenario="test" + n, industry_demand, energy_totals, costs, region, year, + version="0.10", scenario="test", ): - var = get_ariadne_var(n, industry_demand, energy_totals, costs, region) + var = get_ariadne_var(n, industry_demand, energy_totals, costs, region, year) data = [] for v in var.index: @@ -2816,7 +2917,7 @@ def get_data( opts="", ll="vopt", sector_opts="None", - run="CurrentPolicies" + run="KN2045_Bal_v4" ) @@ -2862,6 +2963,7 @@ def get_data( energy_totals, costs[i], "DE", + year=year, version=config["version"], scenario=snakemake.wildcards.run, )) From 5f6891ae66bc997d491fabbde303f1676d70592d Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 10 May 2024 15:05:43 +0200 Subject: [PATCH 320/669] fixing share without meoh and nh3 production --- workflow/Snakefile | 5 +- workflow/scripts/export_ariadne_variables.py | 54 ++++++++++---------- 2 files changed, 30 insertions(+), 29 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index d07e995d3..1ecbc9381 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -275,7 +275,9 @@ rule export_ariadne_variables: hours=config_provider("clustering","temporal","resolution_sector"), costs=config_provider("costs"), energy_totals_year=config_provider("energy", "energy_totals_year"), - HVC_primary=config_provider("industry", "HVC_primary_fraction") + HVC_primary=config_provider("industry", "HVC_primary_fraction"), + MWh_CH4_per_tMeOH=config_provider("industry", "MWh_CH4_per_tMeOH"), + MWh_CH4_per_tNH3_SMR=config_provider("industry", "MWh_CH4_per_tNH3_SMR"), input: template=resources("template_ariadne_database.xlsx"), industry_demands=expand( @@ -296,7 +298,6 @@ rule export_ariadne_variables: **config["scenario"], ), idees="data/bundle-sector/jrc-idees-2015", - sector_ratios=resources("industry_sector_ratios.csv"), industrial_production=resources("industrial_production_per_country.csv"), energy_totals=resources("energy_totals.csv"), output: diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 397dc014f..1464e0ba7 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -24,6 +24,7 @@ MWh2GJ = 3.6 TWh2PJ = 3.6 MWh2PJ = 3.6e-6 +toe_to_MWh = 11.630 # GWh/ktoe OR MWh/toe @@ -2784,8 +2785,7 @@ def usecols(x): def get_non_energy_use(n, region, year): var = pd.Series() - # from build_industry_sector_ratios import load_idees_data - # read in shares of non-energy use + # read in shares of non-energy use [ktoe] sector = "Chemicals Industry" idees = load_idees_data(sector, country="DE") @@ -2798,39 +2798,39 @@ def get_non_energy_use(n, region, year): sel = ["Solids", "Refinery gas", "LPG", "Diesel oil", "Residual fuel oil", "Other liquids"] - naphtha = s_fec["Naphtha"] + s_fec[sel].sum() - natural_gas = s_fec["Natural gas"] + naphtha = (s_fec["Naphtha"] + s_fec[sel].sum()) * toe_to_MWh *1e3 # MWh + natural_gas = s_fec["Natural gas"] * toe_to_MWh * 1e3 # MWh - # share of non-energy use in MWh/t_Material - sector_ratios = pd.read_csv(snakemake.input.sector_ratios, index_col=0) - share_naphtha = naphtha / sector_ratios.loc["naphtha", "HVC"] - share_natural_gas = natural_gas / sector_ratios.loc["methane", "HVC"] - # get recycling rate - share_naphtha *= snakemake.params.HVC_primary[year] - share_natural_gas *= snakemake.params.HVC_primary[year] + # read in industrial production of 2015 [kt/a] + industrial_production = pd.read_csv(snakemake.input.industrial_production, index_col=0) + ammonia_region = industrial_production.loc[region, "Ammonia"] + MeOH_region = industrial_production.loc[region, "Methanol"] - ind_production = pd.read_csv(snakemake.input.industrial_production, index_col=0) - ind_production = ind_production.loc[region, "HVC"] + # subtracting natural gas demand for ammonia and methanol production + natural_gas -= ammonia_region * snakemake.params.MWh_CH4_per_tNH3_SMR * 1e3 # MWh + natural_gas -= MeOH_region * snakemake.params.MWh_CH4_per_tMeOH * 1e3 # MWh - non_energy_naphtha = ind_production * share_naphtha - non_energy_natural_gas = ind_production * share_natural_gas + # adjust demand for non-energy use with recycling rate + non_energy_naphtha = naphtha * snakemake.params.HVC_primary[year] + non_energy_natural_gas = natural_gas * snakemake.params.HVC_primary[year] - # get stochiometric demand of H2 for ammonia and methanol - ammonia_demand = 1.8199 # MWh/kton TODO: check this again - methanol_demand = 0.6346 # MWh/kton TODO: check this again + # get stochiometric demand of H2 for ammonia production + stoch_NH3 = 5.882 # MWh/ton - # get H2 demand for ammonia and methanol production - # get right file + # read in production volume for the time horizon years = [int(re.search(r'(\d{4})-modified\.csv', filename).group(1)) for filename in snakemake.input.industrial_production_per_country_tomorrow] index = next((idx for idx, y in enumerate(years) if y == year), None) production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow[index], index_col=0) # kton/a - h2_demand = production.loc[region, "Ammonia"] * ammonia_demand + production.loc[region, "Methanol"] * methanol_demand - var["Final Energy|Non-Energy Use|Gases"] = non_energy_natural_gas + h2_demand + # get H2 demand for ammonia and methanol production + # get production volume in kton/a + H2_for_NH3 = production.loc[region, "Ammonia"] * stoch_NH3 *1e3 + CH4_for_MeOH = production.loc[region, "Methanol"] * snakemake.params.MWh_CH4_per_tMeOH * 1e3 + + var["Final Energy|Non-Energy Use|Gases"] = non_energy_natural_gas + CH4_for_MeOH var["Final Energy|Non-Energy Use|Gases|Biomass"] = 0 var["Final Energy|Non-Energy Use|Gases|Efuel"] = 0 - var["Final Energy|Non-Energy Use|Gases|Natural Gas"] = non_energy_natural_gas - var["Final Energy|Non-Energy Use|Gases|Hydrogen"] = h2_demand + var["Final Energy|Non-Energy Use|Gases|Natural Gas"] = non_energy_natural_gas + CH4_for_MeOH var["Final Energy|Non-Energy Use|Liquids"] = non_energy_naphtha @@ -2838,11 +2838,11 @@ def get_non_energy_use(n, region, year): var["Final Energy|Non-Energy Use|Solids|Coal"] = 0 var["Final Energy|Non-Energy Use|Solids|Biomass"] = 0 - var["Final Energy|Non-Energy Use|Hydrogen"] = h2_demand + var["Final Energy|Non-Energy Use|Hydrogen"] = H2_for_NH3 - var["Final Energy|Non-Energy Use"] = non_energy_natural_gas + h2_demand + non_energy_naphtha + var["Final Energy|Non-Energy Use"] = non_energy_natural_gas + H2_for_NH3 + non_energy_naphtha + CH4_for_MeOH - return var + return var*MWh2PJ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): From 6769650a6eedd82065ef1c33a55d862387eff3ec Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 10 May 2024 15:51:21 +0200 Subject: [PATCH 321/669] minor bug fixing --- workflow/Snakefile | 1 + workflow/scripts/export_ariadne_variables.py | 5 +---- 2 files changed, 2 insertions(+), 4 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 1ecbc9381..4f29f9f61 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -278,6 +278,7 @@ rule export_ariadne_variables: HVC_primary=config_provider("industry", "HVC_primary_fraction"), MWh_CH4_per_tMeOH=config_provider("industry", "MWh_CH4_per_tMeOH"), MWh_CH4_per_tNH3_SMR=config_provider("industry", "MWh_CH4_per_tNH3_SMR"), + MWh_H2_per_tNH3_electrolysis=config_provider("industry", "MWh_H2_per_tNH3_electrolysis"), input: template=resources("template_ariadne_database.xlsx"), industry_demands=expand( diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 1464e0ba7..fa6763234 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2814,9 +2814,6 @@ def get_non_energy_use(n, region, year): non_energy_naphtha = naphtha * snakemake.params.HVC_primary[year] non_energy_natural_gas = natural_gas * snakemake.params.HVC_primary[year] - # get stochiometric demand of H2 for ammonia production - stoch_NH3 = 5.882 # MWh/ton - # read in production volume for the time horizon years = [int(re.search(r'(\d{4})-modified\.csv', filename).group(1)) for filename in snakemake.input.industrial_production_per_country_tomorrow] index = next((idx for idx, y in enumerate(years) if y == year), None) @@ -2824,7 +2821,7 @@ def get_non_energy_use(n, region, year): # get H2 demand for ammonia and methanol production # get production volume in kton/a - H2_for_NH3 = production.loc[region, "Ammonia"] * stoch_NH3 *1e3 + H2_for_NH3 = production.loc[region, "Ammonia"] * snakemake.input.MWh_H2_per_tNH3_electrolysis *1e3 CH4_for_MeOH = production.loc[region, "Methanol"] * snakemake.params.MWh_CH4_per_tMeOH * 1e3 var["Final Energy|Non-Energy Use|Gases"] = non_energy_natural_gas + CH4_for_MeOH From 4c75509783c1e5b0fc31b73eb98c2d12433eec80 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 10 May 2024 15:53:09 +0200 Subject: [PATCH 322/669] fix typo --- workflow/scripts/export_ariadne_variables.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index fa6763234..a8c3e9b92 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2821,7 +2821,7 @@ def get_non_energy_use(n, region, year): # get H2 demand for ammonia and methanol production # get production volume in kton/a - H2_for_NH3 = production.loc[region, "Ammonia"] * snakemake.input.MWh_H2_per_tNH3_electrolysis *1e3 + H2_for_NH3 = production.loc[region, "Ammonia"] * snakemake.params.MWh_H2_per_tNH3_electrolysis *1e3 CH4_for_MeOH = production.loc[region, "Methanol"] * snakemake.params.MWh_CH4_per_tMeOH * 1e3 var["Final Energy|Non-Energy Use|Gases"] = non_energy_natural_gas + CH4_for_MeOH From 0584aa39e20d91f50759333732c127f440e2ac2c Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 10 May 2024 16:06:42 +0200 Subject: [PATCH 323/669] removing gases|natural gas variable --- workflow/scripts/export_ariadne_variables.py | 3 --- 1 file changed, 3 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index a8c3e9b92..dbe2206e9 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2825,9 +2825,6 @@ def get_non_energy_use(n, region, year): CH4_for_MeOH = production.loc[region, "Methanol"] * snakemake.params.MWh_CH4_per_tMeOH * 1e3 var["Final Energy|Non-Energy Use|Gases"] = non_energy_natural_gas + CH4_for_MeOH - var["Final Energy|Non-Energy Use|Gases|Biomass"] = 0 - var["Final Energy|Non-Energy Use|Gases|Efuel"] = 0 - var["Final Energy|Non-Energy Use|Gases|Natural Gas"] = non_energy_natural_gas + CH4_for_MeOH var["Final Energy|Non-Energy Use|Liquids"] = non_energy_naphtha From f02a9ea752aae8d3f8325635099adf6e58a3dcb3 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 10 May 2024 17:28:24 +0200 Subject: [PATCH 324/669] move Non-Energy Use to get_final_energy() --- workflow/scripts/export_ariadne_variables.py | 230 +++++++++++-------- 1 file changed, 134 insertions(+), 96 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index dbe2206e9..798cff9f0 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1267,7 +1267,42 @@ def get_secondary_energy(n, region): return var -def get_final_energy(n, region, _industry_demand, _energy_totals): +def load_idees_data(sector, country): + sheet_names = { + "Iron and steel": "ISI", + "Chemicals Industry": "CHI", + "Non-metallic mineral products": "NMM", + "Pulp, paper and printing": "PPA", + "Food, beverages and tobacco": "FBT", + "Non Ferrous Metals": "NFM", + "Transport Equipment": "TRE", + "Machinery Equipment": "MAE", + "Textiles and leather": "TEL", + "Wood and wood products": "WWP", + "Other Industrial Sectors": "OIS", + } + year=2015 + suffixes = {"out": "", "fec": "_fec", "ued": "_ued", "emi": "_emi"} + sheets = {k: sheet_names[sector] + v for k, v in suffixes.items()} + + def usecols(x): + return isinstance(x, str) or x == year + + with mute_print(): + idees = pd.read_excel( + f"{snakemake.input.idees}/JRC-IDEES-2015_Industry_{country}.xlsx", + sheet_name=list(sheets.values()), + index_col=0, + header=0, + usecols=usecols, + ) + + for k, v in sheets.items(): + idees[k] = idees.pop(v).squeeze() + + return idees + +def get_final_energy(n, region, _industry_demand, _energy_totals, year): kwargs = { 'groupby': n.statistics.groupers.get_name_bus_and_carrier, @@ -1276,6 +1311,63 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): var = pd.Series() + # read in shares of non-energy use [ktoe] + sector = "Chemicals Industry" + idees = load_idees_data(sector, country="DE") + + subsector = "Chemicals: Feedstock (energy used as raw material)" + s_fec = idees["fec"][13:22] + assert s_fec.index[0] == subsector + + # LPG and other feedstock materials are assimilated to naphtha + # since they will be produced through Fischer-Tropsh process + sel = ["Solids", "Refinery gas", "LPG", + "Diesel oil", "Residual fuel oil", "Other liquids"] + + naphtha = (s_fec["Naphtha"] + s_fec[sel].sum()) * toe_to_MWh *1e3 # MWh + natural_gas = s_fec["Natural gas"] * toe_to_MWh * 1e3 # MWh + + # read in industrial production of 2015 [kt/a] + industrial_production = pd.read_csv(snakemake.input.industrial_production, index_col=0) + ammonia_region = industrial_production.loc[region, "Ammonia"] + MeOH_region = industrial_production.loc[region, "Methanol"] + + # subtracting natural gas demand for ammonia and methanol production + natural_gas -= ammonia_region * snakemake.params.MWh_CH4_per_tNH3_SMR * 1e3 # MWh + natural_gas -= MeOH_region * snakemake.params.MWh_CH4_per_tMeOH * 1e3 # MWh + + # adjust demand for non-energy use with recycling rate + non_energy_naphtha = naphtha * snakemake.params.HVC_primary[year] + non_energy_natural_gas = natural_gas * snakemake.params.HVC_primary[year] + + # read in production volume for the time horizon + years = [int(re.search(r'(\d{4})-modified\.csv', filename).group(1)) for filename in snakemake.input.industrial_production_per_country_tomorrow] + index = next((idx for idx, y in enumerate(years) if y == year), None) + production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow[index], index_col=0) # kton/a + + # get H2 demand for ammonia and methanol production + # get production volume in kton/a + H2_for_NH3 = production.loc[region, "Ammonia"] * snakemake.params.MWh_H2_per_tNH3_electrolysis *1e3 + CH4_for_MeOH = production.loc[region, "Methanol"] * snakemake.params.MWh_CH4_per_tMeOH * 1e3 + + var["Final Energy|Non-Energy Use|Gases"] = (non_energy_natural_gas + CH4_for_MeOH) * MWh2PJ + + oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) + + var["Final Energy|Non-Energy Use|Liquids"] = non_energy_naphtha * MWh2PJ + var["Final Energy|Non-Energy Use|Liquids|Petroleum"] = non_energy_naphtha * MWh2PJ * oil_fossil_fraction + var["Final Energy|Non-Energy Use|Liquids|Efuel"] = non_energy_naphtha * MWh2PJ * (1 - oil_fossil_fraction) + var["Final Energy|Non-Energy Use|Liquids|Biomass"] = 0 + + var["Final Energy|Non-Energy Use|Solids"] = 0 + var["Final Energy|Non-Energy Use|Solids|Coal"] = 0 + var["Final Energy|Non-Energy Use|Solids|Biomass"] = 0 + + var["Final Energy|Non-Energy Use|Hydrogen"] = H2_for_NH3 * MWh2PJ + + var["Final Energy|Non-Energy Use"] = (non_energy_natural_gas + H2_for_NH3 + non_energy_naphtha + CH4_for_MeOH) * MWh2PJ + + energy_totals = _energy_totals.loc[region[0:2]] industry_demand = _industry_demand.filter( @@ -1288,10 +1380,16 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): var["Final Energy|Industry|Electricity"] = \ industry_demand.get("electricity") # or use: sum_load(n, "industry electricity", region) + # electricity is not used for non-energy purposes + var["Final Energy|Industry excl Non-Energy Use|Electricity"] = \ + var["Final Energy|Industry|Electricity"] var["Final Energy|Industry|Heat"] = \ industry_demand.get("low-temperature heat") - + # heat is not used for non-energy purposes + var["Final Energy|Industry excl Non-Energy Use|Heat"] = \ + var["Final Energy|Industry|Heat"] + # var["Final Energy|Industry|Solar"] = \ # !: Included in |Heat @@ -1301,22 +1399,38 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): var["Final Energy|Industry|Gases"] = \ industry_demand.get("methane") # "gas for industry" is now regionally resolved and could be used here + # subtract non-energy used gases from total gas demand + var["Final Energy|Industry excl Non-Energy Use|Gases"] = \ + var["Final Energy|Industry|Gases"] - var["Final Energy|Non-Energy Use|Gases"] # var["Final Energy|Industry|Power2Heat"] = \ # Q: misleading description var["Final Energy|Industry|Hydrogen"] = \ industry_demand.get("hydrogen") + # subtract non-energy used hydrogen from total hydrogen demand + var["Final Energy|Industry excl Non-Energy Use|Hydrogen"] = \ + var["Final Energy|Industry|Hydrogen"] - var["Final Energy|Non-Energy Use|Hydrogen"] - oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) var["Final Energy|Industry|Liquids|Petroleum"] = \ sum_load(n, "naphtha for industry", region) * oil_fossil_fraction + # subtract non-energy used petroleum from total petroleum demand + var["Final Energy|Industry excl Non-Energy Use|Liquids|Petroleum"] = \ + var["Final Energy|Industry|Liquids|Petroleum"] - var["Final Energy|Non-Energy Use|Liquids|Petroleum"] + var["Final Energy|Industry|Liquids|Efuel"] = \ sum_load(n, "naphtha for industry", region) * (1 - oil_fossil_fraction) + # subtract non-energy used efuels from total efuels demand + var["Final Energy|Industry excl Non-Energy Use|Liquids|Efuel"] = \ + var["Final Energy|Industry|Liquids|Efuel"] - var["Final Energy|Non-Energy Use|Liquids|Efuel"] var["Final Energy|Industry|Liquids"] = \ sum_load(n, "naphtha for industry", region) + # subtract non-energy used liquids from total liquid demand + var["Final Energy|Industry excl Non-Energy Use|Liquids"] = \ + var["Final Energy|Industry|Liquids"] - var["Final Energy|Non-Energy Use|Liquids"] + #TODO This is plastics not liquids for industry! Look in industry demand! @@ -1326,13 +1440,20 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): var["Final Energy|Industry|Solids|Biomass"] = \ industry_demand.get("solid biomass") + var["Final Energy|Industry excl Non-Energy Use|Solids|Biomass"] = \ + var["Final Energy|Industry|Solids|Biomass"] var["Final Energy|Industry|Solids|Coal"] = \ industry_demand.get(["coal", "coke"]).sum() + var["Final Energy|Industry excl Non-Energy Use|Solids|Coal"] = \ + var["Final Energy|Industry|Solids|Coal"] var["Final Energy|Industry|Solids"] = \ var["Final Energy|Industry|Solids|Biomass"] + \ var["Final Energy|Industry|Solids|Coal"] + # no solids used for non-energy purposes + var["Final Energy|Industry excl Non-Energy Use|Solids"] = \ + var["Final Energy|Industry|Solids"] # Why is AMMONIA zero? @@ -1357,6 +1478,15 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): "Final Energy|Industry|Liquids", "Final Energy|Industry|Solids", ]).sum() + var["Final Energy|Industry excl Non-Energy Use"] = \ + var.get([ + "Final Energy|Industry excl Non-Energy Use|Electricity", + "Final Energy|Industry excl Non-Energy Use|Heat", + "Final Energy|Industry excl Non-Energy Use|Gases", + "Final Energy|Industry excl Non-Energy Use|Hydrogen", + "Final Energy|Industry excl Non-Energy Use|Liquids", + "Final Energy|Industry excl Non-Energy Use|Solids", + ]).sum() # Final energy is delivered to the consumers low_voltage_electricity = n.statistics.withdrawal( @@ -2747,97 +2877,6 @@ def get_policy(n): return var -def load_idees_data(sector, country): - sheet_names = { - "Iron and steel": "ISI", - "Chemicals Industry": "CHI", - "Non-metallic mineral products": "NMM", - "Pulp, paper and printing": "PPA", - "Food, beverages and tobacco": "FBT", - "Non Ferrous Metals": "NFM", - "Transport Equipment": "TRE", - "Machinery Equipment": "MAE", - "Textiles and leather": "TEL", - "Wood and wood products": "WWP", - "Other Industrial Sectors": "OIS", - } - year=2015 - suffixes = {"out": "", "fec": "_fec", "ued": "_ued", "emi": "_emi"} - sheets = {k: sheet_names[sector] + v for k, v in suffixes.items()} - - def usecols(x): - return isinstance(x, str) or x == year - - with mute_print(): - idees = pd.read_excel( - f"{snakemake.input.idees}/JRC-IDEES-2015_Industry_{country}.xlsx", - sheet_name=list(sheets.values()), - index_col=0, - header=0, - usecols=usecols, - ) - - for k, v in sheets.items(): - idees[k] = idees.pop(v).squeeze() - - return idees - -def get_non_energy_use(n, region, year): - var = pd.Series() - - # read in shares of non-energy use [ktoe] - sector = "Chemicals Industry" - idees = load_idees_data(sector, country="DE") - - subsector = "Chemicals: Feedstock (energy used as raw material)" - s_fec = idees["fec"][13:22] - assert s_fec.index[0] == subsector - - # LPG and other feedstock materials are assimilated to naphtha - # since they will be produced through Fischer-Tropsh process - sel = ["Solids", "Refinery gas", "LPG", - "Diesel oil", "Residual fuel oil", "Other liquids"] - - naphtha = (s_fec["Naphtha"] + s_fec[sel].sum()) * toe_to_MWh *1e3 # MWh - natural_gas = s_fec["Natural gas"] * toe_to_MWh * 1e3 # MWh - - # read in industrial production of 2015 [kt/a] - industrial_production = pd.read_csv(snakemake.input.industrial_production, index_col=0) - ammonia_region = industrial_production.loc[region, "Ammonia"] - MeOH_region = industrial_production.loc[region, "Methanol"] - - # subtracting natural gas demand for ammonia and methanol production - natural_gas -= ammonia_region * snakemake.params.MWh_CH4_per_tNH3_SMR * 1e3 # MWh - natural_gas -= MeOH_region * snakemake.params.MWh_CH4_per_tMeOH * 1e3 # MWh - - # adjust demand for non-energy use with recycling rate - non_energy_naphtha = naphtha * snakemake.params.HVC_primary[year] - non_energy_natural_gas = natural_gas * snakemake.params.HVC_primary[year] - - # read in production volume for the time horizon - years = [int(re.search(r'(\d{4})-modified\.csv', filename).group(1)) for filename in snakemake.input.industrial_production_per_country_tomorrow] - index = next((idx for idx, y in enumerate(years) if y == year), None) - production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow[index], index_col=0) # kton/a - - # get H2 demand for ammonia and methanol production - # get production volume in kton/a - H2_for_NH3 = production.loc[region, "Ammonia"] * snakemake.params.MWh_H2_per_tNH3_electrolysis *1e3 - CH4_for_MeOH = production.loc[region, "Methanol"] * snakemake.params.MWh_CH4_per_tMeOH * 1e3 - - var["Final Energy|Non-Energy Use|Gases"] = non_energy_natural_gas + CH4_for_MeOH - - var["Final Energy|Non-Energy Use|Liquids"] = non_energy_naphtha - - var["Final Energy|Non-Energy Use|Solids"] = 0 - var["Final Energy|Non-Energy Use|Solids|Coal"] = 0 - var["Final Energy|Non-Energy Use|Solids|Biomass"] = 0 - - var["Final Energy|Non-Energy Use|Hydrogen"] = H2_for_NH3 - - var["Final Energy|Non-Energy Use"] = non_energy_natural_gas + H2_for_NH3 + non_energy_naphtha + CH4_for_MeOH - - return var*MWh2PJ - def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): var = pd.concat([ @@ -2848,7 +2887,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): #get_capacity_additions_nstat(n, region), get_primary_energy(n, region), get_secondary_energy(n, region), - get_final_energy(n, region, industry_demand, energy_totals), + get_final_energy(n, region, industry_demand, energy_totals, year), get_prices(n,region), get_emissions(n, region, energy_totals), get_investments( @@ -2857,7 +2896,6 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): length_factor=snakemake.params.length_factor ), get_policy(n), - get_non_energy_use(n, region, year) ]) return var From bee374b67e1915794c328c57733416c08b82d594 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 10 May 2024 18:15:23 +0200 Subject: [PATCH 325/669] add production variables --- workflow/Snakefile | 1 + workflow/scripts/export_ariadne_variables.py | 23 ++++++++++++++++++++ 2 files changed, 24 insertions(+) diff --git a/workflow/Snakefile b/workflow/Snakefile index 4f29f9f61..143faaa8e 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -279,6 +279,7 @@ rule export_ariadne_variables: MWh_CH4_per_tMeOH=config_provider("industry", "MWh_CH4_per_tMeOH"), MWh_CH4_per_tNH3_SMR=config_provider("industry", "MWh_CH4_per_tNH3_SMR"), MWh_H2_per_tNH3_electrolysis=config_provider("industry", "MWh_H2_per_tNH3_electrolysis"), + St_primary_fraction=config_provider("industry", "St_primary_fraction"), input: template=resources("template_ariadne_database.xlsx"), industry_demands=expand( diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 798cff9f0..de94d4a68 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2877,6 +2877,28 @@ def get_policy(n): return var +def get_production(region, year): + + var = pd.Series() + # read in the industrial production data + years = [int(re.search(r'(\d{4})-modified\.csv', filename).group(1)) for filename in snakemake.input.industrial_production_per_country_tomorrow] + index = next((idx for idx, y in enumerate(years) if y == year), None) + production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow[index], index_col=0) # kton/a + + var["Production|Non-Metallic Minerals|Cement"] = production.loc[region, "Cement"] + var["Production|Steel"] = production.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]].sum() + var["Production|Steel|Primary"] = var["Production|Steel"] * snakemake.params.St_primary_fraction[year] + var["Production|Steel|Secondary"] = var["Production|Steel"] * (1 - snakemake.params.St_primary_fraction[year]) + + # optional: + # var[""Production|Pulp and Paper"] + # var["Production|Chemicals|Ammonia"] + # var["Production|Chemicals|Methanol"] + # var["Production|Pulp and Paper"] + # var["Production|Non-Ferrous Metals"] + + return var + def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): var = pd.concat([ @@ -2885,6 +2907,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): #get_installed_capacities(n,region), #get_capacity_additions(n, region), #get_capacity_additions_nstat(n, region), + get_production(region, year), get_primary_energy(n, region), get_secondary_energy(n, region), get_final_energy(n, region, industry_demand, energy_totals, year), From 407ff5c7c15e68be87210e9ef9122afb999502f2 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 13 May 2024 13:48:12 +0200 Subject: [PATCH 326/669] update exporter to pypsa 0.28 --- workflow/scripts/export_ariadne_variables.py | 191 +++++++++++-------- 1 file changed, 113 insertions(+), 78 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index cd4e0d101..a5f0ecc91 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -174,7 +174,8 @@ def _f(*args, **kwargs): def _get_capacities(n, region, cap_func, cap_string="Capacity|"): kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'groupby': n.statistics.groupers.get_bus_and_carrier, + 'at_port': True, 'nice_names': False, } @@ -204,7 +205,7 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): # Ariadne does no checks, so we implement our own? assert var[cap_string + "Electricity|Biomass|Solids"] == \ - capacities_electricity.filter(like="solid biomass").sum() + capacities_electricity.filter(like="solid biomass CHP").sum() var[cap_string + "Electricity|Biomass"] = \ var[cap_string + "Electricity|Biomass|Solids"] @@ -264,10 +265,10 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): # ! Not implemented var[cap_string + "Electricity|Hydro"] = \ - pd.Series({ - c: capacities_electricity.get(c) - for c in ["ror", "hydro"] - }).sum() + capacities_electricity.reindex( + ["ror", "hydro"] + ).sum() + # Q!: Not counting PHS here, because it is a true storage, # as opposed to hydro @@ -407,24 +408,25 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): ]].sum() # Test if we forgot something - _drop_idx = [ - col for col in [ - "PHS", - "battery discharger", - "home battery discharger", - "V2G", - ] if col in capacities_electricity.index - ] - assert isclose( - var[cap_string + "Electricity"], - capacities_electricity.drop(_drop_idx).sum(), - ) + # + # Unconvenient at the moment, requires further changes to n.statistics + # + # _drop_idx = [ + # col for col in [ + # "PHS", + # "battery discharger", + # "home battery discharger", + # "V2G", + # ] if col in capacities_electricity.index + # ] + # assert isclose( + # var[cap_string + "Electricity"], + # capacities_electricity.drop(_drop_idx).sum(), + # ) - capacities_heat = cap_func( + capacities_central_heat = cap_func( bus_carrier=[ "urban central heat", - "urban decentral heat", - "rural heat" ], **kwargs, ).filter(like=region).groupby("carrier").sum().drop( @@ -434,19 +436,17 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): var[cap_string + "Heat|Solar thermal"] = \ - capacities_heat.filter(like="solar thermal").sum() - # TODO Ariadne DB distinguishes between Heat and Decentral Heat! - # We should probably change all capacities here?! + capacities_central_heat.filter(like="solar thermal").sum() # !!! Missing in the Ariadne database # We could be much more detailed for the heat sector (as for electricity) # if desired by Ariadne # var[cap_string + "Heat|Biomass|w/ CCS"] = \ - capacities_heat.get('urban central solid biomass CHP CC',0) + capacities_central_heat.get('urban central solid biomass CHP CC',0) var[cap_string + "Heat|Biomass|w/o CCS"] = \ - capacities_heat.get('urban central solid biomass CHP') \ - + capacities_heat.filter(like="biomass boiler").sum() + capacities_central_heat.get('urban central solid biomass CHP') \ + + capacities_central_heat.filter(like="biomass boiler").sum() var[cap_string + "Heat|Biomass"] = \ var[cap_string + "Heat|Biomass|w/ CCS"] + \ @@ -454,14 +454,14 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): assert isclose( var[cap_string + "Heat|Biomass"], - capacities_heat.filter(like="biomass").sum() + capacities_central_heat.filter(like="biomass").sum() ) var[cap_string + "Heat|Resistive heater"] = \ - capacities_heat.filter(like="resistive heater").sum() + capacities_central_heat.filter(like="resistive heater").sum() var[cap_string + "Heat|Processes"] = \ - pd.Series({c: capacities_heat.get(c) for c in [ + pd.Series({c: capacities_central_heat.get(c) for c in [ "Fischer-Tropsch", "H2 Electrolysis", "H2 Fuel Cell", @@ -472,20 +472,20 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): # !!! Missing in the Ariadne database var[cap_string + "Heat|Gas"] = \ - capacities_heat.filter(like="gas boiler").sum() \ - + capacities_heat.filter(like="gas CHP").sum() + capacities_central_heat.filter(like="gas boiler").sum() \ + + capacities_central_heat.filter(like="gas CHP").sum() # var[cap_string + "Heat|Geothermal"] = # ! Not implemented var[cap_string + "Heat|Heat pump"] = \ - capacities_heat.filter(like="heat pump").sum() + capacities_central_heat.filter(like="heat pump").sum() var[cap_string + "Heat|Oil"] = \ - capacities_heat.filter(like="oil boiler").sum() + capacities_central_heat.filter(like="oil boiler").sum() var[cap_string + "Heat|Storage Converter"] = \ - capacities_heat.filter(like="water tanks discharger").sum() + capacities_central_heat.filter(like="water tanks discharger").sum() storage_capacities = cap_func( storage=True, @@ -506,13 +506,29 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): var[cap_string + "Heat|Heat pump"] ) - assert isclose( - var[cap_string + "Heat"], - capacities_heat[ - # exclude storage converters (i.e., dischargers) - ~capacities_heat.index.str.contains("discharger") - ].sum() - ) + # This check requires further changes to n.statistics + # assert isclose( + # var[cap_string + "Heat"], + # capacities_central_heat[ + # # exclude storage converters (i.e., dischargers) + # ~capacities_central_heat.index.str.contains("discharger|DAC") + # ].sum() + # ) + + capacities_decentral_heat = cap_func( + bus_carrier=[ + "urban decentral heat", + "rural heat", + ], + **kwargs, + ).filter(like=region).groupby("carrier").sum().drop( + ["DAC"], + errors="ignore", # drop existing labels or do nothing + ).multiply(MW2GW) + + var[cap_string + "Decentral Heat|Solar thermal"] = \ + capacities_central_heat.filter(like="solar thermal").sum() + capacities_h2 = cap_func( bus_carrier="H2", @@ -541,14 +557,17 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): var[cap_string + "Hydrogen|Electricity"] + var[cap_string + "Hydrogen|Gas"] ) - assert isclose( - var[cap_string + "Hydrogen"], - capacities_h2.reindex([ - "H2 Electrolysis", - "SMR", - "SMR CC", - ]).sum(), # if technology not build, reindex returns NaN - ) + + # This check requires further changes to n.statistics + # + # assert isclose( + # var[cap_string + "Hydrogen"], + # capacities_h2.reindex([ + # "H2 Electrolysis", + # "SMR", + # "SMR CC", + # ]).sum(), # if technology not build, reindex returns NaN + # ) storage_capacities = cap_func( storage=True, @@ -586,10 +605,12 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): var[cap_string + "Gases|Biomass"] ) - assert isclose( - var[cap_string + "Gases"], - capacities_gas.sum(), - ) + # This check requires further changes to n.statistics + # + # assert isclose( + # var[cap_string + "Gases"], + # capacities_gas.sum(), + # ) capacities_liquids = cap_func( @@ -603,15 +624,19 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): var[cap_string + "Liquids"] = \ capacities_liquids.get("Fischer-Tropsch",0) - capacities_methanol = cap_func( - bus_carrier="methanol", - **kwargs, - ).filter( - like=region - ).groupby("carrier").sum().multiply(MW2GW) - # - var[cap_string + "Methanol"] = \ - capacities_methanol.get("methanolisation", 0) + try: + capacities_methanol = cap_func( + bus_carrier="methanol", + **kwargs, + ).filter( + like=region + ).groupby("carrier").sum().multiply(MW2GW) + # + var[cap_string + "Methanol"] = \ + capacities_methanol.get("methanolisation", 0) + except KeyError: + print("Warning: carrier `methanol` not found in network.links.carrier! Assuming 0 capacities.") + var[cap_string + "Methanol"] = 0 return var @@ -1164,19 +1189,22 @@ def get_secondary_energy(n, region): + var["Secondary Energy|Liquids|Hydrogen"] ) - methanol_production = n.statistics.supply( - bus_carrier="methanol", **kwargs - ).filter(like=region).groupby( - ["carrier"] - ).sum().multiply(MWh2PJ) - - assert methanol_production.size <= 1 # only methanolisation - - # var["Production|Chemicals|Methanol"] = \ # here units are Mt/year - var["Secondary Energy|Other Carrier"] = \ - methanol_production.get("methanolisation", 0) - # Remeber to specify that Other Carrier == Methanol in Comments Tab + try: + methanol_production = n.statistics.supply( + bus_carrier="methanol", **kwargs + ).filter(like=region).groupby( + ["carrier"] + ).sum().multiply(MWh2PJ) + + assert methanol_production.size <= 1 # only methanolisation + + # var["Production|Chemicals|Methanol"] = \ # here units are Mt/year + var["Secondary Energy|Methanol"] = \ + methanol_production.get("methanolisation", 0) + # Remeber to specify that Other Carrier == Methanol in Comments Tab + except KeyError: + var["Secondary Energy|Methanol"] = 0 gas_production = n.statistics.supply( bus_carrier="gas", **kwargs @@ -2775,11 +2803,18 @@ def get_data( # For debugging - n = networks[0] - c = costs[0] + n = networks[2] + c = costs[2] region="DE" kwargs = { 'groupby': n.statistics.groupers.get_name_bus_and_carrier, 'nice_names': False, } - dg_cost_factor=snakemake.params.dg_cost_factor \ No newline at end of file + cap_func=n.statistics.optimal_capacity + dg_cost_factor=snakemake.params.dg_cost_factor + + kwargs = { + 'groupby': n.statistics.groupers.get_bus_and_carrier, + 'at_port': True, + 'nice_names': False, + } \ No newline at end of file From 21d9400b59122e331dcdc819fc546c9ce3a5196a Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 13 May 2024 14:58:50 +0200 Subject: [PATCH 327/669] update pypsa --- config/config.yaml | 2 +- environment.yaml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index ef6cea283..452b52c59 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240502pyamupdate + prefix: 20240512pypsaupdate name: - CurrentPolicies # - KN2045_Bal_v4 diff --git a/environment.yaml b/environment.yaml index 5adee2aae..a0dad0d0a 100644 --- a/environment.yaml +++ b/environment.yaml @@ -8,7 +8,7 @@ dependencies: - pip - atlite>=0.2.9 -- pypsa>=0.27.0 +- pypsa>=0.28.0 - linopy - dask From 095149049a54bfe4709d454e0faba27489262090 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 13 May 2024 15:22:31 +0200 Subject: [PATCH 328/669] adapt to upstream changes --- config/config.yaml | 9 +++++---- workflow/Snakefile | 9 +++++---- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 11 insertions(+), 9 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 1cb9df106..b55802abf 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -9,7 +9,7 @@ run: # - CurrentPolicies - KN2045_Bal_v4 - KN2045_Elec_v4 - - KN2045_H2_v4 + # - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase @@ -17,9 +17,10 @@ run: scenarios: enable: true file: config/scenarios.automated.yaml - shared_resources: base #stops recalculating - exclude: - - existing_heating.csv # specify files which should not be shared between scenarios + shared_resources: + policy: base #stops recalculating + exclude: + - existing_heating.csv # specify files which should not be shared between scenarios disable_progressbar: true debug_co2_limit: false debug_h2deriv_limit: false diff --git a/workflow/Snakefile b/workflow/Snakefile index 087a71298..a9889b1f0 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -21,10 +21,11 @@ configfile: "config/config.personal.yaml" run = config["run"] scenarios = get_scenarios(run) # global variable RDIR = get_rdir(run) - -logs = path_provider("logs/", RDIR, run["shared_resources"], run["exclude"]) -benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"], run["exclude"]) -resources = path_provider("resources/", RDIR, run["shared_resources"], run["exclude"]) +policy = run["shared_resources"]["policy"] +exclude = run["shared_resources"]["exclude"] +logs = path_provider("logs/", RDIR, policy, exclude) +benchmarks = path_provider("benchmarks/", RDIR, policy, exclude) +resources = path_provider("resources/", RDIR, policy, exclude) RESULTS = "results/" + RDIR diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index bb4ebed63..16b317587 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit bb4ebed632f8417a0292c446ad820d88a8759d26 +Subproject commit 16b31758766572852dbc49ea96e8e9da2f7f0429 From 3041df1110c8766d04fd18e3db5d9773b33f0899 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 13 May 2024 16:36:40 +0200 Subject: [PATCH 329/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index bef81a2f2..df6707dd2 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit bef81a2f295585190d7e779830ed0a349b78c1fd +Subproject commit df6707dd2f9b2325bcb0b5e251297a4052ac8115 From 513bf6474710a12ac5d6f5252f423b20d2c14ac7 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 13 May 2024 16:46:29 +0200 Subject: [PATCH 330/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index df6707dd2..65826d4dd 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit df6707dd2f9b2325bcb0b5e251297a4052ac8115 +Subproject commit 65826d4dd46e31d274d0bd4d10dde28ab9bf281c From 510adb7959d490259267501023d8d897965e3518 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 13 May 2024 15:22:31 +0200 Subject: [PATCH 331/669] adapt to upstream changes --- config/config.yaml | 5 ++++- workflow/Snakefile | 9 +++++---- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 10 insertions(+), 6 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index dd418aa9e..5c7ec39a0 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -17,7 +17,10 @@ run: scenarios: enable: true file: config/scenarios.automated.yaml - shared_resources: true #stops recalculating + shared_resources: + policy: true #stops recalculating + exclude: + - existing_heating.csv # specify files which should not be shared between scenarios disable_progressbar: true debug_co2_limit: false debug_h2deriv_limit: false diff --git a/workflow/Snakefile b/workflow/Snakefile index f0b2b75d6..c5f133624 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -23,10 +23,11 @@ configfile: "config/config.personal.yaml" run = config["run"] scenarios = get_scenarios(run) # global variable RDIR = get_rdir(run) - -logs = path_provider("logs/", RDIR, run["shared_resources"]) -benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"]) -resources = path_provider("resources/", RDIR, run["shared_resources"]) +policy = run["shared_resources"]["policy"] +exclude = run["shared_resources"]["exclude"] +logs = path_provider("logs/", RDIR, policy, exclude) +benchmarks = path_provider("benchmarks/", RDIR, policy, exclude) +resources = path_provider("resources/", RDIR, policy, exclude) RESULTS = "results/" + RDIR diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 65826d4dd..6c95595d5 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 65826d4dd46e31d274d0bd4d10dde28ab9bf281c +Subproject commit 6c95595d54dc3f4450f1e753c9bb1d9e271552fa From d5ddb5d838213b8f565bc73dcb4c3963af499fb2 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 3 May 2024 12:05:15 +0200 Subject: [PATCH 332/669] first draft of additional scenarios --- config/scenarios.manual.yaml | 331 ++++++++++++++++++++++++++++++++++- 1 file changed, 330 insertions(+), 1 deletion(-) diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 99f8d1867..6b88c02bf 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -268,4 +268,333 @@ KN2045_H2_v4: 2030: 0 2035: 0 2040: 0 - 2045: 200 \ No newline at end of file + 2045: 200 + +KN2045plus_EasyRide: +# Endenergienachfrage ist geringer im Vergleich zu Szenarien 1-3 +# Hochlauf klimafreundlicher/effizienter Technologien schneller und günstiger +# evtl. früheres Verbrennerverbot, schärferes Heizungsgesetz +# EE weiterhin auskömmlich nur werden die Ausbauziele evtl. nicht voll ausgeschöpft +# Verlagerung der energieintensiven Grundstoffindustrie + iiasa_database: + reference_scenario: 8Gt_EasyRide_v3 # TODO: wait for database + + # boundary condition of maximum volumes + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 105 + 2040: 200 + 2045: 300 + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 + limits_capacity_min: + Generator: + onwind: + DE: + 2020: 48 + 2025: 61 + 2030: 115 # Wind-an-Land Law + 2035: 115 # not forcing more EE + 2040: 115 + 2045: 115 + offwind: + DE: + 2020: 7.77 + 2025: 8 + 2030: 30 # Wind-auf-See Law + 2035: 30 # not forcing more EE + 2040: 30 + 2045: 30 + solar: + DE: + 2020: 59 + 2025: 101 + 2030: 215 # PV strategy + 2035: 215 # not forcing more EE + 2040: 215 + 2045: 215 + +KN2045plus_LowDemand: +# Im Vergleich zu Easy Ride eher knappe EE Erzeugung +# innerhalb Deutschlands und knappe Importe EE möglich + iiasa_database: + reference_scenario: 8Gt_LowDemand_v3 # TODO: wait for database + + # boundary condition of maximum volumes + limits_volume_max: # Half of the Bal scenario + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 20 + 2040: 40 + 2045: 62.5 + electrolysis: + DE: + 2020: 0 + 2025: 2.5 + 2030: 22.5 + 2035: 65 + 2040: 107.5 + 2045: 150 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 5 + 2035: 52.5 + 2040: 100 + 2045: 150 + h2_import: + DE: + 2020: 0 + 2025: 2.5 + 2030: 7.5 + 2035: 57.5 + 2040: 110 + 2045: 162.5 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 + limits_capacity_min: + Generator: + onwind: + DE: + 2020: 48 + 2025: 61 + 2030: 115 # Wind-an-Land Law + 2035: 115 # not forcing more EE + 2040: 115 + 2045: 115 + offwind: + DE: + 2020: 7.77 + 2025: 8 + 2030: 30 # Wind-auf-See Law + 2035: 30 # not forcing more EE + 2040: 30 + 2045: 30 + solar: + DE: + 2020: 59 + 2025: 101 + 2030: 215 # PV strategy + 2035: 215 # not forcing more EE + 2040: 215 + 2045: 215 + +KN2045minus_WorstCase: +# Nachfrage nach Endenergie ist höher als in den Szenarien 1-3 +# schlechtere Akzeptanz in der Bevölkerung, Verzögerungen im Infrastrukturausbau, +# geringere Preissenkung für Technologien +# Verfehlen der Reduktionsziele in 2030 und 2045 +# eher knapper Ausbau EE und EE Importe + iiasa_database: + reference_scenario: 8Gt_WorstCase_v3 # TODO: wait for database + co2_budget: + 2020: 0.800 # 20% reduction by 2020 + 2025: 0.600 + 2030: 0.450 # 55% reduction by 2030 (Ff55) + 2035: 0.450 # stagnation of CO2 reduction + 2040: 0.450 + 2045: 0.450 + 2050: 0.450 + + # boundary condition of maximum volumes + limits_volume_max: # Half of the Bal scenario + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 20 + 2040: 40 + 2045: 62.5 + electrolysis: + DE: + 2020: 0 + 2025: 2.5 + 2030: 22.5 + 2035: 65 + 2040: 107.5 + 2045: 150 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 5 + 2035: 52.5 + 2040: 100 + 2045: 150 + h2_import: + DE: + 2020: 0 + 2025: 2.5 + 2030: 7.5 + 2035: 57.5 + 2040: 110 + 2045: 162.5 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 + limits_capacity_min: + Generator: + onwind: + DE: + 2020: 48 + 2025: 61 + 2030: 115 # Wind-an-Land Law + 2035: 115 # not forcing more EE + 2040: 115 + 2045: 115 + offwind: + DE: + 2020: 7.77 + 2025: 8 + 2030: 30 # Wind-auf-See Law + 2035: 30 # not forcing more EE + 2040: 30 + 2045: 30 + solar: + DE: + 2020: 59 + 2025: 101 + 2030: 215 # PV strategy + 2035: 215 # not forcing more EE + 2040: 215 + 2045: 215 + +KN2045minus_SupplyFocus: +# Nachfrage genau so hoch wie in Szenario WorstCase +# Ausbau EE und EE Importe jetzt aber auskömmlich + iiasa_database: + reference_scenario: 8Gt_WorstCase_v3 # TODO: wait for database + co2_budget: + 2020: 0.800 # 20% reduction by 2020 + 2025: 0.600 + 2030: 0.450 # 55% reduction by 2030 (Ff55) + 2035: 0.450 # stagnation of CO2 reduction + 2040: 0.450 + 2045: 0.450 + 2050: 0.450 + # boundary condition of maximum volumes + limits_volume_max: # following the Bal scenario + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 105 + 2040: 200 + 2045: 300 + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 + limits_capacity_min: + Generator: + onwind: + DE: + 2020: 48 + 2025: 61 + 2030: 115 # Wind-an-Land Law + 2035: 115 # not forcing more EE + 2040: 115 + 2045: 115 + offwind: + DE: + 2020: 7.77 + 2025: 8 + 2030: 30 # Wind-auf-See Law + 2035: 30 # not forcing more EE + 2040: 30 + 2045: 30 + solar: + DE: + 2020: 59 + 2025: 101 + 2030: 215 # PV strategy + 2035: 215 # not forcing more EE + 2040: 215 + 2045: 215 \ No newline at end of file From d8da577f36bd654aa2104631ea55ff78cbb18b07 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Fri, 3 May 2024 14:16:44 +0200 Subject: [PATCH 333/669] adding comment --- config/scenarios.manual.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 6b88c02bf..9991f6e27 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -280,7 +280,7 @@ KN2045plus_EasyRide: reference_scenario: 8Gt_EasyRide_v3 # TODO: wait for database # boundary condition of maximum volumes - limits_volume_max: + limits_volume_max: # following the Bal scenario # constrain electricity import in TWh electricity_import: DE: From 77a663e993606f9920e2d23042bccdc81c671365 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 2 May 2024 17:33:53 +0200 Subject: [PATCH 334/669] update pyam package, change authentication process --- config/config.yaml | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index b55802abf..08400c728 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240513fixsharedresources + prefix: "" name: # - CurrentPolicies - KN2045_Bal_v4 @@ -20,7 +20,8 @@ run: shared_resources: policy: base #stops recalculating exclude: - - existing_heating.csv # specify files which should not be shared between scenarios + - existing_heating.csv # specify files which should not be shared between scenarios + - costs disable_progressbar: true debug_co2_limit: false debug_h2deriv_limit: false From 9c2dc9bb64d726c81c1d9d124e918856171a46f9 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Mon, 6 May 2024 16:41:48 +0200 Subject: [PATCH 335/669] first draft with dummy values for pessimist/optimist cost assumptions --- ariadne-data/costs/mean/costs_2020.csv | 920 ++++++++++++++++++++ ariadne-data/costs/mean/costs_2025.csv | 920 ++++++++++++++++++++ ariadne-data/costs/mean/costs_2030.csv | 920 ++++++++++++++++++++ ariadne-data/costs/mean/costs_2035.csv | 920 ++++++++++++++++++++ ariadne-data/costs/mean/costs_2040.csv | 920 ++++++++++++++++++++ ariadne-data/costs/mean/costs_2045.csv | 920 ++++++++++++++++++++ ariadne-data/costs/mean/costs_2050.csv | 920 ++++++++++++++++++++ ariadne-data/costs/optimist/costs_2020.csv | 920 ++++++++++++++++++++ ariadne-data/costs/optimist/costs_2025.csv | 920 ++++++++++++++++++++ ariadne-data/costs/optimist/costs_2030.csv | 920 ++++++++++++++++++++ ariadne-data/costs/optimist/costs_2035.csv | 920 ++++++++++++++++++++ ariadne-data/costs/optimist/costs_2040.csv | 920 ++++++++++++++++++++ ariadne-data/costs/optimist/costs_2045.csv | 920 ++++++++++++++++++++ ariadne-data/costs/optimist/costs_2050.csv | 920 ++++++++++++++++++++ ariadne-data/costs/pessimist/costs_2020.csv | 920 ++++++++++++++++++++ ariadne-data/costs/pessimist/costs_2025.csv | 920 ++++++++++++++++++++ ariadne-data/costs/pessimist/costs_2030.csv | 920 ++++++++++++++++++++ ariadne-data/costs/pessimist/costs_2035.csv | 920 ++++++++++++++++++++ ariadne-data/costs/pessimist/costs_2040.csv | 920 ++++++++++++++++++++ ariadne-data/costs/pessimist/costs_2045.csv | 920 ++++++++++++++++++++ ariadne-data/costs/pessimist/costs_2050.csv | 920 ++++++++++++++++++++ config/config.yaml | 2 +- config/scenarios.manual.yaml | 26 + workflow/Snakefile | 42 +- workflow/scripts/modify_cost_data.py | 41 +- 25 files changed, 19402 insertions(+), 29 deletions(-) create mode 100644 ariadne-data/costs/mean/costs_2020.csv create mode 100644 ariadne-data/costs/mean/costs_2025.csv create mode 100644 ariadne-data/costs/mean/costs_2030.csv create mode 100644 ariadne-data/costs/mean/costs_2035.csv create mode 100644 ariadne-data/costs/mean/costs_2040.csv create mode 100644 ariadne-data/costs/mean/costs_2045.csv create mode 100644 ariadne-data/costs/mean/costs_2050.csv create mode 100644 ariadne-data/costs/optimist/costs_2020.csv create mode 100644 ariadne-data/costs/optimist/costs_2025.csv create mode 100644 ariadne-data/costs/optimist/costs_2030.csv create mode 100644 ariadne-data/costs/optimist/costs_2035.csv create mode 100644 ariadne-data/costs/optimist/costs_2040.csv create mode 100644 ariadne-data/costs/optimist/costs_2045.csv create mode 100644 ariadne-data/costs/optimist/costs_2050.csv create mode 100644 ariadne-data/costs/pessimist/costs_2020.csv create mode 100644 ariadne-data/costs/pessimist/costs_2025.csv create mode 100644 ariadne-data/costs/pessimist/costs_2030.csv create mode 100644 ariadne-data/costs/pessimist/costs_2035.csv create mode 100644 ariadne-data/costs/pessimist/costs_2040.csv create mode 100644 ariadne-data/costs/pessimist/costs_2045.csv create mode 100644 ariadne-data/costs/pessimist/costs_2050.csv diff --git a/ariadne-data/costs/mean/costs_2020.csv b/ariadne-data/costs/mean/costs_2020.csv new file mode 100644 index 000000000..c4748aa8a --- /dev/null +++ b/ariadne-data/costs/mean/costs_2020.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3638.1722,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,931.235,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,188018.4103,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,752073.6414,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,29432.5788,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,819108.478,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,187325.7928,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,144713.4654,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,113887.5264,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1785.0713,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,187899.5061,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,751598.0242,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,112560.0095,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,1304350.411,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,1265835.3275,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,149731.2267,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,365289.854,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,503663.7386,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,353636.242,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,186749.107,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,325690.7596,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,372111.988,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,149374.5139,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,597498.0554,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,69421.8279,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,344828.4062,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,480.3903,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,807189.2511,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,566749.8997,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.0615,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,31293.8274,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,152624.5646,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,610498.2585,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,8014.7441,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,149950.2088,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,317614.1853,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,194899.0057,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,134297.449,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,476623.9107,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,276873.6097,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,1003392.2397,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,285.7198,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,245.5074,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.2361,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,926.3933,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,722.4205,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0688,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,2010.6211,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.164,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.0392,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,596.837,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1375.6881,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.9524,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,74.0755,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5767.0987,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.6133,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,159.96,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.0,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,21.43,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.0,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,1120.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,994.7283,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,330.2494,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,206.4059,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1587.3324,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8711,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,80.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,5.153,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation,, +electrobiofuels,investment,559887.2932,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1375.6881,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.1077,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,54.9273,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,398.9496,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,342.3682,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,60.3186,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,3.1747,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,1052.7581,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,877.2984,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,777.5294,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,819108.478,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,10630.1681,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1992.6105,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5873,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1183.9119,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,42561.4413,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,809.8118,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,1057.1237,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,872.3118,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1241.9355,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,562.5,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,650.3522,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/mean/costs_2025.csv b/ariadne-data/costs/mean/costs_2025.csv new file mode 100644 index 000000000..b9a014f0a --- /dev/null +++ b/ariadne-data/costs/mean/costs_2025.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3378.3027,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,904.7795,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,166105.3393,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,664421.3572,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,26738.4056,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,761417.4621,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,172353.7601,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,133234.2464,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,104935.0238,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1622.5424,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,166045.8871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,664183.5486,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,103333.7792,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.5473,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,825760.6159,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,822421.3869,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,139292.4203,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,342960.6179,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,489692.4838,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,343826.6375,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,172876.939,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,281086.7853,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,320844.4187,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,146783.3911,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,587133.5642,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,63731.5141,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,306333.1401,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,470.4853,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,784485.9619,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,550809.2924,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1071,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,21420.3118,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,148408.4164,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,593633.6658,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,7357.7979,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,139486.6307,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,287843.5219,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,184643.5101,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,107925.4668,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,444465.2527,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,258047.096,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,912034.4091,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,227.5176,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,197.8874,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.5909,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,903.7477,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,704.761,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0369,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1989.708,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,608.4774,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,608.4774,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.1111,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,58.2022,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.183,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,566.9951,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1269.866,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0053,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,68.7844,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5617.7823,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5947,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,134.165,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.05,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,17.975,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.05,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,939.87,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,947.1084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,322.1765,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,201.3603,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1534.4214,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8761,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,4.6849,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation,, +electrobiofuels,investment,512440.2631,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5874,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1269.866,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,321.2749,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,280.1877,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,53.9217,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.6456,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,996.93,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,830.775,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,728.6739,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,761417.4621,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,9224.3988,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1769.1171,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.508,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1139.8826,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,39056.5182,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.7275,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,676.5703,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,880.0251,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,719.0594,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1040.9908,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,473.1156,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,552.4113,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/mean/costs_2030.csv b/ariadne-data/costs/mean/costs_2030.csv new file mode 100644 index 000000000..283d11713 --- /dev/null +++ b/ariadne-data/costs/mean/costs_2030.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3118.4333,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,878.324,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,703726.4462,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1460.0135,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,460.5804,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,820676.5784,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,169.3155,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,150.2675,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.9457,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,881.102,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,687.1015,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.6561,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.005,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1968.7948,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,592.6041,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,592.6041,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.3268,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,537.1533,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1164.0438,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5207.5282,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5761,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,108.37,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.1,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,14.52,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.1,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,759.17,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,899.4884,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,314.1035,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,196.3147,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1481.5103,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2794,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2794,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8811,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,4.2296,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation,, +electrobiofuels,investment,466206.9921,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6217,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1500.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1164.0438,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,241.3377,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,214.7158,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,47.5247,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.1164,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,941.1019,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,784.2516,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,679.8185,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,703726.4462,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,7841.7127,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1682.1226,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.4286,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1095.8533,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,34796.4978,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.9495,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,543.3289,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,702.9265,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,565.8069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,840.0461,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,383.7312,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,454.4703,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/mean/costs_2035.csv b/ariadne-data/costs/mean/costs_2035.csv new file mode 100644 index 000000000..a1b9b62e7 --- /dev/null +++ b/ariadne-data/costs/mean/costs_2035.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,982536.4099,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2858.5639,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,870.3873,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,657729.5552,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,124.592,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,800.9483,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1327.0808,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,454.3898,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,745954.8206,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,137.5688,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,124.8702,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.0344,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,860.0901,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,670.7159,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.4868,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9741,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1948.5297,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.373,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,523.7245,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1084.6772,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3493.3,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5061.4763,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3493.3,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5556,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,104.17,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.2,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.955,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.2,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,729.755,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,875.6784,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,306.613,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,191.6331,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1428.5992,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2807,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2807,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8333,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.8235,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation,, +electrobiofuels,investment,428759.8057,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6374,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1350.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1084.6772,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,197.4367,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,179.5623,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,38.075,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.8519,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,911.617,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,759.6808,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,639.7986,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,657729.5552,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,7406.062,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1622.2443,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.185,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2155.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,361.1181,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.3715,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1065.167,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,31312.5066,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.9904,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,496.8255,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,641.373,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,513.1614,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,769.5846,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,352.2779,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,419.3908,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8307.058,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8307.058,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/mean/costs_2040.csv b/ariadne-data/costs/mean/costs_2040.csv new file mode 100644 index 000000000..3502220ca --- /dev/null +++ b/ariadne-data/costs/mean/costs_2040.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,841127.4391,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2598.6944,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,862.4506,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,611732.6641,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,102.3434,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,711.9541,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1194.148,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,448.1992,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,671233.0629,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,105.8222,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,99.4728,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.1231,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,839.0781,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,654.3303,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9431,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1928.2647,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,571.4397,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,571.4397,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.4192,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,510.2956,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1005.3105,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4917.5537,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.535,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,99.97,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.3,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.39,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.3,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,700.34,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,851.8684,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,299.1224,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,186.9515,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1375.6881,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.429,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation,, +electrobiofuels,investment,392280.346,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6532,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1200.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1005.3105,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,152.982,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,144.093,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,28.6253,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.5873,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,882.132,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,735.11,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,599.7787,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,611732.6641,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6970.4113,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1562.3661,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.22,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,1960.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,359.2662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.3143,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1034.4807,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,27828.5154,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,450.3221,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,579.8196,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,460.516,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,699.1231,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,320.8246,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,384.3112,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/mean/costs_2045.csv b/ariadne-data/costs/mean/costs_2045.csv new file mode 100644 index 000000000..5abd74fbe --- /dev/null +++ b/ariadne-data/costs/mean/costs_2045.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,699718.4683,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2338.825,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,854.514,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,565735.7731,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,80.0948,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,622.9598,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1054.8211,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,442.0086,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,592917.0978,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,84.6577,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,89.4197,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.2118,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,818.0661,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,637.9448,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.5715,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9122,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1907.9996,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,560.8575,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,560.8575,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.4654,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,496.8668,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,925.9439,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4836.5672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5144,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,99.675,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.35,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.355,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.35,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,698.27,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,828.0584,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,291.6319,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,182.2699,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1322.777,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.0103,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation,, +electrobiofuels,investment,356768.6132,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6763,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1100.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,925.9439,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,122.6452,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,129.8051,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,25.424,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.4286,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,864.006,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,720.005,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,559.7588,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,565735.7731,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6534.7606,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1543.1486,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.305,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,1770.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,357.4144,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1026.8091,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,25039.1517,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,2.0531,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,429.5198,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,552.3387,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,437.2089,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,667.4686,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,306.7008,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,368.412,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/mean/costs_2050.csv b/ariadne-data/costs/mean/costs_2050.csv new file mode 100644 index 000000000..78a47240a --- /dev/null +++ b/ariadne-data/costs/mean/costs_2050.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,558309.4975,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2078.9555,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,846.5773,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,519738.882,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,57.8463,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,533.9655,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,915.4941,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,125710.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,15.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,116401.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,435.818,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,514601.1327,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,63.4933,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,79.3666,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.3005,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,797.0541,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,621.5592,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.8255,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.8813,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1887.7345,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,550.2752,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,550.2752,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.5116,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,483.438,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,846.5773,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4755.697,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.4938,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,99.38,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.4,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.32,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.4,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,696.2,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,804.2484,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,284.1413,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,177.5883,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1269.866,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,2.6044,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation,, +electrobiofuels,investment,322224.6071,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6994,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,846.5773,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,92.5188,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,114.9165,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,22.2227,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.2699,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,845.88,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,704.9,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,519.7389,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,519738.882,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6099.1099,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1523.9311,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.39,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,1580.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,355.5625,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.2857,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1019.1375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,22249.7881,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,2.0676,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,408.7174,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,524.8579,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,413.9018,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,635.814,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,292.5769,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,352.5127,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2020.csv b/ariadne-data/costs/optimist/costs_2020.csv new file mode 100644 index 000000000..c4748aa8a --- /dev/null +++ b/ariadne-data/costs/optimist/costs_2020.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3638.1722,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,931.235,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,188018.4103,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,752073.6414,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,29432.5788,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,819108.478,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,187325.7928,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,144713.4654,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,113887.5264,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1785.0713,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,187899.5061,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,751598.0242,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,112560.0095,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,1304350.411,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,1265835.3275,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,149731.2267,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,365289.854,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,503663.7386,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,353636.242,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,186749.107,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,325690.7596,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,372111.988,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,149374.5139,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,597498.0554,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,69421.8279,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,344828.4062,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,480.3903,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,807189.2511,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,566749.8997,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.0615,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,31293.8274,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,152624.5646,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,610498.2585,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,8014.7441,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,149950.2088,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,317614.1853,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,194899.0057,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,134297.449,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,476623.9107,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,276873.6097,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,1003392.2397,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,285.7198,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,245.5074,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.2361,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,926.3933,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,722.4205,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0688,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,2010.6211,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.164,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.0392,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,596.837,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1375.6881,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.9524,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,74.0755,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5767.0987,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.6133,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,159.96,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.0,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,21.43,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.0,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,1120.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,994.7283,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,330.2494,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,206.4059,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1587.3324,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8711,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,80.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,5.153,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation,, +electrobiofuels,investment,559887.2932,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1375.6881,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.1077,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,54.9273,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,398.9496,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,342.3682,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,60.3186,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,3.1747,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,1052.7581,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,877.2984,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,777.5294,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,819108.478,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,10630.1681,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1992.6105,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5873,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1183.9119,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,42561.4413,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,809.8118,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,1057.1237,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,872.3118,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1241.9355,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,562.5,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,650.3522,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2025.csv b/ariadne-data/costs/optimist/costs_2025.csv new file mode 100644 index 000000000..b9a014f0a --- /dev/null +++ b/ariadne-data/costs/optimist/costs_2025.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3378.3027,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,904.7795,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,166105.3393,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,664421.3572,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,26738.4056,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,761417.4621,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,172353.7601,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,133234.2464,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,104935.0238,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1622.5424,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,166045.8871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,664183.5486,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,103333.7792,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.5473,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,825760.6159,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,822421.3869,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,139292.4203,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,342960.6179,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,489692.4838,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,343826.6375,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,172876.939,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,281086.7853,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,320844.4187,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,146783.3911,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,587133.5642,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,63731.5141,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,306333.1401,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,470.4853,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,784485.9619,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,550809.2924,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1071,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,21420.3118,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,148408.4164,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,593633.6658,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,7357.7979,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,139486.6307,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,287843.5219,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,184643.5101,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,107925.4668,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,444465.2527,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,258047.096,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,912034.4091,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,227.5176,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,197.8874,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.5909,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,903.7477,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,704.761,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0369,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1989.708,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,608.4774,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,608.4774,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.1111,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,58.2022,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.183,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,566.9951,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1269.866,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0053,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,68.7844,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5617.7823,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5947,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,134.165,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.05,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,17.975,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.05,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,939.87,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,947.1084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,322.1765,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,201.3603,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1534.4214,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8761,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,4.6849,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation,, +electrobiofuels,investment,512440.2631,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5874,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1269.866,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,321.2749,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,280.1877,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,53.9217,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.6456,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,996.93,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,830.775,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,728.6739,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,761417.4621,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,9224.3988,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1769.1171,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.508,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1139.8826,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,39056.5182,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.7275,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,676.5703,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,880.0251,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,719.0594,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1040.9908,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,473.1156,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,552.4113,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2030.csv b/ariadne-data/costs/optimist/costs_2030.csv new file mode 100644 index 000000000..283d11713 --- /dev/null +++ b/ariadne-data/costs/optimist/costs_2030.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3118.4333,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,878.324,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,703726.4462,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1460.0135,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,460.5804,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,820676.5784,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,169.3155,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,150.2675,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.9457,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,881.102,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,687.1015,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.6561,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.005,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1968.7948,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,592.6041,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,592.6041,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.3268,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,537.1533,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1164.0438,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5207.5282,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5761,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,108.37,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.1,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,14.52,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.1,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,759.17,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,899.4884,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,314.1035,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,196.3147,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1481.5103,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2794,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2794,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8811,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,4.2296,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation,, +electrobiofuels,investment,466206.9921,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6217,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1500.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1164.0438,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,241.3377,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,214.7158,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,47.5247,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.1164,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,941.1019,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,784.2516,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,679.8185,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,703726.4462,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,7841.7127,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1682.1226,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.4286,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1095.8533,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,34796.4978,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.9495,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,543.3289,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,702.9265,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,565.8069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,840.0461,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,383.7312,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,454.4703,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2035.csv b/ariadne-data/costs/optimist/costs_2035.csv new file mode 100644 index 000000000..a1b9b62e7 --- /dev/null +++ b/ariadne-data/costs/optimist/costs_2035.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,982536.4099,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2858.5639,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,870.3873,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,657729.5552,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,124.592,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,800.9483,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1327.0808,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,454.3898,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,745954.8206,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,137.5688,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,124.8702,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.0344,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,860.0901,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,670.7159,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.4868,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9741,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1948.5297,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.373,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,523.7245,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1084.6772,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3493.3,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5061.4763,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3493.3,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5556,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,104.17,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.2,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.955,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.2,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,729.755,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,875.6784,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,306.613,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,191.6331,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1428.5992,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2807,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2807,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8333,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.8235,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation,, +electrobiofuels,investment,428759.8057,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6374,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1350.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1084.6772,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,197.4367,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,179.5623,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,38.075,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.8519,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,911.617,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,759.6808,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,639.7986,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,657729.5552,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,7406.062,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1622.2443,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.185,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2155.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,361.1181,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.3715,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1065.167,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,31312.5066,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.9904,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,496.8255,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,641.373,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,513.1614,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,769.5846,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,352.2779,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,419.3908,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8307.058,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8307.058,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2040.csv b/ariadne-data/costs/optimist/costs_2040.csv new file mode 100644 index 000000000..3502220ca --- /dev/null +++ b/ariadne-data/costs/optimist/costs_2040.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,841127.4391,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2598.6944,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,862.4506,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,611732.6641,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,102.3434,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,711.9541,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1194.148,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,448.1992,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,671233.0629,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,105.8222,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,99.4728,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.1231,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,839.0781,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,654.3303,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9431,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1928.2647,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,571.4397,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,571.4397,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.4192,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,510.2956,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1005.3105,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4917.5537,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.535,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,99.97,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.3,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.39,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.3,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,700.34,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,851.8684,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,299.1224,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,186.9515,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1375.6881,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.429,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation,, +electrobiofuels,investment,392280.346,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6532,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1200.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1005.3105,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,152.982,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,144.093,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,28.6253,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.5873,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,882.132,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,735.11,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,599.7787,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,611732.6641,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6970.4113,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1562.3661,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.22,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,1960.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,359.2662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.3143,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1034.4807,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,27828.5154,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,450.3221,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,579.8196,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,460.516,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,699.1231,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,320.8246,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,384.3112,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2045.csv b/ariadne-data/costs/optimist/costs_2045.csv new file mode 100644 index 000000000..5abd74fbe --- /dev/null +++ b/ariadne-data/costs/optimist/costs_2045.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,699718.4683,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2338.825,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,854.514,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,565735.7731,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,80.0948,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,622.9598,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1054.8211,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,442.0086,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,592917.0978,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,84.6577,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,89.4197,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.2118,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,818.0661,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,637.9448,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.5715,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9122,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1907.9996,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,560.8575,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,560.8575,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.4654,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,496.8668,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,925.9439,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4836.5672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5144,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,99.675,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.35,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.355,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.35,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,698.27,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,828.0584,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,291.6319,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,182.2699,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1322.777,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.0103,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation,, +electrobiofuels,investment,356768.6132,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6763,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1100.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,925.9439,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,122.6452,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,129.8051,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,25.424,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.4286,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,864.006,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,720.005,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,559.7588,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,565735.7731,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6534.7606,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1543.1486,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.305,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,1770.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,357.4144,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1026.8091,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,25039.1517,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,2.0531,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,429.5198,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,552.3387,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,437.2089,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,667.4686,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,306.7008,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,368.412,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2050.csv b/ariadne-data/costs/optimist/costs_2050.csv new file mode 100644 index 000000000..78a47240a --- /dev/null +++ b/ariadne-data/costs/optimist/costs_2050.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,558309.4975,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2078.9555,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,846.5773,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,519738.882,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,57.8463,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,533.9655,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,915.4941,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,125710.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,15.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,116401.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,435.818,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,514601.1327,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,63.4933,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,79.3666,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.3005,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,797.0541,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,621.5592,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.8255,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.8813,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1887.7345,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,550.2752,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,550.2752,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.5116,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,483.438,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,846.5773,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4755.697,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.4938,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,99.38,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.4,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.32,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.4,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,696.2,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,804.2484,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,284.1413,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,177.5883,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1269.866,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,2.6044,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation,, +electrobiofuels,investment,322224.6071,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6994,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,846.5773,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,92.5188,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,114.9165,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,22.2227,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.2699,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,845.88,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,704.9,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,519.7389,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,519738.882,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6099.1099,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1523.9311,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.39,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,1580.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,355.5625,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.2857,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1019.1375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,22249.7881,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,2.0676,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,408.7174,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,524.8579,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,413.9018,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,635.814,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,292.5769,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,352.5127,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2020.csv b/ariadne-data/costs/pessimist/costs_2020.csv new file mode 100644 index 000000000..c4748aa8a --- /dev/null +++ b/ariadne-data/costs/pessimist/costs_2020.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3638.1722,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,931.235,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,188018.4103,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,752073.6414,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,29432.5788,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,819108.478,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,187325.7928,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,144713.4654,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,113887.5264,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1785.0713,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,187899.5061,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,751598.0242,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,112560.0095,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,1304350.411,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,1265835.3275,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,149731.2267,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,365289.854,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,503663.7386,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,353636.242,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,186749.107,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,325690.7596,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,372111.988,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,149374.5139,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,597498.0554,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,69421.8279,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,344828.4062,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,480.3903,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,807189.2511,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,566749.8997,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.0615,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,31293.8274,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,152624.5646,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,610498.2585,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,8014.7441,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,149950.2088,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,317614.1853,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,194899.0057,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,134297.449,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,476623.9107,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,276873.6097,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,1003392.2397,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,285.7198,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,245.5074,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.2361,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,926.3933,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,722.4205,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0688,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,2010.6211,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.164,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.0392,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,596.837,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1375.6881,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.9524,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,74.0755,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5767.0987,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.6133,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,159.96,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.0,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,21.43,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.0,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,1120.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,994.7283,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,330.2494,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,206.4059,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1587.3324,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8711,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,80.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,5.153,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation,, +electrobiofuels,investment,559887.2932,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1375.6881,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.1077,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,54.9273,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,398.9496,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,342.3682,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,60.3186,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,3.1747,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,1052.7581,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,877.2984,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,777.5294,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,819108.478,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,10630.1681,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1992.6105,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5873,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1183.9119,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,42561.4413,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,809.8118,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,1057.1237,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,872.3118,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1241.9355,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,562.5,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,650.3522,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2025.csv b/ariadne-data/costs/pessimist/costs_2025.csv new file mode 100644 index 000000000..b9a014f0a --- /dev/null +++ b/ariadne-data/costs/pessimist/costs_2025.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3378.3027,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,904.7795,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,166105.3393,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,664421.3572,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,26738.4056,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,761417.4621,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,172353.7601,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,133234.2464,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,104935.0238,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1622.5424,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,166045.8871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,664183.5486,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,103333.7792,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.5473,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,825760.6159,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,822421.3869,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,139292.4203,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,342960.6179,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,489692.4838,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,343826.6375,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,172876.939,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,281086.7853,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,320844.4187,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,146783.3911,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,587133.5642,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,63731.5141,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,306333.1401,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,470.4853,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,784485.9619,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,550809.2924,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1071,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,21420.3118,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,148408.4164,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,593633.6658,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,7357.7979,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,139486.6307,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,287843.5219,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,184643.5101,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,107925.4668,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,444465.2527,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,258047.096,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,912034.4091,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,227.5176,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,197.8874,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.5909,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,903.7477,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,704.761,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0369,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1989.708,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,608.4774,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,608.4774,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.1111,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,58.2022,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.183,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,566.9951,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1269.866,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0053,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,68.7844,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5617.7823,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5947,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,134.165,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.05,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,17.975,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.05,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,939.87,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,947.1084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,322.1765,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,201.3603,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1534.4214,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8761,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,4.6849,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation,, +electrobiofuels,investment,512440.2631,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5874,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1269.866,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,321.2749,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,280.1877,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,53.9217,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.6456,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,996.93,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,830.775,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,728.6739,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,761417.4621,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,9224.3988,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1769.1171,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.508,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1139.8826,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,39056.5182,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.7275,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,676.5703,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,880.0251,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,719.0594,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1040.9908,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,473.1156,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,552.4113,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2030.csv b/ariadne-data/costs/pessimist/costs_2030.csv new file mode 100644 index 000000000..283d11713 --- /dev/null +++ b/ariadne-data/costs/pessimist/costs_2030.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3118.4333,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,878.324,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,703726.4462,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1460.0135,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,460.5804,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,820676.5784,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,169.3155,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,150.2675,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.9457,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,881.102,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,687.1015,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.6561,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.005,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1968.7948,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,592.6041,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,592.6041,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.3268,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,537.1533,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1164.0438,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5207.5282,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5761,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,108.37,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.1,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,14.52,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.1,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,759.17,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,899.4884,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,314.1035,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,196.3147,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1481.5103,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2794,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2794,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8811,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,4.2296,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation,, +electrobiofuels,investment,466206.9921,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6217,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1500.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1164.0438,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,241.3377,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,214.7158,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,47.5247,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.1164,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,941.1019,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,784.2516,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,679.8185,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,703726.4462,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,7841.7127,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1682.1226,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.4286,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1095.8533,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,34796.4978,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.9495,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,543.3289,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,702.9265,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,565.8069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,840.0461,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,383.7312,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,454.4703,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2035.csv b/ariadne-data/costs/pessimist/costs_2035.csv new file mode 100644 index 000000000..a1b9b62e7 --- /dev/null +++ b/ariadne-data/costs/pessimist/costs_2035.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,982536.4099,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2858.5639,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,870.3873,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,657729.5552,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,124.592,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,800.9483,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1327.0808,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,454.3898,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,745954.8206,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,137.5688,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,124.8702,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.0344,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,860.0901,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,670.7159,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.4868,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9741,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1948.5297,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.373,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,523.7245,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1084.6772,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3493.3,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5061.4763,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3493.3,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5556,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,104.17,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.2,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.955,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.2,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,729.755,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,875.6784,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,306.613,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,191.6331,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1428.5992,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2807,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2807,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8333,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.8235,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation,, +electrobiofuels,investment,428759.8057,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6374,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1350.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1084.6772,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,197.4367,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,179.5623,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,38.075,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.8519,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,911.617,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,759.6808,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,639.7986,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,657729.5552,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,7406.062,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1622.2443,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.185,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2155.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,361.1181,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.3715,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1065.167,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,31312.5066,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.9904,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,496.8255,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,641.373,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,513.1614,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,769.5846,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,352.2779,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,419.3908,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8307.058,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8307.058,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2040.csv b/ariadne-data/costs/pessimist/costs_2040.csv new file mode 100644 index 000000000..3502220ca --- /dev/null +++ b/ariadne-data/costs/pessimist/costs_2040.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,841127.4391,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2598.6944,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,862.4506,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,611732.6641,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,102.3434,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,711.9541,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1194.148,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,448.1992,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,671233.0629,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,105.8222,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,99.4728,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.1231,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,839.0781,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,654.3303,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9431,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1928.2647,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,571.4397,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,571.4397,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.4192,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,510.2956,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1005.3105,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4917.5537,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.535,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,99.97,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.3,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.39,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.3,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,700.34,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,851.8684,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,299.1224,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,186.9515,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1375.6881,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.429,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation,, +electrobiofuels,investment,392280.346,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6532,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1200.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1005.3105,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,152.982,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,144.093,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,28.6253,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.5873,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,882.132,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,735.11,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,599.7787,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,611732.6641,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6970.4113,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1562.3661,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.22,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,1960.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,359.2662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.3143,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1034.4807,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,27828.5154,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,450.3221,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,579.8196,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,460.516,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,699.1231,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,320.8246,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,384.3112,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2045.csv b/ariadne-data/costs/pessimist/costs_2045.csv new file mode 100644 index 000000000..5abd74fbe --- /dev/null +++ b/ariadne-data/costs/pessimist/costs_2045.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,699718.4683,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2338.825,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,854.514,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,565735.7731,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,80.0948,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,622.9598,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1054.8211,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,442.0086,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,592917.0978,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,84.6577,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,89.4197,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.2118,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,818.0661,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,637.9448,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.5715,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9122,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1907.9996,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,560.8575,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,560.8575,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.4654,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,496.8668,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,925.9439,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4836.5672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5144,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,99.675,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.35,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.355,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.35,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,698.27,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,828.0584,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,291.6319,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,182.2699,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1322.777,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.0103,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation,, +electrobiofuels,investment,356768.6132,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6763,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1100.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,925.9439,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,122.6452,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,129.8051,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,25.424,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.4286,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,864.006,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,720.005,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,559.7588,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,565735.7731,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6534.7606,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1543.1486,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.305,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,1770.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,357.4144,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1026.8091,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,25039.1517,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,2.0531,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,429.5198,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,552.3387,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,437.2089,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,667.4686,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,306.7008,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,368.412,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2050.csv b/ariadne-data/costs/pessimist/costs_2050.csv new file mode 100644 index 000000000..78a47240a --- /dev/null +++ b/ariadne-data/costs/pessimist/costs_2050.csv @@ -0,0 +1,920 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,558309.4975,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2078.9555,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,846.5773,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,519738.882,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,57.8463,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,533.9655,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,915.4941,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,125710.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,15.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,116401.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,435.818,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,514601.1327,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,63.4933,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,79.3666,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.3005,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,797.0541,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,621.5592,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.8255,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.8813,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1887.7345,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,550.2752,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,550.2752,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.5116,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,483.438,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,846.5773,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4755.697,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.4938,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,99.38,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.4,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.32,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.4,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,696.2,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,804.2484,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,284.1413,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,177.5883,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1269.866,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,2.6044,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation,, +electrobiofuels,investment,322224.6071,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6994,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,846.5773,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,92.5188,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,114.9165,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,22.2227,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.2699,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,845.88,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,704.9,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,519.7389,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,519738.882,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6099.1099,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1523.9311,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.39,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,1580.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,355.5625,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.2857,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1019.1375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,22249.7881,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,2.0676,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,408.7174,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,524.8579,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,413.9018,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,635.814,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,292.5769,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,352.5127,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/config/config.yaml b/config/config.yaml index 08400c728..d8b65ae64 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -179,7 +179,7 @@ renewable: capacity_per_sqkm: 10 costs: - version: v0.8.1 + horizon: "mean" # "optimist", "pessimist" or "mean" # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 9991f6e27..3eaff6b26 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -30,6 +30,9 @@ CurrentPolicies: 2045: 0.450 2050: 0.450 + costs: + horizon: "mean" + limits_capacity_min: Generator: onwind: @@ -119,6 +122,9 @@ KN2045_Bal_v4: iiasa_database: reference_scenario: 8Gt_Bal_v3 + costs: + horizon: "mean" + # boundary condition of maximum volumes limits_volume_max: # constrain electricity import in TWh @@ -172,6 +178,9 @@ KN2045_Elec_v4: iiasa_database: reference_scenario: 8Gt_Elec_v3 + costs: + horizon: "mean" + limits_volume_max: # constrain electricity import in TWh electricity_import: @@ -224,6 +233,9 @@ KN2045_H2_v4: iiasa_database: reference_scenario: 8Gt_H2_v3 + costs: + horizon: "mean" + limits_volume_max: # constrain electricity import in TWh electricity_import: @@ -279,6 +291,9 @@ KN2045plus_EasyRide: iiasa_database: reference_scenario: 8Gt_EasyRide_v3 # TODO: wait for database + costs: + horizon: "optimist" + # boundary condition of maximum volumes limits_volume_max: # following the Bal scenario # constrain electricity import in TWh @@ -356,6 +371,9 @@ KN2045plus_LowDemand: iiasa_database: reference_scenario: 8Gt_LowDemand_v3 # TODO: wait for database + costs: + horizon: "optimist" + # boundary condition of maximum volumes limits_volume_max: # Half of the Bal scenario # constrain electricity import in TWh @@ -435,6 +453,7 @@ KN2045minus_WorstCase: # eher knapper Ausbau EE und EE Importe iiasa_database: reference_scenario: 8Gt_WorstCase_v3 # TODO: wait for database + co2_budget: 2020: 0.800 # 20% reduction by 2020 2025: 0.600 @@ -444,6 +463,9 @@ KN2045minus_WorstCase: 2045: 0.450 2050: 0.450 + costs: + horizon: "pessimist" + # boundary condition of maximum volumes limits_volume_max: # Half of the Bal scenario # constrain electricity import in TWh @@ -520,6 +542,10 @@ KN2045minus_SupplyFocus: # Ausbau EE und EE Importe jetzt aber auskömmlich iiasa_database: reference_scenario: 8Gt_WorstCase_v3 # TODO: wait for database + + costs: + horizon: "pessimist" + co2_budget: 2020: 0.800 # 20% reduction by 2020 2025: 0.600 diff --git a/workflow/Snakefile b/workflow/Snakefile index a9889b1f0..a1525a235 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -93,34 +93,32 @@ rule retrieve_ariadne_database: "scripts/retrieve_ariadne_database.py" -#if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", True): -# -# use rule retrieve_cost_data from pypsaeur with: -# output: -# resources("costs_{year}-original.csv"), - -def input_profile_offwind(w): - return { - f"profile_{tech}": resources(f"profile_{tech}.nc") - for tech in ["offwind-ac", "offwind-dc"] - if (tech in config["electricity"]["renewable_carriers"]) - } - -use rule prepare_sector_network from pypsaeur with: - input: - unpack(input_profile_offwind), - **{k: v for k, v in rules.prepare_sector_network.input.items() if k != "costs"}, - costs=resources("modified-costs_{planning_horizons}.csv"), +# def input_profile_offwind(w): +# return { +# f"profile_{tech}": resources(f"profile_{tech}.nc") +# for tech in ["offwind-ac", "offwind-dc"] +# if (tech in config["electricity"]["renewable_carriers"]) +# } + +# use rule prepare_sector_network from pypsaeur with: +# input: +# unpack(input_profile_offwind), +# # **{k: v for k, v in rules.prepare_sector_network.input.items() if k != "costs"}, +# # costs=resources("modified-costs_{planning_horizons}.csv"), + rule modify_cost_data: + params: + file_path="ariadne-data/costs/", + file_name="costs_{planning_horizons}.csv", + cost_horizon=config_provider("costs", "horizon"), input: - costs=resources("costs_{planning_horizons}.csv"), modifications=lambda w: ( "ariadne-data/costs_2019-modifications.csv" if w.planning_horizons == "2020" and config["energy"]["energy_totals_year"] == 2019 else "ariadne-data/costs_{planning_horizons}-modifications.csv") output: - resources("modified-costs_{planning_horizons}.csv"), + resources("costs_{planning_horizons}.csv"), resources: mem_mb=1000 script: @@ -146,7 +144,7 @@ rule modify_prenetwork: network=RESULTS + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", wkn=resources("wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv") if config_provider("wasserstoff_kernnetz", "enable") else [], - costs=resources("modified-costs_{planning_horizons}.csv"), + costs=resources("costs_{planning_horizons}.csv"), output: network=RESULTS + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" @@ -290,7 +288,7 @@ rule export_ariadne_variables: allow_missing=True, ), costs=expand( - resources("modified-costs_{planning_horizons}.csv"), + resources("costs_{planning_horizons}.csv"), **config["scenario"], run=config["run"]["name"], ), diff --git a/workflow/scripts/modify_cost_data.py b/workflow/scripts/modify_cost_data.py index 0806e7a36..3c149a8e7 100644 --- a/workflow/scripts/modify_cost_data.py +++ b/workflow/scripts/modify_cost_data.py @@ -1,11 +1,40 @@ import pandas as pd +import os -costs = pd.read_csv(snakemake.input.costs, index_col=[0, 1]).sort_index() +if __name__ == "__main__": + if "snakemake" not in globals(): + import sys -modifications = pd.read_csv(snakemake.input.modifications, index_col=[0, 1]).sort_index() -costs.loc[modifications.index] = modifications -print(modifications) -print( costs.loc[modifications.index]) + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake -costs.to_csv(snakemake.output[0]) + snakemake = mock_snakemake( + "modify_cost_data", + planning_horizon="2030", + file_path="../data/costs/", + file_name="costs_2030.csv", + cost_horizon="mean", + ) + + filepath = snakemake.params.file_path + snakemake.params.cost_horizon + costs = os.path.join(filepath, snakemake.params.file_name) + + costs = pd.read_csv(costs, index_col=[0, 1]).sort_index() + + if snakemake.params.cost_horizon == "pessimist": + # modifications are taken from + 5 years + print("pessimist") + elif snakemake.params.cost_horizon == "optimist": + # modifications are taken from - 5 years + print("optimist") + + elif snakemake.params.cost_horizon == "mean": + modifications = pd.read_csv(snakemake.input.modifications, index_col=[0, 1]).sort_index() + costs.loc[modifications.index] = modifications + + print(modifications) + print( costs.loc[modifications.index]) + + costs.to_csv(snakemake.output[0]) From 9c672a3de48c1f4ea1baac721ada72ba5f078593 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 7 May 2024 09:21:09 +0200 Subject: [PATCH 336/669] optimistic and pessimistic ariadne specific cost data --- workflow/scripts/modify_cost_data.py | 41 ++++++++++++++++++++++------ 1 file changed, 32 insertions(+), 9 deletions(-) diff --git a/workflow/scripts/modify_cost_data.py b/workflow/scripts/modify_cost_data.py index 3c149a8e7..75cf4545f 100644 --- a/workflow/scripts/modify_cost_data.py +++ b/workflow/scripts/modify_cost_data.py @@ -1,6 +1,8 @@ import pandas as pd +import re import os +import logging if __name__ == "__main__": if "snakemake" not in globals(): @@ -9,31 +11,52 @@ path = "../submodules/pypsa-eur/scripts" sys.path.insert(0, os.path.abspath(path)) from _helpers import mock_snakemake - snakemake = mock_snakemake( "modify_cost_data", - planning_horizon="2030", + planning_horizons="2030", file_path="../data/costs/", file_name="costs_2030.csv", cost_horizon="mean", ) + logger = logging.getLogger(__name__) + # read in cost data from technology-data library filepath = snakemake.params.file_path + snakemake.params.cost_horizon costs = os.path.join(filepath, snakemake.params.file_name) - costs = pd.read_csv(costs, index_col=[0, 1]).sort_index() + # Pessimist: costs are taken from + 5 years if snakemake.params.cost_horizon == "pessimist": - # modifications are taken from + 5 years - print("pessimist") + match = re.search(r"costs_(\d{4})-modifications\.csv", snakemake.input[0]) + if int(match.group(1)) > 2020: + new_year = int(match.group(1)) + 5 + new_filename = re.sub(r'costs_\d{4}-modifications\.csv', f"costs_{new_year}-modifications.csv", snakemake.input[0]) + modifications = pd.read_csv(new_filename, index_col=[0, 1]).sort_index() + costs.loc[modifications.index] = modifications + logger.warning(f"Pessimistic cost scenario for {match.group(1)}.") + else: + modifications = pd.read_csv(snakemake.input.modifications, index_col=[0, 1]).sort_index() + costs.loc[modifications.index] = modifications + + # Optimist: costs are taken from - 5 years elif snakemake.params.cost_horizon == "optimist": - # modifications are taken from - 5 years - print("optimist") - + match = re.search(r"costs_(\d{4})-modifications\.csv", snakemake.input[0]) + if int(match.group(1)) > 2020: + new_year = int(match.group(1)) - 5 + new_filename = re.sub(r'costs_\d{4}-modifications\.csv', f"costs_{new_year}-modifications.csv", snakemake.input[0]) + modifications = pd.read_csv(new_filename, index_col=[0, 1]).sort_index() + costs.loc[modifications.index] = modifications + logger.warning(f"Optimistic cost scenario for {match.group(1)}.") + else: + modifications = pd.read_csv(snakemake.input.modifications, index_col=[0, 1]).sort_index() + costs.loc[modifications.index] = modifications + + # Mean: costs are taken from the same year elif snakemake.params.cost_horizon == "mean": modifications = pd.read_csv(snakemake.input.modifications, index_col=[0, 1]).sort_index() costs.loc[modifications.index] = modifications - + logger.warning("Mean cost scenario.") + print(modifications) print( costs.loc[modifications.index]) From bb5c1991c47b3dd0c4443adf6d8df4866e99a55b Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 2 May 2024 12:11:04 +0200 Subject: [PATCH 337/669] initial commit to specify excluded files of filesharing --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index d8b65ae64..f7e73c024 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -79,7 +79,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: false # set to false once initial data is retrieved + retrieve: auto # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: From f585e2cd1e600272388b5fc2ec0b16a07c3cff65 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 2 May 2024 12:11:59 +0200 Subject: [PATCH 338/669] Revert "initial commit to specify excluded files of filesharing" This reverts commit 211930637a8a0e75c5a7b2049d0122bd091a67b4. --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index f7e73c024..d8b65ae64 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -79,7 +79,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: auto # set to false once initial data is retrieved + retrieve: false # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: From 1848a550650c92ed1355862463a07f610ccc8c19 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 2 May 2024 12:11:04 +0200 Subject: [PATCH 339/669] initial commit to specify excluded files of filesharing --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index d8b65ae64..f7e73c024 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -79,7 +79,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: false # set to false once initial data is retrieved + retrieve: auto # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: From b48fa575d5925b82fa4538148500ea7c34fe8680 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 2 May 2024 12:11:59 +0200 Subject: [PATCH 340/669] Revert "initial commit to specify excluded files of filesharing" This reverts commit 211930637a8a0e75c5a7b2049d0122bd091a67b4. --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index f7e73c024..d8b65ae64 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -79,7 +79,7 @@ countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'P # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: auto # set to false once initial data is retrieved + retrieve: false # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: focus_weights: From 7a8b7916f0f66ab05d7740c2bb7c43f902964e56 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 7 May 2024 13:48:07 +0200 Subject: [PATCH 341/669] final optimist and pessimist costs --- ariadne-data/costs/optimist/costs_2025.csv | 506 +++++++++---------- ariadne-data/costs/optimist/costs_2030.csv | 506 +++++++++---------- ariadne-data/costs/optimist/costs_2035.csv | 512 +++++++++---------- ariadne-data/costs/optimist/costs_2040.csv | 514 +++++++++---------- ariadne-data/costs/optimist/costs_2045.csv | 512 +++++++++---------- ariadne-data/costs/optimist/costs_2050.csv | 442 ++++++++--------- ariadne-data/costs/pessimist/costs_2025.csv | 506 +++++++++---------- ariadne-data/costs/pessimist/costs_2030.csv | 510 +++++++++---------- ariadne-data/costs/pessimist/costs_2035.csv | 514 +++++++++---------- ariadne-data/costs/pessimist/costs_2040.csv | 512 +++++++++---------- ariadne-data/costs/pessimist/costs_2045.csv | 518 ++++++++++---------- ariadne-data/costs/pessimist/costs_2050.csv | 450 ++++++++--------- 12 files changed, 3001 insertions(+), 3001 deletions(-) diff --git a/ariadne-data/costs/optimist/costs_2025.csv b/ariadne-data/costs/optimist/costs_2025.csv index b9a014f0a..da98d2072 100644 --- a/ariadne-data/costs/optimist/costs_2025.csv +++ b/ariadne-data/costs/optimist/costs_2025.csv @@ -11,30 +11,30 @@ Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,C in fuel,0.3285,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6715,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2462,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.5763,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.5876,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.6083,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2463.5433,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,5.6686,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.0745,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,3378.3027,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,FOM,3.2647,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.4093,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.75,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,904.7795,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,investment,899.4884,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,VOM,4.8562,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 @@ -194,11 +194,11 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.0128,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0206,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1622.5424,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,investment,1594.4641,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 @@ -334,10 +334,10 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,306333.1401,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,FOM,1.8671,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.5856,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,470.4853,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,investment,451.1707,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 @@ -415,172 +415,172 @@ Zn-Br-Nonflow-store,investment,258047.096,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,912034.4091,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,investment,820033.6604,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,227.5176,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,FOM,0.1981,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.9517,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,280.4287,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,197.8874,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +battery storage,investment,232.8088,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,20.8333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,1070.8152,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,19.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas CC,investment,1070.8152,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,19.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,21.4742,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.9878,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,892.5471,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas upgrading,VOM,4.3159,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,200.1388,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,19.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,FOM,3.5787,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.1086,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4527,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP,efficiency,0.3178,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7127,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3395.6572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9033,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.095,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1533,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0278,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.7858,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.7858,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3016666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,FOM,3.5787,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.1086,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4527,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.5909,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,903.7477,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,704.761,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass EOP,efficiency,0.3178,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7127,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3395.6572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7342,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.367,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0336,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,882.1322,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.9938,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8425,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,659.2667,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,4.4005,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,18.2411,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.15,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.3167,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,4801.2803,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9033,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.095,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1533,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0233,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.7858,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.5917,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2733333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,FOM,0.2028,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central air-sourced heat pump,efficiency,3.4667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,956.4376,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,27.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,3.0369,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,VOM,3.0376,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1989.708,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,efficiency,0.4933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1990.14,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.4093,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.9333,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,608.4774,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,efficiency,0.4033,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,608.4774,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.4093,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.9333,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4033,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.1111,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,FOM,3.209,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0759,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,58.2022,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,investment,59.084,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.183,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,566.9951,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central ground-sourced heat pump,FOM,0.3416,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.1129,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.725,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,567.9123,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.2143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1269.866,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,efficiency,0.505,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1234.5919,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0053,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,FOM,1.6892,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.8819,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,68.7844,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,investment,65.257,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,FOM,2.8711,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.5848,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.346,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,efficiency,0.2874,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8296,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3556.7223,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,FOM,2.8711,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.5848,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.346,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,5617.7823,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2874,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8296,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5343.1023,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8711,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.5848,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.346,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5947,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2874,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8296,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3556.7223,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5477,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5797,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,21.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -604,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,2.9777,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,947.1084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,investment,1019.7408,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,322.1765,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,201.3603,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler,efficiency,0.9783,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,348.3277,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,206.8821,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,FOM,1.8567,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1534.4214,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,3.8667,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1635.4334,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -648,29 +648,29 @@ direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Ag direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,heat-output,1.1583,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,6333333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2841,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2841,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,VOM,0.3288,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,VOM,0.3288,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -686,10 +686,10 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8761,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,FOM,1.334,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8568,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,investment,78.8817,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,, electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 @@ -705,30 +705,30 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,4.6849,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,5.6686,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,4.4918,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation,, electrobiofuels,investment,512440.2631,EUR/kW_th,combination of BtL and electrofuels,,2017.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.5874,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,efficiency,0.5728,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2815,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +electrolysis,lifetime,24.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.2143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1269.866,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,efficiency,0.505,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1234.5919,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas boiler steam,FOM,3.6771,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0909,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.9267,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,53.4015,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 @@ -744,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,321.2749,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,FOM,0.1981,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.9517,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,395.99,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,280.1877,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery storage,investment,329.6326,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,20.8333,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -762,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,53.9217,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage tank type 1 including compressor,FOM,1.0784,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,53.9693,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,25.8333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.6456,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,investment,2.963,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,996.93,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,830.775,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +industrial heat pump high temperature,FOM,0.0918,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2593,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.0458,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,1018.2784,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1102,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2593,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.6483,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,848.5653,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -814,10 +814,10 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,761417.4621,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,9224.3988,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,FOM,6.5385,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3575,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6007,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,9570.0517,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 @@ -825,10 +825,10 @@ nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - vers nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,2.3857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1769.1171,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1919.4478,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -842,16 +842,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,FOM,2.6713,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,5.7497,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,investment,343.9573,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.508,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1139.8826,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +onwind,FOM,1.2375,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.4942,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1126.909,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,29.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -863,58 +863,58 @@ seawater desalination,investment,39056.5182,EUR/(m^3-H2O/h),"Caldera et al 2017: seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.7275,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,FOM,1.6234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,676.5703,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar,investment,733.4362,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,35.8333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.1887,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,880.0251,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,719.0594,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,1040.9908,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,473.1156,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,552.4113,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop,investment,955.9019,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,35.8333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.265,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,786.5854,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.1124,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1125.2184,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0582,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,510.9705,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.9358,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,590.62,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,FOM,5.5744,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.5744,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,FOM,2.391,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.4128,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.278,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,efficiency,0.2101,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7796,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8475.6104,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.391,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.4128,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.278,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +waste CHP CC,efficiency,0.2101,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7796,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8475.6104,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8466,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8466,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2030.csv b/ariadne-data/costs/optimist/costs_2030.csv index 283d11713..9bd626d75 100644 --- a/ariadne-data/costs/optimist/costs_2030.csv +++ b/ariadne-data/costs/optimist/costs_2030.csv @@ -11,30 +11,30 @@ Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,C in fuel,0.333,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.667,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2446,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.5391,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.304,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.6167,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2268.5867,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,10.1806,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.0191,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,3118.4333,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,FOM,3.1951,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.1623,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.7,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,878.324,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,investment,867.7417,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,VOM,4.0764,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 @@ -194,11 +194,11 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.029,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0188,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1460.0135,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,investment,1403.857,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 @@ -334,10 +334,10 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,FOM,1.9694,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.4093,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,460.5804,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,investment,421.9511,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 @@ -415,172 +415,172 @@ Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,820676.5784,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,investment,636675.0811,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,169.3155,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,FOM,0.1962,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.9533,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,275.1376,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,150.2675,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +battery storage,investment,220.1101,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,21.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,1109.1727,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,18.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas CC,investment,1109.1727,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,18.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,42.0228,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.3816,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,820.3777,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas upgrading,VOM,4.4705,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,207.3079,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,18.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,FOM,3.5459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,1.988,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.451,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP,efficiency,0.3362,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7162,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3213.1795,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9067,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.09,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1467,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0257,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.7387,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.7387,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2733333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,FOM,3.5459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,1.988,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.451,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.9457,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,881.102,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,687.1015,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass EOP,efficiency,0.3362,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7162,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3213.1795,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.6582,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.498,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0349,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,837.871,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,8.7899,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8651,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,591.6019,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,21.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,C in fuel,0.4874,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5126,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.188,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,8.9859,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.7843,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,efficiency,0.72,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.28,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.4133,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,4011.1683,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9067,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.09,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1467,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0217,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.7387,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.5333,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2466666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.6561,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,FOM,0.1946,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.5333,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central air-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,3.005,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,VOM,3.0063,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1968.7948,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,efficiency,0.5017,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1969.6589,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,FOM,3.7255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.1623,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.9067,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,592.6041,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,efficiency,0.4067,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,539.693,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,592.6041,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,FOM,3.7255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.1623,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.9067,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4067,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,539.693,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,FOM,3.1613,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,0.9877,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,investment,54.6748,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.3268,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,537.1533,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central ground-sourced heat pump,FOM,0.3272,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.1866,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,538.9875,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.4839,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1164.0438,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,efficiency,0.51,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1093.4957,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,FOM,1.9,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.8113,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,investment,56.4385,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,FOM,2.855,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.3001,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3431,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,efficiency,0.3059,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8337,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3373.0059,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,FOM,2.855,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.3001,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3431,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,5207.5282,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.3059,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8337,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4941.6445,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.855,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.3001,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3431,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5761,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central solid biomass CHP powerboost CC,efficiency,0.3059,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8337,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3373.0059,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5814,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.546,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,23.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -604,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,3.0003,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,899.4884,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,investment,1049.7559,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.2912,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,314.1035,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,196.3147,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler,efficiency,0.9867,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,370.0217,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,21.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,207.4536,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,FOM,1.8602,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1481.5103,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,3.9333,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1693.1546,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,21.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -648,29 +648,29 @@ direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Ag direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,heat-output,1.0667,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,5666666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2794,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2836,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2794,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2836,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -686,10 +686,10 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8811,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,FOM,1.3304,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,investment,77.2033,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,, electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 @@ -705,30 +705,30 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,4.2296,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,10.1806,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.8477,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation,, electrobiofuels,investment,466206.9921,EUR/kW_th,combination of BtL and electrofuels,,2017.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6217,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,efficiency,0.5684,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2869,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1500.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +electrolysis,lifetime,23.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.4839,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1164.0438,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,efficiency,0.51,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1093.4957,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas boiler steam,FOM,3.6882,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0741,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.9333,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,51.8758,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 @@ -744,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,241.3377,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,FOM,0.1962,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.9533,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,392.1738,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,214.7158,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery storage,investment,314.5134,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,21.6667,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -762,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,47.5247,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage tank type 1 including compressor,FOM,1.1111,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,47.62,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,26.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.1164,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,investment,2.7514,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,941.1019,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,784.2516,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +industrial heat pump high temperature,FOM,0.0908,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2358,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.1417,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,983.7987,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1089,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2358,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.7467,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,819.8323,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -814,10 +814,10 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,703726.4462,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,7841.7127,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,FOM,6.3793,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.364,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6023,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,8515.802,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 @@ -825,10 +825,10 @@ nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - vers nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,2.2523,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1682.1226,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1846.2851,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,29.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -842,16 +842,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,FOM,2.7894,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,5.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,investment,324.9446,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.4286,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1095.8533,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +onwind,FOM,1.2222,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.4011,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1069.9062,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,31.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -863,58 +863,58 @@ seawater desalination,investment,34796.4978,EUR/(m^3-H2O/h),"Caldera et al 2017: seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.9495,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,FOM,1.6794,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,543.3289,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar,investment,657.0605,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,36.6667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.2402,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,702.9265,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,565.8069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,840.0461,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,383.7312,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,454.4703,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop,investment,854.6802,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,36.6667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.3269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,700.859,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.1535,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1008.5014,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.1185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,459.4409,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.028,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,530.8877,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,FOM,5.7031,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.7031,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,FOM,2.3787,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,25.9608,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2733,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,efficiency,0.2181,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7957,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,7874.1134,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3787,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,25.9608,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2733,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +waste CHP CC,efficiency,0.2181,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7957,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,7874.1134,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8563,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8563,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2035.csv b/ariadne-data/costs/optimist/costs_2035.csv index a1b9b62e7..80f93d3d5 100644 --- a/ariadne-data/costs/optimist/costs_2035.csv +++ b/ariadne-data/costs/optimist/costs_2035.csv @@ -11,30 +11,30 @@ Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,C in fuel,0.3375,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6625,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2429,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.4949,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.0205,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.625,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2073.63,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,16.8123,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,0.9637,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,2858.5639,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,FOM,3.1203,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,3.9154,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.65,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,870.3873,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,835.9951,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,VOM,3.2965,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 @@ -194,11 +194,11 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.0503,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0169,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1327.0808,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,investment,1213.2498,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 @@ -334,10 +334,10 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,FOM,2.087,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,454.3898,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,investment,392.7314,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 @@ -415,171 +415,171 @@ Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,745954.8206,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,investment,453316.5018,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,137.5688,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,FOM,0.1941,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,269.8465,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,124.8702,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +battery storage,investment,207.4114,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,1147.5302,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,17.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas CC,investment,1147.5302,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,17.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,66.5355,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.7755,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,748.2082,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.6251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,214.4771,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,17.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,FOM,3.5091,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,1.8675,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4494,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP,efficiency,0.3547,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7196,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3030.7019,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.91,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0235,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.6915,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.6915,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2450000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,FOM,3.5091,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,1.8675,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4494,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.0344,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,860.0901,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,670.7159,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass EOP,efficiency,0.3547,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7196,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3030.7019,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.5737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.629,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0362,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,793.6099,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,9.8761,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8876,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,518.9249,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,22.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,C in fuel,0.5348,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.4652,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.1706,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,15.8207,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,11.3275,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,efficiency,0.79,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.41,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.51,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,3221.0562,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.91,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.6915,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.475,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.4868,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central air-sourced heat pump,FOM,0.1855,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,855.76,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,32.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9741,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,VOM,2.9751,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1948.5297,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,efficiency,0.51,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1949.1778,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,FOM,3.9894,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,3.9154,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.88,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,497.3642,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,FOM,3.9894,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,3.9154,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.88,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,497.3642,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,FOM,3.1053,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,0.8995,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.045,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,50.2655,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.373,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,523.7245,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central ground-sourced heat pump,FOM,0.3112,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.2603,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.755,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,510.0628,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,27.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.8333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1084.6772,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,efficiency,0.515,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,952.3995,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,FOM,2.1889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.7408,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,investment,47.62,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,FOM,2.8369,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.0155,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3402,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3493.3,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,efficiency,0.3245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8378,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3189.2895,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,FOM,2.8369,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.0155,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3402,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,5061.4763,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.3245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8378,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4560.1967,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8369,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.0155,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3402,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3493.3,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5556,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central solid biomass CHP powerboost CC,efficiency,0.3245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8378,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3189.2895,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.6196,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5124,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 @@ -604,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,3.0262,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,875.6784,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,1086.4409,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,19.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.1422,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,306.613,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,191.6331,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler,efficiency,0.995,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,396.5365,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,22.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,208.152,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,FOM,1.8641,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1428.5992,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,4.0,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1763.7027,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,22.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -648,29 +648,29 @@ direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Ag direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,heat-output,0.975,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2807,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,FOM,1.1212,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2832,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2807,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1212,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2832,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,VOM,0.3314,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,VOM,0.3314,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -686,10 +686,10 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8333,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,FOM,1.3267,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8283,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,, electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 @@ -705,30 +705,30 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,3.8235,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,16.8123,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.2207,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation,, electrobiofuels,investment,428759.8057,EUR/kW_th,combination of BtL and electrofuels,,2017.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6374,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,efficiency,0.5639,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2922,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1350.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +electrolysis,lifetime,22.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.8333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1084.6772,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,efficiency,0.515,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,952.3995,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas boiler steam,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,27.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 @@ -744,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,197.4367,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,FOM,0.1941,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,387.2797,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,179.5623,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery storage,investment,298.2561,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -762,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,38.075,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage tank type 1 including compressor,FOM,1.1538,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,41.2706,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.8519,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,investment,2.5397,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,911.617,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,759.6808,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +industrial heat pump high temperature,FOM,0.0896,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2123,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.2375,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,949.319,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1076,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2123,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.845,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,791.0992,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -815,9 +815,9 @@ methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low methanolisation,investment,657729.5552,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,7406.062,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,efficiency,0.3705,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,7467.3704,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 @@ -825,10 +825,10 @@ nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - vers nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,2.1079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1622.2443,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1773.1224,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,31.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -842,16 +842,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,FOM,2.9222,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,361.1181,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,investment,305.9319,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.3715,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1065.167,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +onwind,FOM,1.2052,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.308,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1012.9033,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,33.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -863,58 +863,58 @@ seawater desalination,investment,31312.5066,EUR/(m^3-H2O/h),"Caldera et al 2017: seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.9904,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,FOM,1.75,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,496.8255,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar,investment,580.6849,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.3058,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,641.373,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,513.1614,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,769.5846,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,352.2779,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,419.3908,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop,investment,753.4584,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.4062,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,615.1325,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.2054,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,891.7843,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.1941,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,407.9114,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.1437,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,471.1554,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,FOM,5.8378,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8332,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.905,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.8378,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8332,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.905,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,FOM,2.3645,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,24.5088,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2686,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,8307.058,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,efficiency,0.2261,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.8117,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,7272.6164,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3645,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,24.5088,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2686,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,8307.058,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +waste CHP CC,efficiency,0.2261,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.8117,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,7272.6164,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.866,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.866,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2040.csv b/ariadne-data/costs/optimist/costs_2040.csv index 3502220ca..213fabcfd 100644 --- a/ariadne-data/costs/optimist/costs_2040.csv +++ b/ariadne-data/costs/optimist/costs_2040.csv @@ -11,30 +11,30 @@ Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,C in fuel,0.342,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.658,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2413,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.4415,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7369,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.6333,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1878.6733,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,27.5158,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,0.9083,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,2598.6944,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,FOM,3.0395,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,3.6685,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.6,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,862.4506,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,804.2484,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,VOM,2.5167,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 @@ -194,11 +194,11 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.0795,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.015,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1194.148,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,investment,1022.6427,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 @@ -334,10 +334,10 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,FOM,2.2234,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.0565,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,448.1992,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,investment,363.5118,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 @@ -415,172 +415,172 @@ Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,671233.0629,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,investment,269957.9224,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,105.8222,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,FOM,0.192,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.9567,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,264.5554,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,99.4728,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +battery storage,investment,194.7128,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,23.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,1185.8878,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,16.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas CC,investment,1185.8878,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,16.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,96.2819,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.1693,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,676.0388,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.7797,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,221.6462,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,16.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,FOM,3.4677,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,1.747,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4477,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP,efficiency,0.3731,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7231,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,2848.2242,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9133,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1333,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0213,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.6443,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.6443,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2166666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,FOM,3.4677,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,1.747,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4477,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.1231,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,839.0781,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,654.3303,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass EOP,efficiency,0.3731,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7231,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,2848.2242,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.4793,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.7599,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0374,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,749.3488,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,11.4465,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.9101,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,440.6574,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,23.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,C in fuel,0.5821,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.4179,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.1532,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,27.0985,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,7.8707,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,efficiency,0.86,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.54,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.6067,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,2430.9441,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9133,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1333,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0183,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.6443,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.4167,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,1933333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,FOM,0.1752,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central air-sourced heat pump,efficiency,3.6667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,805.4212,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9431,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,VOM,2.9438,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1928.2647,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,efficiency,0.5183,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1928.6967,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,FOM,4.3023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,3.6685,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.8533,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,571.4397,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,efficiency,0.4133,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,455.0353,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,571.4397,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,FOM,4.3023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,3.6685,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.8533,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4133,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,455.0353,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,FOM,3.0385,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,0.8113,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.05,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,45.8563,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.4192,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,510.2956,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central ground-sourced heat pump,FOM,0.2933,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.3341,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.77,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,481.1381,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,6.3043,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1005.3105,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,811.3032,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,FOM,2.6091,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.6702,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,investment,38.8015,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,FOM,2.8167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,3.7309,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3373,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,efficiency,0.343,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8418,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3005.5731,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,FOM,2.8167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,3.7309,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3373,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,4917.5537,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.343,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8418,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4196.7488,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,3.7309,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3373,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.535,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central solid biomass CHP powerboost CC,efficiency,0.343,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8418,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3005.5731,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.6631,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.4788,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,26.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -604,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,3.0562,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,851.8684,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,1132.2971,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,19.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,5.9818,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,299.1224,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,186.9515,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler,efficiency,1.0033,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,429.6801,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,23.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,209.0251,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,FOM,1.8687,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1375.6881,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,4.0667,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1851.8878,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,23.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -648,29 +648,29 @@ direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Ag direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,heat-output,0.8833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,4333333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -686,10 +686,10 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,FOM,1.3227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.814,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,investment,73.8467,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,, electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 @@ -705,30 +705,30 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,3.429,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,27.5158,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,2.6107,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation,, electrobiofuels,investment,392280.346,EUR/kW_th,combination of BtL and electrofuels,,2017.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6532,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,efficiency,0.5595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2976,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1200.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +electrolysis,lifetime,21.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,6.3043,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1005.3105,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,811.3032,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas boiler steam,FOM,3.7125,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0406,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.9467,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,48.8242,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 @@ -744,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,152.982,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,FOM,0.192,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.9567,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,382.4551,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,144.093,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery storage,investment,282.0544,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,23.3333,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -762,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,28.6253,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage tank type 1 including compressor,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,34.9213,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,28.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.5873,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,investment,2.3281,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,882.132,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,735.11,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +industrial heat pump high temperature,FOM,0.0884,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1888,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.3333,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,914.8394,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1061,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1888,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.9433,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,762.3661,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -814,10 +814,10 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,611732.6641,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,6970.4113,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,FOM,5.9091,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.377,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6057,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6424.709,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 @@ -825,10 +825,10 @@ nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - vers nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,1.951,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1562.3661,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1699.9596,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,32.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -842,16 +842,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,FOM,3.0725,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,3.9507,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,359.2662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,investment,286.9192,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.3143,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1034.4807,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +onwind,FOM,1.1862,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.2148,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,955.9004,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,35.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -863,58 +863,58 @@ seawater desalination,investment,27828.5154,EUR/(m^3-H2O/h),"Caldera et al 2017: seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,FOM,1.8418,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,450.3221,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar,investment,504.3093,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,38.3333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.3921,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,579.8196,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,460.516,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,699.1231,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,320.8246,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,384.3112,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop,investment,652.2367,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,38.3333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.5111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,529.4061,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.273,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,775.0673,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.2915,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,356.3818,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.2929,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,411.4232,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,FOM,5.979,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.91,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.979,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.91,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,FOM,2.3477,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,23.0567,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2639,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,efficiency,0.234,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.8278,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,6671.1194,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3477,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,23.0567,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2639,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +waste CHP CC,efficiency,0.234,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.8278,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,6671.1194,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8756,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8756,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2045.csv b/ariadne-data/costs/optimist/costs_2045.csv index 5abd74fbe..5993a8d04 100644 --- a/ariadne-data/costs/optimist/costs_2045.csv +++ b/ariadne-data/costs/optimist/costs_2045.csv @@ -11,30 +11,30 @@ Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,C in fuel,0.3465,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6535,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2396,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.3758,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.4533,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.6417,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1683.7167,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,47.7026,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,0.8529,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,2338.825,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,FOM,2.9521,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,3.4216,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.55,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,854.514,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,efficiency,0.61,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,772.5018,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,VOM,1.7369,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 @@ -194,11 +194,11 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.1222,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0131,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1054.8211,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,investment,832.0355,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 @@ -334,10 +334,10 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,FOM,2.3837,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,3.8801,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,442.0086,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,investment,334.2922,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 @@ -415,172 +415,172 @@ Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,592917.0978,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,investment,86599.3431,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,84.6577,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,FOM,0.1898,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.9583,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,259.2643,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,89.4197,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +battery storage,investment,182.0141,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,24.1667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,1224.2453,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,15.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas CC,investment,1224.2453,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,15.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,133.1383,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,1.5632,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,603.8694,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.9343,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,228.8154,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,15.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,FOM,3.4206,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,1.6265,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.446,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP,efficiency,0.3916,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7265,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,2665.7465,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9167,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1267,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0192,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.5972,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.5972,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,1883333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,FOM,3.4206,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,1.6265,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.446,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.2118,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,818.0661,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,637.9448,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass EOP,efficiency,0.3916,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7265,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,2665.7465,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.373,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.8909,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0387,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,705.0877,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,13.9179,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.9326,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,356.1284,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,24.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,C in fuel,0.6295,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.3705,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.1358,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,49.2375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,4.4139,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,efficiency,0.93,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.67,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.7033,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,1640.8321,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9167,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1267,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0167,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.5972,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.3583,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,1666666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.5715,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central air-sourced heat pump,FOM,0.1635,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.7333,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,755.0823,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9122,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,VOM,2.9125,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1907.9996,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,efficiency,0.5267,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1908.2156,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,FOM,4.6795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,3.4216,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.8267,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,560.8575,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,efficiency,0.4167,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,412.7064,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,560.8575,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,FOM,4.6795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,3.4216,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.8267,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4167,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,412.7064,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,FOM,2.9574,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,0.7231,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.055,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,41.447,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.4654,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,496.8668,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central ground-sourced heat pump,FOM,0.273,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.4078,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.785,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,452.2134,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,29.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,6.9737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,925.9439,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,efficiency,0.525,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,670.207,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,FOM,3.2765,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.5997,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,investment,29.9829,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,FOM,2.7938,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,3.4463,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3344,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,efficiency,0.3615,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8459,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,2821.8567,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,FOM,2.7938,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,3.4463,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3344,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,4836.5672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.3615,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8459,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,3849.677,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.7938,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,3.4463,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3344,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5144,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central solid biomass CHP powerboost CC,efficiency,0.3615,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8459,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,2821.8567,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.7132,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.4452,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,28.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -604,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,3.0915,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,828.0584,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,1191.2552,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,19.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,5.8087,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,291.6319,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,182.2699,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler,efficiency,1.0117,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,472.2933,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,24.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,210.1476,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,FOM,1.8739,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1322.777,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,4.1333,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1965.2687,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,24.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -648,29 +648,29 @@ direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Ag direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,heat-output,0.7917,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,3666666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,FOM,1.0606,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2824,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0606,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2824,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -686,10 +686,10 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,FOM,1.3186,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7997,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,investment,72.1683,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,, electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 @@ -705,30 +705,30 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,3.0103,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,47.7026,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,2.0177,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation,, electrobiofuels,investment,356768.6132,EUR/kW_th,combination of BtL and electrofuels,,2017.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6763,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,efficiency,0.555,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.303,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1100.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +electrolysis,lifetime,20.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,6.9737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,925.9439,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,efficiency,0.525,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,670.207,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas boiler steam,FOM,3.7258,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0238,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.9533,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,47.2985,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,29.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 @@ -744,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,122.6452,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,FOM,0.1898,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.9583,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,375.6008,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,129.8051,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery storage,investment,264.2187,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,24.1667,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -762,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,25.424,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage tank type 1 including compressor,FOM,1.2963,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,28.572,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,29.1667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.4286,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,investment,2.1164,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,864.006,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,720.005,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +industrial heat pump high temperature,FOM,0.0871,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1653,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.4292,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,880.3597,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1045,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1653,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,3.0417,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,733.6331,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -814,10 +814,10 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,565735.7731,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,6534.7606,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,FOM,5.5405,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3835,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6073,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,5387.7702,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 @@ -825,10 +825,10 @@ nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - vers nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,1.7801,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1543.1486,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1626.7969,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,33.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -842,16 +842,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,FOM,3.2442,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,3.351,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,357.4144,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,investment,267.9064,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1026.8091,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +onwind,FOM,1.1647,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.1217,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,898.8975,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,37.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -863,58 +863,58 @@ seawater desalination,investment,25039.1517,EUR/(m^3-H2O/h),"Caldera et al 2017: seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,2.0531,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,FOM,1.9662,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,429.5198,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar,investment,427.9336,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,39.1667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.5106,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,552.3387,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,437.2089,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,667.4686,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,306.7008,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,368.412,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop,investment,551.015,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,39.1667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.6566,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,443.6797,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3645,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,658.3503,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.4219,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,304.8523,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.4927,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,351.6909,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,FOM,6.1273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.915,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.1273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.915,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,FOM,2.3275,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,21.6047,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2592,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,efficiency,0.242,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.8439,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,6069.6224,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3275,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,21.6047,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2592,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +waste CHP CC,efficiency,0.242,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.8439,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,6069.6224,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8851,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8851,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2050.csv b/ariadne-data/costs/optimist/costs_2050.csv index 78a47240a..8b2104f89 100644 --- a/ariadne-data/costs/optimist/costs_2050.csv +++ b/ariadne-data/costs/optimist/costs_2050.csv @@ -11,30 +11,30 @@ Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,C in fuel,0.351,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.649,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.238,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.2929,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.1697,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1488.76,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,100.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,0.7976,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,2078.9555,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,FOM,2.8571,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,3.1747,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.5,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,846.5773,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,efficiency,0.62,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,740.7551,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,VOM,0.9571,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 @@ -194,11 +194,11 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.1902,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0113,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,915.4941,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,investment,641.4283,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 @@ -334,10 +334,10 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,FOM,2.5747,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,3.7038,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,435.818,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,investment,305.0726,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 @@ -415,172 +415,172 @@ Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,514601.1327,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,investment,-96759.2362,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,FOM,0.1875,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,63.4933,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,investment,253.9732,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,79.3666,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +battery storage,investment,169.3155,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,1262.6028,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas CC,investment,1262.6028,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,180.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,0.9571,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,531.7,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas upgrading,VOM,5.0889,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,235.9845,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,FOM,3.3665,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,1.506,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4444,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,2483.2689,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.92,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.07,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.12,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.017,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.55,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.55,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,1600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,FOM,3.3665,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,1.506,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4444,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.3005,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,797.0541,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,621.5592,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass EOP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,2483.2689,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.2525,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.0218,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,660.8265,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,18.3775,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.9552,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,264.5554,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,25.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,C in fuel,0.6769,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.3231,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.1185,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,112.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,0.9571,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,efficiency,1.0,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.8,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.8,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,850.72,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.92,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.07,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.12,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.015,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.55,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.3,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,1400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.8255,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central air-sourced heat pump,FOM,0.1502,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,704.7435,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 central coal CHP,VOM,2.8813,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 central coal CHP,investment,1887.7345,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,FOM,5.1429,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,3.1747,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,550.2752,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,370.3776,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,550.2752,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,FOM,5.1429,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,3.1747,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,370.3776,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,FOM,2.8571,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,0.6349,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.06,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,37.0378,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.5116,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,483.438,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central ground-sourced heat pump,FOM,0.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.4815,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.8,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,423.2887,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,8.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,846.5773,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,529.1108,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,FOM,4.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.5291,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,investment,21.1644,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,FOM,2.7678,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,3.1617,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3315,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,efficiency,0.38,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.85,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,2638.1403,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,FOM,2.7678,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,3.1617,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3315,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,4755.697,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.38,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.85,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,3517.6502,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.7678,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,3.1617,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3315,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.4938,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central solid biomass CHP powerboost CC,efficiency,0.38,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.85,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,2638.1403,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.7714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.4115,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -604,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,3.1333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,804.2484,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,4.0,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,1269.866,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,5.6212,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,284.1413,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,177.5883,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler,efficiency,1.02,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,529.1108,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,25.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,211.6443,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,FOM,1.88,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1269.866,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,4.2,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,2116.4433,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -648,29 +648,29 @@ direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Ag direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,heat-output,0.7,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -705,30 +705,30 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,2.6044,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,100.0,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,1.4418,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation,, electrobiofuels,investment,322224.6071,EUR/kW_th,combination of BtL and electrofuels,,2017.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6994,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,efficiency,0.5505,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.3083,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +electrolysis,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,8.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,846.5773,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,529.1108,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas boiler steam,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 @@ -744,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,FOM,0.1875,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,92.5188,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,investment,370.0752,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,114.9165,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery storage,investment,245.1552,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -762,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,FOM,1.4286,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 hydrogen storage tank type 1 including compressor,investment,22.2227,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.2699,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,investment,1.9048,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 industrial heat pump high temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,efficiency,3.525,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 industrial heat pump high temperature,investment,845.88,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump high temperature,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 industrial heat pump medium temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,efficiency,3.14,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 industrial heat pump medium temperature,investment,704.9,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +industrial heat pump medium temperature,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -814,10 +814,10 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,519738.882,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,FOM,5.0,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.39,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,6099.1099,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,investment,4356.5071,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 @@ -825,10 +825,10 @@ nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - vers nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,1.593,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1523.9311,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1553.6342,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -842,16 +842,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,FOM,3.4422,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,2.7514,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,355.5625,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,investment,248.8937,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.2857,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1019.1375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +onwind,FOM,1.1403,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.0286,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,841.8947,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -863,58 +863,58 @@ seawater desalination,investment,22249.7881,EUR/(m^3-H2O/h),"Caldera et al 2017: seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,2.0676,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,FOM,2.1445,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,408.7174,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,investment,351.558,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,FOM,1.6836,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,524.8579,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,investment,449.7932,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,413.9018,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,FOM,1.8718,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,357.9532,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,635.814,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,FOM,1.4955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,541.6332,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,292.5769,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,FOM,2.6054,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,253.3228,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,352.5127,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,FOM,2.7744,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,291.9586,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,FOM,2.303,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,20.1527,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2545,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,efficiency,0.25,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.86,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,5468.1254,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.303,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,20.1527,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2545,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +waste CHP CC,efficiency,0.25,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.86,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,5468.1254,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8944,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8944,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2025.csv b/ariadne-data/costs/pessimist/costs_2025.csv index b9a014f0a..0b4ee8663 100644 --- a/ariadne-data/costs/pessimist/costs_2025.csv +++ b/ariadne-data/costs/pessimist/costs_2025.csv @@ -11,30 +11,30 @@ Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,C in fuel,0.3375,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6625,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2429,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.5311,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.7648,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.625,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2676.2233,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,7.5267,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1543,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,3378.3027,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,FOM,3.2091,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,5.1147,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,904.7795,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,efficiency,0.5583,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,970.0365,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,VOM,4.8916,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 @@ -194,11 +194,11 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.0203,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0263,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1622.5424,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,investment,1665.734,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 @@ -334,10 +334,10 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,306333.1401,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,FOM,1.7026,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.8502,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,470.4853,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,investment,494.7525,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 @@ -415,172 +415,172 @@ Zn-Br-Nonflow-store,investment,258047.096,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,912034.4091,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,investment,836160.1998,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,227.5176,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,FOM,0.1742,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,328.0487,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,197.8874,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +battery storage,investment,250.2694,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,19.1667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,988.4715,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas CC,investment,988.4715,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,21.23,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,4.0232,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,1069.7804,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas upgrading,VOM,4.0135,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,186.1165,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,FOM,3.5554,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.3126,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4805,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP,efficiency,0.2945,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.6694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3685.7401,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.915,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.0983,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1583,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0292,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.8142,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.8142,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3216666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,FOM,3.5554,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.3126,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4805,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.5909,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,903.7477,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,704.761,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass EOP,efficiency,0.2945,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.6694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3685.7401,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.6652,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.5408,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0069,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,964.1616,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,6.9112,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8175,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,778.3874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,19.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,C in fuel,0.4772,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5228,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.1917,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,5.064,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,18.2766,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,efficiency,0.705,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.225,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.3917,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,4872.1737,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.915,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.0983,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1583,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0243,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.8142,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.6333,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2900000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,FOM,0.2426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central air-sourced heat pump,efficiency,3.3833,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,1090.6745,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,3.0369,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,VOM,3.0376,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1989.708,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,efficiency,0.4933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1990.14,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,FOM,3.0395,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,608.4774,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,efficiency,0.3967,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,670.207,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,608.4774,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,FOM,3.0395,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.3967,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,670.207,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.1111,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,58.2022,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,FOM,2.2273,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.3581,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.015,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,97.0036,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.183,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,566.9951,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central ground-sourced heat pump,FOM,0.3591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,0.9189,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,638.4604,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,4.9324,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1269.866,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,efficiency,0.4933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1305.14,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0053,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,FOM,1.2212,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.97,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,68.7844,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,investment,91.7125,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,FOM,2.8537,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,5.0563,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3721,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,efficiency,0.2641,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.7679,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3881.3327,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,FOM,2.8537,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,5.0563,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3721,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,5617.7823,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2641,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.7679,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5906.3721,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8537,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,5.0563,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3721,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5947,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2641,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.7679,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3881.3327,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5229,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.6071,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -604,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,2.8562,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,947.1084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,960.5396,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,17.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.3309,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,322.1765,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,201.3603,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler,efficiency,0.9717,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,244.063,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,19.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,158.7642,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,FOM,1.8518,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1534.4214,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,3.7667,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1481.5103,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,19.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -648,29 +648,29 @@ direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Ag direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,heat-output,1.2083,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2841,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,lifetime,14.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2841,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,lifetime,14.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,VOM,0.3288,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels,lifetime,14.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,VOM,0.3288,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,lifetime,14.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -686,11 +686,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8761,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric boiler steam,FOM,1.334,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8568,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.9883,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,78.8817,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,, electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, @@ -705,29 +705,29 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,4.6849,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,7.5267,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,4.5994,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation,, electrobiofuels,investment,512440.2631,EUR/kW_th,combination of BtL and electrofuels,,2017.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.5874,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,efficiency,0.6003,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2485,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +electrolysis,lifetime,25.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,4.9324,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1269.866,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,efficiency,0.4933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1305.14,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,FOM,3.6771,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0909,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.915,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,53.4015,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 @@ -744,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,321.2749,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,FOM,0.1742,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,463.2336,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,280.1877,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery storage,investment,354.3551,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,19.1667,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -762,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,53.9217,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage tank type 1 including compressor,FOM,1.0773,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,56.4826,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,25.8333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.6456,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,investment,2.8219,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,996.93,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,830.775,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +industrial heat pump high temperature,FOM,0.0918,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2593,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,2.9667,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,1018.2784,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1102,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2593,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,848.5653,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -814,10 +814,10 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,761417.4621,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,9224.3988,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,FOM,6.7606,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3442,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6007,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,10453.4411,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 @@ -825,10 +825,10 @@ nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - vers nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,2.6209,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1769.1171,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1904.5962,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -842,16 +842,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,FOM,2.421,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.7903,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,investment,379.5135,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.508,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1139.8826,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +onwind,FOM,1.2318,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5799,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1197.0669,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -863,58 +863,58 @@ seawater desalination,investment,39056.5182,EUR/(m^3-H2O/h),"Caldera et al 2017: seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.7275,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,FOM,1.5875,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,676.5703,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar,investment,767.9507,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,35.8333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.1642,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,880.0251,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,719.0594,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,1040.9908,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,473.1156,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,552.4113,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop,investment,1000.4459,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,35.8333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.2386,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,824.87,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.0898,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1176.0218,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0107,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,535.4556,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.8904,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,620.6719,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,FOM,5.5744,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.5744,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,FOM,2.3839,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,29.7245,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2919,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,efficiency,0.1968,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7529,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9114.7824,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3839,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,29.7245,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2919,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +waste CHP CC,efficiency,0.1968,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7529,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9114.7824,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8266,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8266,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2030.csv b/ariadne-data/costs/pessimist/costs_2030.csv index 283d11713..78268af52 100644 --- a/ariadne-data/costs/pessimist/costs_2030.csv +++ b/ariadne-data/costs/pessimist/costs_2030.csv @@ -11,30 +11,30 @@ Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,C in fuel,0.351,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.649,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.238,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.4553,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.6585,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2693.9467,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,14.2807,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1787,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,3118.4333,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,FOM,3.0979,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,5.5733,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,878.324,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,efficiency,0.5567,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,1008.838,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,VOM,4.1473,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 @@ -194,11 +194,11 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.0438,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.03,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1460.0135,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,investment,1546.3966,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 @@ -334,10 +334,10 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,FOM,1.6323,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.9384,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,460.5804,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,investment,509.1147,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 @@ -415,172 +415,172 @@ Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,820676.5784,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,investment,668928.1598,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,169.3155,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,FOM,0.1543,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,370.3776,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,150.2675,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +battery storage,investment,255.0314,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,18.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,944.4854,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,21.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas CC,investment,944.4854,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,21.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,35.3782,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.4525,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,1174.8443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas upgrading,VOM,3.8657,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,179.2634,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,21.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,FOM,3.5057,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.3961,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.5065,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP,efficiency,0.2896,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.6295,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3793.3454,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.93,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.0967,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1567,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0283,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.7953,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.7953,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3133333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,FOM,3.5057,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.3961,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.5065,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.9457,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,881.102,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,687.1015,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass EOP,efficiency,0.2896,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.6295,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3793.3454,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.5379,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.8456,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.9816,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,1001.9299,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,6.5006,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8149,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,834.3542,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,18.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,C in fuel,0.5618,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.4382,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.1607,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,10.3861,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.8552,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,efficiency,0.83,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.43,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.5633,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,4152.9549,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.93,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.0967,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1567,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0237,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.7953,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.6167,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.6561,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central air-sourced heat pump,FOM,0.2703,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.3667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,1174.5725,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,3.005,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,VOM,3.0063,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1968.7948,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,efficiency,0.5017,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1969.6589,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,FOM,2.8079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.8678,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.04,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,592.6041,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,efficiency,0.3933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,716.0633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,592.6041,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,FOM,2.8079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.8678,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.04,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.3933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,716.0633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,FOM,1.7297,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.5521,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,130.514,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.3268,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,537.1533,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central ground-sourced heat pump,FOM,0.3631,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,0.7986,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.7067,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,680.0838,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,4.8571,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1164.0438,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,efficiency,0.4867,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1234.5919,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,FOM,1.0129,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.9877,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,investment,109.3496,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,FOM,2.8239,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,5.2433,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3952,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,efficiency,0.2593,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.7104,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,4022.2266,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,FOM,2.8239,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,5.2433,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3952,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,5207.5282,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2593,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.7104,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,6043.4896,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8239,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,5.2433,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3952,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5761,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2593,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.7104,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,4022.2266,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5283,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.6009,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -604,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,2.7632,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,899.4884,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.3,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,931.235,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,17.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.1218,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,314.1035,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,196.3147,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler,efficiency,0.9733,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,197.0523,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,18.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,132.7779,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,FOM,1.8501,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1481.5103,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,3.7333,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1390.8056,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,18.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -648,29 +648,29 @@ direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Ag direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,heat-output,1.1667,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2794,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2836,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2794,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,lifetime,13.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2836,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,lifetime,13.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels,lifetime,13.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,lifetime,13.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -686,11 +686,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8811,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric boiler steam,FOM,1.3304,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.9867,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,77.2033,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,, electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, @@ -705,29 +705,29 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,4.2296,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,14.2807,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,4.062,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation,, electrobiofuels,investment,466206.9921,EUR/kW_th,combination of BtL and electrofuels,,2017.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6217,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,efficiency,0.6234,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2207,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1500.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +electrolysis,lifetime,26.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,4.8571,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1164.0438,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,efficiency,0.4867,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1234.5919,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,FOM,3.6882,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0741,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.91,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,51.8758,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 @@ -744,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,241.3377,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,FOM,0.1543,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,527.9262,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,214.7158,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery storage,investment,364.4121,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,18.3333,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -762,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,47.5247,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage tank type 1 including compressor,FOM,1.1055,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,52.6465,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,26.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.1164,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,investment,2.4692,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,941.1019,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,784.2516,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +industrial heat pump high temperature,FOM,0.0908,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2358,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,2.9833,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,983.7987,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1089,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2358,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,819.8323,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -814,10 +814,10 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,703726.4462,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,7841.7127,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,FOM,6.8571,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3373,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6023,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,10277.6921,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 @@ -825,10 +825,10 @@ nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - vers nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,2.7432,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1682.1226,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1816.5819,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,26.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -842,16 +842,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,FOM,2.2886,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,7.2312,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,investment,396.0571,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.4286,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1095.8533,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +onwind,FOM,1.2127,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5725,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1210.2219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,26.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -863,58 +863,58 @@ seawater desalination,investment,34796.4978,EUR/(m^3-H2O/h),"Caldera et al 2017: seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.9495,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,FOM,1.5981,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,543.3289,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar,investment,726.0896,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,36.6667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.1834,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,702.9265,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,565.8069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,840.0461,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,383.7312,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,454.4703,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop,investment,943.7682,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,36.6667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.2649,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,777.4281,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1110.1082,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0128,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,508.4111,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.9233,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,590.9915,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,FOM,5.7031,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.7031,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,FOM,2.3664,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,30.5842,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3012,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,efficiency,0.1914,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7423,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9152.4573,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3664,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,30.5842,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3012,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +waste CHP CC,efficiency,0.1914,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7423,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9152.4573,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8165,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8165,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2035.csv b/ariadne-data/costs/pessimist/costs_2035.csv index a1b9b62e7..3ba6f6b66 100644 --- a/ariadne-data/costs/pessimist/costs_2035.csv +++ b/ariadne-data/costs/pessimist/costs_2035.csv @@ -11,30 +11,30 @@ Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,C in fuel,0.3645,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6355,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.233,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.3804,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.5522,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.675,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2711.67,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,23.5828,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.203,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,2858.5639,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,FOM,2.9949,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,6.0319,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,870.3873,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,efficiency,0.555,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,1047.6394,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 @@ -194,11 +194,11 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.0712,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0338,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1327.0808,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,investment,1427.0593,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 @@ -334,10 +334,10 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,FOM,1.5657,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,5.0266,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,454.3898,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,investment,523.4768,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 @@ -415,172 +415,172 @@ Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,745954.8206,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,investment,501696.1199,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,137.5688,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,FOM,0.1385,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,412.7064,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,124.8702,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +battery storage,investment,259.7934,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,17.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,900.4993,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,22.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas CC,investment,900.4993,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,22.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,47.2037,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.8818,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,1279.9082,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.718,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,172.4103,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,22.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,FOM,3.4587,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.4796,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.5326,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP,efficiency,0.2847,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.5896,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3900.9507,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.945,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.095,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.155,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0275,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.7765,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.7765,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3050000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,FOM,3.4587,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.4796,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.5326,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.0344,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,860.0901,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,670.7159,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass EOP,efficiency,0.2847,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.5896,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3900.9507,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.4199,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.1504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.9562,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,1039.6982,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,6.1416,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8124,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,890.3211,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,17.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,C in fuel,0.6464,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.3536,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.1296,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,17.9377,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,11.4338,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,efficiency,0.955,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.635,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.735,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,3433.7362,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.945,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.095,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.155,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.7765,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.6,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.4868,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central air-sourced heat pump,FOM,0.2943,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,1258.4706,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9741,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,VOM,2.9751,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1948.5297,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,efficiency,0.51,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1949.1778,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,FOM,2.6042,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.9736,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.08,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,efficiency,0.39,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,761.9196,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,FOM,2.6042,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.9736,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.08,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.39,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,761.9196,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,FOM,1.4355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.7461,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,164.0244,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.373,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,523.7245,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central ground-sourced heat pump,FOM,0.3666,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,0.6783,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.705,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,721.7071,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,4.7727,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1084.6772,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,efficiency,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1164.0438,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,FOM,0.8625,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0053,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,investment,126.9866,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,FOM,2.7961,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,5.4303,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.4184,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3493.3,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,efficiency,0.2545,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.6528,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,4163.1206,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,FOM,2.7961,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,5.4303,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.4184,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,5061.4763,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2545,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.6528,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,6178.4528,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.7961,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,5.4303,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.4184,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3493.3,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5556,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2545,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.6528,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,4163.1206,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5947,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -604,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,2.6777,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,875.6784,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.25,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,905.8377,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,16.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,5.93,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,306.613,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,191.6331,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,167.4529,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,17.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,116.4161,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,FOM,1.8485,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1428.5992,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1312.1948,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,17.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -648,29 +648,29 @@ direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Ag direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,heat-output,1.125,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2807,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,FOM,1.1212,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2832,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2807,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,lifetime,12.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1212,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2832,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,lifetime,12.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,VOM,0.3314,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels,lifetime,12.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,VOM,0.3314,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,lifetime,12.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -686,11 +686,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8333,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric boiler steam,FOM,1.3267,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8283,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.985,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,, electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, @@ -705,29 +705,29 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,3.8235,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,23.5828,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.541,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation,, electrobiofuels,investment,428759.8057,EUR/kW_th,combination of BtL and electrofuels,,2017.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6374,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,efficiency,0.6465,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.193,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1350.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +electrolysis,lifetime,27.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,4.7727,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1084.6772,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,efficiency,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1164.0438,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.905,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 @@ -744,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,197.4367,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,FOM,0.1385,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,592.3102,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,179.5623,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery storage,investment,373.581,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,17.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -762,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,38.075,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage tank type 1 including compressor,FOM,1.1382,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,48.8105,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.8519,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,investment,2.1164,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,911.617,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,759.6808,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +industrial heat pump high temperature,FOM,0.0896,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2123,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,949.319,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1076,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2123,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,791.0992,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -814,10 +814,10 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,657729.5552,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,7406.062,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,FOM,6.9565,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3305,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,10102.913,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 @@ -825,10 +825,10 @@ nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - vers nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,2.8781,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1622.2443,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1728.5676,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,26.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -842,16 +842,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,FOM,2.1667,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,7.6721,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,361.1181,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,investment,412.6006,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.3715,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1065.167,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +onwind,FOM,1.194,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5651,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1223.3769,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,26.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -863,58 +863,58 @@ seawater desalination,investment,31312.5066,EUR/(m^3-H2O/h),"Caldera et al 2017: seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.9904,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,FOM,1.6101,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,496.8255,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar,investment,684.2285,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.2051,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,641.373,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,513.1614,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,769.5846,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,352.2779,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,419.3908,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop,investment,887.0904,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.2945,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,729.9862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.1157,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1044.1946,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0151,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,481.3667,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.9597,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,561.3112,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,FOM,5.8378,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8332,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.8378,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8332,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,FOM,2.349,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,31.4438,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3104,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,8307.058,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,efficiency,0.1861,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7317,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9190.1323,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.349,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,31.4438,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3104,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,8307.058,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +waste CHP CC,efficiency,0.1861,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7317,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9190.1323,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8062,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8062,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2040.csv b/ariadne-data/costs/pessimist/costs_2040.csv index 3502220ca..66fe5d4bf 100644 --- a/ariadne-data/costs/pessimist/costs_2040.csv +++ b/ariadne-data/costs/pessimist/costs_2040.csv @@ -11,30 +11,30 @@ Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.3065,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.4458,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2729.3933,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,37.2105,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.2274,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,2598.6944,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,FOM,2.8994,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,6.4904,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,862.4506,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,efficiency,0.5533,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,1086.4409,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,VOM,2.6585,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 @@ -194,11 +194,11 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.1037,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0375,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1194.148,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,investment,1307.7219,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 @@ -334,10 +334,10 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,FOM,1.5028,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,5.1147,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,448.1992,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,investment,537.839,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 @@ -415,172 +415,172 @@ Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,671233.0629,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,investment,334464.0799,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,105.8222,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,FOM,0.1256,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,455.0353,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,99.4728,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +battery storage,investment,264.5554,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,16.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,856.5131,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,23.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas CC,investment,856.5131,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,23.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,57.2351,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.3111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,1384.9722,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.5702,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,165.5572,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,23.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,FOM,3.4143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.5631,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.5587,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP,efficiency,0.2798,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.5498,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,4008.5559,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.96,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.0933,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1533,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0267,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.7577,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.7577,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2966666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,FOM,3.4143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.5631,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.5587,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.1231,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,839.0781,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,654.3303,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass EOP,efficiency,0.2798,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.5498,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,4008.5559,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.3101,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.4552,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.9308,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,1077.4665,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,5.8251,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8099,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,946.2879,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,16.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,C in fuel,0.7311,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.2689,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.0986,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,29.4909,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,8.0125,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,efficiency,1.08,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.84,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.9067,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,2714.5175,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.96,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.0933,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1533,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0223,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.7577,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.5833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,FOM,0.3153,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central air-sourced heat pump,efficiency,3.3333,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,1342.3686,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9431,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,VOM,2.9438,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1928.2647,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,efficiency,0.5183,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1928.6967,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,FOM,2.4236,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,5.0795,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.12,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,571.4397,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,efficiency,0.3867,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,807.7758,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,571.4397,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,FOM,2.4236,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,5.0795,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.12,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.3867,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,807.7758,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,FOM,1.2411,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.9401,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,197.5347,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.4192,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,510.2956,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central ground-sourced heat pump,FOM,0.3697,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,0.558,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.7033,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,763.3305,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,4.6774,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1005.3105,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,efficiency,0.4733,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1093.4957,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,FOM,0.7488,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0229,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,investment,144.6236,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,FOM,2.7701,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,5.6172,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.4416,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,efficiency,0.2496,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.5952,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,4304.0146,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,FOM,2.7701,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,5.6172,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.4416,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,4917.5537,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2496,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.5952,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,6311.2636,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.7701,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,5.6172,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.4416,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.535,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2496,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.5952,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,4304.0146,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5394,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5885,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -604,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,2.5989,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,851.8684,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.2,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,883.6151,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,16.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,5.7533,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,299.1224,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,186.9515,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler,efficiency,0.9767,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,147.1033,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,16.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,105.1674,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,FOM,1.8469,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1375.6881,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,3.6667,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1243.4104,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,16.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -648,29 +648,29 @@ direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Ag direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,heat-output,1.0833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,lifetime,11.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,lifetime,11.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels,lifetime,11.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,lifetime,11.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -686,11 +686,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric boiler steam,FOM,1.3227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.814,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.9833,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,73.8467,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,, electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, @@ -705,29 +705,29 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,3.429,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,37.2105,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.0362,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation,, electrobiofuels,investment,392280.346,EUR/kW_th,combination of BtL and electrofuels,,2017.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6532,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,efficiency,0.6695,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1653,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1200.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +electrolysis,lifetime,28.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,4.6774,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1005.3105,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,efficiency,0.4733,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1093.4957,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,FOM,3.7125,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0406,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,48.8242,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 @@ -744,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,152.982,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,FOM,0.1256,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,657.8228,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,144.093,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery storage,investment,383.2261,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,16.6667,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -762,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,28.6253,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage tank type 1 including compressor,FOM,1.1765,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,44.9744,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,28.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.5873,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,investment,1.7637,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,882.132,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,735.11,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +industrial heat pump high temperature,FOM,0.0884,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1888,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.0167,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,914.8394,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1061,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1888,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,762.3661,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -814,10 +814,10 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,611732.6641,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,6970.4113,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,FOM,7.0588,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3237,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6057,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,9929.0958,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 @@ -825,10 +825,10 @@ nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - vers nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,3.0274,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1562.3661,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1640.5534,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,25.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -842,16 +842,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,FOM,2.0542,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,8.113,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,359.2662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,investment,429.1441,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.3143,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1034.4807,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +onwind,FOM,1.1758,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5577,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1236.532,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,25.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -863,58 +863,58 @@ seawater desalination,investment,27828.5154,EUR/(m^3-H2O/h),"Caldera et al 2017: seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,FOM,1.6237,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,450.3221,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar,investment,642.3674,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,38.3333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.2298,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,579.8196,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,460.516,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,699.1231,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,320.8246,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,384.3112,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop,investment,830.4127,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,38.3333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.3284,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,682.5444,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.1312,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,978.2809,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0177,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,454.3222,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.0001,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,531.6308,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,FOM,5.979,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.979,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,FOM,2.3318,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,32.3035,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3197,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,efficiency,0.1807,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7212,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9227.8073,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3318,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,32.3035,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3197,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +waste CHP CC,efficiency,0.1807,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7212,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9227.8073,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.7958,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.7958,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2045.csv b/ariadne-data/costs/pessimist/costs_2045.csv index 5abd74fbe..5e363767c 100644 --- a/ariadne-data/costs/pessimist/costs_2045.csv +++ b/ariadne-data/costs/pessimist/costs_2045.csv @@ -11,30 +11,30 @@ Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,C in fuel,0.3915,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6085,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2231,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.2335,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.725,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2747.1167,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,59.0947,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.2517,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,2338.825,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,FOM,2.8103,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,6.949,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.3,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,854.514,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,efficiency,0.5517,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,1125.2423,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,VOM,1.9141,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 @@ -194,11 +194,11 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.1426,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0413,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1054.8211,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,investment,1188.3846,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 @@ -334,10 +334,10 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,FOM,1.4431,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,5.2029,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,442.0086,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,investment,552.2012,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 @@ -415,172 +415,172 @@ Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,592917.0978,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,investment,167232.04,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,84.6577,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,FOM,0.1149,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,497.3642,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,89.4197,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +battery storage,investment,269.3174,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,15.8333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,812.527,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,24.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas CC,investment,812.527,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,24.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,65.8517,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,1.7404,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,1490.0361,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.4224,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,158.704,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,24.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,FOM,3.3722,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.6466,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.5848,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP,efficiency,0.2749,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.5099,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,4116.1612,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.975,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.0917,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1517,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0258,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.7388,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.7388,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2883333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,FOM,3.3722,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.6466,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.5848,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.2118,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,818.0661,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,637.9448,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass EOP,efficiency,0.2749,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.5099,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,4116.1612,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.2078,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.7599,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.9054,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,1115.2349,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,5.5439,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8074,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,1002.2548,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,15.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,C in fuel,0.8157,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.1843,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.0676,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,49.3729,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,4.5911,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,efficiency,1.205,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,1.045,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,1.0783,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,1995.2987,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.975,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.0917,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1517,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0217,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.7388,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.5667,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.5715,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central air-sourced heat pump,FOM,0.3339,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.3167,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,1426.2667,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9122,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,VOM,2.9125,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1907.9996,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,efficiency,0.5267,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1908.2156,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,FOM,2.2624,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,5.1853,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.16,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,560.8575,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,efficiency,0.3833,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,853.6321,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,560.8575,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,FOM,2.2624,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,5.1853,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.16,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.3833,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,853.6321,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,FOM,1.1031,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,2.1341,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,231.0451,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.4654,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,496.8668,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central ground-sourced heat pump,FOM,0.3725,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,0.4378,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.7017,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,804.9539,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,4.569,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,925.9439,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,efficiency,0.4667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1022.9476,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,FOM,0.6598,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0406,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,investment,162.2606,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,FOM,2.7458,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,5.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.4648,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,efficiency,0.2448,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.5376,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,4444.9085,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,FOM,2.7458,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,5.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.4648,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,4836.5672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2448,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.5376,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,6441.924,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.7458,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,5.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.4648,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5144,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2448,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.5376,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,4444.9085,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5452,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5823,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -604,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,2.526,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,828.0584,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.15,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,864.0068,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,15.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,5.59,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,291.6319,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,182.2699,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler,efficiency,0.9783,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,132.2537,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,15.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,96.9588,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,FOM,1.8453,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1322.777,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,3.6333,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1182.7183,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,15.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -648,29 +648,29 @@ direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Ag direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,heat-output,1.0417,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,FOM,1.0606,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2824,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,lifetime,10.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0606,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2824,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,lifetime,10.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels,lifetime,10.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,lifetime,10.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -686,11 +686,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric boiler steam,FOM,1.3186,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7997,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.9817,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,72.1683,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,, electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, @@ -705,29 +705,29 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,3.0103,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,59.0947,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,2.5477,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation,, electrobiofuels,investment,356768.6132,EUR/kW_th,combination of BtL and electrofuels,,2017.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6763,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,efficiency,0.6926,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1376,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1100.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +electrolysis,lifetime,29.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,4.569,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,925.9439,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,efficiency,0.4667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1022.9476,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,FOM,3.7258,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0238,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,47.2985,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 @@ -744,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,122.6452,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,FOM,0.1149,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,720.5404,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,129.8051,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery storage,investment,390.9515,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,15.8333,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -762,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,25.424,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage tank type 1 including compressor,FOM,1.2219,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,41.1384,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,29.1667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.4286,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,investment,1.411,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,864.006,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,720.005,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +industrial heat pump high temperature,FOM,0.0871,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1653,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.0333,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,880.3597,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1045,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1653,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,733.6331,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -814,10 +814,10 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,565735.7731,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,6534.7606,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,FOM,7.1642,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3168,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6073,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,9756.2326,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 @@ -825,10 +825,10 @@ nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - vers nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,3.1937,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1543.1486,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1552.5391,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,25.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -842,16 +842,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,FOM,1.9501,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,8.554,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,357.4144,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,investment,445.6877,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1026.8091,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +onwind,FOM,1.1578,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5503,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1249.687,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,25.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -863,58 +863,58 @@ seawater desalination,investment,25039.1517,EUR/(m^3-H2O/h),"Caldera et al 2017: seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,2.0531,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,FOM,1.6393,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,429.5198,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar,investment,600.5063,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,39.1667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.2581,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,552.3387,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,437.2089,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,667.4686,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,306.7008,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,368.412,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop,investment,773.7349,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,39.1667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.3672,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,635.1025,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.149,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,912.3673,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0205,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,427.2778,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.0454,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,501.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,FOM,6.1273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.1273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,FOM,2.3147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,33.1632,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3289,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,efficiency,0.1754,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7106,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9265.4823,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,33.1632,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3289,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +waste CHP CC,efficiency,0.1754,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7106,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9265.4823,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.7853,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.7853,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2050.csv b/ariadne-data/costs/pessimist/costs_2050.csv index 78a47240a..d48004a36 100644 --- a/ariadne-data/costs/pessimist/costs_2050.csv +++ b/ariadne-data/costs/pessimist/costs_2050.csv @@ -11,30 +11,30 @@ Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,C in fuel,0.405,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.595,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2182,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.1615,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.2331,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.75,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2764.84,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,100.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.2761,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,2078.9555,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,FOM,2.7273,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,7.4076,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.4,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,846.5773,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,efficiency,0.55,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,1164.0438,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,VOM,1.1697,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 @@ -194,11 +194,11 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.1902,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.045,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,915.4941,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,investment,1069.0472,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 @@ -334,10 +334,10 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,FOM,1.3864,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,5.2911,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,435.818,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,investment,566.5634,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 @@ -413,174 +413,174 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,FOM,0.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,514601.1327,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,investment,0.0,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,63.4933,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,FOM,0.1059,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,539.693,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,79.3666,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +battery storage,investment,274.0794,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,15.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,768.5408,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas CC,investment,768.5408,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,73.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,1.1697,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,1595.1,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas upgrading,VOM,3.2746,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,151.8509,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,FOM,3.3322,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.73,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.6108,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.47,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,4223.7665,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.99,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.09,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,FOM,3.3322,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.73,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.6108,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.3005,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,797.0541,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,621.5592,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass EOP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.47,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,4223.7665,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.1121,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,4.0647,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.88,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,1153.0032,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,5.2925,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8048,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,1058.2216,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,15.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,C in fuel,0.9003,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.0997,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.0366,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,91.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,1.1697,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,efficiency,1.33,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,1.25,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,1.25,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,1276.08,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.99,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.09,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.55,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.8255,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central air-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,investment,1510.1647,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 central coal CHP,VOM,2.8813,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 central coal CHP,investment,1887.7345,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,FOM,2.1176,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,5.2911,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,550.2752,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,efficiency,0.38,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,899.4884,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,550.2752,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,FOM,2.1176,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,5.2911,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.38,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,899.4884,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,FOM,1.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,2.3281,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,264.5554,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.5116,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,483.438,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central ground-sourced heat pump,FOM,0.375,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,0.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,846.5773,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,4.4444,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,846.5773,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,efficiency,0.46,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,952.3995,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,FOM,0.5882,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,investment,179.8977,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,FOM,2.723,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,5.9911,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.488,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,efficiency,0.24,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,4585.8025,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,FOM,2.723,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,5.9911,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.488,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,4755.697,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.24,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,6570.4362,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.723,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,5.9911,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.488,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.4938,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central solid biomass CHP powerboost CC,efficiency,0.24,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,4585.8025,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5761,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -604,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,2.4583,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,804.2484,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.1,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,846.5773,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,15.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,5.4388,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,284.1413,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,177.5883,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,120.9396,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,15.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,90.7047,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,FOM,1.8438,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1269.866,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1128.7697,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,15.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -648,29 +648,29 @@ direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Ag direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -688,9 +688,9 @@ electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,efficiency,0.98,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric boiler steam,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,, electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, @@ -705,28 +705,28 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,2.6044,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,100.0,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,2.0754,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation,, electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation,, electrobiofuels,investment,322224.6071,EUR/kW_th,combination of BtL and electrofuels,,2017.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6994,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,efficiency,0.7157,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1099,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +electrolysis,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,4.4444,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,846.5773,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,efficiency,0.46,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,952.3995,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 @@ -744,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,92.5188,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,FOM,0.1059,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,786.4098,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,114.9165,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery storage,investment,396.845,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,15.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -762,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,22.2227,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,FOM,1.2766,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,37.3023,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.2699,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,investment,1.0582,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 industrial heat pump high temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 industrial heat pump high temperature,investment,845.88,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump high temperature,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 industrial heat pump medium temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 industrial heat pump medium temperature,investment,704.9,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +industrial heat pump medium temperature,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -814,10 +814,10 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,519738.882,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,FOM,7.2727,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.31,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,6099.1099,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,investment,9584.3155,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 @@ -825,10 +825,10 @@ nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - vers nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,3.3799,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1523.9311,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1464.5248,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -842,16 +842,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,FOM,1.8535,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,8.9949,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,355.5625,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,investment,462.2312,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.2857,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1019.1375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +onwind,FOM,1.1403,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5429,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1262.842,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -863,58 +863,58 @@ seawater desalination,investment,22249.7881,EUR/(m^3-H2O/h),"Caldera et al 2017: seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,2.0676,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,FOM,1.6574,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,408.7174,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,investment,558.6452,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,FOM,1.291,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,524.8579,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,investment,717.0572,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,413.9018,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,FOM,1.4124,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,587.6607,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,635.814,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,FOM,1.1696,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,846.4537,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,292.5769,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,FOM,2.0238,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,400.2333,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,352.5127,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,FOM,2.0963,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,472.2701,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,FOM,2.2977,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,34.0229,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3382,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,efficiency,0.17,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9303.1573,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.2977,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,34.0229,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3382,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +waste CHP CC,efficiency,0.17,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9303.1573,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.7746,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.7746,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 From 36205d3d8cf116774e538d85596ddc0239b9b347 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 16 May 2024 13:58:25 +0200 Subject: [PATCH 342/669] refining the non-energy hydrogen demand --- config/config.yaml | 5 +- workflow/Snakefile | 13 ++--- workflow/scripts/export_ariadne_variables.py | 55 ++++++++++++++++---- 3 files changed, 52 insertions(+), 21 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index ef6cea283..78ceb23bb 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240502pyamupdate + prefix: "" name: - CurrentPolicies # - KN2045_Bal_v4 @@ -17,7 +17,7 @@ run: scenarios: enable: true file: config/scenarios.automated.yaml - shared_resources: true #stops recalculating + shared_resources: true disable_progressbar: true debug_co2_limit: false debug_h2deriv_limit: false @@ -215,6 +215,7 @@ sector: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry industry: + ammonia: false St_primary_fraction: 2020: 0.6 2025: 0.55 diff --git a/workflow/Snakefile b/workflow/Snakefile index 143faaa8e..06e940f69 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -22,9 +22,11 @@ run = config["run"] scenarios = get_scenarios(run) # global variable RDIR = get_rdir(run) -logs = path_provider("logs/", RDIR, run["shared_resources"]) -benchmarks = path_provider("benchmarks/", RDIR, run["shared_resources"]) -resources = path_provider("resources/", RDIR, run["shared_resources"]) +shared_resources = run["shared_resources"]["policy"] +exclude_from_shared = run["shared_resources"]["exclude"] +logs = path_provider("logs/", RDIR, shared_resources, exclude_from_shared) +benchmarks = path_provider("benchmarks/", RDIR, shared_resources, exclude_from_shared) +resources = path_provider("resources/", RDIR, shared_resources, exclude_from_shared) RESULTS = "results/" + RDIR @@ -275,11 +277,6 @@ rule export_ariadne_variables: hours=config_provider("clustering","temporal","resolution_sector"), costs=config_provider("costs"), energy_totals_year=config_provider("energy", "energy_totals_year"), - HVC_primary=config_provider("industry", "HVC_primary_fraction"), - MWh_CH4_per_tMeOH=config_provider("industry", "MWh_CH4_per_tMeOH"), - MWh_CH4_per_tNH3_SMR=config_provider("industry", "MWh_CH4_per_tNH3_SMR"), - MWh_H2_per_tNH3_electrolysis=config_provider("industry", "MWh_H2_per_tNH3_electrolysis"), - St_primary_fraction=config_provider("industry", "St_primary_fraction"), input: template=resources("template_ariadne_database.xlsx"), industry_demands=expand( diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index de94d4a68..99add5556 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -71,6 +71,18 @@ def _get_gas_fossil_fraction(n, region, kwargs): return gas_fossil_fraction +def _get_h2_fossil_fraction(n, region, kwargs): + total_h2_supply = n.statistics.supply( + bus_carrier="H2", **kwargs + ).drop("Store").groupby("carrier").sum() + + h2_fossil_fraction = ( + total_h2_supply.get("SMR") + / total_h2_supply.sum() + ) + + return h2_fossil_fraction + def _get_t_sum(df, df_t, carrier, region, snapshot_weightings, port): if type(carrier) == list: @@ -1333,24 +1345,45 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): MeOH_region = industrial_production.loc[region, "Methanol"] # subtracting natural gas demand for ammonia and methanol production - natural_gas -= ammonia_region * snakemake.params.MWh_CH4_per_tNH3_SMR * 1e3 # MWh - natural_gas -= MeOH_region * snakemake.params.MWh_CH4_per_tMeOH * 1e3 # MWh + natural_gas -= ammonia_region * config["industry"]["MWh_CH4_per_tNH3_SMR"] * 1e3 # MWh + natural_gas -= MeOH_region * config["industry"]["MWh_CH4_per_tMeOH"] * 1e3 # MWh # adjust demand for non-energy use with recycling rate - non_energy_naphtha = naphtha * snakemake.params.HVC_primary[year] - non_energy_natural_gas = natural_gas * snakemake.params.HVC_primary[year] + non_energy_naphtha = naphtha * config["industry"]["HVC_primary_fraction"][year] + non_energy_natural_gas = natural_gas * config["industry"]["HVC_primary_fraction"][year] # read in production volume for the time horizon years = [int(re.search(r'(\d{4})-modified\.csv', filename).group(1)) for filename in snakemake.input.industrial_production_per_country_tomorrow] index = next((idx for idx, y in enumerate(years) if y == year), None) production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow[index], index_col=0) # kton/a - # get H2 demand for ammonia and methanol production - # get production volume in kton/a - H2_for_NH3 = production.loc[region, "Ammonia"] * snakemake.params.MWh_H2_per_tNH3_electrolysis *1e3 - CH4_for_MeOH = production.loc[region, "Methanol"] * snakemake.params.MWh_CH4_per_tMeOH * 1e3 + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } + h2_fossil_fraction = _get_h2_fossil_fraction(n, region, kwargs) + + if config["industry"]["ammonia"]: + # MWh/a + Haber_Bosch_NH3 = n.statistics.supply( + bus_carrier="NH3", **kwargs + ).groupby("carrier").sum()["Haber-Bosch"] + + CH4_for_NH3 = Haber_Bosch_NH3 * h2_fossil_fraction * config["industry"]["MWh_CH4_per_tNH3_SMR"] / config["industry"]["MWh_NH3_per_tNH3"] + H2_for_NH3 = Haber_Bosch_NH3 * (1 - h2_fossil_fraction) / config["industry"]["MWh_H2_per_tNH3_electrolysis"] + + else: + # t/a + ammonia_prod = production.loc[region, "Ammonia"] * 1e3 + # MWh/a + CH4_for_NH3 = ammonia_prod * h2_fossil_fraction * config["industry"]["MWh_CH4_per_tNH3_SMR"] + H2_for_NH3 = ammonia_prod * (1 - h2_fossil_fraction) * config["industry"]["MWh_H2_per_tNH3_electrolysis"] + + # for MeOH only CH4 is needed + CH4_for_MeOH = production.loc[region, "Methanol"] * config["industry"]["MWh_CH4_per_tMeOH"] * 1e3 - var["Final Energy|Non-Energy Use|Gases"] = (non_energy_natural_gas + CH4_for_MeOH) * MWh2PJ + # write var + var["Final Energy|Non-Energy Use|Gases"] = (non_energy_natural_gas + CH4_for_MeOH + CH4_for_NH3) * MWh2PJ oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) @@ -2887,8 +2920,8 @@ def get_production(region, year): var["Production|Non-Metallic Minerals|Cement"] = production.loc[region, "Cement"] var["Production|Steel"] = production.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]].sum() - var["Production|Steel|Primary"] = var["Production|Steel"] * snakemake.params.St_primary_fraction[year] - var["Production|Steel|Secondary"] = var["Production|Steel"] * (1 - snakemake.params.St_primary_fraction[year]) + var["Production|Steel|Primary"] = var["Production|Steel"] * config["industry"]["St_primary_fraction"][year] + var["Production|Steel|Secondary"] = var["Production|Steel"] * (1 - config["industry"]["St_primary_fraction"][year]) # optional: # var[""Production|Pulp and Paper"] From 9da4b825db9920166b4c69476a5b5c4a0ca16ed2 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 21 May 2024 14:57:30 +0200 Subject: [PATCH 343/669] simplify logic --- config/config.yaml | 2 +- workflow/scripts/modify_cost_data.py | 67 +++++++++++++--------------- 2 files changed, 32 insertions(+), 37 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index d8b65ae64..0bb117bb5 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: "" + prefix: "20240521fixshared" name: # - CurrentPolicies - KN2045_Bal_v4 diff --git a/workflow/scripts/modify_cost_data.py b/workflow/scripts/modify_cost_data.py index 75cf4545f..2d4694eb3 100644 --- a/workflow/scripts/modify_cost_data.py +++ b/workflow/scripts/modify_cost_data.py @@ -16,48 +16,43 @@ planning_horizons="2030", file_path="../data/costs/", file_name="costs_2030.csv", - cost_horizon="mean", + cost_horizon="pessimist", + run="KN2045_Bal_v4" ) logger = logging.getLogger(__name__) # read in cost data from technology-data library - filepath = snakemake.params.file_path + snakemake.params.cost_horizon - costs = os.path.join(filepath, snakemake.params.file_name) + costs = os.path.join( + snakemake.params.file_path, + snakemake.params.cost_horizon, + snakemake.params.file_name) + costs = pd.read_csv(costs, index_col=[0, 1]).sort_index() - # Pessimist: costs are taken from + 5 years - if snakemake.params.cost_horizon == "pessimist": - match = re.search(r"costs_(\d{4})-modifications\.csv", snakemake.input[0]) - if int(match.group(1)) > 2020: - new_year = int(match.group(1)) + 5 - new_filename = re.sub(r'costs_\d{4}-modifications\.csv', f"costs_{new_year}-modifications.csv", snakemake.input[0]) - modifications = pd.read_csv(new_filename, index_col=[0, 1]).sort_index() - costs.loc[modifications.index] = modifications - logger.warning(f"Pessimistic cost scenario for {match.group(1)}.") - else: - modifications = pd.read_csv(snakemake.input.modifications, index_col=[0, 1]).sort_index() - costs.loc[modifications.index] = modifications - - # Optimist: costs are taken from - 5 years + matched_year = int(re.search( + r"costs_(\d{4})-modifications\.csv", + snakemake.input.modifications + ).group(1)) + + if matched_year <= 2020 or snakemake.params.cost_horizon == "mean": + logger.warning(f"Mean cost scenario for {matched_year}.") + new_year = matched_year + elif snakemake.params.cost_horizon == "pessimist": + logger.warning(f"Pessimistic cost scenario for {matched_year}.") + new_year = matched_year + 5 elif snakemake.params.cost_horizon == "optimist": - match = re.search(r"costs_(\d{4})-modifications\.csv", snakemake.input[0]) - if int(match.group(1)) > 2020: - new_year = int(match.group(1)) - 5 - new_filename = re.sub(r'costs_\d{4}-modifications\.csv', f"costs_{new_year}-modifications.csv", snakemake.input[0]) - modifications = pd.read_csv(new_filename, index_col=[0, 1]).sort_index() - costs.loc[modifications.index] = modifications - logger.warning(f"Optimistic cost scenario for {match.group(1)}.") - else: - modifications = pd.read_csv(snakemake.input.modifications, index_col=[0, 1]).sort_index() - costs.loc[modifications.index] = modifications - - # Mean: costs are taken from the same year - elif snakemake.params.cost_horizon == "mean": - modifications = pd.read_csv(snakemake.input.modifications, index_col=[0, 1]).sort_index() - costs.loc[modifications.index] = modifications - logger.warning("Mean cost scenario.") - - print(modifications) - print( costs.loc[modifications.index]) + logger.warning(f"Optimistic cost scenario for {matched_year}.") + new_year = matched_year - 5 + else: + raise ValueError("Invalid specification of cost options.") + + new_filename = re.sub( + r'costs_\d{4}-modifications\.csv', + f"costs_{new_year}-modifications.csv", + snakemake.input.modifications) + modifications = pd.read_csv(new_filename, index_col=[0, 1]).sort_index() + costs.loc[modifications.index] = modifications + + print(costs.loc[modifications.index]) costs.to_csv(snakemake.output[0]) From 5a244c95ddf71cafa6e70bcfa671a2668684712f Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 21 May 2024 15:06:52 +0200 Subject: [PATCH 344/669] some explanatory comments --- workflow/scripts/modify_cost_data.py | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/workflow/scripts/modify_cost_data.py b/workflow/scripts/modify_cost_data.py index 2d4694eb3..56a202469 100644 --- a/workflow/scripts/modify_cost_data.py +++ b/workflow/scripts/modify_cost_data.py @@ -23,10 +23,17 @@ # read in cost data from technology-data library costs = os.path.join( - snakemake.params.file_path, + snakemake.params.file_path, snakemake.params.cost_horizon, snakemake.params.file_name) + # cost_horizon is a setting for technology-data and specifies either + # mean, pessimist or optimist cost scenarios + # the cost modifications file contains specific cost assumptions for + # germany, developed in the ARIADNE project + # here pessimist and optimistic scenarios correspond to a delay or a + # speed up in cost reductions + costs = pd.read_csv(costs, index_col=[0, 1]).sort_index() matched_year = int(re.search( From 74cba472ba4eec76a5d1671bd0bf82a8cb5e5209 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 21 May 2024 17:00:48 +0200 Subject: [PATCH 345/669] fix ariadne export --- workflow/Snakefile | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index a1525a235..ba0d7c8fd 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -115,7 +115,7 @@ rule modify_cost_data: input: modifications=lambda w: ( "ariadne-data/costs_2019-modifications.csv" - if w.planning_horizons == "2020" and config["energy"]["energy_totals_year"] == 2019 + if w.planning_horizons == "2020" and config_provider("energy", "energy_totals_year") == 2019 else "ariadne-data/costs_{planning_horizons}-modifications.csv") output: resources("costs_{planning_horizons}.csv"), @@ -279,18 +279,17 @@ rule export_ariadne_variables: industry_demands=expand( resources("industrial_energy_demand_elec_s{simpl}_{clusters}_{planning_horizons}.csv"), **config["scenario"], - run=config["run"]["name"], + allow_missing=True, ), networks=expand( RESULTS + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", **config["scenario"], - run=config["run"]["name"], allow_missing=True, ), costs=expand( resources("costs_{planning_horizons}.csv"), **config["scenario"], - run=config["run"]["name"], + allow_missing=True, ), energy_totals=resources("energy_totals.csv"), output: @@ -335,7 +334,7 @@ rule plot_ariadne_variables: rule ariadne_all: input: - expand(RESULTS + "graphs/costs.pdf", run=config["run"]["name"]), + expand(RESULTS + "graphs/costs.pdf", run=config_provider("run", "name")), expand(RESULTS + "ariadne/capacity_detailed.png", run=config_provider("run", "name")), exported_variables=expand(RESULTS + "ariadne/exported_variables_full.xlsx", run=config_provider("run", "name")), script: From 7cd1f8a9087a878c3d9b1e994f9962ddcf238f5a Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 22 May 2024 16:30:40 +0200 Subject: [PATCH 346/669] Set up structure to differentiate between NEP2021 and NEP2023 cost data --- config/config.yaml | 5 +++-- config/scenarios.manual.yaml | 8 ++++++++ workflow/Snakefile | 1 + workflow/scripts/modify_cost_data.py | 8 ++++++++ 4 files changed, 20 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 0bb117bb5..ded21cd10 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,11 +4,11 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: "20240521fixshared" + prefix: "2024_05_22_NEP2023_costs" name: # - CurrentPolicies - KN2045_Bal_v4 - - KN2045_Elec_v4 + # - KN2045_Elec_v4 # - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand @@ -183,6 +183,7 @@ costs: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: + solar_thermal: false district_heating: potential: 0.4 progress: diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 3eaff6b26..5d0d7fb3e 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -32,6 +32,7 @@ CurrentPolicies: costs: horizon: "mean" + NEP: 2023 limits_capacity_min: Generator: @@ -124,6 +125,7 @@ KN2045_Bal_v4: costs: horizon: "mean" + NEP: 2021 # boundary condition of maximum volumes limits_volume_max: @@ -180,6 +182,7 @@ KN2045_Elec_v4: costs: horizon: "mean" + NEP: 2021 limits_volume_max: # constrain electricity import in TWh @@ -235,6 +238,7 @@ KN2045_H2_v4: costs: horizon: "mean" + NEP: 2021 limits_volume_max: # constrain electricity import in TWh @@ -293,6 +297,7 @@ KN2045plus_EasyRide: costs: horizon: "optimist" + NEP: 2021 # boundary condition of maximum volumes limits_volume_max: # following the Bal scenario @@ -373,6 +378,7 @@ KN2045plus_LowDemand: costs: horizon: "optimist" + NEP: 2021 # boundary condition of maximum volumes limits_volume_max: # Half of the Bal scenario @@ -465,6 +471,7 @@ KN2045minus_WorstCase: costs: horizon: "pessimist" + NEP: 2023 # boundary condition of maximum volumes limits_volume_max: # Half of the Bal scenario @@ -545,6 +552,7 @@ KN2045minus_SupplyFocus: costs: horizon: "pessimist" + NEP: 2023 co2_budget: 2020: 0.800 # 20% reduction by 2020 diff --git a/workflow/Snakefile b/workflow/Snakefile index ba0d7c8fd..af5a9d310 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -112,6 +112,7 @@ rule modify_cost_data: file_path="ariadne-data/costs/", file_name="costs_{planning_horizons}.csv", cost_horizon=config_provider("costs", "horizon"), + NEP=config_provider("costs", "NEP"), input: modifications=lambda w: ( "ariadne-data/costs_2019-modifications.csv" diff --git a/workflow/scripts/modify_cost_data.py b/workflow/scripts/modify_cost_data.py index 56a202469..cefc3e7bd 100644 --- a/workflow/scripts/modify_cost_data.py +++ b/workflow/scripts/modify_cost_data.py @@ -58,6 +58,14 @@ f"costs_{new_year}-modifications.csv", snakemake.input.modifications) modifications = pd.read_csv(new_filename, index_col=[0, 1]).sort_index() + if snakemake.params.NEP == 2021: + modifications = modifications.query("source != 'NEP2023") + elif snakemake.params.NEP == 2023: + modifications = modifications.query("source != 'NEP2021") + else: + logger.warning(f"NEP year {snakemake.params.NEP} is not in modifications file. Falling back to NEP2021.") + modifications = modifications.query("source != 'NEP2023") + costs.loc[modifications.index] = modifications print(costs.loc[modifications.index]) From 63557bea2a7e0ca083119487a15d16cb3d810908 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 22 May 2024 17:34:31 +0200 Subject: [PATCH 347/669] adding CHPs to exporter, fixing reporting errors --- config/config.yaml | 4 +- workflow/scripts/export_ariadne_variables.py | 155 ++++++++++--------- 2 files changed, 86 insertions(+), 73 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 8b78706d9..f6dad8b9e 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,11 +4,11 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: "20240521fixshared" + prefix: 20240522mastrchps name: # - CurrentPolicies - KN2045_Bal_v4 - - KN2045_Elec_v4 + # - KN2045_Elec_v4 # - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index a5f0ecc91..859364851 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -191,11 +191,16 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): errors="ignore", ).multiply(MW2GW) + capacities_biomass = capacities_electricity.filter(like="biomass") + var[cap_string + "Electricity|Biomass|w/ CCS"] = \ - capacities_electricity.get('urban central solid biomass CHP CC', 0) + capacities_biomass.filter(like="CC").sum() var[cap_string + "Electricity|Biomass|w/o CCS"] = \ - capacities_electricity.get('urban central solid biomass CHP', 0) + capacities_biomass.reindex( + ['urban central solid biomass CHP', + 'urban central solid biomass OP']).sum() + var[cap_string + "Electricity|Biomass|Solids"] = \ var[[ @@ -204,18 +209,18 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): ]].sum() # Ariadne does no checks, so we implement our own? - assert var[cap_string + "Electricity|Biomass|Solids"] == \ - capacities_electricity.filter(like="solid biomass CHP").sum() + assert isclose(var[cap_string + "Electricity|Biomass|Solids"], + capacities_biomass.sum()) var[cap_string + "Electricity|Biomass"] = \ var[cap_string + "Electricity|Biomass|Solids"] var[cap_string + "Electricity|Coal|Hard Coal"] = \ - capacities_electricity.get('coal', 0) + capacities_electricity.filter(like="coal").sum() var[cap_string + "Electricity|Coal|Lignite"] = \ - capacities_electricity.get('lignite', 0) + capacities_electricity.filter(like="lignite").sum() # var[cap_string + "Electricity|Coal|Hard Coal|w/ CCS"] = # var[cap_string + "Electricity|Coal|Hard Coal|w/o CCS"] = @@ -298,7 +303,7 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): # ! Not implemented var[cap_string + "Electricity|Oil"] = \ - capacities_electricity.get("oil") + capacities_electricity.filter(like="oil").sum() var[cap_string + "Electricity|Solar|PV|Rooftop"] = \ @@ -640,6 +645,33 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): return var +def get_CHP_E_and_H_usage(n, bus_carrier, region, fossil_fraction=1): + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } + + usage = n.statistics.withdrawal( + bus_carrier=bus_carrier, + **kwargs, + ).filter( + like=region + ).filter( + like="CHP" + ).multiply(MWh2PJ).multiply(fossil_fraction) + + E_to_H = ( + n.links.loc[usage.index.get_level_values("name")].efficiency + / n.links.loc[usage.index.get_level_values("name")].efficiency2 + ) + + E_fraction = E_to_H * (1 / (E_to_H + 1)) + + E_usage = usage.multiply(E_fraction).sum() + H_usage = usage.multiply(1 - E_fraction).sum() + + return E_usage, H_usage + def get_primary_energy(n, region): kwargs = { 'groupby': n.statistics.groupers.get_name_bus_and_carrier, @@ -655,24 +687,27 @@ def get_primary_energy(n, region): **kwargs ).filter( like=region - ).groupby( + ).drop("Store").groupby( "carrier" ).sum().multiply(oil_fossil_fraction).multiply(MWh2PJ) + + oil_CHP_E_usage, oil_CHP_H_usage = get_CHP_E_and_H_usage( + n, "oil", region, fossil_fraction=oil_fossil_fraction) + ## Primary Energy var["Primary Energy|Oil|Heat"] = \ - oil_usage.filter(like="oil boiler").sum() + oil_usage.filter(like="urban central oil boiler").sum() + oil_CHP_H_usage var["Primary Energy|Oil|Electricity"] = \ - oil_usage.get("oil", 0) - # This will get the oil store as well, but it should be 0 + oil_usage.get("oil", 0) + oil_CHP_E_usage var["Primary Energy|Oil"] = ( var["Primary Energy|Oil|Electricity"] + var["Primary Energy|Oil|Heat"] - + oil_usage.reindex( + + oil_usage.reindex( # This is more like final energy than primary energy?? [ "land transport oil", "agriculture machinery oil", @@ -682,7 +717,8 @@ def get_primary_energy(n, region): ], ).sum() ) - assert isclose(var["Primary Energy|Oil"], oil_usage.sum()) + + # assert isclose(var["Primary Energy|Oil"], oil_usage.sum()) regional_gas_supply = n.statistics.supply( bus_carrier="gas", @@ -718,27 +754,11 @@ def get_primary_energy(n, region): "carrier" ).sum().multiply(gas_fossil_fraction).multiply(MWh2PJ) - - gas_CHP_usage = n.statistics.withdrawal( - bus_carrier="gas", - **kwargs, - ).filter( - like=region - ).filter( - like="gas CHP" - ).multiply(gas_fossil_fraction).multiply(MWh2PJ) - - gas_CHP_E_to_H = ( - n.links.loc[gas_CHP_usage.index.get_level_values("name")].efficiency - / n.links.loc[gas_CHP_usage.index.get_level_values("name")].efficiency2 - ) - - gas_CHP_E_fraction = gas_CHP_E_to_H * (1 / (gas_CHP_E_to_H + 1)) + gas_CHP_E_usage, gas_CHP_H_usage = get_CHP_E_and_H_usage( + n, "gas", region, fossil_fraction=gas_fossil_fraction) var["Primary Energy|Gas|Heat"] = \ - gas_usage.filter(like="gas boiler").sum() + gas_CHP_usage.multiply( - 1 - gas_CHP_E_fraction - ).values.sum() + gas_usage.filter(like="urban central gas boiler").sum() + gas_CHP_H_usage var["Primary Energy|Gas|Electricity"] = \ gas_usage.reindex( @@ -746,9 +766,7 @@ def get_primary_energy(n, region): 'CCGT', 'OCGT', ], - ).sum() + gas_CHP_usage.multiply( - gas_CHP_E_fraction - ).values.sum() + ).sum() + gas_CHP_E_usage var["Primary Energy|Gas|Hydrogen"] = \ gas_usage.filter(like="SMR").sum() @@ -760,10 +778,10 @@ def get_primary_energy(n, region): + gas_usage.filter(like="gas for industry").sum() ) - assert isclose( - var["Primary Energy|Gas"], - gas_usage.sum(), - ) + # assert isclose( + # var["Primary Energy|Gas"], + # gas_usage.sum(), + # ) # ! There are CC sub-categories that could be used coal_usage = n.statistics.withdrawal( @@ -775,18 +793,26 @@ def get_primary_energy(n, region): "carrier" ).sum().multiply(MWh2PJ) + coal_CHP_E_usage, coal_CHP_H_usage = get_CHP_E_and_H_usage( + n, "coal", region) + lignite_CHP_E_usage, lignite_CHP_H_usage = get_CHP_E_and_H_usage( + n, "lignite", region) + var["Primary Energy|Coal|Hard Coal"] = \ - coal_usage.get("coal", 0) + coal_usage.get("coal", 0) + coal_CHP_E_usage + coal_CHP_H_usage var["Primary Energy|Coal|Lignite"] = \ - coal_usage.get("lignite", 0) + coal_usage.get("lignite", 0) + lignite_CHP_E_usage + lignite_CHP_H_usage var["Primary Energy|Coal|Electricity"] = \ - var["Primary Energy|Coal|Hard Coal"] + \ - var["Primary Energy|Coal|Lignite"] + var["Primary Energy|Coal|Hard Coal"] - coal_CHP_H_usage + \ + var["Primary Energy|Coal|Lignite"] - lignite_CHP_H_usage + var["Primary Energy|Coal|Heat"] = \ + coal_CHP_H_usage + lignite_CHP_H_usage + var["Primary Energy|Coal"] = ( - var["Primary Energy|Coal|Electricity"] + var["Primary Energy|Coal|Heat"] + var["Primary Energy|Coal|Electricity"] + coal_usage.get("coal for industry", 0) ) @@ -807,21 +833,8 @@ def get_primary_energy(n, region): "carrier" ).sum().multiply(MWh2PJ) - biomass_CHP_usage = n.statistics.withdrawal( - bus_carrier="solid biomass", - **kwargs, - ).filter( - like=region - ).filter( - like="CHP" - ).multiply(MWh2PJ) - - biomass_CHP_E_to_H = ( - n.links.loc[biomass_CHP_usage.index.get_level_values("name")].efficiency - / n.links.loc[biomass_CHP_usage.index.get_level_values("name")].efficiency2 - ) - - biomass_CHP_E_fraction = biomass_CHP_E_to_H * (1 / (biomass_CHP_E_to_H + 1)) + biomass_CHP_E_usage, biomass_CHP_H_usage = get_CHP_E_and_H_usage( + n, "solid biomass", region) var["Primary Energy|Biomass|w/ CCS"] = \ biomass_usage[biomass_usage.index.str.contains("CC")].sum() @@ -830,13 +843,9 @@ def get_primary_energy(n, region): biomass_usage[~biomass_usage.index.str.contains("CC")].sum() var["Primary Energy|Biomass|Electricity"] = \ - biomass_CHP_usage.multiply( - biomass_CHP_E_fraction - ).values.sum() + biomass_CHP_E_usage + biomass_usage.get("urban central solid biomass OP") var["Primary Energy|Biomass|Heat"] = \ - biomass_usage.filter(like="boiler").sum() + biomass_CHP_usage.multiply( - 1 - biomass_CHP_E_fraction - ).values.sum() + biomass_CHP_H_usage + biomass_usage.get("urban central solid biomass boiler", 0) # var["Primary Energy|Biomass|Gases"] = \ # In this case Gases are only E-Fuels in AriadneDB @@ -933,10 +942,10 @@ def get_secondary_energy(n, region): ) var["Secondary Energy|Electricity|Coal|Hard Coal"] = \ - electricity_supply.get("coal", 0) + electricity_supply.filter(like="coal").sum() var["Secondary Energy|Electricity|Coal|Lignite"] = \ - electricity_supply.get("lignite", 0) + electricity_supply.filter(like="lignite").sum() var["Secondary Energy|Electricity|Coal"] = ( var["Secondary Energy|Electricity|Coal|Hard Coal"] @@ -944,7 +953,7 @@ def get_secondary_energy(n, region): ) var["Secondary Energy|Electricity|Oil"] = \ - electricity_supply.get("oil", 0) + electricity_supply.filter(like="oil").sum() var["Secondary Energy|Electricity|Gas"] = \ electricity_supply.reindex( @@ -963,7 +972,8 @@ def get_secondary_energy(n, region): ) var["Secondary Energy|Electricity|Biomass|w/o CCS"] = \ - electricity_supply.get('urban central solid biomass CHP', 0) + electricity_supply.get('urban central solid biomass CHP', 0) + \ + electricity_supply.get('urban central solid biomass OP') var["Secondary Energy|Electricity|Biomass|w/ CCS"] = \ electricity_supply.get('urban central solid biomass CHP CC', 0) var["Secondary Energy|Electricity|Biomass"] = ( @@ -1085,14 +1095,16 @@ def get_secondary_energy(n, region): var["Secondary Energy|Heat|Biomass"] = \ heat_supply.filter(like="biomass").sum() - # var["Secondary Energy|Heat|Coal"] = \ + var["Secondary Energy|Heat|Coal"] = \ + heat_supply.filter(like="coal").sum() + \ + heat_supply.filter(like="lignite").sum() # var["Secondary Energy|Heat|Geothermal"] = \ # var["Secondary Energy|Heat|Nuclear"] = \ # var["Secondary Energy|Heat|Other"] = \ # ! Not implemented var["Secondary Energy|Heat|Oil"] = \ - heat_supply.filter(like="oil boiler").sum() + heat_supply.filter(like="urban central oil").sum() var["Secondary Energy|Heat|Solar"] = \ heat_supply.filter(like="solar thermal").sum() @@ -1123,6 +1135,7 @@ def get_secondary_energy(n, region): + var["Secondary Energy|Heat|Solar"] + var["Secondary Energy|Heat|Electricity"] + var["Secondary Energy|Heat|Other"] + + var["Secondary Energy|Heat|Coal"] ) assert isclose( var["Secondary Energy|Heat"], From c3264eb7fe4badc3b18c26f06da9442fed668377 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 23 May 2024 15:57:33 +0200 Subject: [PATCH 348/669] adding NEP2023 cost data if available --- ariadne-data/costs_2019-modifications.csv | 8 +++++--- ariadne-data/costs_2020-modifications.csv | 8 +++++--- ariadne-data/costs_2025-modifications.csv | 8 +++++--- ariadne-data/costs_2030-modifications.csv | 8 +++++--- ariadne-data/costs_2035-modifications.csv | 8 +++++--- ariadne-data/costs_2040-modifications.csv | 8 +++++--- ariadne-data/costs_2045-modifications.csv | 8 +++++--- ariadne-data/costs_2050-modifications.csv | 8 +++++--- workflow/scripts/modify_cost_data.py | 6 +++--- 9 files changed, 43 insertions(+), 27 deletions(-) diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv index 36a5786d9..745ef4ea4 100644 --- a/ariadne-data/costs_2019-modifications.csv +++ b/ariadne-data/costs_2019-modifications.csv @@ -5,8 +5,10 @@ coal,fuel,6.7391,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1685,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf decentral ground-sourced heat pump,investment,2774,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 -HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 \ No newline at end of file diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index 85cb619b0..71a9d4070 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -5,8 +5,10 @@ coal,fuel,5.7048,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1685,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf decentral ground-sourced heat pump,investment,2774,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 -HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index 78b317062..00db5cd63 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -5,8 +5,10 @@ coal,fuel,10.6694,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1267,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1604,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2682,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 -HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index 6ab8b8f66..d19220b1b 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -5,8 +5,10 @@ coal,fuel,6.2056,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1083,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1523,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2589,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 -HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 \ No newline at end of file diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index aa5ea61e8..10ef33a9f 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -5,8 +5,10 @@ coal,fuel,6.2601,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,900,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1483,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2497,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 -HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index ebed8f903..62f7e0718 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -5,8 +5,10 @@ coal,fuel,6.3036,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,717,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1442,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2404,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 -HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index 3383900c9..e332031a3 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -5,8 +5,10 @@ coal,fuel,6.3472,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,533,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1402,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2312,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 -HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index 94edd6c19..1689e2c6f 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -5,8 +5,10 @@ coal,fuel,6.4016,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,350,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1362,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2219,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021 +electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 -HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021 -HVDC overhead,investment,995,EUR2020/MW/km,NEP2021 +HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 +HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 diff --git a/workflow/scripts/modify_cost_data.py b/workflow/scripts/modify_cost_data.py index cefc3e7bd..a931a3d45 100644 --- a/workflow/scripts/modify_cost_data.py +++ b/workflow/scripts/modify_cost_data.py @@ -59,12 +59,12 @@ snakemake.input.modifications) modifications = pd.read_csv(new_filename, index_col=[0, 1]).sort_index() if snakemake.params.NEP == 2021: - modifications = modifications.query("source != 'NEP2023") + modifications = modifications.query("source != 'NEP2023'") elif snakemake.params.NEP == 2023: - modifications = modifications.query("source != 'NEP2021") + modifications = modifications.query("source != 'NEP2021'") else: logger.warning(f"NEP year {snakemake.params.NEP} is not in modifications file. Falling back to NEP2021.") - modifications = modifications.query("source != 'NEP2023") + modifications = modifications.query("source != 'NEP2023'") costs.loc[modifications.index] = modifications From 733c42be8452c52d92f23c0c929312ddb83bbffa Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 23 May 2024 16:26:27 +0200 Subject: [PATCH 349/669] modify HVDC links cost from config --- config/scenarios.manual.yaml | 8 ++++++++ workflow/Snakefile | 1 + workflow/scripts/modify_prenetwork.py | 14 +++++++++++--- 3 files changed, 20 insertions(+), 3 deletions(-) diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 5d0d7fb3e..773695396 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -33,6 +33,7 @@ CurrentPolicies: costs: horizon: "mean" NEP: 2023 + transmission: "uc" # either overhead line ("ohl") or underground cable ("uc") limits_capacity_min: Generator: @@ -126,6 +127,7 @@ KN2045_Bal_v4: costs: horizon: "mean" NEP: 2021 + transmission: "ohl" # either overhead line ("ohl") or underground cable ("uc") # boundary condition of maximum volumes limits_volume_max: @@ -183,6 +185,7 @@ KN2045_Elec_v4: costs: horizon: "mean" NEP: 2021 + transmission: "ohl" # either overhead line ("ohl") or underground cable ("uc") limits_volume_max: # constrain electricity import in TWh @@ -239,6 +242,7 @@ KN2045_H2_v4: costs: horizon: "mean" NEP: 2021 + transmission: "ohl" # either overhead line ("ohl") or underground cable ("uc") limits_volume_max: # constrain electricity import in TWh @@ -298,6 +302,7 @@ KN2045plus_EasyRide: costs: horizon: "optimist" NEP: 2021 + transmission: "ohl" # either overhead line ("ohl") or underground cable ("uc") # boundary condition of maximum volumes limits_volume_max: # following the Bal scenario @@ -379,6 +384,7 @@ KN2045plus_LowDemand: costs: horizon: "optimist" NEP: 2021 + transmission: "ohl" # either overhead line ("ohl") or underground cable ("uc") # boundary condition of maximum volumes limits_volume_max: # Half of the Bal scenario @@ -472,6 +478,7 @@ KN2045minus_WorstCase: costs: horizon: "pessimist" NEP: 2023 + transmission: "uc" # either overhead line ("ohl") or underground cable ("uc") # boundary condition of maximum volumes limits_volume_max: # Half of the Bal scenario @@ -553,6 +560,7 @@ KN2045minus_SupplyFocus: costs: horizon: "pessimist" NEP: 2023 + transmission: "uc" # either overhead line ("ohl") or underground cable ("uc") co2_budget: 2020: 0.800 # 20% reduction by 2020 diff --git a/workflow/Snakefile b/workflow/Snakefile index af5a9d310..204349c62 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -141,6 +141,7 @@ rule modify_prenetwork: H2_transmission_efficiency=config_provider("sector", "transmission_efficiency", "H2 pipeline"), H2_retrofit=config_provider("sector", "H2_retrofit"), H2_retrofit_capacity_per_CH4=config_provider("sector", "H2_retrofit_capacity_per_CH4"), + transmission_costs=config_provider("costs", "transmission"), input: network=RESULTS + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 5fdbdf7fe..f66824165 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -296,9 +296,10 @@ def unravel_oilbus(n): ) -def transmission_costs_from_modified_cost_data(n, costs, length_factor=1.0): +def transmission_costs_from_modified_cost_data(n, costs, transmission, length_factor=1.0): # copying the the function update_transmission_costs from add_electricity # slight change to the function so it works in modify_prenetwork + n.lines["capital_cost"] = ( n.lines["length"] * length_factor * costs.at["HVAC overhead", "capital_cost"] ) @@ -313,12 +314,19 @@ def transmission_costs_from_modified_cost_data(n, costs, length_factor=1.0): if n.links.loc[dc_b].empty: return + if transmission == "ohl": + # overhead line costs are assumed for links + links_costs = "HVDC overhead" + elif transmission == "uc": + # underground cable costs are assumed and links + links_costs = "HVDC submarine" + costs = ( n.links.loc[dc_b, "length"] * length_factor * ( (1.0 - n.links.loc[dc_b, "underwater_fraction"]) - * costs.at["HVDC overhead", "capital_cost"] + * costs.at[links_costs, "capital_cost"] + n.links.loc[dc_b, "underwater_fraction"] * costs.at["HVDC submarine", "capital_cost"] ) @@ -389,6 +397,6 @@ def transmission_costs_from_modified_cost_data(n, costs, length_factor=1.0): ) # change to NEP21 costs - transmission_costs_from_modified_cost_data(n, costs_loaded, snakemake.params.length_factor) + transmission_costs_from_modified_cost_data(n, costs_loaded, snakemake.params.transmission_costs, snakemake.params.length_factor) n.export_to_netcdf(snakemake.output.network) From 29144121fa68fe5c6a7c295243f6459e70766583 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 23 May 2024 17:23:05 +0200 Subject: [PATCH 350/669] rename of only power generating biomass plants --- workflow/scripts/export_ariadne_variables.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 859364851..afbd595a9 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -199,7 +199,7 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): var[cap_string + "Electricity|Biomass|w/o CCS"] = \ capacities_biomass.reindex( ['urban central solid biomass CHP', - 'urban central solid biomass OP']).sum() + 'solid biomass']).sum() var[cap_string + "Electricity|Biomass|Solids"] = \ @@ -843,7 +843,7 @@ def get_primary_energy(n, region): biomass_usage[~biomass_usage.index.str.contains("CC")].sum() var["Primary Energy|Biomass|Electricity"] = \ - biomass_CHP_E_usage + biomass_usage.get("urban central solid biomass OP") + biomass_CHP_E_usage + biomass_usage.get("solid biomass") var["Primary Energy|Biomass|Heat"] = \ biomass_CHP_H_usage + biomass_usage.get("urban central solid biomass boiler", 0) @@ -973,7 +973,7 @@ def get_secondary_energy(n, region): var["Secondary Energy|Electricity|Biomass|w/o CCS"] = \ electricity_supply.get('urban central solid biomass CHP', 0) + \ - electricity_supply.get('urban central solid biomass OP') + electricity_supply.get('solid biomass') var["Secondary Energy|Electricity|Biomass|w/ CCS"] = \ electricity_supply.get('urban central solid biomass CHP CC', 0) var["Secondary Energy|Electricity|Biomass"] = ( From 8d340ea1f5b7f8ca0351e8f767e21c9537225366 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 24 May 2024 10:55:08 +0200 Subject: [PATCH 351/669] compatibility improvements --- config/config.yaml | 6 +++++- workflow/Snakefile | 2 ++ workflow/submodules/pypsa-eur | 2 +- 3 files changed, 8 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 0bb117bb5..2ddd54228 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: "20240521fixshared" + prefix: "20240523mergemaster" name: # - CurrentPolicies - KN2045_Bal_v4 @@ -22,6 +22,7 @@ run: exclude: - existing_heating.csv # specify files which should not be shared between scenarios - costs + - retrieve_cost # This is necessary to save retrieve_cost_data_{year}.log in the correct folder disable_progressbar: true debug_co2_limit: false debug_h2deriv_limit: false @@ -183,6 +184,7 @@ costs: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: + # solar_thermal: false district_heating: potential: 0.4 progress: @@ -301,6 +303,8 @@ pypsa_eur: - onwind - offwind-ac - offwind-dc + - offwind-float + - solar-hsat - solar - ror StorageUnit: diff --git a/workflow/Snakefile b/workflow/Snakefile index ba0d7c8fd..16e272c59 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -124,6 +124,8 @@ rule modify_cost_data: script: "scripts/modify_cost_data.py" +if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", True): + ruleorder: modify_cost_data > retrieve_cost_data rule modify_prenetwork: params: diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 16b317587..5d36ed79b 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 16b31758766572852dbc49ea96e8e9da2f7f0429 +Subproject commit 5d36ed79b127657d915e796e8c3c46af1d279a54 From bb42fb4ca9635590aeb17ca5f3c72bcb9f24ca08 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 24 May 2024 11:27:22 +0200 Subject: [PATCH 352/669] add new technologies to exporter --- workflow/scripts/export_ariadne_variables.py | 55 ++++++++++---------- 1 file changed, 28 insertions(+), 27 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index a5f0ecc91..29976e209 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -305,7 +305,7 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): capacities_electricity.get("solar rooftop", 0) var[cap_string + "Electricity|Solar|PV|Open Field"] = \ - capacities_electricity.get("solar") + capacities_electricity.reindex(["solar", "solar-hsat"]).sum() var[cap_string + "Electricity|Solar|PV"] = \ var[[ @@ -320,10 +320,9 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): var[cap_string + "Electricity|Solar|PV"] var[cap_string + "Electricity|Wind|Offshore"] = \ - capacities_electricity.get( - ["offwind", "offwind-ac", "offwind-dc"] + capacities_electricity.reindex( + ["offwind", "offwind-ac", "offwind-dc", "offwind-float"] ).sum() - # !: take care of "offwind" -> "offwind-ac"/"offwind-dc" var[cap_string + "Electricity|Wind|Onshore"] = \ capacities_electricity.get("onwind") @@ -527,7 +526,7 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): ).multiply(MW2GW) var[cap_string + "Decentral Heat|Solar thermal"] = \ - capacities_central_heat.filter(like="solar thermal").sum() + capacities_decentral_heat.filter(like="solar thermal").sum() capacities_h2 = cap_func( @@ -987,9 +986,9 @@ def get_secondary_energy(n, region): var["Secondary Energy|Electricity|Solar"] = \ electricity_supply.filter(like="solar").sum() var["Secondary Energy|Electricity|Wind|Offshore"] = \ - electricity_supply.get("onwind") - var["Secondary Energy|Electricity|Wind|Onshore"] = \ electricity_supply.filter(like="offwind").sum() + var["Secondary Energy|Electricity|Wind|Onshore"] = \ + electricity_supply.get("onwind") var["Secondary Energy|Electricity|Wind"] = ( var["Secondary Energy|Electricity|Wind|Offshore"] + var["Secondary Energy|Electricity|Wind|Onshore"] @@ -1655,7 +1654,9 @@ def get_emissions(n, region, _energy_totals): co2_emissions.reindex([ "process emissions", "process emissions CC", - ]).sum() + ]).sum() + \ + co2_emissions.get("industry methanol", 0) + # TODO not sure methanol emissions are right here # !!! We do not strictly separate fuel combustion emissions from # process emissions in industry, so some should go to: @@ -1667,8 +1668,12 @@ def get_emissions(n, region, _energy_totals): ]).sum() - co2_negative_emissions.get( "solid biomass for industry CC", 0, - ) - + ) + + var["Emissions|CO2|Industry"] = \ + var["Emissions|CO2|Energy|Demand|Industry"] + \ + var["Emissions|CO2|Industrial Processes"] + var["Emissions|CO2|Energy|Demand|Residential and Commercial"] = ( co2_emissions.filter(like="urban decentral").sum() + co2_emissions.filter(like="rural" ).sum() @@ -2756,6 +2761,19 @@ def get_data( networks = [pypsa.Network(n) for n in snakemake.input.networks] + if "debug" == "debug":# For debugging + n = networks[2] + c = costs[2] + region="DE" + cap_func=n.statistics.optimal_capacity + cap_string = "Optimal Capacity|" + dg_cost_factor=snakemake.params.dg_cost_factor + kwargs = { + 'groupby': n.statistics.groupers.get_bus_and_carrier, + 'at_port': True, + 'nice_names': False, + } + yearly_dfs = [] for i, year in enumerate(snakemake.params.planning_horizons): yearly_dfs.append(get_data( @@ -2801,20 +2819,3 @@ def get_data( df.to_excel(writer, sheet_name="data", index=False) meta.to_frame().T.to_excel(writer, sheet_name="meta", index=False) - - # For debugging - n = networks[2] - c = costs[2] - region="DE" - kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, - } - cap_func=n.statistics.optimal_capacity - dg_cost_factor=snakemake.params.dg_cost_factor - - kwargs = { - 'groupby': n.statistics.groupers.get_bus_and_carrier, - 'at_port': True, - 'nice_names': False, - } \ No newline at end of file From 09a37f84a9b53cabb46c49bb37b451d9c452d037 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 24 May 2024 11:41:14 +0200 Subject: [PATCH 353/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 6c95595d5..051bf57e7 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 6c95595d54dc3f4450f1e753c9bb1d9e271552fa +Subproject commit 051bf57e7aa315a92b41cb08d2735af9bb70e6d2 From 56603b93e8c272d1d8f0d11e4359a2b77ac2d5bc Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 24 May 2024 11:58:05 +0200 Subject: [PATCH 354/669] minor fix --- workflow/scripts/export_ariadne_variables.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 63bb32743..49712319a 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -842,7 +842,7 @@ def get_primary_energy(n, region): biomass_usage[~biomass_usage.index.str.contains("CC")].sum() var["Primary Energy|Biomass|Electricity"] = \ - biomass_CHP_E_usage + biomass_usage.get("solid biomass") + biomass_CHP_E_usage + biomass_usage.get("solid biomass", 0) var["Primary Energy|Biomass|Heat"] = \ biomass_CHP_H_usage + biomass_usage.get("urban central solid biomass boiler", 0) @@ -972,7 +972,7 @@ def get_secondary_energy(n, region): var["Secondary Energy|Electricity|Biomass|w/o CCS"] = \ electricity_supply.get('urban central solid biomass CHP', 0) + \ - electricity_supply.get('solid biomass') + electricity_supply.get('solid biomass', 0) var["Secondary Energy|Electricity|Biomass|w/ CCS"] = \ electricity_supply.get('urban central solid biomass CHP CC', 0) var["Secondary Energy|Electricity|Biomass"] = ( @@ -2789,6 +2789,7 @@ def get_data( yearly_dfs = [] for i, year in enumerate(snakemake.params.planning_horizons): + print("Getting data for year {year}...".format(year=year)) yearly_dfs.append(get_data( networks[i], industry_demands[i], From ced391b4ff8f52d6ef921c57f4cf62aef107078b Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 24 May 2024 13:50:42 +0200 Subject: [PATCH 355/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 051bf57e7..0a227e552 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 051bf57e7aa315a92b41cb08d2735af9bb70e6d2 +Subproject commit 0a227e552bd071a2067dd70015170027576a1a3f From 249a754014a4b0d570d3cdff609ca5ff4efe05c4 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 24 May 2024 13:57:23 +0200 Subject: [PATCH 356/669] improve naming --- config/scenarios.manual.yaml | 16 ++++++++-------- workflow/scripts/modify_prenetwork.py | 6 ++---- 2 files changed, 10 insertions(+), 12 deletions(-) diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 773695396..0944e0030 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -33,7 +33,7 @@ CurrentPolicies: costs: horizon: "mean" NEP: 2023 - transmission: "uc" # either overhead line ("ohl") or underground cable ("uc") + transmission: "underground" # either overhead line ("overhead") or underground cable ("underground") limits_capacity_min: Generator: @@ -127,7 +127,7 @@ KN2045_Bal_v4: costs: horizon: "mean" NEP: 2021 - transmission: "ohl" # either overhead line ("ohl") or underground cable ("uc") + transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") # boundary condition of maximum volumes limits_volume_max: @@ -185,7 +185,7 @@ KN2045_Elec_v4: costs: horizon: "mean" NEP: 2021 - transmission: "ohl" # either overhead line ("ohl") or underground cable ("uc") + transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") limits_volume_max: # constrain electricity import in TWh @@ -242,7 +242,7 @@ KN2045_H2_v4: costs: horizon: "mean" NEP: 2021 - transmission: "ohl" # either overhead line ("ohl") or underground cable ("uc") + transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") limits_volume_max: # constrain electricity import in TWh @@ -302,7 +302,7 @@ KN2045plus_EasyRide: costs: horizon: "optimist" NEP: 2021 - transmission: "ohl" # either overhead line ("ohl") or underground cable ("uc") + transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") # boundary condition of maximum volumes limits_volume_max: # following the Bal scenario @@ -384,7 +384,7 @@ KN2045plus_LowDemand: costs: horizon: "optimist" NEP: 2021 - transmission: "ohl" # either overhead line ("ohl") or underground cable ("uc") + transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") # boundary condition of maximum volumes limits_volume_max: # Half of the Bal scenario @@ -478,7 +478,7 @@ KN2045minus_WorstCase: costs: horizon: "pessimist" NEP: 2023 - transmission: "uc" # either overhead line ("ohl") or underground cable ("uc") + transmission: "underground" # either overhead line ("overhead") or underground cable ("underground") # boundary condition of maximum volumes limits_volume_max: # Half of the Bal scenario @@ -560,7 +560,7 @@ KN2045minus_SupplyFocus: costs: horizon: "pessimist" NEP: 2023 - transmission: "uc" # either overhead line ("ohl") or underground cable ("uc") + transmission: "underground" # either overhead line ("overhead") or underground cable ("underground") co2_budget: 2020: 0.800 # 20% reduction by 2020 diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index f66824165..db702a8a6 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -314,11 +314,9 @@ def transmission_costs_from_modified_cost_data(n, costs, transmission, length_fa if n.links.loc[dc_b].empty: return - if transmission == "ohl": - # overhead line costs are assumed for links + if transmission == "overhead": links_costs = "HVDC overhead" - elif transmission == "uc": - # underground cable costs are assumed and links + elif transmission == "underground": links_costs = "HVDC submarine" costs = ( From 1efb99349c454ab1af620152dd3ab13fadb7a453 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 24 May 2024 16:05:53 +0200 Subject: [PATCH 357/669] fix snakemake minor error --- workflow/Snakefile | 1 + 1 file changed, 1 insertion(+) diff --git a/workflow/Snakefile b/workflow/Snakefile index b48073e59..a20d6a2ef 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -335,6 +335,7 @@ rule export_ariadne_variables: industrial_production_per_country_tomorrow=expand( resources("industrial_production_per_country_tomorrow_{planning_horizons}-modified.csv"), **config["scenario"], + allow_missing=True, ), idees="data/bundle-sector/jrc-idees-2015", industrial_production=resources("industrial_production_per_country.csv"), From 27327227581e9e033f4efd6df746dd83d5b0d568 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 27 May 2024 11:09:09 +0200 Subject: [PATCH 358/669] fix module import --- workflow/scripts/export_ariadne_variables.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index d3bb9a453..b2658f3dd 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -5,7 +5,6 @@ import math import numpy as np import os -from _helpers import mute_print import re paths = ["workflow/submodules/pypsa-eur/scripts", "../submodules/pypsa-eur/scripts"] @@ -13,6 +12,7 @@ sys.path.insert(0, os.path.abspath(path)) from prepare_sector_network import prepare_costs +from _helpers import mute_print # Defining global varibales From 84ef002a507678b4f5f1dac1b45888572af7f442 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 27 May 2024 11:24:09 +0200 Subject: [PATCH 359/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 0a227e552..962e5d41d 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 0a227e552bd071a2067dd70015170027576a1a3f +Subproject commit 962e5d41d999e364dd586543eda4827c5ce8fdcc From a0d5a870253ceffc9f848ba60fa3e6d07e6288f9 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 27 May 2024 13:45:42 +0200 Subject: [PATCH 360/669] exporter adjustemnts --- config/config.yaml | 3 +- workflow/scripts/export_ariadne_variables.py | 47 +++++++++++++++++++- 2 files changed, 47 insertions(+), 3 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 9f846aa04..c5f44ccb0 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240524mastrchps + prefix: 20240527wasteCHP name: # - CurrentPolicies - KN2045_Bal_v4 @@ -268,6 +268,7 @@ industry: 2045: 0.20 2050: 0.20 waste_to_energy: true + waste_to_energy_cc: true # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 49712319a..05fb82374 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -215,6 +215,8 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): var[cap_string + "Electricity|Biomass"] = \ var[cap_string + "Electricity|Biomass|Solids"] + var[cap_string + "Electricity|Non-Renewable Waste"] = \ + capacities_electricity.filter(like="waste CHP").sum() var[cap_string + "Electricity|Coal|Hard Coal"] = \ capacities_electricity.filter(like="coal").sum() @@ -409,6 +411,7 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): cap_string + "Electricity|Hydro", cap_string + "Electricity|Hydrogen", cap_string + "Electricity|Nuclear", + cap_string + "Electricity|Waste", ]].sum() # Test if we forgot something @@ -460,6 +463,9 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): var[cap_string + "Heat|Biomass"], capacities_central_heat.filter(like="biomass").sum() ) + + var[cap_string + "Heat|Non-Renewable Waste"] = \ + capacities_central_heat.filter(like="waste CHP").sum() var[cap_string + "Heat|Resistive heater"] = \ capacities_central_heat.filter(like="resistive heater").sum() @@ -507,7 +513,8 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): var[cap_string + "Heat|Gas"] + var[cap_string + "Heat|Processes"] + #var[cap_string + "Heat|Hydrogen"] + - var[cap_string + "Heat|Heat pump"] + var[cap_string + "Heat|Heat pump"] + + var[cap_string + "Heat|Non-Renewable Waste"] ) # This check requires further changes to n.statistics @@ -783,6 +790,20 @@ def get_primary_energy(n, region): # ) # ! There are CC sub-categories that could be used + + waste_CHP_E_usage, waste_CHP_H_usage = get_CHP_E_and_H_usage( + n, "non-sequestered HVC", region) + + var["Primary Energy|Waste|Electricity"] = \ + waste_CHP_E_usage + var["Primary Energy|Waste|Heat"] = \ + waste_CHP_H_usage + var["Primary Energy|Waste"] = ( + var["Primary Energy|Waste|Electricity"] + + var["Primary Energy|Waste|Heat"] + ) + + coal_usage = n.statistics.withdrawal( bus_carrier=["lignite", "coal"], **kwargs, @@ -1013,6 +1034,9 @@ def get_secondary_energy(n, region): electricity_supply.get("H2 Fuel Cell", 0) # ! Add H2 Turbines if they get implemented + var["Secondary Energy|Electricity|Waste"] = \ + electricity_supply.filter(like="waste CHP").sum() + var["Secondary Energy|Electricity|Curtailment"] = \ n.statistics.curtailment( bus_carrier=["AC", "low voltage"], **kwargs @@ -1065,6 +1089,7 @@ def get_secondary_energy(n, region): #+ var["Secondary Energy|Electricity|Transmission Losses"] #+ var["Secondary Energy|Electricity|Storage Losses"] + var["Secondary Energy|Electricity|Hydrogen"] + + var["Secondary Energy|Electricity|Waste"] ) assert isclose( @@ -1116,6 +1141,8 @@ def get_secondary_energy(n, region): var["Secondary Energy|Heat|Electricity|Heat Pumps"] + var["Secondary Energy|Heat|Electricity|Resistive"] ) + var["Secondary Energy|Heat|Waste"] = \ + heat_supply.filter(like="waste CHP").sum() var["Secondary Energy|Heat|Other"] = \ heat_supply.reindex( [ @@ -1127,6 +1154,7 @@ def get_secondary_energy(n, region): ] ).sum() # TODO remember to specify in comments + var["Secondary Energy|Heat"] = ( var["Secondary Energy|Heat|Gas"] + var["Secondary Energy|Heat|Biomass"] @@ -1135,6 +1163,7 @@ def get_secondary_energy(n, region): + var["Secondary Energy|Heat|Electricity"] + var["Secondary Energy|Heat|Other"] + var["Secondary Energy|Heat|Coal"] + + var["Secondary Energy|Heat|Waste"] ) assert isclose( var["Secondary Energy|Heat"], @@ -1563,6 +1592,16 @@ def get_final_energy(n, region, _industry_demand, _energy_totals): # var["Final Energy|Geothermal"] = \ # ! Not implemented + waste_withdrawal = n.statistics.withdrawal( + bus_carrier=["non-sequestered HVC"], + **kwargs, + ).filter( + like=region, + ).groupby("carrier").sum().multiply(MWh2PJ) + + var["Final Energy|Waste"] = \ + waste_withdrawal.filter(like="waste CHP").sum() + var["Final Energy incl Non-Energy Use incl Bunkers"] = ( var["Final Energy|Industry"] + var["Final Energy|Residential and Commercial"] @@ -1794,7 +1833,11 @@ def get_emissions(n, region, _energy_totals): ).sum() var["Emissions|CO2|Supply|Non-Renewable Waste"] = \ - co2_emissions.get("naphtha for industry") + co2_emissions.reindex([ + "HVC to air", + "waste CHP", + "waste CHP CC", + ]).sum() # var["Emissions|CO2|Energy|Supply|Liquids"] = \ # Our only Liquid production is Fischer-Tropsch From d66ff3f2b7eec3cad8fdd8792a3aae06852ac3ac Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 27 May 2024 14:06:06 +0200 Subject: [PATCH 361/669] correct waste CHP emissions --- workflow/scripts/export_ariadne_variables.py | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 05fb82374..11698d716 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -291,9 +291,6 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): var[cap_string + "Electricity|Hydrogen"] = \ var[cap_string + "Electricity|Hydrogen|FC"] - # var[cap_string + "Electricity|Non-Renewable Waste"] = - # ! Not implemented - var[cap_string + "Electricity|Nuclear"] = \ capacities_electricity.get("nuclear", 0) @@ -411,7 +408,7 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): cap_string + "Electricity|Hydro", cap_string + "Electricity|Hydrogen", cap_string + "Electricity|Nuclear", - cap_string + "Electricity|Waste", + cap_string + "Electricity|Non-Renewable Waste", ]].sum() # Test if we forgot something @@ -1639,6 +1636,11 @@ def get_emissions(n, region, _energy_totals): bus_carrier="co2",**kwargs ).filter(like=region).filter(like="CHP").multiply(t2Mt) + # exclude waste CHPs because they are accounted separately + CHP_emissions = CHP_emissions[ + ~CHP_emissions.index.get_level_values( + "carrier").str.contains("waste")] + CHP_E_to_H = ( n.links.loc[CHP_emissions.index.get_level_values("name")].efficiency / n.links.loc[CHP_emissions.index.get_level_values("name")].efficiency2 From cf78190c37a29acda5e48f55ab46d77fa0a207b7 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 27 May 2024 14:41:13 +0200 Subject: [PATCH 362/669] rudimentary fixes for FE plots --- workflow/scripts/export_ariadne_variables.py | 12 +++++++++++- workflow/scripts/plot_ariadne_variables.py | 7 ++++--- 2 files changed, 15 insertions(+), 4 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 5f37488fd..ed714068d 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -953,7 +953,8 @@ def get_primary_energy(n, region): var["Primary Energy|Hydro"] + var["Primary Energy|Solar"] + var["Primary Energy|Wind"] + - var["Primary Energy|Nuclear"] + var["Primary Energy|Nuclear"] + + var["Primary Energy|Waste"] ) return var @@ -1343,6 +1344,15 @@ def get_secondary_energy(n, region): var["Secondary Energy Input|Hydrogen|Liquids"] = \ hydrogen_withdrawal.get("Fischer-Tropsch", 0) + var["Secondary Energy"] = ( + var["Secondary Energy|Electricity"] + + var["Secondary Energy|Heat"] + + var["Secondary Energy|Hydrogen"] + + var["Secondary Energy|Gases"] + + var["Secondary Energy|Liquids"] + + var["Secondary Energy|Methanol"] + ) + return var def load_idees_data(sector, country): diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 2eff842e2..e6139776a 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -202,7 +202,8 @@ def within_plot(df, df2, "Final Energy in PJ_yr", savepath=snakemake.output.final_energy, select_regex="Final Energy\|[^|]*$", - drop_regex="^(?!.*(Electricity|Price)).+" + rshift = 1.45, + drop_regex="^(?!.*(Price|Non-Energy Use)).+" ) side_by_side_plot( @@ -211,8 +212,8 @@ def within_plot(df, df2, "Detailed Final Energy in PJ_yr", savepath=snakemake.output.final_energy_detailed, select_regex="Final Energy\|[^|]*\|[^|]*$", - rshift = 1.45, - drop_regex="^(?!.*(Price)).+" + rshift = 1.7, + drop_regex="^(?!.*(Price|\|Solids\||Non-Energy Use\|)).+" ) side_by_side_plot( From 8f600c1b29c91de289173f1498651f9804656d17 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 29 May 2024 15:14:33 +0200 Subject: [PATCH 363/669] report decentral heat in primary energy --- workflow/scripts/export_ariadne_variables.py | 43 ++------------------ 1 file changed, 3 insertions(+), 40 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index ed714068d..4a02b9e5e 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -711,21 +711,8 @@ def get_primary_energy(n, region): var["Primary Energy|Oil|Electricity"] = \ oil_usage.get("oil", 0) + oil_CHP_E_usage - var["Primary Energy|Oil"] = ( - var["Primary Energy|Oil|Electricity"] - + var["Primary Energy|Oil|Heat"] - + oil_usage.reindex( # This is more like final energy than primary energy?? - [ - "land transport oil", - "agriculture machinery oil", - "shipping oil", - "kerosene for aviation", - "naphtha for industry" - ], - ).sum() - ) + var["Primary Energy|Oil"] = oil_usage.sum() - # assert isclose(var["Primary Energy|Oil"], oil_usage.sum()) regional_gas_supply = n.statistics.supply( bus_carrier="gas", @@ -778,18 +765,7 @@ def get_primary_energy(n, region): var["Primary Energy|Gas|Hydrogen"] = \ gas_usage.filter(like="SMR").sum() - var["Primary Energy|Gas"] = ( - var["Primary Energy|Gas|Heat"] - + var["Primary Energy|Gas|Electricity"] - + var["Primary Energy|Gas|Hydrogen"] - + gas_usage.filter(like="gas for industry").sum() - ) - - # assert isclose( - # var["Primary Energy|Gas"], - # gas_usage.sum(), - # ) - # ! There are CC sub-categories that could be used + var["Primary Energy|Gas"] = gas_usage.sum() waste_CHP_E_usage, waste_CHP_H_usage = get_CHP_E_and_H_usage( @@ -871,23 +847,10 @@ def get_primary_energy(n, region): var["Primary Energy|Biomass|Heat"] = \ biomass_CHP_H_usage + biomass_usage.get("urban central solid biomass boiler", 0) - # var["Primary Energy|Biomass|Gases"] = \ - # In this case Gases are only E-Fuels in AriadneDB - # Not possibly in an easy way because biogas to gas goes to the - # gas bus, where it mixes with fossil imports - var["Primary Energy|Biomass"] = ( - var["Primary Energy|Biomass|Electricity"] - + var["Primary Energy|Biomass|Heat"] - + biomass_usage.filter(like="solid biomass for industry").sum() - + biomass_usage.filter(like="biogas to gas").sum() - ) + var["Primary Energy|Biomass"] = biomass_usage.sum() - # assert isclose( - # var["Primary Energy|Biomass"], - # biomass_usage.sum(), - # ) var["Primary Energy|Nuclear"] = \ n.statistics.withdrawal( From 2fce5ee8b4be3948b6890e4740ce62f6d6f5a80c Mon Sep 17 00:00:00 2001 From: toniseibold Date: Thu, 30 May 2024 10:58:07 +0200 Subject: [PATCH 364/669] Changing distribution grid costs --- ariadne-data/costs_2019-modifications.csv | 2 +- ariadne-data/costs_2020-modifications.csv | 2 +- ariadne-data/costs_2025-modifications.csv | 2 +- ariadne-data/costs_2030-modifications.csv | 2 +- ariadne-data/costs_2035-modifications.csv | 2 +- ariadne-data/costs_2040-modifications.csv | 2 +- ariadne-data/costs_2045-modifications.csv | 2 +- ariadne-data/costs_2050-modifications.csv | 2 +- 8 files changed, 8 insertions(+), 8 deletions(-) diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv index 745ef4ea4..a53eb0301 100644 --- a/ariadne-data/costs_2019-modifications.csv +++ b/ariadne-data/costs_2019-modifications.csv @@ -5,7 +5,7 @@ coal,fuel,6.7391,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1685,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf decentral ground-sourced heat pump,investment,2774,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 +electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index 71a9d4070..1d8626019 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -5,7 +5,7 @@ coal,fuel,5.7048,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1685,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf decentral ground-sourced heat pump,investment,2774,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 +electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index 00db5cd63..4f3123451 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -5,7 +5,7 @@ coal,fuel,10.6694,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1267,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1604,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2682,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 +electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index d19220b1b..9abd6e73c 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -5,7 +5,7 @@ coal,fuel,6.2056,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,1083,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1523,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2589,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 +electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index 10ef33a9f..85fbdd633 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -5,7 +5,7 @@ coal,fuel,6.2601,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,900,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1483,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2497,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 +electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index 62f7e0718..cc9bf5825 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -5,7 +5,7 @@ coal,fuel,6.3036,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,717,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1442,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2404,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 +electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index e332031a3..c64ce64e6 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -5,7 +5,7 @@ coal,fuel,6.3472,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,533,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1402,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2312,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 +electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index 1689e2c6f..0a42092ce 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -5,7 +5,7 @@ coal,fuel,6.4016,EUR2020/MWh,Ariadne,"$2020 = 0.8775 EUR2020, 1t = 8.06 MWh" electrolysis,investment,350,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW upper limit 2020 to 2050" decentral air-sourced heat pump,investment,1362,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2219,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA -electricity distribution grid,investment,2985,EUR2020/kW,NEP2021+NEP2023 +electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 From 18df7a75eb40731c681c0919dcd3c59fbb0ed96b Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 30 May 2024 14:28:45 +0200 Subject: [PATCH 365/669] add electricity validation plot for 2020 --- workflow/Snakefile | 1 + workflow/scripts/plot_ariadne_variables.py | 54 ++++++++++++++++++++++ 2 files changed, 55 insertions(+) diff --git a/workflow/Snakefile b/workflow/Snakefile index a20d6a2ef..059c6e9dd 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -376,6 +376,7 @@ rule plot_ariadne_variables: all_prices = RESULTS + "ariadne/all_prices.png", policy_carbon = RESULTS + "ariadne/policy_carbon.png", investment_energy_supply = RESULTS + "ariadne/investment_energy_supply.png", + elec_val_2020 = RESULTS + "ariadne/elec_val_2020.png", script: "scripts/plot_ariadne_variables.py" diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index e6139776a..db504e9a4 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -119,6 +119,58 @@ def within_plot(df, df2, return fig +def elec_val_plot(df, savepath): + # electricity validation for 2020 + elec_capacities = pd.DataFrame(index=["ror", "hydro", "battery", "biomass", "nuclear", "lignite", "coal", "oil", "gas", "wind_onshore", "wind_offshore", "solar"]) + elec_generation = pd.DataFrame(index=["ror", "hydro", "battery", "biomass", "nuclear", "lignite", "coal", "oil", "gas", "wind", "solar"]) + + elec_capacities["real"] = [4.94, 9.69, 2.4, 8.72, 8.11, 20.86, 23.74, 4.86, 32.54, 54.25, 7.86, 54.36] # https://energy-charts.info/charts/installed_power/chart.htm?l=en&c=DE&year=2020 + elec_generation["real"] = [np.nan, 18.7, np.nan, 45, 64, 91, 43, 4.7, 95, 132, 50] # https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Energie/Erzeugung/Tabellen/bruttostromerzeugung.html + elec_capacities["pypsa"] = [ + 0, + df.loc[("Capacity|Electricity|Hydro", "GW"), "2020"], + 0, + df.loc[("Capacity|Electricity|Biomass", "GW"), "2020"], + df.loc[("Capacity|Electricity|Nuclear", "GW"), "2020"], + df.loc[("Capacity|Electricity|Coal|Lignite", "GW"), "2020"], + df.loc[("Capacity|Electricity|Coal|Hard Coal", "GW"), "2020"], + df.loc[("Capacity|Electricity|Oil", "GW"), "2020"], + df.loc[("Capacity|Electricity|Gas", "GW"), "2020"], + df.loc[("Capacity|Electricity|Wind|Onshore", "GW"), "2020"], + df.loc[("Capacity|Electricity|Wind|Offshore", "GW"), "2020"], + df.loc[("Capacity|Electricity|Solar", "GW"), "2020"], + ] + + elec_generation["pypsa"] = [ + 0, + df.loc[("Secondary Energy|Electricity|Hydro", "PJ/yr"), "2020"] / 3.6, + 0, + df.loc[("Secondary Energy|Electricity|Biomass", "PJ/yr"), "2020"] / 3.6, + df.loc[("Secondary Energy|Electricity|Nuclear", "PJ/yr"), "2020"] / 3.6, + df.loc[("Secondary Energy|Electricity|Coal|Lignite", "PJ/yr"), "2020"] / 3.6, + df.loc[("Secondary Energy|Electricity|Coal|Hard Coal", "PJ/yr"), "2020"] / 3.6, + df.loc[("Secondary Energy|Electricity|Oil", "PJ/yr"), "2020"] / 3.6, + df.loc[("Secondary Energy|Electricity|Gas", "PJ/yr"), "2020"] / 3.6, + df.loc[("Secondary Energy|Electricity|Wind", "PJ/yr"), "2020"] / 3.6, + df.loc[("Secondary Energy|Electricity|Solar", "PJ/yr"), "2020"] / 3.6, + ] + + fig, axes = plt.subplots(1, 2, figsize=(10, 5)) + elec_capacities.plot(kind="bar", ax=axes[0]) + axes[0].set_ylabel("GW") + axes[0].set_title("Installed Capacities Germany 2020") + + elec_generation.plot(kind="bar", ax=axes[1]) + axes[1].set_ylabel("TWh") + axes[1].set_title("Electricity Generation Germany 2020") + + plt.tight_layout() + plt.close() + fig.savefig(savepath, bbox_inches="tight") + + return fig + + if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -334,3 +386,5 @@ def within_plot(df, df2, write_sum = True, ) + elec_val_plot(df, savepath=snakemake.output.elec_val_2020) + From 48cf56f37cdb7283ac782b661a9089da9048c49a Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Thu, 30 May 2024 17:52:18 +0200 Subject: [PATCH 366/669] must run condition for biomass --- config/config.yaml | 7 ++++++- workflow/scripts/modify_prenetwork.py | 11 +++++++++++ 2 files changed, 17 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 74f4e61a7..b350a5b37 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240527wasteCHP + prefix: 20240530biomassFixActive name: # - CurrentPolicies - KN2045_Bal_v4 @@ -328,3 +328,8 @@ pypsa_eur: - PHS - hydro Store: [] + +must_run_biomass: + enable: true + p_min_pu: 0.7 + regions: ['DE'] \ No newline at end of file diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index db702a8a6..345df9cb2 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -332,6 +332,14 @@ def transmission_costs_from_modified_cost_data(n, costs, transmission, length_fa ) n.links.loc[dc_b, "capital_cost"] = costs +def must_run_biomass(n, p_min_pu, regions): + """ + Set p_min_pu for biomass generators to the specified value. + """ + logger.info(f"Setting p_min_pu = {p_min_pu} for biomass generators") + links_i = n.links[(n.links.carrier == 'urban central solid biomass CHP') & (n.links.bus0.str.startswith(tuple(regions)))].index + n.links.loc[links_i, "p_min_pu"] = p_min_pu + if __name__ == "__main__": if "snakemake" not in globals(): @@ -397,4 +405,7 @@ def transmission_costs_from_modified_cost_data(n, costs, transmission, length_fa # change to NEP21 costs transmission_costs_from_modified_cost_data(n, costs_loaded, snakemake.params.transmission_costs, snakemake.params.length_factor) + if snakemake.config["must_run_biomass"]["enable"]: + must_run_biomass(n, snakemake.config["must_run_biomass"]["p_min_pu"], snakemake.config["must_run_biomass"]["regions"]) + n.export_to_netcdf(snakemake.output.network) From 451e9958ef70772817ff9dd8810286cc903eedc9 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Mon, 3 Jun 2024 15:12:17 +0200 Subject: [PATCH 367/669] added config params to Snakemake rule; changed carrier to "solid biomass" --- workflow/Snakefile | 1 + workflow/scripts/modify_prenetwork.py | 8 ++++---- 2 files changed, 5 insertions(+), 4 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 059c6e9dd..09ba0b75e 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -146,6 +146,7 @@ rule modify_prenetwork: H2_retrofit=config_provider("sector", "H2_retrofit"), H2_retrofit_capacity_per_CH4=config_provider("sector", "H2_retrofit_capacity_per_CH4"), transmission_costs=config_provider("costs", "transmission"), + biomass_must_run=config_provider("must_run_biomass"), input: network=RESULTS + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 345df9cb2..860b2ede2 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -336,8 +336,8 @@ def must_run_biomass(n, p_min_pu, regions): """ Set p_min_pu for biomass generators to the specified value. """ - logger.info(f"Setting p_min_pu = {p_min_pu} for biomass generators") - links_i = n.links[(n.links.carrier == 'urban central solid biomass CHP') & (n.links.bus0.str.startswith(tuple(regions)))].index + logger.info(f"Must-run condition enabled: Setting p_min_pu = {p_min_pu} for biomass generators.") + links_i = n.links[(n.links.carrier == 'solid biomass') & (n.links.bus0.str.startswith(tuple(regions)))].index n.links.loc[links_i, "p_min_pu"] = p_min_pu @@ -405,7 +405,7 @@ def must_run_biomass(n, p_min_pu, regions): # change to NEP21 costs transmission_costs_from_modified_cost_data(n, costs_loaded, snakemake.params.transmission_costs, snakemake.params.length_factor) - if snakemake.config["must_run_biomass"]["enable"]: - must_run_biomass(n, snakemake.config["must_run_biomass"]["p_min_pu"], snakemake.config["must_run_biomass"]["regions"]) + if snakemake.params.biomass_must_run["enable"]: + must_run_biomass(n, snakemake.params.biomass_must_run["p_min_pu"], snakemake.params.biomass_must_run["regions"]) n.export_to_netcdf(snakemake.output.network) From 40efe61b74221ffe28adba16456844704f1cde91 Mon Sep 17 00:00:00 2001 From: Micha Date: Mon, 3 Jun 2024 15:24:25 +0200 Subject: [PATCH 368/669] add option for UBA target, rename functions and variables (#93) * add option for UBA target, rename functions and variables * fix 2030-50 budget trajectory * typo --- config/scenarios.manual.yaml | 10 ++++ workflow/Snakefile | 2 +- workflow/scripts/build_scenarios.py | 71 +++++++++++++++-------------- 3 files changed, 49 insertions(+), 34 deletions(-) diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 0944e0030..d1427fcac 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -21,6 +21,8 @@ CurrentPolicies: # TODO: wait for REMod v1.0 to upload a first Trend scenario reference_scenario: Trend # CurrentPolicies once it's renamed + co2_budget_DE_source: UBA + co2_budget: 2020: 0.800 # 20% reduction by 2020 2025: 0.600 @@ -123,6 +125,7 @@ KN2045_Bal_v4: iiasa_database: reference_scenario: 8Gt_Bal_v3 + co2_budget_DE_source: KSG costs: horizon: "mean" @@ -181,6 +184,7 @@ KN2045_Elec_v4: iiasa_database: reference_scenario: 8Gt_Elec_v3 + co2_budget_DE_source: KSG costs: horizon: "mean" @@ -238,6 +242,7 @@ KN2045_H2_v4: iiasa_database: reference_scenario: 8Gt_H2_v3 + co2_budget_DE_source: KSG costs: horizon: "mean" @@ -298,6 +303,7 @@ KN2045plus_EasyRide: # Verlagerung der energieintensiven Grundstoffindustrie iiasa_database: reference_scenario: 8Gt_EasyRide_v3 # TODO: wait for database + co2_budget_DE_source: KSG costs: horizon: "optimist" @@ -380,6 +386,7 @@ KN2045plus_LowDemand: # innerhalb Deutschlands und knappe Importe EE möglich iiasa_database: reference_scenario: 8Gt_LowDemand_v3 # TODO: wait for database + co2_budget_DE_source: KSG costs: horizon: "optimist" @@ -466,6 +473,8 @@ KN2045minus_WorstCase: iiasa_database: reference_scenario: 8Gt_WorstCase_v3 # TODO: wait for database + co2_budget_DE_source: UBA + co2_budget: 2020: 0.800 # 20% reduction by 2020 2025: 0.600 @@ -561,6 +570,7 @@ KN2045minus_SupplyFocus: horizon: "pessimist" NEP: 2023 transmission: "underground" # either overhead line ("overhead") or underground cable ("underground") + co2_budget_DE_source: UBA co2_budget: 2020: 0.800 # 20% reduction by 2020 diff --git a/workflow/Snakefile b/workflow/Snakefile index 09ba0b75e..5245732da 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -392,7 +392,7 @@ rule ariadne_all: rule build_scenarios: params: - scenario_name=config_provider("run", "name"), + scenarios=config_provider("run", "name"), input: ariadne_database=resources("ariadne_database.csv"), scenario_yaml="config/scenarios.manual.yaml", diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 5bf124698..017786804 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -77,55 +77,62 @@ def get_primary_steel_share(df, planning_horizons): return primary_steel_share.set_index(pd.Index(["Primary_Steel_Share"])) -def get_ksg_targets(df): +def get_co2_budget(df, source): # relative to the DE emissions in 1990 *including bunkers*; also # account for non-CO2 GHG and allow extra room for international # bunkers which are excluded from the national targets # Baseline emission in DE in 1990 in Mt as understood by the KSG and by PyPSA - baseline_ksg = 1251 + baseline_co2 = 1251 baseline_pypsa = 1052 + if source == "KSG": + ## GHG targets according to KSG + initial_years_co2 = pd.Series( + index = [2020, 2025, 2030], + data = [813, 643, 438], + ) - ## GHG targets according to KSG - initial_years_ksg = pd.Series( - index = [2020, 2025, 2030], - data = [813, 643, 438], - ) - - later_years_ksg = pd.Series( - index = [2035, 2040, 2045, 2050], - data = [0.77, 0.88, 1.0, 1.0], - ) - - targets_ksg = pd.concat( - [initial_years_ksg, (1 - later_years_ksg) * baseline_ksg], - ) + later_years_co2 = pd.Series( + index = [2035, 2040, 2045, 2050], + data = [0.77, 0.88, 1.0, 1.0], + ) + targets_co2 = pd.concat( + [initial_years_co2, (1 - later_years_co2) * baseline_co2], + ) + elif source == "UBA": + ## For Zielverfehlungsszenarien use UBA Projektionsbericht + targets_co2 = pd.Series( + index = [2020, 2025, 2030, 2035, 2040, 2045, 2050], + data = [813, 655, 455, 309, 210, 169, 157], + ) + else: + raise ValueError("Invalid source for CO2 budget.") ## Compute nonco2 from Ariadne-Leitmodell (REMIND) - co2_ksg = ( + co2 = ( df.loc["Emissions|CO2 incl Bunkers","Mt CO2/yr"] - df.loc["Emissions|CO2|Land-Use Change","Mt CO2-equiv/yr"] - df.loc["Emissions|CO2|Energy|Demand|Bunkers","Mt CO2/yr"] ) - ghg_ksg = ( + ghg = ( df.loc["Emissions|Kyoto Gases","Mt CO2-equiv/yr"] - df.loc["Emissions|Kyoto Gases|Land-Use Change","Mt CO2-equiv/yr"] # No Kyoto Gas emissions for Bunkers recorded in Ariadne DB ) - nonco2 = ghg_ksg - co2_ksg + nonco2 = ghg - co2 ## PyPSA disregards nonco2 GHG emissions, but includes bunkers targets_pypsa = ( - targets_ksg - nonco2 + targets_co2 - nonco2 + df.loc["Emissions|CO2|Energy|Demand|Bunkers","Mt CO2/yr"] ) target_fractions_pypsa = ( - targets_pypsa.loc[targets_ksg.index] / baseline_pypsa + targets_pypsa.loc[targets_co2.index] / baseline_pypsa ) return target_fractions_pypsa.round(3) @@ -140,14 +147,13 @@ def write_to_scenario_yaml( for scenario in scenarios: reference_scenario = config[scenario]["iiasa_database"]["reference_scenario"] if scenario == "CurrentPolicies": - ksg_target_fractions = get_ksg_targets( - df.loc["REMIND-EU v1.1", "8Gt_Bal_v3"] - ) - ksg_target_fractions[[2035, 2040, 2045]] = ksg_target_fractions[2030] - else: - ksg_target_fractions = get_ksg_targets( - df.loc["REMIND-EU v1.1", reference_scenario] - ) + reference_scenario = "8Gt_Bal_v3" # hotfix until DB is updated + co2_budget_source = config[scenario]["co2_budget_DE_source"] + + co2_budget_fractions = get_co2_budget( + df.loc["REMIND-EU v1.1", "8Gt_Bal_v3"], + co2_budget_source + ) planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] # for 2050 we still need data @@ -192,10 +198,9 @@ def write_to_scenario_yaml( for year in st_primary_fraction.columns: config[scenario]["industry"]["St_primary_fraction"][year] = round(st_primary_fraction.loc["Primary_Steel_Share", year].item(), 4) config[scenario]["co2_budget_national"] = {} - for year, target in ksg_target_fractions.items(): + for year, target in co2_budget_fractions.items(): config[scenario]["co2_budget_national"][year] = {} - target_value = float(ksg_target_fractions[2030]) if year > 2030 and scenario == "CurrentPolicies" else target - config[scenario]["co2_budget_national"][year]["DE"] = target_value + config[scenario]["co2_budget_national"][year]["DE"] = target # write back to yaml file yaml.dump(config, Path(output)) @@ -225,7 +230,7 @@ def write_to_scenario_yaml( :, "Deutschland"] - scenarios = snakemake.params.scenario_name + scenarios = snakemake.params.scenarios input = snakemake.input.scenario_yaml output = snakemake.output.scenario_yaml From 77982154b3cf82fd36225b2abd2e410774f57d84 Mon Sep 17 00:00:00 2001 From: Julian Geis Date: Tue, 4 Jun 2024 09:26:52 +0200 Subject: [PATCH 369/669] Export missing variables for trade and policy (#85) * export firs trade variables * add plotting for trade and issing policy variables * added Trade|Secondary Energy|Liquids|Hydrogen|Volume and Trade|Primary Energy|Gas|Volume * undo config changes * fix undo config changes * cleanup --------- Co-authored-by: Michael Lindner --- workflow/Snakefile | 1 + workflow/scripts/export_ariadne_variables.py | 72 +++++++++++++++++++- workflow/scripts/plot_ariadne_variables.py | 12 +++- 3 files changed, 82 insertions(+), 3 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 5245732da..5da3265b9 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -378,6 +378,7 @@ rule plot_ariadne_variables: policy_carbon = RESULTS + "ariadne/policy_carbon.png", investment_energy_supply = RESULTS + "ariadne/investment_energy_supply.png", elec_val_2020 = RESULTS + "ariadne/elec_val_2020.png", + trade = RESULTS + "ariadne/trade.png", script: "scripts/plot_ariadne_variables.py" diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 4a02b9e5e..f1cfd0046 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -6,6 +6,7 @@ import numpy as np import os import re +import sys paths = ["workflow/submodules/pypsa-eur/scripts", "../submodules/pypsa-eur/scripts"] for path in paths: @@ -2971,6 +2972,74 @@ def get_policy(n): var["Price|Carbon"] = \ -n.global_constraints.loc["CO2Limit", "mu"] - n.global_constraints.loc["co2_limit-DE", "mu"] + + var["Price|Carbon|EU-wide Regulation All Sectors"] = \ + -n.global_constraints.loc["CO2Limit", "mu"] + + # Price|Carbon|EU-wide Regulation Non-ETS + + var["Price|Carbon|National Climate Target"] = \ + -n.global_constraints.loc["co2_limit-DE", "mu"] + + # Price|Carbon|National Climate Target Non-ETS + + return var + +def get_trade(n, region): + var = pd.Series() + + def get_net_export_links(n, region, carriers): + exporting = n.links.index[ + (n.links.carrier.isin(carriers)) & + (n.links.bus0.str[:2] == region) & + (n.links.bus1.str[:2] != region)] + exporting_p = n.links_t.p0.loc[: , exporting].multiply(n.snapshot_weightings.generators, axis=0).values.sum() + + importing = n.links.index[ + (n.links.carrier.isin(carriers)) & + (n.links.bus0.str[:2] != region) & + (n.links.bus1.str[:2] == region)] + importing_p = n.links_t.p0.loc[: , importing].multiply(n.snapshot_weightings.generators, axis=0).values.sum() + + return (exporting_p - importing_p) * MWh2PJ + + # Trade|Primary Energy|Biomass|Volume + # Trade|Secondary Energy|Electricity|Volume + exporting_ac = n.lines.index[ + (n.lines.carrier == "AC") & + (n.lines.bus0.str[:2] == region) & + (n.lines.bus1.str[:2] != region)] + exporting_p_ac = n.lines_t.p0.loc[: , exporting_ac].multiply(n.snapshot_weightings.generators, axis=0).values.sum() + + importing_ac = n.lines.index[ + (n.lines.carrier == "AC") & + (n.lines.bus0.str[:2] != region) & + (n.lines.bus1.str[:2] == region)] + importing_p_ac = n.lines_t.p0.loc[: , importing_ac].multiply(n.snapshot_weightings.generators, axis=0).values.sum() + + var["Trade|Secondary Energy|Electricity|Volume"] = \ + ((exporting_p_ac - importing_p_ac) * MWh2PJ + get_net_export_links(n, region, ["DC"])) + + # Trade|Secondary Energy|Hydrogen|Volume + h2_carriers = ["H2 pipeline", "H2 pipeline (Kernnetz)", "H2 pipeline retrofitted"] + var["Trade|Secondary Energy|Hydrogen|Volume"] = \ + get_net_export_links(n, region, h2_carriers) + + # Trade|Secondary Energy|Liquids|Hydrogen|Volume + var["Trade|Secondary Energy|Liquids|Hydrogen|Volume"] = \ + get_net_export_links(n, "DE", ["renewable oil"]) + + # Trade|Secondary Energy|Gases|Hydrogen|Volume + # Trade|Primary Energy|Coal|Volume + # Trade|Primary Energy|Gas|Volume + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'nice_names': False, + } + var["Trade|Primary Energy|Gas|Volume"] = \ + get_net_export_links(n, region, ["gas pipeline", "gas pipeline new"]) * _get_gas_fossil_fraction(n, region, kwargs) + + # Trade|Primary Energy|Oil|Volume return var @@ -3016,6 +3085,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): length_factor=snakemake.params.length_factor ), get_policy(n), + get_trade(n, region), ]) return var @@ -3108,6 +3178,7 @@ def get_data( networks = [pypsa.Network(n) for n in snakemake.input.networks] if "debug" == "debug":# For debugging + var = pd.Series() n = networks[2] c = costs[2] region="DE" @@ -3166,4 +3237,3 @@ def get_data( with pd.ExcelWriter(snakemake.output.exported_variables) as writer: df.to_excel(writer, sheet_name="data", index=False) meta.to_frame().T.to_excel(writer, sheet_name="meta", index=False) - diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index db504e9a4..640d27629 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -224,7 +224,7 @@ def elec_val_plot(df, savepath): "Detailed Primary Energy in PJ_yr", savepath=snakemake.output.primary_energy_detailed, select_regex="Primary Energy\|[^|]*\|[^|]*$", - drop_regex="^(?!.*(CCS|Price)).+" + drop_regex="^(?!.*(CCS|Price|Volume)).+" ) side_by_side_plot( @@ -245,7 +245,7 @@ def elec_val_plot(df, savepath): # Secondary Energy|Something|Something (exactly two pipes) select_regex="Secondary Energy\|[^|]*\|[^|]*$", # Not ending in Fossil or Renewables (i.e., categories) - drop_regex="^(?!.*(Fossil|Renewables|Losses|Price)).+" + drop_regex= "^(?!.*(Fossil|Renewables|Losses|Price|Volume)).+" ) side_by_side_plot( @@ -388,3 +388,11 @@ def elec_val_plot(df, savepath): elec_val_plot(df, savepath=snakemake.output.elec_val_2020) + within_plot( + df[df.index.get_level_values("Variable").str.startswith('Trade')], + dfremind, + title = "Trade", + savepath=snakemake.output.trade, + unit="PJ/yr", + ) + \ No newline at end of file From b3750a35493a72c7b655c4614eaeac3e654b04c4 Mon Sep 17 00:00:00 2001 From: Toni Seibold <153275395+toniseibold@users.noreply.github.com> Date: Tue, 4 Jun 2024 09:58:44 +0200 Subject: [PATCH 370/669] Add max capacity limits for renewable energies in Germany (#89) * adding max capacity limits for renewable energies in Germany * fixing the maximum constraints for 2020 and 2025 * handle max limits differently * plus scenarios have Zielerreichung * generalize exclude for "residential" and "services" prefixed * cleanup * re-acivate solar_thermal --------- Co-authored-by: Michael Lindner Co-authored-by: Micha --- config/config.yaml | 22 ++++-- config/scenarios.manual.yaml | 73 +------------------- workflow/scripts/additional_functionality.py | 66 ++++++++++++++++-- 3 files changed, 81 insertions(+), 80 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index b350a5b37..0c6d053ad 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240530biomassFixActive + prefix: 20240603max_RE_cap name: # - CurrentPolicies - KN2045_Bal_v4 @@ -113,20 +113,31 @@ co2_budget: 2045: 0.050 2050: 0.000 # climate-neutral by 2050 +limits_capacity_max: + Generator: + onwind: + DE: + 2020: 54 + 2025: 69 + offwind: + DE: + 2020: 8 + 2025: 8 + solar: + DE: + 2020: 54 + 2025: 110 # EEG2023; assumes for 2026: 128 GW, assuming a fair share reached by end of 2025 + limits_capacity_min: Generator: onwind: DE: - 2020: 48 - 2025: 61 2030: 115 # Wind-an-Land Law 2035: 157 # Wind-an-Land Law 2040: 160 # Wind-an-Land Law 2045: 160 offwind: DE: - 2020: 7.77 - 2025: 8 2030: 30 # Wind-auf-See Law 2035: 40 # 40 Wind-auf-See Law # assuming at least 1/3 of difference reached in 2040 @@ -134,7 +145,6 @@ limits_capacity_min: 2045: 70 #70 Wind-auf-See Law solar: DE: - 2020: 59 # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, # assuming at least 1/3 of difference reached in 2025 2025: 101 diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index d1427fcac..9e761ae86 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -41,26 +41,19 @@ CurrentPolicies: Generator: onwind: DE: - 2020: 48 - 2025: 61 2030: 86.5 # 75 % Wind-an-Land Law 2035: 86.5 2040: 86.5 2045: 86.5 offwind: DE: - 2020: 7.77 - 2025: 8 2030: 22.5 # 75 % Wind-auf-See Law 2035: 22.5 2040: 22.5 2045: 22.5 solar: DE: - 2020: 59 - # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, - # assuming at least 1/3 of difference reached in 2025 - 2025: 101 + 2025: 101 2030: 161.25 # 75 % PV strategy 2035: 161.25 2040: 161.25 @@ -354,32 +347,7 @@ KN2045plus_EasyRide: 2035: 0 2040: 0 2045: 0 - limits_capacity_min: - Generator: - onwind: - DE: - 2020: 48 - 2025: 61 - 2030: 115 # Wind-an-Land Law - 2035: 115 # not forcing more EE - 2040: 115 - 2045: 115 - offwind: - DE: - 2020: 7.77 - 2025: 8 - 2030: 30 # Wind-auf-See Law - 2035: 30 # not forcing more EE - 2040: 30 - 2045: 30 - solar: - DE: - 2020: 59 - 2025: 101 - 2030: 215 # PV strategy - 2035: 215 # not forcing more EE - 2040: 215 - 2045: 215 + KN2045plus_LowDemand: # Im Vergleich zu Easy Ride eher knappe EE Erzeugung @@ -437,32 +405,7 @@ KN2045plus_LowDemand: 2035: 0 2040: 0 2045: 0 - limits_capacity_min: - Generator: - onwind: - DE: - 2020: 48 - 2025: 61 - 2030: 115 # Wind-an-Land Law - 2035: 115 # not forcing more EE - 2040: 115 - 2045: 115 - offwind: - DE: - 2020: 7.77 - 2025: 8 - 2030: 30 # Wind-auf-See Law - 2035: 30 # not forcing more EE - 2040: 30 - 2045: 30 - solar: - DE: - 2020: 59 - 2025: 101 - 2030: 215 # PV strategy - 2035: 215 # not forcing more EE - 2040: 215 - 2045: 215 + KN2045minus_WorstCase: # Nachfrage nach Endenergie ist höher als in den Szenarien 1-3 @@ -537,23 +480,18 @@ KN2045minus_WorstCase: Generator: onwind: DE: - 2020: 48 - 2025: 61 2030: 115 # Wind-an-Land Law 2035: 115 # not forcing more EE 2040: 115 2045: 115 offwind: DE: - 2020: 7.77 - 2025: 8 2030: 30 # Wind-auf-See Law 2035: 30 # not forcing more EE 2040: 30 2045: 30 solar: DE: - 2020: 59 2025: 101 2030: 215 # PV strategy 2035: 215 # not forcing more EE @@ -628,23 +566,18 @@ KN2045minus_SupplyFocus: Generator: onwind: DE: - 2020: 48 - 2025: 61 2030: 115 # Wind-an-Land Law 2035: 115 # not forcing more EE 2040: 115 2045: 115 offwind: DE: - 2020: 7.77 - 2025: 8 2030: 30 # Wind-auf-See Law 2035: 30 # not forcing more EE 2040: 30 2045: 30 solar: DE: - 2020: 59 2025: 101 2030: 215 # PV strategy 2035: 215 # not forcing more EE diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index f144d9524..1aa4ba47f 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -9,7 +9,7 @@ logger = logging.getLogger(__name__) -def add_min_limits(n, snapshots, investment_year, config): +def add_min_limits(n, investment_year, config): for c in n.iterate_components(config["limits_capacity_min"]): logger.info(f"Adding minimum constraints for {c.list_name}") @@ -17,12 +17,20 @@ def add_min_limits(n, snapshots, investment_year, config): for carrier in config["limits_capacity_min"][c.name]: for ct in config["limits_capacity_min"][c.name][carrier]: + # check if the limit is defined for the investement year + if investment_year not in config["limits_capacity_min"][c.name][carrier][ct].keys(): + continue limit = 1e3*config["limits_capacity_min"][c.name][carrier][ct][investment_year] logger.info(f"Adding constraint on {c.name} {carrier} capacity in {ct} to be greater than {limit} MW") - existing_index = c.df.index[(c.df.index.str[:2] == ct) & (c.df.carrier.str[:len(carrier)] == carrier) & ~c.df.p_nom_extendable] - extendable_index = c.df.index[(c.df.index.str[:2] == ct) & (c.df.carrier.str[:len(carrier)] == carrier) & c.df.p_nom_extendable] + valid_components = ( + (c.df.index.str[:2] == ct) & + (c.df.carrier.str[:len(carrier)] == carrier) & + ~c.df.carrier.str.contains("thermal")) # exclude solar thermal + + existing_index = c.df.index[valid_components & ~c.df.p_nom_extendable] + extendable_index = c.df.index[valid_components & c.df.p_nom_extendable] existing_capacity = c.df.loc[existing_index, "p_nom"].sum() @@ -46,6 +54,54 @@ def add_min_limits(n, snapshots, investment_year, config): carrier_attribute="", ) +def add_max_limits(n, investment_year, config): + + for c in n.iterate_components(config["limits_capacity_max"]): + logger.info(f"Adding maximum constraints for {c.list_name}") + + for carrier in config["limits_capacity_max"][c.name]: + + for ct in config["limits_capacity_max"][c.name][carrier]: + if investment_year not in config["limits_capacity_max"][c.name][carrier][ct].keys(): + continue + limit = 1e3*config["limits_capacity_max"][c.name][carrier][ct][investment_year] + + valid_components = ( + (c.df.index.str[:2] == ct) & + (c.df.carrier.str[:len(carrier)] == carrier) & + ~c.df.carrier.str.contains("thermal")) # exclude solar thermal + + existing_index = c.df.index[valid_components & ~c.df.p_nom_extendable] + extendable_index = c.df.index[valid_components & c.df.p_nom_extendable] + + existing_capacity = c.df.loc[existing_index, "p_nom"].sum() + + logger.info(f"Existing {c.name} {carrier} capacity in {ct}: {existing_capacity} MW") + logger.info(f"Adding constraint on {c.name} {carrier} capacity in {ct} to be smaller than {limit} MW") + + p_nom = n.model[c.name + "-p_nom"].loc[extendable_index] + + lhs = p_nom.sum() + + cname = f"capacity_maximum-{ct}-{c.name}-{carrier.replace(' ','-')}" + if limit - existing_capacity <= 0: + n.model.add_constraints( + lhs <= 0, name=f"GlobalConstraint-{cname}" + ) + logger.warning(f"Existing capacity in {ct} for carrier {carrier} already exceeds the limit of {limit} MW. Limiting capacity expansion for this investment period to 0.") + else: + n.model.add_constraints( + lhs <= limit - existing_capacity, name=f"GlobalConstraint-{cname}" + ) + n.add( + "GlobalConstraint", + cname, + constant=limit, + sense="<=", + type="", + carrier_attribute="", + ) + def h2_import_limits(n, snapshots, investment_year, config): @@ -324,7 +380,9 @@ def additional_functionality(n, snapshots, snakemake): investment_year = int(snakemake.wildcards.planning_horizons[-4:]) - add_min_limits(n, snapshots, investment_year, snakemake.config) + add_min_limits(n, investment_year, snakemake.config) + + add_max_limits(n, investment_year, snakemake.config) h2_import_limits(n, snapshots, investment_year, snakemake.config) From 8cb152b0c1271444bdd80a4efdf03ef7e1a51d3d Mon Sep 17 00:00:00 2001 From: Julian Geis Date: Tue, 4 Jun 2024 11:59:47 +0200 Subject: [PATCH 371/669] Post-Discretization of network infrastructure (#62) * first draft post-discretization: adding config values, ensuring global constraints from additional_functionality are not added more than once * update config * changed bug in config that did not report the solving configuration correctly * update config according to changes in the pypsa and pypsa-eur PRs * Merge remote-tracking branch 'origin/main' into post-discretization * update snakemake version and adapt config * post merge adjustments * more post merge adjustments * yearly investments --------- Co-authored-by: Michael Lindner --- config/config.yaml | 23 ++- config/scenarios.manual.yaml | 6 +- environment.yaml | 2 +- workflow/scripts/additional_functionality.py | 142 ++++++++++--------- workflow/scripts/export_ariadne_variables.py | 30 ++-- 5 files changed, 117 insertions(+), 86 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 0c6d053ad..7a4e50bbc 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240603max_RE_cap + prefix: 20240603postdiscretize name: # - CurrentPolicies - KN2045_Bal_v4 @@ -288,6 +288,27 @@ solving: mem_mb: 40000 #30000 is OK for 22 nodes, 365H; 140000 for 22 nodes 3H; 400000 for 44 nodes 3H options: load_shedding: false + skip_iterations: false # settings for post-discretization: false + min_iterations: 1 # settings for post-discretization: 1 + max_iterations: 1 # settings for post-discretization: 1 + post_discretization: + enable: true + line_unit_size: 1700 + line_threshold: 0.3 + link_unit_size: + DC: 2000 + gas pipeline: 1500 + gas pipeline new: 1500 + H2 pipeline: 1200 + H2 pipeline (Kernnetz): 1200 + H2 pipeline retrofitted: 1200 + link_threshold: + DC: 0.3 + gas pipeline: 0.3 + gas pipeline new: 0.3 + H2 pipeline: 0.3 + H2 pipeline (Kernnetz): 0.3 + H2 pipeline retrofitted: 0.3 # solver: # options: gurobi-numeric-focus # solver_options: diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 9e761ae86..e9e4347c4 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -108,7 +108,7 @@ CurrentPolicies: 2045: 0 - + KN2045_Bal_v4: # Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren # Breites Energieträgerportfolio in der Endenergie (Strom, Wasserstoff, synthetische Kraftstoffe) @@ -288,6 +288,7 @@ KN2045_H2_v4: 2040: 0 2045: 200 + KN2045plus_EasyRide: # Endenergienachfrage ist geringer im Vergleich zu Szenarien 1-3 # Hochlauf klimafreundlicher/effizienter Technologien schneller und günstiger @@ -348,7 +349,7 @@ KN2045plus_EasyRide: 2040: 0 2045: 0 - + KN2045plus_LowDemand: # Im Vergleich zu Easy Ride eher knappe EE Erzeugung # innerhalb Deutschlands und knappe Importe EE möglich @@ -406,7 +407,6 @@ KN2045plus_LowDemand: 2040: 0 2045: 0 - KN2045minus_WorstCase: # Nachfrage nach Endenergie ist höher als in den Szenarien 1-3 # schlechtere Akzeptanz in der Bevölkerung, Verzögerungen im Infrastrukturausbau, diff --git a/environment.yaml b/environment.yaml index a0dad0d0a..bb2d78049 100644 --- a/environment.yaml +++ b/environment.yaml @@ -17,7 +17,7 @@ dependencies: - openpyxl!=3.1.1 - pycountry - seaborn -- snakemake-minimal>=8.5 +- snakemake-minimal>=8.11 - memory_profiler - yaml - pytables diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 1aa4ba47f..e5e3f3464 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -45,15 +45,16 @@ def add_min_limits(n, investment_year, config): n.model.add_constraints( lhs >= limit - existing_capacity, name=f"GlobalConstraint-{cname}" ) - n.add( - "GlobalConstraint", - cname, - constant=limit, - sense=">=", - type="", - carrier_attribute="", - ) - + if cname not in n.global_constraints.index: + n.add( + "GlobalConstraint", + cname, + constant=limit, + sense=">=", + type="", + carrier_attribute="", + ) + def add_max_limits(n, investment_year, config): for c in n.iterate_components(config["limits_capacity_max"]): @@ -93,14 +94,15 @@ def add_max_limits(n, investment_year, config): n.model.add_constraints( lhs <= limit - existing_capacity, name=f"GlobalConstraint-{cname}" ) - n.add( - "GlobalConstraint", - cname, - constant=limit, - sense="<=", - type="", - carrier_attribute="", - ) + if cname not in n.global_constraints.index: + n.add( + "GlobalConstraint", + cname, + constant=limit, + sense="<=", + type="", + carrier_attribute="", + ) def h2_import_limits(n, snapshots, investment_year, config): @@ -123,14 +125,16 @@ def h2_import_limits(n, snapshots, investment_year, config): n.model.add_constraints( lhs <= limit, name=f"GlobalConstraint-{cname}" ) - n.add( - "GlobalConstraint", - cname, - constant=limit, - sense="<=", - type="", - carrier_attribute="", - ) + + if cname not in n.global_constraints.index: + n.add( + "GlobalConstraint", + cname, + constant=limit, + sense="<=", + type="", + carrier_attribute="", + ) def h2_production_limits(n, snapshots, investment_year, config): @@ -160,22 +164,24 @@ def h2_production_limits(n, snapshots, investment_year, config): lhs >= limit_lower, name=f"GlobalConstraint-{cname_lower}" ) - n.add( - "GlobalConstraint", - cname_upper, - constant=limit_upper, - sense="<=", - type="", - carrier_attribute="", - ) - n.add( - "GlobalConstraint", - cname_lower, - constant=limit_lower, - sense=">=", - type="", - carrier_attribute="", - ) + if cname_upper not in n.global_constraints.index: + n.add( + "GlobalConstraint", + cname_upper, + constant=limit_upper, + sense="<=", + type="", + carrier_attribute="", + ) + if cname_lower not in n.global_constraints.index: + n.add( + "GlobalConstraint", + cname_lower, + constant=limit_lower, + sense=">=", + type="", + carrier_attribute="", + ) def electricity_import_limits(n, snapshots, investment_year, config): @@ -198,14 +204,16 @@ def electricity_import_limits(n, snapshots, investment_year, config): n.model.add_constraints( lhs <= limit, name=f"GlobalConstraint-{cname}" ) - n.add( - "GlobalConstraint", - cname, - constant=limit, - sense="<=", - type="", - carrier_attribute="", - ) + + if cname not in n.global_constraints.index: + n.add( + "GlobalConstraint", + cname, + constant=limit, + sense="<=", + type="", + carrier_attribute="", + ) def add_co2limit_country(n, limit_countries, snakemake, debug=False): @@ -271,14 +279,16 @@ def add_co2limit_country(n, limit_countries, snakemake, debug=False): lhs <= limit, name=f"GlobalConstraint-{cname}", ) - n.add( - "GlobalConstraint", - cname, - constant=limit, - sense="<=", - type="", - carrier_attribute="", - ) + + if cname not in n.global_constraints.index: + n.add( + "GlobalConstraint", + cname, + constant=limit, + sense="<=", + type="", + carrier_attribute="", + ) def force_boiler_profiles_existing_per_load(n): """this scales the boiler dispatch to the load profile with a factor common to all boilers at load""" @@ -364,14 +374,16 @@ def add_h2_derivate_limit(n, snapshots, investment_year, config): n.model.add_constraints( lhs <= limit, name=f"GlobalConstraint-{cname}" ) - n.add( - "GlobalConstraint", - cname, - constant=limit, - sense="<=", - type="", - carrier_attribute="", - ) + + if cname not in n.global_constraints.index: + n.add( + "GlobalConstraint", + cname, + constant=limit, + sense="<=", + type="", + carrier_attribute="", + ) def additional_functionality(n, snapshots, snakemake): diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index f1cfd0046..f95b83222 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2780,22 +2780,20 @@ def get_prices(n, region): return var -def get_discretized_value(value, disc_int): +def get_discretized_value(value, disc_int, build_threshold=0.3): if value == 0.0: return value add = value - value % disc_int value = value % disc_int - discrete = disc_int if value > 0.3 * disc_int else 0.0 + discrete = disc_int if value > build_threshold * disc_int else 0.0 return add + discrete -def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1.0): - kwargs = { - 'groupby': n_pre.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, - } +def get_investments(n, costs, region, dg_cost_factor=1.0, length_factor=1.0): + # TODO gap between years should be read from config + # TODO Discretization units should be read from config var = pd.Series() # capacities_electricity = n.statistics.expanded_capacity( @@ -2837,11 +2835,11 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1 ] dc_expansion = dc_links.p_nom_opt.apply( lambda x: get_discretized_value(x, 2000) - ) - n_pre.links.loc[dc_links.index].p_nom_min.apply( + ) - n.links.loc[dc_links.index].p_nom_min.apply( lambda x: get_discretized_value(x, 2000) ) - dc_new = (dc_expansion > 0) & (n_pre.links.loc[dc_links.index].p_nom_min > 10) + dc_new = (dc_expansion > 0) & (n.links.loc[dc_links.index].p_nom_min > 10) dc_investments = dc_links.length * length_factor * ( (1 - dc_links.underwater_fraction) @@ -2857,14 +2855,14 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1 ac_lines = n.lines[(n.lines.bus0 + n.lines.bus1).str.contains(region)] ac_expansion = ac_lines.s_nom_opt.apply( lambda x: get_discretized_value(x, 1700) - ) - n_pre.lines.loc[ac_lines.index].s_nom_min.apply( + ) - n.lines.loc[ac_lines.index].s_nom_min.apply( lambda x: get_discretized_value(x, 1700) ) ac_investments = ac_lines.length * length_factor * ac_expansion * costs.at["HVAC overhead", "investment"] var["Investment|Energy Supply|Electricity|Transmission|AC"] = \ - ac_investments.sum() + ac_investments.sum() / 5 var["Investment|Energy Supply|Electricity|Transmission|DC"] = \ - dc_investments.sum() + dc_investments.sum() / 5 var["Investment|Energy Supply|Electricity|Transmission"] = \ var["Investment|Energy Supply|Electricity|Transmission|AC"] + \ @@ -2886,7 +2884,7 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1 * dg_cost_factor ) var["Investment|Energy Supply|Electricity|Distribution"] = \ - dg_investment + dg_investment / 5 var["Investment|Energy Supply|Electricity|Transmission and Distribution"] = \ var["Investment|Energy Supply|Electricity|Distribution"] + \ @@ -2910,7 +2908,7 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1 ) var["Investment|Energy Supply|Hydrogen|Transmission"] = \ - h2_costs.sum() + h2_costs.sum() / 5 gas_links = n.links[ @@ -2933,7 +2931,7 @@ def get_investments(n_pre, n, costs, region, dg_cost_factor=1.0, length_factor=1 ) var["Investment|Energy Supply|Gas|Transmission"] = \ - gas_costs.sum() + gas_costs.sum() / 5 # var["Investment|Energy Supply|Electricity|Electricity Storage"] = \ # var["Investment|Energy Supply|Hydrogen|Fossil"] = \ @@ -3080,7 +3078,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): get_prices(n,region), get_emissions(n, region, energy_totals), get_investments( - n, n, costs, region, + n, costs, region, dg_cost_factor=snakemake.params.dg_cost_factor, length_factor=snakemake.params.length_factor ), From 9383e71db555b9f7d684501b050ab81f8804a5dc Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 4 Jun 2024 13:21:47 +0200 Subject: [PATCH 372/669] FE non-energy use corrected and open TODOs added as comments --- workflow/scripts/export_ariadne_variables.py | 83 +++++++++++++------- 1 file changed, 54 insertions(+), 29 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index f95b83222..5efecfd48 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1438,8 +1438,16 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): var["Final Energy|Non-Energy Use|Hydrogen"] = H2_for_NH3 * MWh2PJ - var["Final Energy|Non-Energy Use"] = (non_energy_natural_gas + H2_for_NH3 + non_energy_naphtha + CH4_for_MeOH) * MWh2PJ + var["Final Energy|Non-Energy Use"] = \ + (non_energy_natural_gas + CH4_for_MeOH + CH4_for_NH3 + non_energy_naphtha + H2_for_NH3) * MWh2PJ + assert isclose( + var["Final Energy|Non-Energy Use"], + var["Final Energy|Non-Energy Use|Gases"] + + var["Final Energy|Non-Energy Use|Liquids"] + + var["Final Energy|Non-Energy Use|Solids"] + + var["Final Energy|Non-Energy Use|Hydrogen"] + ) energy_totals = _energy_totals.loc[region[0:2]] @@ -1560,7 +1568,10 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): "Final Energy|Industry excl Non-Energy Use|Liquids", "Final Energy|Industry excl Non-Energy Use|Solids", ]).sum() - + assert isclose( + var["Final Energy|Industry"] - var["Final Energy|Non-Energy Use"], + var["Final Energy|Industry excl Non-Energy Use"] + ) # Final energy is delivered to the consumers low_voltage_electricity = n.statistics.withdrawal( bus_carrier="low voltage", @@ -1747,7 +1758,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): * international_aviation_fraction ) - + # TODO Navigation hydrogen var["Final Energy|Bunkers|Navigation"] = \ var["Final Energy|Bunkers|Navigation|Liquids"] = ( sum_load(n, ["shipping oil", "shipping methanol"], region) @@ -1782,32 +1793,21 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): + var["Final Energy|Agriculture|Liquids"] ) - # assert isclose( - # var["Final Energy|Agriculture"], - # energy_totals.get("total agriculture") - # ) + assert isclose( + var["Final Energy|Agriculture"], + energy_totals.get("total agriculture") + ) # It's nice to do these double checks, but it's less # straightforward for the other categories # !!! TODO this assert is temporarily disbaled because of https://github.com/PyPSA/pypsa-eur/issues/985 - # var["Final Energy"] = \ - # var["Final Energy incl Non-Energy Use incl Bunkers"] = \ - #var["Final Energy|Non-Energy Use|Liquids"] = \ - #var["Final Energy|Non-Energy Use"] = \ - # industry_demand.get("naphtha") # This is essentially plastics - # Not sure if this is correct here - - # var["Final Energy|Non-Energy Use|Gases"] = \ - # var["Final Energy|Non-Energy Use|Solids"] = \ - # var["Final Energy|Non-Energy Use|Hydrogen"] = \ - # ! Not implemented var["Final Energy|Electricity"] = ( var["Final Energy|Agriculture|Electricity"] + var["Final Energy|Residential and Commercial|Electricity"] + var["Final Energy|Transportation|Electricity"] - + var["Final Energy|Industry|Electricity"] + + var["Final Energy|Industry excl Non-Energy Use|Electricity"] ) @@ -1816,36 +1816,49 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): var["Final Energy|Solids"] = ( # var["Final Energy|Agriculture|Solids"] var["Final Energy|Residential and Commercial|Solids"] - + var["Final Energy|Industry|Solids"] + + var["Final Energy|Industry excl Non-Energy Use|Solids"] ) var["Final Energy|Solids|Biomass"] = ( var["Final Energy|Residential and Commercial|Solids|Biomass"] - + var["Final Energy|Industry|Solids|Biomass"] + + var["Final Energy|Industry excl Non-Energy Use|Solids|Biomass"] ) - var["Final Energy|Solids|Biomass"] = \ - var["Final Energy|Industry|Solids|Coal"] + var["Final Energy|Solids|Coal"] = \ + var["Final Energy|Industry excl Non-Energy Use|Solids|Coal"] var["Final Energy|Gases"] = ( var["Final Energy|Residential and Commercial|Gases"] - + var["Final Energy|Industry|Gases"] + + var["Final Energy|Industry excl Non-Energy Use|Gases"] ) + var["Final Energy|Gases|Natural Gas"] = \ + var["Final Energy|Gases"] * gas_fossil_fraction + + var["Final Energy|Liquids"] = ( var["Final Energy|Agriculture|Liquids"] + var["Final Energy|Residential and Commercial|Liquids"] + var["Final Energy|Transportation|Liquids"] - + var["Final Energy|Industry|Liquids"] + + var["Final Energy|Industry excl Non-Energy Use|Liquids"] ) + var["Final Energy|Liquids|Petroleum"] = \ + var["Final Energy|Liquids"] * oil_fossil_fraction + + var["Final Energy|Liquids|Efuel"] = \ + var["Final Energy|Liquids"] * (1 - oil_fossil_fraction) + var["Final Energy|Heat"] = ( var["Final Energy|Agriculture|Heat"] + var["Final Energy|Residential and Commercial|Heat"] - + var["Final Energy|Industry|Heat"] + + var["Final Energy|Industry excl Non-Energy Use|Heat"] ) # var["Final Energy|Solar"] = \ - # var["Final Energy|Hydrogen"] = \ + var["Final Energy|Hydrogen"] = \ + var["Final Energy|Transportation|Hydrogen"] + \ + var["Final Energy|Industry excl Non-Energy Use|Hydrogen"] + # var["Final Energy|Geothermal"] = \ # ! Not implemented @@ -1868,6 +1881,13 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): + var["Final Energy|Bunkers"] ) + var["Final Energy"] = ( + var["Final Energy|Industry excl Non-Energy Use"] + + var["Final Energy|Residential and Commercial"] + + var["Final Energy|Agriculture"] + + var["Final Energy|Transportation"] + ) + # The general problem with final energy is that for most of these categories # feedstocks shouls be excluded (i.e., non-energy use) @@ -2555,6 +2575,8 @@ def get_prices(n, region): # Price|Final Energy|Transportation|Liquids|Efuel + + # TODO THIS SEEMS INCORRECT df = pd.DataFrame({c: price_load(n, c, region) for c in \ ["kerosene for aviation", "shipping methanol", "shipping oil"]}) @@ -3177,8 +3199,11 @@ def get_data( if "debug" == "debug":# For debugging var = pd.Series() - n = networks[2] - c = costs[2] + idx = 2 + n = networks[idx] + c = costs[idx] + _industry_demand = industry_demands[idx] + _energy_totals = energy_totals.copy() region="DE" cap_func=n.statistics.optimal_capacity cap_string = "Optimal Capacity|" From d4634a66d2cdb31debacd8d0d0e6c2ccc2b751de Mon Sep 17 00:00:00 2001 From: Julian Geis Date: Tue, 4 Jun 2024 14:25:26 +0200 Subject: [PATCH 373/669] add carbon component for coal, gas and oil in 2020 and 2025 (#88) * add carbon component for coal, gas and oil in 2020 and 2025 * reverted hard coded costs from modified cost data, implemented configurable co2 prices in config, added function to add the carbon components on the fossil fuels and write a message into furhter description * deleted some printouts --------- Co-authored-by: Micha --- ariadne-data/costs_2020-modifications.csv | 2 +- config/config.yaml | 8 +++- workflow/Snakefile | 3 ++ workflow/scripts/export_ariadne_variables.py | 16 +++++--- workflow/scripts/modify_cost_data.py | 43 +++++++++++++++++--- 5 files changed, 60 insertions(+), 12 deletions(-) diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index 1d8626019..9ac00e1e7 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -11,4 +11,4 @@ HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 \ No newline at end of file diff --git a/config/config.yaml b/config/config.yaml index 7a4e50bbc..951cd547c 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -360,7 +360,13 @@ pypsa_eur: - hydro Store: [] + +co2_price_add_on_fossils: + 2020: 25 + 2025: 60 + must_run_biomass: enable: true p_min_pu: 0.7 - regions: ['DE'] \ No newline at end of file + regions: ['DE'] + diff --git a/workflow/Snakefile b/workflow/Snakefile index 5da3265b9..f7029dc3a 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -115,6 +115,8 @@ rule modify_cost_data: file_name="costs_{planning_horizons}.csv", cost_horizon=config_provider("costs", "horizon"), NEP=config_provider("costs", "NEP"), + planning_horizons=config_provider("scenario", "planning_horizons"), + co2_price_add_on_fossils = config_provider("co2_price_add_on_fossils"), input: modifications=lambda w: ( "ariadne-data/costs_2019-modifications.csv" @@ -316,6 +318,7 @@ rule export_ariadne_variables: hours=config_provider("clustering","temporal","resolution_sector"), costs=config_provider("costs"), energy_totals_year=config_provider("energy", "energy_totals_year"), + co2_price_add_on_fossils = config_provider("co2_price_add_on_fossils"), input: template=resources("template_ariadne_database.xlsx"), industry_demands=expand( diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index f95b83222..07d876184 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2965,14 +2965,20 @@ def get_investments(n, costs, region, dg_cost_factor=1.0, length_factor=1.0): # var["Investment|Industry"] = \ return var -def get_policy(n): +def get_policy(n, investment_year): var = pd.Series() - + + # add carbon component to fossil fuels if specified + if investment_year in snakemake.params.co2_price_add_on_fossils.keys(): + co2_price_add_on = snakemake.params.co2_price_add_on_fossils[investment_year] + else: + co2_price_add_on = 0.0 + var["Price|Carbon"] = \ - -n.global_constraints.loc["CO2Limit", "mu"] - n.global_constraints.loc["co2_limit-DE", "mu"] + -n.global_constraints.loc["CO2Limit", "mu"] - n.global_constraints.loc["co2_limit-DE", "mu"] + co2_price_add_on var["Price|Carbon|EU-wide Regulation All Sectors"] = \ - -n.global_constraints.loc["CO2Limit", "mu"] + -n.global_constraints.loc["CO2Limit", "mu"] + co2_price_add_on # Price|Carbon|EU-wide Regulation Non-ETS @@ -3082,7 +3088,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): dg_cost_factor=snakemake.params.dg_cost_factor, length_factor=snakemake.params.length_factor ), - get_policy(n), + get_policy(n, year), get_trade(n, region), ]) diff --git a/workflow/scripts/modify_cost_data.py b/workflow/scripts/modify_cost_data.py index a931a3d45..fcd24849e 100644 --- a/workflow/scripts/modify_cost_data.py +++ b/workflow/scripts/modify_cost_data.py @@ -3,6 +3,33 @@ import re import os import logging +import numpy as np + +def carbon_component_fossils(costs, co2_price): + """ + Add carbon component to fossil fuel costs + """ + + carriers= ["gas", "oil", "lignite", "coal"] + # specific emissions in tons CO2/MWh according to n.links[n.links.carrier =="your_carrier].efficiency2.unique().item() + specific_emisisons = { + "oil" : 0.2571, + "gas" : 0.198, # OCGT + "coal" : 0.3361, + "lignite" : 0.4069, + } + + for c in carriers: + carbon_add_on = specific_emisisons[c] * co2_price + costs.at[(c, "fuel"), "value"] += carbon_add_on + add_str = f" (added carbon component of {round(carbon_add_on,4)} €/MWh according to co2 price of {co2_price} €/t co2 and carbon intensity of {specific_emisisons[c]} t co2/MWh)" + if pd.isna(costs.at[(c, "fuel"), "further description"]): + costs.at[(c, "fuel"), "further description"] = add_str + else: + costs.at[(c, "fuel"), "further description"] = str(costs.at[(c, "fuel"), "further description"]) + add_str + + return costs + if __name__ == "__main__": if "snakemake" not in globals(): @@ -13,10 +40,10 @@ from _helpers import mock_snakemake snakemake = mock_snakemake( "modify_cost_data", - planning_horizons="2030", + planning_horizons="2020", file_path="../data/costs/", - file_name="costs_2030.csv", - cost_horizon="pessimist", + file_name="costs_2020.csv", + cost_horizon="mean", run="KN2045_Bal_v4" ) logger = logging.getLogger(__name__) @@ -65,9 +92,15 @@ else: logger.warning(f"NEP year {snakemake.params.NEP} is not in modifications file. Falling back to NEP2021.") modifications = modifications.query("source != 'NEP2023'") - + costs.loc[modifications.index] = modifications - print(costs.loc[modifications.index]) + # add carbon component to fossil fuel costs + investment_year = int(snakemake.wildcards.planning_horizons[-4:]) + if investment_year in snakemake.params.co2_price_add_on_fossils.keys(): + co2_price = snakemake.params.co2_price_add_on_fossils[investment_year] + logger.warning(f"Adding carbon component according to a co2 price of {co2_price} €/t to fossil fuel costs.") + costs = carbon_component_fossils(costs, co2_price) + costs.to_csv(snakemake.output[0]) From 58eedc1b227d447ca26f193a577c1f283b4f1bab Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 4 Jun 2024 13:21:47 +0200 Subject: [PATCH 374/669] FE non-energy use corrected and open TODOs added as comments --- workflow/scripts/export_ariadne_variables.py | 83 +++++++++++++------- 1 file changed, 54 insertions(+), 29 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 07d876184..fa6173543 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1438,8 +1438,16 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): var["Final Energy|Non-Energy Use|Hydrogen"] = H2_for_NH3 * MWh2PJ - var["Final Energy|Non-Energy Use"] = (non_energy_natural_gas + H2_for_NH3 + non_energy_naphtha + CH4_for_MeOH) * MWh2PJ + var["Final Energy|Non-Energy Use"] = \ + (non_energy_natural_gas + CH4_for_MeOH + CH4_for_NH3 + non_energy_naphtha + H2_for_NH3) * MWh2PJ + assert isclose( + var["Final Energy|Non-Energy Use"], + var["Final Energy|Non-Energy Use|Gases"] + + var["Final Energy|Non-Energy Use|Liquids"] + + var["Final Energy|Non-Energy Use|Solids"] + + var["Final Energy|Non-Energy Use|Hydrogen"] + ) energy_totals = _energy_totals.loc[region[0:2]] @@ -1560,7 +1568,10 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): "Final Energy|Industry excl Non-Energy Use|Liquids", "Final Energy|Industry excl Non-Energy Use|Solids", ]).sum() - + assert isclose( + var["Final Energy|Industry"] - var["Final Energy|Non-Energy Use"], + var["Final Energy|Industry excl Non-Energy Use"] + ) # Final energy is delivered to the consumers low_voltage_electricity = n.statistics.withdrawal( bus_carrier="low voltage", @@ -1747,7 +1758,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): * international_aviation_fraction ) - + # TODO Navigation hydrogen var["Final Energy|Bunkers|Navigation"] = \ var["Final Energy|Bunkers|Navigation|Liquids"] = ( sum_load(n, ["shipping oil", "shipping methanol"], region) @@ -1782,32 +1793,21 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): + var["Final Energy|Agriculture|Liquids"] ) - # assert isclose( - # var["Final Energy|Agriculture"], - # energy_totals.get("total agriculture") - # ) + assert isclose( + var["Final Energy|Agriculture"], + energy_totals.get("total agriculture") + ) # It's nice to do these double checks, but it's less # straightforward for the other categories # !!! TODO this assert is temporarily disbaled because of https://github.com/PyPSA/pypsa-eur/issues/985 - # var["Final Energy"] = \ - # var["Final Energy incl Non-Energy Use incl Bunkers"] = \ - #var["Final Energy|Non-Energy Use|Liquids"] = \ - #var["Final Energy|Non-Energy Use"] = \ - # industry_demand.get("naphtha") # This is essentially plastics - # Not sure if this is correct here - - # var["Final Energy|Non-Energy Use|Gases"] = \ - # var["Final Energy|Non-Energy Use|Solids"] = \ - # var["Final Energy|Non-Energy Use|Hydrogen"] = \ - # ! Not implemented var["Final Energy|Electricity"] = ( var["Final Energy|Agriculture|Electricity"] + var["Final Energy|Residential and Commercial|Electricity"] + var["Final Energy|Transportation|Electricity"] - + var["Final Energy|Industry|Electricity"] + + var["Final Energy|Industry excl Non-Energy Use|Electricity"] ) @@ -1816,36 +1816,49 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): var["Final Energy|Solids"] = ( # var["Final Energy|Agriculture|Solids"] var["Final Energy|Residential and Commercial|Solids"] - + var["Final Energy|Industry|Solids"] + + var["Final Energy|Industry excl Non-Energy Use|Solids"] ) var["Final Energy|Solids|Biomass"] = ( var["Final Energy|Residential and Commercial|Solids|Biomass"] - + var["Final Energy|Industry|Solids|Biomass"] + + var["Final Energy|Industry excl Non-Energy Use|Solids|Biomass"] ) - var["Final Energy|Solids|Biomass"] = \ - var["Final Energy|Industry|Solids|Coal"] + var["Final Energy|Solids|Coal"] = \ + var["Final Energy|Industry excl Non-Energy Use|Solids|Coal"] var["Final Energy|Gases"] = ( var["Final Energy|Residential and Commercial|Gases"] - + var["Final Energy|Industry|Gases"] + + var["Final Energy|Industry excl Non-Energy Use|Gases"] ) + var["Final Energy|Gases|Natural Gas"] = \ + var["Final Energy|Gases"] * gas_fossil_fraction + + var["Final Energy|Liquids"] = ( var["Final Energy|Agriculture|Liquids"] + var["Final Energy|Residential and Commercial|Liquids"] + var["Final Energy|Transportation|Liquids"] - + var["Final Energy|Industry|Liquids"] + + var["Final Energy|Industry excl Non-Energy Use|Liquids"] ) + var["Final Energy|Liquids|Petroleum"] = \ + var["Final Energy|Liquids"] * oil_fossil_fraction + + var["Final Energy|Liquids|Efuel"] = \ + var["Final Energy|Liquids"] * (1 - oil_fossil_fraction) + var["Final Energy|Heat"] = ( var["Final Energy|Agriculture|Heat"] + var["Final Energy|Residential and Commercial|Heat"] - + var["Final Energy|Industry|Heat"] + + var["Final Energy|Industry excl Non-Energy Use|Heat"] ) # var["Final Energy|Solar"] = \ - # var["Final Energy|Hydrogen"] = \ + var["Final Energy|Hydrogen"] = \ + var["Final Energy|Transportation|Hydrogen"] + \ + var["Final Energy|Industry excl Non-Energy Use|Hydrogen"] + # var["Final Energy|Geothermal"] = \ # ! Not implemented @@ -1868,6 +1881,13 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): + var["Final Energy|Bunkers"] ) + var["Final Energy"] = ( + var["Final Energy|Industry excl Non-Energy Use"] + + var["Final Energy|Residential and Commercial"] + + var["Final Energy|Agriculture"] + + var["Final Energy|Transportation"] + ) + # The general problem with final energy is that for most of these categories # feedstocks shouls be excluded (i.e., non-energy use) @@ -2555,6 +2575,8 @@ def get_prices(n, region): # Price|Final Energy|Transportation|Liquids|Efuel + + # TODO THIS SEEMS INCORRECT df = pd.DataFrame({c: price_load(n, c, region) for c in \ ["kerosene for aviation", "shipping methanol", "shipping oil"]}) @@ -3183,8 +3205,11 @@ def get_data( if "debug" == "debug":# For debugging var = pd.Series() - n = networks[2] - c = costs[2] + idx = 2 + n = networks[idx] + c = costs[idx] + _industry_demand = industry_demands[idx] + _energy_totals = energy_totals.copy() region="DE" cap_func=n.statistics.optimal_capacity cap_string = "Optimal Capacity|" From 0297d1504ef6abd34d01829f5ccf17197cbaf4fd Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 4 Jun 2024 14:39:17 +0200 Subject: [PATCH 375/669] disable agriculture assert again --- workflow/scripts/export_ariadne_variables.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index fa6173543..de6e9f53f 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1793,10 +1793,10 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): + var["Final Energy|Agriculture|Liquids"] ) - assert isclose( - var["Final Energy|Agriculture"], - energy_totals.get("total agriculture") - ) + # assert isclose( + # var["Final Energy|Agriculture"], + # energy_totals.get("total agriculture") + # ) # It's nice to do these double checks, but it's less # straightforward for the other categories # !!! TODO this assert is temporarily disbaled because of https://github.com/PyPSA/pypsa-eur/issues/985 From 0e8eb2eefffbb085f278e9dc7d8ad9440fd06638 Mon Sep 17 00:00:00 2001 From: Julian Geis Date: Wed, 5 Jun 2024 09:41:33 +0200 Subject: [PATCH 376/669] fix bug in electricity imports constraint (#99) --- workflow/scripts/additional_functionality.py | 16 +++++++++++----- 1 file changed, 11 insertions(+), 5 deletions(-) diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index e5e3f3464..4c31b75a3 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -191,13 +191,19 @@ def electricity_import_limits(n, snapshots, investment_year, config): logger.info(f"limiting electricity imports in {ct} to {limit/1e6} TWh/a") - incoming = n.links.index[((n.links.carrier == "DC") | (n.links.carrier == "AC")) & (n.links.bus0.str[:2] != ct) & (n.links.bus1.str[:2] == ct)] - outgoing = n.links.index[((n.links.carrier == "DC") | (n.links.carrier == "AC")) & (n.links.bus0.str[:2] == ct) & (n.links.bus1.str[:2] != ct)] + incoming_line = n.lines.index[(n.lines.carrier == "AC") & (n.lines.bus0.str[:2] != ct) & (n.lines.bus1.str[:2] == ct)] + outgoing_line = n.lines.index[(n.lines.carrier == "AC") & (n.lines.bus0.str[:2] == ct) & (n.lines.bus1.str[:2] != ct)] + + incoming_link = n.links.index[((n.links.carrier == "DC") | (n.links.carrier == "AC")) & (n.links.bus0.str[:2] != ct) & (n.links.bus1.str[:2] == ct)] + outgoing_link = n.links.index[((n.links.carrier == "DC") | (n.links.carrier == "AC")) & (n.links.bus0.str[:2] == ct) & (n.links.bus1.str[:2] != ct)] - incoming_p = (n.model["Link-p"].loc[:, incoming]*n.snapshot_weightings.generators).sum() - outgoing_p = (n.model["Link-p"].loc[:, outgoing]*n.snapshot_weightings.generators).sum() + incoming_line_p = (n.model["Line-s"].loc[:, incoming_line]*n.snapshot_weightings.generators).sum() + outgoing_line_p = (n.model["Line-s"].loc[:, outgoing_line]*n.snapshot_weightings.generators).sum() - lhs = incoming_p - outgoing_p + incoming_link_p = (n.model["Link-p"].loc[:, incoming_link]*n.snapshot_weightings.generators).sum() + outgoing_link_p = (n.model["Link-p"].loc[:, outgoing_link]*n.snapshot_weightings.generators).sum() + + lhs = (incoming_link_p - outgoing_link_p) + (incoming_line_p - outgoing_line_p) cname = f"Electricity_import_limit-{ct}" From 525d26c9619fd1f5ce2efd1feece010285e3431a Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 5 Jun 2024 11:14:38 +0200 Subject: [PATCH 377/669] reading industry non-energy use from sector_ratios and production --- workflow/Snakefile | 6 +- workflow/scripts/export_ariadne_variables.py | 139 ++++++------------- 2 files changed, 49 insertions(+), 96 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index f7029dc3a..9987d710f 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -341,7 +341,11 @@ rule export_ariadne_variables: **config["scenario"], allow_missing=True, ), - idees="data/bundle-sector/jrc-idees-2015", + industry_sector_ratios=expand( + resources("industry_sector_ratios_{planning_horizons}.csv"), + **config["scenario"], + allow_missing=True, + ), industrial_production=resources("industrial_production_per_country.csv"), energy_totals=resources("energy_totals.csv"), output: diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index de6e9f53f..c9eaef4c9 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1319,89 +1319,17 @@ def get_secondary_energy(n, region): return var -def load_idees_data(sector, country): - sheet_names = { - "Iron and steel": "ISI", - "Chemicals Industry": "CHI", - "Non-metallic mineral products": "NMM", - "Pulp, paper and printing": "PPA", - "Food, beverages and tobacco": "FBT", - "Non Ferrous Metals": "NFM", - "Transport Equipment": "TRE", - "Machinery Equipment": "MAE", - "Textiles and leather": "TEL", - "Wood and wood products": "WWP", - "Other Industrial Sectors": "OIS", - } - year=2015 - suffixes = {"out": "", "fec": "_fec", "ued": "_ued", "emi": "_emi"} - sheets = {k: sheet_names[sector] + v for k, v in suffixes.items()} - - def usecols(x): - return isinstance(x, str) or x == year - - with mute_print(): - idees = pd.read_excel( - f"{snakemake.input.idees}/JRC-IDEES-2015_Industry_{country}.xlsx", - sheet_name=list(sheets.values()), - index_col=0, - header=0, - usecols=usecols, - ) - for k, v in sheets.items(): - idees[k] = idees.pop(v).squeeze() - - return idees - -def get_final_energy(n, region, _industry_demand, _energy_totals, year): - - kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, - } +def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios, _industry_production): var = pd.Series() - # read in shares of non-energy use [ktoe] - sector = "Chemicals Industry" - idees = load_idees_data(sector, country="DE") - - subsector = "Chemicals: Feedstock (energy used as raw material)" - s_fec = idees["fec"][13:22] - assert s_fec.index[0] == subsector - - # LPG and other feedstock materials are assimilated to naphtha - # since they will be produced through Fischer-Tropsh process - sel = ["Solids", "Refinery gas", "LPG", - "Diesel oil", "Residual fuel oil", "Other liquids"] - - naphtha = (s_fec["Naphtha"] + s_fec[sel].sum()) * toe_to_MWh *1e3 # MWh - natural_gas = s_fec["Natural gas"] * toe_to_MWh * 1e3 # MWh - - # read in industrial production of 2015 [kt/a] - industrial_production = pd.read_csv(snakemake.input.industrial_production, index_col=0) - ammonia_region = industrial_production.loc[region, "Ammonia"] - MeOH_region = industrial_production.loc[region, "Methanol"] - - # subtracting natural gas demand for ammonia and methanol production - natural_gas -= ammonia_region * config["industry"]["MWh_CH4_per_tNH3_SMR"] * 1e3 # MWh - natural_gas -= MeOH_region * config["industry"]["MWh_CH4_per_tMeOH"] * 1e3 # MWh - - # adjust demand for non-energy use with recycling rate - non_energy_naphtha = naphtha * config["industry"]["HVC_primary_fraction"][year] - non_energy_natural_gas = natural_gas * config["industry"]["HVC_primary_fraction"][year] - - # read in production volume for the time horizon - years = [int(re.search(r'(\d{4})-modified\.csv', filename).group(1)) for filename in snakemake.input.industrial_production_per_country_tomorrow] - index = next((idx for idx, y in enumerate(years) if y == year), None) - production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow[index], index_col=0) # kton/a - kwargs = { 'groupby': n.statistics.groupers.get_name_bus_and_carrier, 'nice_names': False, } h2_fossil_fraction = _get_h2_fossil_fraction(n, region, kwargs) + oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) if config["industry"]["ammonia"]: # MWh/a @@ -1409,37 +1337,39 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): bus_carrier="NH3", **kwargs ).groupby("carrier").sum()["Haber-Bosch"] - CH4_for_NH3 = Haber_Bosch_NH3 * h2_fossil_fraction * config["industry"]["MWh_CH4_per_tNH3_SMR"] / config["industry"]["MWh_NH3_per_tNH3"] - H2_for_NH3 = Haber_Bosch_NH3 * (1 - h2_fossil_fraction) / config["industry"]["MWh_H2_per_tNH3_electrolysis"] + CH4_for_NH3 = Haber_Bosch_NH3 * h2_fossil_fraction * config["industry"]["MWh_CH4_per_tNH3_SMR"] / config["industry"]["MWh_NH3_per_tNH3"] * MWh2PJ + H2_for_NH3 = Haber_Bosch_NH3 * (1 - h2_fossil_fraction) / config["industry"]["MWh_H2_per_tNH3_electrolysis"] * MWh2PJ + subcategories = ["HVC", "Methanol", "Chlorine"] else: - # t/a - ammonia_prod = production.loc[region, "Ammonia"] * 1e3 - # MWh/a - CH4_for_NH3 = ammonia_prod * h2_fossil_fraction * config["industry"]["MWh_CH4_per_tNH3_SMR"] - H2_for_NH3 = ammonia_prod * (1 - h2_fossil_fraction) * config["industry"]["MWh_H2_per_tNH3_electrolysis"] + CH4_for_NH3 = 0 + H2_for_NH3 = 0 + subcategories = ["HVC", "Methanol", "Chlorine", "Ammonia"] + + carrier = ["hydrogen", "methane", "naphtha"] - # for MeOH only CH4 is needed - CH4_for_MeOH = production.loc[region, "Methanol"] * config["industry"]["MWh_CH4_per_tMeOH"] * 1e3 + ip = _industry_production.loc[region, subcategories] # kt/a + sr = _sector_ratios["DE"].loc[carrier,subcategories] # MWh/tMaterial + non_energy = sr.multiply(ip).sum(axis=1) * 1e3 * MWh2PJ + non_energy = non_energy # write var - var["Final Energy|Non-Energy Use|Gases"] = (non_energy_natural_gas + CH4_for_MeOH + CH4_for_NH3) * MWh2PJ + var["Final Energy|Non-Energy Use|Gases"] = non_energy.methane + CH4_for_NH3 - oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) + var["Final Energy|Non-Energy Use|Liquids"] = non_energy.naphtha - var["Final Energy|Non-Energy Use|Liquids"] = non_energy_naphtha * MWh2PJ - var["Final Energy|Non-Energy Use|Liquids|Petroleum"] = non_energy_naphtha * MWh2PJ * oil_fossil_fraction - var["Final Energy|Non-Energy Use|Liquids|Efuel"] = non_energy_naphtha * MWh2PJ * (1 - oil_fossil_fraction) + var["Final Energy|Non-Energy Use|Liquids|Petroleum"] = non_energy.naphtha * oil_fossil_fraction + var["Final Energy|Non-Energy Use|Liquids|Efuel"] = non_energy.naphtha * (1 - oil_fossil_fraction) var["Final Energy|Non-Energy Use|Liquids|Biomass"] = 0 var["Final Energy|Non-Energy Use|Solids"] = 0 var["Final Energy|Non-Energy Use|Solids|Coal"] = 0 var["Final Energy|Non-Energy Use|Solids|Biomass"] = 0 - var["Final Energy|Non-Energy Use|Hydrogen"] = H2_for_NH3 * MWh2PJ + var["Final Energy|Non-Energy Use|Hydrogen"] = (non_energy.hydrogen + H2_for_NH3) var["Final Energy|Non-Energy Use"] = \ - (non_energy_natural_gas + CH4_for_MeOH + CH4_for_NH3 + non_energy_naphtha + H2_for_NH3) * MWh2PJ + non_energy.sum() + CH4_for_NH3 + H2_for_NH3 assert isclose( var["Final Energy|Non-Energy Use"], @@ -1588,7 +1518,8 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): # Excluding chargers (battery and EV) ) ].sum() - + var = var.round(3) + var = var.clip(lower=0) # urban decentral heat and rural heat are delivered as different forms of energy # (gas, oil, biomass, ...) decentral_heat_withdrawal = n.statistics.withdrawal( @@ -3091,7 +3022,7 @@ def get_production(region, year): return var -def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): +def get_ariadne_var(n, industry_demand, energy_totals, sector_ratios, industry_production, costs, region, year): var = pd.concat([ get_capacities(n, region), @@ -3102,7 +3033,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): get_production(region, year), get_primary_energy(n, region), get_secondary_energy(n, region), - get_final_energy(n, region, industry_demand, energy_totals, year), + get_final_energy(n, region, industry_demand, energy_totals, sector_ratios, industry_production), get_prices(n,region), get_emissions(n, region, energy_totals), get_investments( @@ -3119,11 +3050,11 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): # uses the global variables model, scenario and var2unit. For now. def get_data( - n, industry_demand, energy_totals, costs, region, year, + n, industry_demand, energy_totals, sector_ratios, industry_production, costs, region, year, version="0.10", scenario="test", ): - var = get_ariadne_var(n, industry_demand, energy_totals, costs, region, year) + var = get_ariadne_var(n, industry_demand, energy_totals, sector_ratios, industry_production, costs, region, year) data = [] for v in var.index: @@ -3188,6 +3119,22 @@ def get_data( level="year", ).multiply(TWh2PJ) + sector_ratios = [ + pd.read_csv( + in_sec_ratio, + header=[0,1], + index_col=0, + ).rename_axis("carrier") + for in_sec_ratio in snakemake.input.industry_sector_ratios + ] + industry_production = [ + pd.read_csv( + in_ind_prod, + index_col="kton/a", + ).rename_axis("country") + for in_ind_prod in snakemake.input.industrial_production_per_country_tomorrow + ] + nhours = int(snakemake.params.hours[:-1]) nyears = nhours / 8760 @@ -3227,6 +3174,8 @@ def get_data( networks[i], industry_demands[i], energy_totals, + sector_ratios[i], + industry_production[i], costs[i], "DE", year=year, From c40bfdbd3472e5d3fb01751b3c7d3bb1026c4a07 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 5 Jun 2024 13:40:39 +0200 Subject: [PATCH 378/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 962e5d41d..e922db47e 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 962e5d41d999e364dd586543eda4827c5ce8fdcc +Subproject commit e922db47e32c3bb3965276811a0f32b7f535a47a From 74eb59af12314011505d13e8f56e21bc198200bf Mon Sep 17 00:00:00 2001 From: Micha Date: Wed, 5 Jun 2024 16:28:15 +0200 Subject: [PATCH 379/669] update to new ariadne database (#95) * update to new ariadne database * add mock_snakemake and correct base year for FORECAST * update submodule --- config/config.yaml | 22 +-- config/scenarios.manual.yaml | 20 +-- workflow/Snakefile | 3 +- workflow/scripts/build_scenarios.py | 16 +- workflow/scripts/modify_industry_demand.py | 155 ++++++++++-------- workflow/scripts/retrieve_ariadne_database.py | 2 +- 6 files changed, 123 insertions(+), 95 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 951cd547c..643b59609 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240603postdiscretize + prefix: 20240605newdb name: # - CurrentPolicies - KN2045_Bal_v4 @@ -29,20 +29,22 @@ run: debug_unravel_oilbus: false iiasa_database: - db_name: ariadne_intern + db_name: ariadne2_intern leitmodelle: - REMIND-EU v1.1 - REMod v1.0 - - TIMES PanEU v1.0 + - Aladin v1 - FORECAST v1.0 - - DEMO v1 scenarios: - # - CurrentPolicies - - Trend - - 8Gt_Bal_v3 - - 8Gt_Elec_v3 - - 8Gt_H2_v3 - reference_scenario: 8Gt_Bal_v3 + - CurrentPolicies + - KN2045_Elec_v4 + - KN2045_H2_v4 + - KN2045_Bal_v4 + - KN2045plus_EasyRide + - KN2045plus_LowDemand + - KN2045minus_WorstCase + - KN2045minus_SupplyFocus + reference_scenario: KN2045_Bal_v4 region: Deutschland # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#foresight diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index e9e4347c4..fd3f59fcd 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -9,7 +9,7 @@ CurrentPolicies: # fixing CO2 budget at 2030 value for 2035-2050 # reducing VRE targets in 2030 to 75% of the target (following REMIND) # not forcing H2 production -# orient transport transformation from REMod v1.0 (currently is DEMO) +# orient transport transformation from Aladin v1 (currently is DEMO) # industry transformation towards FORECAST results # consider not assuming Kernnetz @@ -18,8 +18,8 @@ CurrentPolicies: enable: true iiasa_database: - # TODO: wait for REMod v1.0 to upload a first Trend scenario - reference_scenario: Trend # CurrentPolicies once it's renamed + # TODO: wait for Aladin v1 to upload a first Trend scenario + reference_scenario: CurrentPolicies co2_budget_DE_source: UBA @@ -117,7 +117,7 @@ KN2045_Bal_v4: # dient als Referenzszenario in der Familie der Ariadne-Szenarien iiasa_database: - reference_scenario: 8Gt_Bal_v3 + reference_scenario: KN2045_Bal_v4 co2_budget_DE_source: KSG costs: @@ -176,7 +176,7 @@ KN2045_Elec_v4: # Importe erneuerbar erzeugter Energien auf mittlerem Niveau iiasa_database: - reference_scenario: 8Gt_Elec_v3 + reference_scenario: KN2045_Elec_v4 co2_budget_DE_source: KSG costs: @@ -234,7 +234,7 @@ KN2045_H2_v4: # Ausbau der erneuerbaren Stromerzeugung erreicht politisch gesetzte Ziele iiasa_database: - reference_scenario: 8Gt_H2_v3 + reference_scenario: KN2045_H2_v4 co2_budget_DE_source: KSG costs: @@ -296,7 +296,7 @@ KN2045plus_EasyRide: # EE weiterhin auskömmlich nur werden die Ausbauziele evtl. nicht voll ausgeschöpft # Verlagerung der energieintensiven Grundstoffindustrie iiasa_database: - reference_scenario: 8Gt_EasyRide_v3 # TODO: wait for database + reference_scenario: KN2045plus_EasyRide # TODO: wait for database co2_budget_DE_source: KSG costs: @@ -354,7 +354,7 @@ KN2045plus_LowDemand: # Im Vergleich zu Easy Ride eher knappe EE Erzeugung # innerhalb Deutschlands und knappe Importe EE möglich iiasa_database: - reference_scenario: 8Gt_LowDemand_v3 # TODO: wait for database + reference_scenario: KN2045plus_LowDemand # TODO: wait for database co2_budget_DE_source: KSG costs: @@ -414,7 +414,7 @@ KN2045minus_WorstCase: # Verfehlen der Reduktionsziele in 2030 und 2045 # eher knapper Ausbau EE und EE Importe iiasa_database: - reference_scenario: 8Gt_WorstCase_v3 # TODO: wait for database + reference_scenario: KN2045minus_WorstCase co2_budget_DE_source: UBA @@ -502,7 +502,7 @@ KN2045minus_SupplyFocus: # Nachfrage genau so hoch wie in Szenario WorstCase # Ausbau EE und EE Importe jetzt aber auskömmlich iiasa_database: - reference_scenario: 8Gt_WorstCase_v3 # TODO: wait for database + reference_scenario: KN2045minus_SupplyFocus costs: horizon: "pessimist" diff --git a/workflow/Snakefile b/workflow/Snakefile index f7029dc3a..b8ce802f0 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -83,6 +83,7 @@ rule clean: rule retrieve_ariadne_database: params: + db_name=config_provider("iiasa_database", "db_name"), leitmodelle=config_provider("iiasa_database", "leitmodelle"), scenarios=config_provider("iiasa_database", "scenarios"), output: @@ -301,7 +302,7 @@ rule cluster_wasserstoff_kernnetz: rule download_ariadne_template: input: storage( - "https://github.com/iiasa/ariadne-intern-workflow/raw/main/attachments/2024-03-28_template_Ariadne.xlsx", + "https://github.com/iiasa/ariadne-intern-workflow/raw/main/attachments/2024-05-29_template_Ariadne.xlsx", keep_local=True, ) output: diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 017786804..71411bfec 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -13,8 +13,8 @@ def get_transport_shares(df, planning_horizons): # Get share of vehicles for transport sector - neglecting heavy duty vehicles - total_transport = df.loc["DEMO v1", "Stock|Transportation|LDV"] - tech_transport = df.loc["DEMO v1"].loc[[ + total_transport = df.loc["Aladin v1", "Stock|Transportation|LDV"] + tech_transport = df.loc["Aladin v1"].loc[[ "Stock|Transportation|LDV|ICE", "Stock|Transportation|LDV|BEV", "Stock|Transportation|LDV|PHEV", @@ -27,12 +27,12 @@ def get_transport_shares(df, planning_horizons): # Get share of Navigation fuels from corresponding "Ariadne Leitmodell" total_navigation = \ df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation"] + \ - df.loc["DEMO v1", "Final Energy|Transportation|Domestic Navigation"] + df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation"] navigation_liquid = \ df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation|Liquids"] + \ - df.loc["DEMO v1", "Final Energy|Transportation|Domestic Navigation|Liquids"] + df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Liquids"] - navigation_h2 = df.loc["DEMO v1", "Final Energy|Transportation|Domestic Navigation|Hydrogen"] + navigation_h2 = df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Hydrogen"] h2_share = navigation_h2 / total_navigation liquid_share = navigation_liquid / total_navigation @@ -46,13 +46,13 @@ def get_transport_shares(df, planning_horizons): return transport_share, naval_share def get_transport_growth(df, planning_horizons): - # Aviation growth factor - using REMIND-EU v1.1 since DEMO v1 does not include bunkers + # Aviation growth factor - using REMIND-EU v1.1 since Aladin v1 does not include bunkers aviation_model = "REMIND-EU v1.1" aviation = df.loc[aviation_model,"Final Energy|Bunkers|Aviation", "PJ/yr"] aviation_growth_factor = aviation / aviation[2020] - # Transport growth factor - using DEMO v1 - transport_model = "DEMO v1" + # Transport growth factor - using REMIND until Aladin v1 uploads variables + transport_model = "REMIND-EU v1.1" freight = df.loc[transport_model, "Energy Service|Transportation|Freight|Road", "bn tkm/yr"] person = df.loc[transport_model, "Energy Service|Transportation|Passenger|Road", "bn pkm/yr"] freight_PJ = df.loc[transport_model, "Final Energy|Transportation|Truck", "PJ/yr"] diff --git a/workflow/scripts/modify_industry_demand.py b/workflow/scripts/modify_industry_demand.py index fe2467193..951d6fb1d 100644 --- a/workflow/scripts/modify_industry_demand.py +++ b/workflow/scripts/modify_industry_demand.py @@ -12,71 +12,96 @@ - Production|Non-Ferrous Metals - Production|Pulp and Paper """ +import logging +logger = logging.getLogger(__name__) import pandas as pd -# leitmodell for industry demand -leitmodell="FORECAST v1.0" - -year = snakemake.input.industrial_production_per_country_tomorrow.split("_")[-1].split(".")[0] - -existing_industry = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow, index_col=0) - -# read in ariadne database -ariadne = pd.read_csv( - snakemake.input.ariadne, - index_col=["model", "scenario", "region", "variable", "unit"] -).loc[ - leitmodell, - snakemake.config["iiasa_database"]["reference_scenario"], - "Deutschland", - :, - "Mt/yr", -].multiply(1000) - -print( - "German industry demand before modification", - existing_industry.loc["DE", ["Cement", - "Electric arc", - "Integrated steelworks", - "DRI + Electric arc", - "Ammonia", - "Methanol", - "Pulp production", - "Paper production", - "Ceramics & other NMM"]], sep="\n") - -# write Cement, Ammonia and Methanol directly to dataframe -existing_industry.loc["DE", "Cement"] = ariadne.loc["Production|Non-Metallic Minerals|Cement", year] -existing_industry.loc["DE", "Ammonia"] = ariadne.loc["Production|Chemicals|Ammonia", year] -existing_industry.loc["DE", "Methanol"] = ariadne.loc["Production|Chemicals|Methanol", year] - -# get ratio of pulp and paper production -pulp_ratio = existing_industry.loc["DE", "Pulp production"] / (existing_industry.loc["DE", "Pulp production"] + existing_industry.loc["DE", "Paper production"]) - -existing_industry.loc["DE", "Pulp production"] = ariadne.loc["Production|Pulp and Paper", year] * pulp_ratio -existing_industry.loc["DE", "Paper production"] = ariadne.loc["Production|Pulp and Paper", year] * (1-pulp_ratio) - -# non-metallic minerals -existing_industry.loc["DE", "Ceramics & other NMM"] = ariadne.loc["Production|Non-Metallic Minerals", year] - ariadne.loc["Production|Non-Metallic Minerals|Cement", year] - -# get steel ratios from existing_industry -steel = existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] -ratio = steel/steel.sum() - -# multiply with steel production including primary and secondary steel since distinguishing is taken care of later -existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] = ratio * ariadne.loc["Production|Steel", year] - -print( - "German demand after modification", - existing_industry.loc["DE", ["Cement", - "Electric arc", - "Integrated steelworks", - "DRI + Electric arc", - "Ammonia", - "Methanol", - "Pulp production", - "Paper production", - "Ceramics & other NMM"]], sep="\n") - -existing_industry.to_csv(snakemake.output.industrial_production_per_country_tomorrow) +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "modify_industry_demand", + simpl="", + clusters=22, + opts="", + ll="vopt", + sector_opts="None", + run="KN2045_Bal_v4", + planning_horizons=2020 + ) + + # leitmodell for industry demand + leitmodell="FORECAST v1.0" + + year = snakemake.input.industrial_production_per_country_tomorrow.split("_")[-1].split(".")[0] + if (snakemake.config["iiasa_database"]["db_name"] == "ariadne2_intern" + and year == "2020"): + logger.warning(f"Assuming {leitmodell} uses 2021 as base year instead of 2020.") + year = "2021" + existing_industry = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow, index_col=0) + + # read in ariadne database + ariadne = pd.read_csv( + snakemake.input.ariadne, + index_col=["model", "scenario", "region", "variable", "unit"] + ).loc[ + leitmodell, + snakemake.config["iiasa_database"]["reference_scenario"], + "Deutschland", + :, + "Mt/yr", + ].multiply(1000) + + print( + "German industry demand before modification", + existing_industry.loc["DE", ["Cement", + "Electric arc", + "Integrated steelworks", + "DRI + Electric arc", + "Ammonia", + "Methanol", + "Pulp production", + "Paper production", + "Ceramics & other NMM"]], sep="\n") + + # write Cement, Ammonia and Methanol directly to dataframe + existing_industry.loc["DE", "Cement"] = ariadne.loc["Production|Non-Metallic Minerals|Cement", year] + existing_industry.loc["DE", "Ammonia"] = ariadne.loc["Production|Chemicals|Ammonia", year] + existing_industry.loc["DE", "Methanol"] = ariadne.loc["Production|Chemicals|Methanol", year] + + # get ratio of pulp and paper production + pulp_ratio = existing_industry.loc["DE", "Pulp production"] / (existing_industry.loc["DE", "Pulp production"] + existing_industry.loc["DE", "Paper production"]) + + existing_industry.loc["DE", "Pulp production"] = ariadne.loc["Production|Pulp and Paper", year] * pulp_ratio + existing_industry.loc["DE", "Paper production"] = ariadne.loc["Production|Pulp and Paper", year] * (1-pulp_ratio) + + # non-metallic minerals + existing_industry.loc["DE", "Ceramics & other NMM"] = ariadne.loc["Production|Non-Metallic Minerals", year] - ariadne.loc["Production|Non-Metallic Minerals|Cement", year] + + # get steel ratios from existing_industry + steel = existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] + ratio = steel/steel.sum() + + # multiply with steel production including primary and secondary steel since distinguishing is taken care of later + existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] = ratio * ariadne.loc["Production|Steel", year] + + print( + "German demand after modification", + existing_industry.loc["DE", ["Cement", + "Electric arc", + "Integrated steelworks", + "DRI + Electric arc", + "Ammonia", + "Methanol", + "Pulp production", + "Paper production", + "Ceramics & other NMM"]], sep="\n") + + existing_industry.to_csv(snakemake.output.industrial_production_per_country_tomorrow) diff --git a/workflow/scripts/retrieve_ariadne_database.py b/workflow/scripts/retrieve_ariadne_database.py index 8a348b220..94730749e 100644 --- a/workflow/scripts/retrieve_ariadne_database.py +++ b/workflow/scripts/retrieve_ariadne_database.py @@ -12,7 +12,7 @@ snakemake = mock_snakemake("retrieve_ariadne_database") db = pyam.read_iiasa( - "ariadne_intern", + snakemake.params.db_name, model=snakemake.params.leitmodelle, scenario=snakemake.params.scenarios, # Download only the most recent iterations of scenarios From bba108ebbf73fc0f90ea6e21439db565f74ba02d Mon Sep 17 00:00:00 2001 From: Julian Geis Date: Wed, 5 Jun 2024 16:48:28 +0200 Subject: [PATCH 380/669] add functionality to derive imports and exports and plot them (#98) * add functionality to derive import adn export and plot them * corrected export import confusion. --- workflow/scripts/export_ariadne_variables.py | 50 +++++++++++++++----- 1 file changed, 38 insertions(+), 12 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index de6e9f53f..48e8c6669 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -3014,20 +3014,23 @@ def get_policy(n, investment_year): def get_trade(n, region): var = pd.Series() - def get_net_export_links(n, region, carriers): + def get_export_import_links(n, region, carriers): exporting = n.links.index[ (n.links.carrier.isin(carriers)) & (n.links.bus0.str[:2] == region) & (n.links.bus1.str[:2] != region)] - exporting_p = n.links_t.p0.loc[: , exporting].multiply(n.snapshot_weightings.generators, axis=0).values.sum() - + importing = n.links.index[ (n.links.carrier.isin(carriers)) & (n.links.bus0.str[:2] != region) & (n.links.bus1.str[:2] == region)] - importing_p = n.links_t.p0.loc[: , importing].multiply(n.snapshot_weightings.generators, axis=0).values.sum() + + exporting_p = n.links_t.p0.loc[: , exporting].clip(lower=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() \ + - n.links_t.p0.loc[: , importing].clip(upper=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() + importing_p = n.links_t.p0.loc[: , importing].clip(lower=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() \ + - n.links_t.p0.loc[: , exporting].clip(upper=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() - return (exporting_p - importing_p) * MWh2PJ + return exporting_p, importing_p # Trade|Primary Energy|Biomass|Volume # Trade|Secondary Energy|Electricity|Volume @@ -3035,25 +3038,43 @@ def get_net_export_links(n, region, carriers): (n.lines.carrier == "AC") & (n.lines.bus0.str[:2] == region) & (n.lines.bus1.str[:2] != region)] - exporting_p_ac = n.lines_t.p0.loc[: , exporting_ac].multiply(n.snapshot_weightings.generators, axis=0).values.sum() - + importing_ac = n.lines.index[ (n.lines.carrier == "AC") & (n.lines.bus0.str[:2] != region) & (n.lines.bus1.str[:2] == region)] - importing_p_ac = n.lines_t.p0.loc[: , importing_ac].multiply(n.snapshot_weightings.generators, axis=0).values.sum() + exporting_p_ac = n.lines_t.p0.loc[: , exporting_ac].clip(lower=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() \ + - n.lines_t.p0.loc[: , importing_ac].clip(upper=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() + importing_p_ac = n.lines_t.p0.loc[: , importing_ac].clip(lower=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() \ + - n.lines_t.p0.loc[: , exporting_ac].clip(upper=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() + + exports_dc, imports_dc = get_export_import_links(n, region, ["DC"]) var["Trade|Secondary Energy|Electricity|Volume"] = \ - ((exporting_p_ac - importing_p_ac) * MWh2PJ + get_net_export_links(n, region, ["DC"])) + ((exporting_p_ac - importing_p_ac) + (imports_dc - exports_dc)) * MWh2PJ + var["Trade|Secondary Energy|Electricity|Volume|Imports"] = \ + (importing_p_ac + imports_dc) * MWh2PJ + var["Trade|Secondary Energy|Electricity|Volume|Exports"] = \ + (exporting_p_ac + exports_dc) * MWh2PJ # Trade|Secondary Energy|Hydrogen|Volume h2_carriers = ["H2 pipeline", "H2 pipeline (Kernnetz)", "H2 pipeline retrofitted"] + exports_h2, imports_h2 = get_export_import_links(n, region, h2_carriers) var["Trade|Secondary Energy|Hydrogen|Volume"] = \ - get_net_export_links(n, region, h2_carriers) + (exports_h2 - imports_h2) * MWh2PJ + var["Trade|Secondary Energy|Hydrogen|Volume|Imports"] = \ + imports_h2 * MWh2PJ + var["Trade|Secondary Energy|Hydrogen|Volume|Exports"] = \ + exports_h2 * MWh2PJ # Trade|Secondary Energy|Liquids|Hydrogen|Volume + exports_oil_renew, imports_oil_renew = get_export_import_links(n, region, ["renewable oil"]) var["Trade|Secondary Energy|Liquids|Hydrogen|Volume"] = \ - get_net_export_links(n, "DE", ["renewable oil"]) + (exports_oil_renew - imports_oil_renew) * MWh2PJ + var["Trade|Secondary Energy|Liquids|Hydrogen|Volume|Imports"] = \ + imports_oil_renew * MWh2PJ + var["Trade|Secondary Energy|Liquids|Hydrogen|Volume|Exports"] = \ + exports_oil_renew * MWh2PJ # Trade|Secondary Energy|Gases|Hydrogen|Volume # Trade|Primary Energy|Coal|Volume @@ -3062,8 +3083,13 @@ def get_net_export_links(n, region, carriers): 'groupby': n.statistics.groupers.get_name_bus_and_carrier, 'nice_names': False, } + exports_gas, imports_gas = get_export_import_links(n, region, ["gas pipeline", "gas pipeline new"]) var["Trade|Primary Energy|Gas|Volume"] = \ - get_net_export_links(n, region, ["gas pipeline", "gas pipeline new"]) * _get_gas_fossil_fraction(n, region, kwargs) + ((exports_gas - imports_gas) * MWh2PJ) * _get_gas_fossil_fraction(n, region, kwargs) + var["Trade|Primary Energy|Gas|Volume|Imports"] = \ + imports_gas * MWh2PJ * _get_gas_fossil_fraction(n, region, kwargs) + var["Trade|Primary Energy|Gas|Volume|Exports"] = \ + exports_gas * MWh2PJ * _get_gas_fossil_fraction(n, region, kwargs) # Trade|Primary Energy|Oil|Volume From a0ba48d6ae1cd558a4fac96b929d84fbdbb25d54 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 5 Jun 2024 17:17:45 +0200 Subject: [PATCH 381/669] remove clip() and round() --- workflow/scripts/export_ariadne_variables.py | 3 --- 1 file changed, 3 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index c9eaef4c9..82f1afa7d 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1351,7 +1351,6 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios ip = _industry_production.loc[region, subcategories] # kt/a sr = _sector_ratios["DE"].loc[carrier,subcategories] # MWh/tMaterial non_energy = sr.multiply(ip).sum(axis=1) * 1e3 * MWh2PJ - non_energy = non_energy # write var var["Final Energy|Non-Energy Use|Gases"] = non_energy.methane + CH4_for_NH3 @@ -1518,8 +1517,6 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios # Excluding chargers (battery and EV) ) ].sum() - var = var.round(3) - var = var.clip(lower=0) # urban decentral heat and rural heat are delivered as different forms of energy # (gas, oil, biomass, ...) decentral_heat_withdrawal = n.statistics.withdrawal( From 2b18b302741361c51103795d94a7c59d5c5314ea Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 5 Jun 2024 17:48:02 +0200 Subject: [PATCH 382/669] adjust to DB update #95 --- workflow/scripts/build_scenarios.py | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 71411bfec..d8193c967 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -146,15 +146,13 @@ def write_to_scenario_yaml( config = yaml.load(file_path) for scenario in scenarios: reference_scenario = config[scenario]["iiasa_database"]["reference_scenario"] - if scenario == "CurrentPolicies": - reference_scenario = "8Gt_Bal_v3" # hotfix until DB is updated co2_budget_source = config[scenario]["co2_budget_DE_source"] co2_budget_fractions = get_co2_budget( - df.loc["REMIND-EU v1.1", "8Gt_Bal_v3"], + df.loc["REMIND-EU v1.1", reference_scenario], co2_budget_source ) - + planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] # for 2050 we still need data transport_share, naval_share = get_transport_shares( From 8ec040222447ae997682a0edc3f43158ea998e82 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 6 Jun 2024 13:15:12 +0200 Subject: [PATCH 383/669] fix FORECAST reporting year bug --- workflow/scripts/build_scenarios.py | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index d8193c967..d995a188d 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -4,7 +4,8 @@ # SPDX-License-Identifier: MIT # This script reads in data from the IIASA database to create the scenario.yaml file - +import logging +logger = logging.getLogger(__name__) import ruamel.yaml from pathlib import Path @@ -74,6 +75,11 @@ def get_primary_steel_share(df, planning_horizons): primary_steel_share = primary_steel / total_steel primary_steel_share = primary_steel_share[planning_horizons] + + if model == "FORECAST v1.0" and planning_horizons[0] == 2020: + logger.warning("FORECAST v1.0 does not have data for 2020. Using 2021 data for Production|Steel instead.") + primary_steel_share[2020] = primary_steel[2021] / total_steel[2021] + return primary_steel_share.set_index(pd.Index(["Primary_Steel_Share"])) From 604839319bd23ac83135d83b0e043ab1256997de Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 6 Jun 2024 13:17:03 +0200 Subject: [PATCH 384/669] more default memory for cluster runs --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 643b59609..cd6bc9a51 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -287,7 +287,7 @@ industry: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving solving: runtime: 12h - mem_mb: 40000 #30000 is OK for 22 nodes, 365H; 140000 for 22 nodes 3H; 400000 for 44 nodes 3H + mem_mb: 70000 #30000 is OK for 22 nodes, 365H; 140000 for 22 nodes 3H; 400000 for 44 nodes 3H options: load_shedding: false skip_iterations: false # settings for post-discretization: false From 5655f666689f01c5c73447539f8f58d0b0a02878 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 6 Jun 2024 13:17:26 +0200 Subject: [PATCH 385/669] report Methanol in Transportation --- workflow/scripts/export_ariadne_variables.py | 18 +++++++++++++++--- 1 file changed, 15 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 326817058..3bccf2edd 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1663,10 +1663,14 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios sum_load(n, "kerosene for aviation", region) * (1 - international_aviation_fraction) ) + ( - sum_load(n, ["shipping oil", "shipping methanol"], region) + sum_load(n, "shipping oil", region) * (1 - international_navigation_fraction) ) ) + + var["Final Energy|Transportation|Methanol"] = \ + sum_load(n, "shipping methanol", region) * (1 - international_navigation_fraction) + # var["Final Energy|Transportation|Liquids|Biomass"] = \ # var["Final Energy|Transportation|Liquids|Synthetic Fossil"] = \ var["Final Energy|Transportation|Liquids|Petroleum"] = ( @@ -1687,11 +1691,18 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios ) # TODO Navigation hydrogen - var["Final Energy|Bunkers|Navigation"] = \ + var["Final Energy|Bunkers|Navigation|Liquids"] = ( - sum_load(n, ["shipping oil", "shipping methanol"], region) + sum_load(n, "shipping oil", region) * international_navigation_fraction ) + var["Final Energy|Bunkers|Navigation|Methanol"] = \ + sum_load(n, "shipping methanol", region) * international_navigation_fraction + + + var["Final Energy|Bunkers|Navigation"] = \ + var["Final Energy|Bunkers|Navigation|Liquids"] \ + + var["Final Energy|Bunkers|Navigation|Methanol"] # var["Final Energy|Bunkers|Navigation|Gases"] = \ # ! Not implemented @@ -1706,6 +1717,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios var["Final Energy|Transportation|Electricity"] + var["Final Energy|Transportation|Liquids"] + var["Final Energy|Transportation|Hydrogen"] + + var["Final Energy|Transportation|Methanol"] ) var["Final Energy|Agriculture|Electricity"] = \ From 0eb7fb02e3befb4565386bd7f79b7f0b32a57336 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Fri, 7 Jun 2024 14:51:27 +0200 Subject: [PATCH 386/669] option to assign duals --- config/config.yaml | 1 + 1 file changed, 1 insertion(+) diff --git a/config/config.yaml b/config/config.yaml index cd6bc9a51..7b3a6a7db 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -289,6 +289,7 @@ solving: runtime: 12h mem_mb: 70000 #30000 is OK for 22 nodes, 365H; 140000 for 22 nodes 3H; 400000 for 44 nodes 3H options: + assign_all_duals: true load_shedding: false skip_iterations: false # settings for post-discretization: false min_iterations: 1 # settings for post-discretization: 1 From 9dcd4a6a8c10345203d87f669b0c796ea56426c8 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 7 Jun 2024 17:14:21 +0200 Subject: [PATCH 387/669] minor fixes for 2020 validation --- config/config.yaml | 6 +++--- workflow/scripts/additional_functionality.py | 4 ++-- workflow/scripts/export_ariadne_variables.py | 2 +- workflow/scripts/plot_ariadne_variables.py | 10 ++++++++-- 4 files changed, 14 insertions(+), 8 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 7b3a6a7db..d43f807d3 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -119,15 +119,15 @@ limits_capacity_max: Generator: onwind: DE: - 2020: 54 + 2020: 54.5 2025: 69 offwind: DE: - 2020: 8 + 2020: 7.8 2025: 8 solar: DE: - 2020: 54 + 2020: 53.7 2025: 110 # EEG2023; assumes for 2026: 128 GW, assuming a fair share reached by end of 2025 limits_capacity_min: diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 4c31b75a3..40ef5635b 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -194,8 +194,8 @@ def electricity_import_limits(n, snapshots, investment_year, config): incoming_line = n.lines.index[(n.lines.carrier == "AC") & (n.lines.bus0.str[:2] != ct) & (n.lines.bus1.str[:2] == ct)] outgoing_line = n.lines.index[(n.lines.carrier == "AC") & (n.lines.bus0.str[:2] == ct) & (n.lines.bus1.str[:2] != ct)] - incoming_link = n.links.index[((n.links.carrier == "DC") | (n.links.carrier == "AC")) & (n.links.bus0.str[:2] != ct) & (n.links.bus1.str[:2] == ct)] - outgoing_link = n.links.index[((n.links.carrier == "DC") | (n.links.carrier == "AC")) & (n.links.bus0.str[:2] == ct) & (n.links.bus1.str[:2] != ct)] + incoming_link = n.links.index[(n.links.carrier == "DC") & (n.links.bus0.str[:2] != ct) & (n.links.bus1.str[:2] == ct)] + outgoing_link = n.links.index[(n.links.carrier == "DC") & (n.links.bus0.str[:2] == ct) & (n.links.bus1.str[:2] != ct)] incoming_line_p = (n.model["Line-s"].loc[:, incoming_line]*n.snapshot_weightings.generators).sum() outgoing_line_p = (n.model["Line-s"].loc[:, outgoing_line]*n.snapshot_weightings.generators).sum() diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 3bccf2edd..100bc97b4 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2991,7 +2991,7 @@ def get_export_import_links(n, region, carriers): exports_dc, imports_dc = get_export_import_links(n, region, ["DC"]) var["Trade|Secondary Energy|Electricity|Volume"] = \ - ((exporting_p_ac - importing_p_ac) + (imports_dc - exports_dc)) * MWh2PJ + ((exporting_p_ac - importing_p_ac) + (exports_dc - imports_dc)) * MWh2PJ var["Trade|Secondary Energy|Electricity|Volume|Imports"] = \ (importing_p_ac + imports_dc) * MWh2PJ var["Trade|Secondary Energy|Electricity|Volume|Exports"] = \ diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 640d27629..28bbb279e 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -122,10 +122,10 @@ def within_plot(df, df2, def elec_val_plot(df, savepath): # electricity validation for 2020 elec_capacities = pd.DataFrame(index=["ror", "hydro", "battery", "biomass", "nuclear", "lignite", "coal", "oil", "gas", "wind_onshore", "wind_offshore", "solar"]) - elec_generation = pd.DataFrame(index=["ror", "hydro", "battery", "biomass", "nuclear", "lignite", "coal", "oil", "gas", "wind", "solar"]) + elec_generation = pd.DataFrame(index=["net exports", "ror", "hydro", "battery", "biomass", "nuclear", "lignite", "coal", "oil", "gas", "wind", "solar", "sum_real-sum_pypsa"]) elec_capacities["real"] = [4.94, 9.69, 2.4, 8.72, 8.11, 20.86, 23.74, 4.86, 32.54, 54.25, 7.86, 54.36] # https://energy-charts.info/charts/installed_power/chart.htm?l=en&c=DE&year=2020 - elec_generation["real"] = [np.nan, 18.7, np.nan, 45, 64, 91, 43, 4.7, 95, 132, 50] # https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Energie/Erzeugung/Tabellen/bruttostromerzeugung.html + elec_generation["real"] = [18.9, np.nan, 18.7, np.nan, 45, 64, 91, 43, 4.7, 95, 132, 50, np.nan] # https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Energie/Erzeugung/Tabellen/bruttostromerzeugung.html elec_capacities["pypsa"] = [ 0, df.loc[("Capacity|Electricity|Hydro", "GW"), "2020"], @@ -142,6 +142,7 @@ def elec_val_plot(df, savepath): ] elec_generation["pypsa"] = [ + df.loc[("Trade|Secondary Energy|Electricity|Volume", "PJ/yr"), "2020"] / 3.6, 0, df.loc[("Secondary Energy|Electricity|Hydro", "PJ/yr"), "2020"] / 3.6, 0, @@ -153,8 +154,13 @@ def elec_val_plot(df, savepath): df.loc[("Secondary Energy|Electricity|Gas", "PJ/yr"), "2020"] / 3.6, df.loc[("Secondary Energy|Electricity|Wind", "PJ/yr"), "2020"] / 3.6, df.loc[("Secondary Energy|Electricity|Solar", "PJ/yr"), "2020"] / 3.6, + np.nan ] + #elec_generation.loc["sum/10"] = elec_generation.sum().div(10) + elec_generation.loc["sum_real-sum_pypsa", "sum_real-sum_pypsa"] = elec_generation.sum()["real"] - elec_generation.sum()["pypsa"] + + fig, axes = plt.subplots(1, 2, figsize=(10, 5)) elec_capacities.plot(kind="bar", ax=axes[0]) axes[0].set_ylabel("GW") From bed98ad496c411229e7e27aa5ecb3062c8601553 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 10 Jun 2024 13:50:27 +0200 Subject: [PATCH 388/669] redefine scenarios for AP1 meeting in June --- config/config.yaml | 61 ++++++++++++++++++++++++----------- config/scenarios.manual.yaml | 48 +++++++++++++-------------- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 66 insertions(+), 45 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index d43f807d3..9629e6e01 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,12 +4,12 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240605newdb + prefix: 20240610scenariosredefined name: - # - CurrentPolicies + - CurrentPolicies - KN2045_Bal_v4 - # - KN2045_Elec_v4 - # - KN2045_H2_v4 + - KN2045_Elec_v4 + - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase @@ -72,8 +72,8 @@ scenario: - 2045 existing_capacities: - grouping_years_power: [1895, 1920, 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019, 2024, 2029] - grouping_years_heat: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020] # heat grouping years >= baseyear will be ignored + grouping_years_power: [1920, 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020] + grouping_years_heat: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019] # heat grouping years >= baseyear will be ignored # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries @@ -135,26 +135,51 @@ limits_capacity_min: onwind: DE: 2030: 115 # Wind-an-Land Law - 2035: 157 # Wind-an-Land Law - 2040: 160 # Wind-an-Land Law - 2045: 160 + 2035: 115 # Wind-an-Land Law + 2040: 115 # Wind-an-Land Law + 2045: 115 offwind: DE: 2030: 30 # Wind-auf-See Law - 2035: 40 # 40 Wind-auf-See Law - # assuming at least 1/3 of difference reached in 2040 - 2040: 50 - 2045: 70 #70 Wind-auf-See Law + 2035: 30 + 2040: 30 + 2045: 30 solar: DE: # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, # assuming at least 1/3 of difference reached in 2025 2025: 101 - 2030: 215 # PV strategy - 2035: 309 - 2040: 400 # PV strategy - 2045: 400 - # What about the EEG2023 "Strommengenpfad"? + 2030: 101 + 2035: 101 + 2040: 101 + 2045: 101 + + +# limits_capacity_min: +# Generator: +# onwind: +# DE: +# 2030: 115 # Wind-an-Land Law +# 2035: 157 # Wind-an-Land Law +# 2040: 160 # Wind-an-Land Law +# 2045: 160 +# offwind: +# DE: +# 2030: 30 # Wind-auf-See Law +# 2035: 40 # 40 Wind-auf-See Law +# # assuming at least 1/3 of difference reached in 2040 +# 2040: 50 +# 2045: 70 #70 Wind-auf-See Law +# solar: +# DE: +# # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, +# # assuming at least 1/3 of difference reached in 2025 +# 2025: 101 +# 2030: 215 # PV strategy +# 2035: 309 +# 2040: 400 # PV strategy +# 2045: 400 +# # What about the EEG2023 "Strommengenpfad"? h2_import_max: DE: diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index fd3f59fcd..6b196aa85 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -3,22 +3,15 @@ # # SPDX-License-Identifier: MIT CurrentPolicies: -# Trend Szenario -# Suggestion (Tom): "policy from 2030 is frozen" -# conservative development after 2030 -# fixing CO2 budget at 2030 value for 2035-2050 -# reducing VRE targets in 2030 to 75% of the target (following REMIND) -# not forcing H2 production -# orient transport transformation from Aladin v1 (currently is DEMO) -# industry transformation towards FORECAST results -# consider not assuming Kernnetz - - # Kernnetz is not assumed to be built +# UBA CO2 pathway instead of KSG targets +# Europen CO2 pathway fixed at 2030 for 2035-2050 +# Kernnetz is not assumed to be built +# Not forcing renewables after 2030 + wasserstoff_kernnetz: - enable: true + enable: false iiasa_database: - # TODO: wait for Aladin v1 to upload a first Trend scenario reference_scenario: CurrentPolicies co2_budget_DE_source: UBA @@ -64,7 +57,7 @@ CurrentPolicies: # constrain electricity import in TWh electricity_import: DE: - 2020: 0 + 2020: -20 2025: 0 2030: 0 2035: 40 @@ -122,7 +115,7 @@ KN2045_Bal_v4: costs: horizon: "mean" - NEP: 2021 + NEP: 2023 transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") # boundary condition of maximum volumes @@ -130,7 +123,7 @@ KN2045_Bal_v4: # constrain electricity import in TWh electricity_import: DE: - 2020: 0 + 2020: -20 2025: 0 2030: 0 2035: 40 @@ -169,6 +162,7 @@ KN2045_Bal_v4: 2035: 0 2040: 0 2045: 0 + KN2045_Elec_v4: # Fokus auf dem Hochlauf von Technologien zur direkten Elektrifizierung der Sektoren # Strom als präferierter Energieträger in der Endenergie, andere Energieträger ergänzend, wo nötig (Wasserstoff, synthetische Kraftstoffe) @@ -181,14 +175,14 @@ KN2045_Elec_v4: costs: horizon: "mean" - NEP: 2021 + NEP: 2023 transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") limits_volume_max: # constrain electricity import in TWh electricity_import: DE: - 2020: 0 + 2020: -20 2025: 0 2030: 0 2035: 50 @@ -227,6 +221,7 @@ KN2045_Elec_v4: 2035: 0 2040: 0 2045: 0 + KN2045_H2_v4: # Fokus stärker auf dem Hochlauf von Technologien zur indirekten Elektrifizierung der Sektoren # Verstärkter Einsatz von Wasserstoff und synthetischen Kraftstoffen - erneuerbar erzeugt und auch importiert @@ -239,19 +234,20 @@ KN2045_H2_v4: costs: horizon: "mean" - NEP: 2021 + NEP: 2023 transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") limits_volume_max: # constrain electricity import in TWh electricity_import: DE: - 2020: 0 + 2020: -20 2025: 0 2030: 0 2035: 30 2040: 70 2045: 100 # scenario guidelines + # constrain hydrogen import in TWh h2_import: DE: @@ -301,7 +297,7 @@ KN2045plus_EasyRide: costs: horizon: "optimist" - NEP: 2021 + NEP: 2023 transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") # boundary condition of maximum volumes @@ -309,7 +305,7 @@ KN2045plus_EasyRide: # constrain electricity import in TWh electricity_import: DE: - 2020: 0 + 2020: -20 2025: 0 2030: 0 2035: 40 @@ -359,7 +355,7 @@ KN2045plus_LowDemand: costs: horizon: "optimist" - NEP: 2021 + NEP: 2023 transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") # boundary condition of maximum volumes @@ -367,7 +363,7 @@ KN2045plus_LowDemand: # constrain electricity import in TWh electricity_import: DE: - 2020: 0 + 2020: -20 2025: 0 2030: 0 2035: 20 @@ -437,7 +433,7 @@ KN2045minus_WorstCase: # constrain electricity import in TWh electricity_import: DE: - 2020: 0 + 2020: -20 2025: 0 2030: 0 2035: 20 @@ -523,7 +519,7 @@ KN2045minus_SupplyFocus: # constrain electricity import in TWh electricity_import: DE: - 2020: 0 + 2020: -20 2025: 0 2030: 0 2035: 40 diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index e922db47e..f4f627c99 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit e922db47e32c3bb3965276811a0f32b7f535a47a +Subproject commit f4f627c9906f64ddaf42dd53ad82f4fdc1c37689 From e2a37c0fb9dccdeca0eb4de0791dfed3c71a3838 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 10 Jun 2024 14:12:51 +0200 Subject: [PATCH 389/669] remove unused envvars --- workflow/Snakefile | 4 ---- 1 file changed, 4 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 42915c744..9162f195f 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -31,10 +31,6 @@ resources = path_provider("resources/", RDIR, policy, exclude) RESULTS = "results/" + RDIR -envvars: - "IIASA_USERNAME", - "IIASA_PASSWORD" - wildcard_constraints: simpl="[a-zA-Z0-9]*", clusters="[0-9]+(m|c)?|all", From 3058b7705b833bdb09b7d7cb41b7abb3b783a4b9 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 4 Jun 2024 14:39:17 +0200 Subject: [PATCH 390/669] disable agriculture assert again --- workflow/scripts/export_ariadne_variables.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 5efecfd48..3daa96b8d 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1793,10 +1793,10 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): + var["Final Energy|Agriculture|Liquids"] ) - assert isclose( - var["Final Energy|Agriculture"], - energy_totals.get("total agriculture") - ) + # assert isclose( + # var["Final Energy|Agriculture"], + # energy_totals.get("total agriculture") + # ) # It's nice to do these double checks, but it's less # straightforward for the other categories # !!! TODO this assert is temporarily disbaled because of https://github.com/PyPSA/pypsa-eur/issues/985 From c6074508a2d17a5a884c537bd1044eb1c190f9e9 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 6 Jun 2024 13:17:26 +0200 Subject: [PATCH 391/669] report Methanol in Transportation --- workflow/scripts/export_ariadne_variables.py | 18 +++++++++++++++--- 1 file changed, 15 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 3daa96b8d..5bb4ee4d0 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1735,10 +1735,14 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): sum_load(n, "kerosene for aviation", region) * (1 - international_aviation_fraction) ) + ( - sum_load(n, ["shipping oil", "shipping methanol"], region) + sum_load(n, "shipping oil", region) * (1 - international_navigation_fraction) ) ) + + var["Final Energy|Transportation|Methanol"] = \ + sum_load(n, "shipping methanol", region) * (1 - international_navigation_fraction) + # var["Final Energy|Transportation|Liquids|Biomass"] = \ # var["Final Energy|Transportation|Liquids|Synthetic Fossil"] = \ var["Final Energy|Transportation|Liquids|Petroleum"] = ( @@ -1759,11 +1763,18 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): ) # TODO Navigation hydrogen - var["Final Energy|Bunkers|Navigation"] = \ + var["Final Energy|Bunkers|Navigation|Liquids"] = ( - sum_load(n, ["shipping oil", "shipping methanol"], region) + sum_load(n, "shipping oil", region) * international_navigation_fraction ) + var["Final Energy|Bunkers|Navigation|Methanol"] = \ + sum_load(n, "shipping methanol", region) * international_navigation_fraction + + + var["Final Energy|Bunkers|Navigation"] = \ + var["Final Energy|Bunkers|Navigation|Liquids"] \ + + var["Final Energy|Bunkers|Navigation|Methanol"] # var["Final Energy|Bunkers|Navigation|Gases"] = \ # ! Not implemented @@ -1778,6 +1789,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): var["Final Energy|Transportation|Electricity"] + var["Final Energy|Transportation|Liquids"] + var["Final Energy|Transportation|Hydrogen"] + + var["Final Energy|Transportation|Methanol"] ) var["Final Energy|Agriculture|Electricity"] = \ From 52682cd98ea8940b00ff95b34346324d72648930 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Mon, 10 Jun 2024 15:04:08 +0200 Subject: [PATCH 392/669] fix regions without boiler profiles --- workflow/scripts/additional_functionality.py | 4 ++++ workflow/scripts/modify_prenetwork.py | 12 +++++++----- 2 files changed, 11 insertions(+), 5 deletions(-) diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 4c31b75a3..3a2155fe8 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -309,6 +309,8 @@ def force_boiler_profiles_existing_per_load(n): return boiler_loads = n.links.loc[decentral_boilers,"bus1"] + boiler_loads = boiler_loads[boiler_loads.isin(n.loads_t.p_set.columns)] + decentral_boilers = boiler_loads.index boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div(n.loads_t.p_set[boiler_loads].max(),axis=1) boiler_profiles_pu.columns = decentral_boilers boiler_profiles = DataArray(boiler_profiles_pu.multiply(n.links.loc[decentral_boilers,"p_nom"],axis=1)) @@ -345,6 +347,8 @@ def force_boiler_profiles_existing_per_boiler(n): return boiler_loads = n.links.loc[decentral_boilers,"bus1"] + boiler_loads = boiler_loads[boiler_loads.isin(n.loads_t.p_set.columns)] + decentral_boilers = boiler_loads.index boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div(n.loads_t.p_set[boiler_loads].max(),axis=1) boiler_profiles_pu.columns = decentral_boilers boiler_profiles = DataArray(boiler_profiles_pu.multiply(n.links.loc[decentral_boilers,"p_nom"],axis=1)) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 860b2ede2..81578504c 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -45,6 +45,8 @@ def fix_new_boiler_profiles(n): return boiler_loads = n.links.loc[decentral_boilers,"bus1"] + boiler_loads = boiler_loads[boiler_loads.isin(n.loads_t.p_set.columns)] + decentral_boilers = boiler_loads.index boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div(n.loads_t.p_set[boiler_loads].max(),axis=1) boiler_profiles_pu.columns = decentral_boilers @@ -353,12 +355,12 @@ def must_run_biomass(n, p_min_pu, regions): snakemake = mock_snakemake( "modify_prenetwork", simpl="", - clusters=22, + clusters=44, opts="", - ll="v1.2", - sector_opts="365H-T-H-B-I-A-solar+p3-linemaxext15", - planning_horizons="2040", - run="KN2045_H2_v4" + ll="vopt", + sector_opts= "None", + planning_horizons="2020", + run="KN2045_Bal_v4" ) logger.info("Adding Ariadne-specific functionality") From 9026480b9377c0f1af25039fc34ec29059e3fd75 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 10 Jun 2024 17:42:01 +0200 Subject: [PATCH 393/669] first stab at electricity investments --- workflow/scripts/export_ariadne_variables.py | 103 ++++++++++++++++--- 1 file changed, 87 insertions(+), 16 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 5bb4ee4d0..3a841fffe 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -165,10 +165,18 @@ def get_capacity_additions_simple(n, region): index = "Capacity Additions" + caps.index.str[8:]) def get_capacity_additions(n, region): - def _f(*args, **kwargs): - return n.statistics.optimal_capacity(*args, **kwargs).sub( - n.statistics.installed_capacity(*args, **kwargs), fill_value=0) - return _get_capacities(n, region, _f, cap_string="Capacity Additions Sub|") + def _f(**kwargs): + return n.statistics.optimal_capacity(**kwargs).sub( + n.statistics.installed_capacity(**kwargs), fill_value=0) + return _get_capacities(n, region, _f, cap_string="Capacity Additions|") + + +def get_investments(n, costs, region): + def _f(**kwargs): + return n.statistics.optimal_capacity(**kwargs).sub( + n.statistics.installed_capacity(**kwargs), fill_value=0) + return _get_capacities(n, region, _f, cap_string="Investments|", costs=costs) + def get_capacity_additions_nstat(n, region): def _f(*args, **kwargs): @@ -176,7 +184,58 @@ def _f(*args, **kwargs): return n.statistics.expanded_capacity(*args, **kwargs) return _get_capacities(n, region, _f, cap_string="Capacity Additions Nstat|") -def _get_capacities(n, region, cap_func, cap_string="Capacity|"): + +costs_dict = { + 'BEV charger': None, + 'CCGT': 'CCGT', + 'DAC': 'direct air capture', + 'H2 Electrolysis': 'electrolysis', + 'H2 Fuel Cell': 'fuel cell', + 'OCGT': 'OCGT', + 'PHS': 'PHS', + 'V2G': None, + 'battery charger': 'battery inverter', + 'battery discharger': 'battery inverter', + 'coal': 'coal', + 'gas pipeline': 'CH4 (g) pipeline', + 'home battery charger': 'home battery inverter', + 'home battery discharger': 'home battery inverter', + 'hydro': 'hydro', + 'lignite': 'lignite', + 'methanolisation': 'methanolisation', + 'offwind-ac': 'offwind', # TODO add grid connection cost + 'offwind-dc': 'offwind',# TODO add grid connection cost + 'offwind-float': 'offwind-float',# TODO add grid connection cost + 'oil': 'oil', + 'onwind': 'onwind', + 'ror': 'ror', + 'rural air heat pump': 'decentral air-sourced heat pump', + 'rural ground heat pump': 'decentral ground-sourced heat pump', + 'rural resistive heater': 'decentral resistive heater', + 'rural solar thermal': 'decentral solar thermal', + 'solar': 'solar-utility', # TODO add grid connection cost + 'solar rooftop': 'solar-rooftop', # TODO add grid connection cost + 'solar-hsat': 'solar-utility single-axis tracking', # TODO add grid connection cost + 'solid biomass': 'central solid biomass CHP', + 'urban central air heat pump': 'central air-sourced heat pump', + 'urban central coal CHP': 'central coal CHP', + 'urban central gas CHP': 'central gas CHP', + 'urban central gas CHP CC': 'central gas CHP', + 'urban central lignite CHP': 'central coal CHP', + 'urban central oil CHP': 'central gas CHP', + 'urban central resistive heater': 'central resistive heater', + 'urban central solar thermal': 'central solar thermal', + 'urban central solid biomass CHP': 'central solid biomass CHP', + 'urban central solid biomass CHP CC': 'central solid biomass CHP CC', + 'urban decentral air heat pump': 'decentral air-sourced heat pump', + 'urban decentral resistive heater': 'decentral resistive heater', + 'urban decentral solar thermal': 'decentral solar thermal', + 'waste CHP': 'waste CHP', + 'waste CHP CC': 'waste CHP CC', +} + + +def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): kwargs = { 'groupby': n.statistics.groupers.get_bus_and_carrier, @@ -194,7 +253,21 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): # transmission capacities ["AC", "DC", "electricity distribution grid"], errors="ignore", - ).multiply(MW2GW) + ) + + if cap_string.startswith("Investments"): + technology_investments = [ + 0 if costs_dict.get(key) is None else + costs.at[costs_dict.get(key), "investment"] + for key in capacities_electricity.index] + + capacities_electricity = \ + capacities_electricity.div(5).multiply(technology_investments) + else: + capacities_electricity = \ + capacities_electricity.multiply(MW2GW) + + capacities_biomass = capacities_electricity.filter(like="biomass") @@ -289,12 +362,9 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): # var[cap_string + "Electricity|Hydrogen|OC"] = # Q: "H2-turbine" # Q: What about retrofitted gas power plants? -> Lisa - - var[cap_string + "Electricity|Hydrogen|FC"] = \ - capacities_electricity.get("H2 Fuel Cell") - var[cap_string + "Electricity|Hydrogen"] = \ - var[cap_string + "Electricity|Hydrogen|FC"] + var[cap_string + "Electricity|Hydrogen|FC"] = \ + capacities_electricity.get("H2 Fuel Cell", 0) var[cap_string + "Electricity|Nuclear"] = \ capacities_electricity.get("nuclear", 0) @@ -588,7 +658,7 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) var[cap_string + "Hydrogen|Reservoir"] = \ - storage_capacities.get("H2") + storage_capacities.get("H2", 0) @@ -2825,7 +2895,7 @@ def get_discretized_value(value, disc_int, build_threshold=0.3): return add + discrete -def get_investments(n, costs, region, dg_cost_factor=1.0, length_factor=1.0): +def get_grid_investments(n, costs, region, dg_cost_factor=1.0, length_factor=1.0): # TODO gap between years should be read from config # TODO Discretization units should be read from config var = pd.Series() @@ -3101,9 +3171,10 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): var = pd.concat([ get_capacities(n, region), - get_capacity_additions_simple(n,region), + #get_capacity_additions_simple(n,region), #get_installed_capacities(n,region), - #get_capacity_additions(n, region), + get_capacity_additions(n, region), + get_investments(n, costs, region), #get_capacity_additions_nstat(n, region), get_production(region, year), get_primary_energy(n, region), @@ -3111,7 +3182,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): get_final_energy(n, region, industry_demand, energy_totals, year), get_prices(n,region), get_emissions(n, region, energy_totals), - get_investments( + get_grid_investments( n, costs, region, dg_cost_factor=snakemake.params.dg_cost_factor, length_factor=snakemake.params.length_factor From eaf2ce51b67a1bba2ed016959294c3e8e9684b99 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Tue, 11 Jun 2024 11:47:47 +0200 Subject: [PATCH 394/669] stash --- config/config.yaml | 36 ++++++------ config/scenarios.manual.yaml | 109 ++++++++++++++++++++++++++++++++++- 2 files changed, 126 insertions(+), 19 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index cd6bc9a51..baad2a9fa 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240605newdb + prefix: 20240610highSpatial name: # - CurrentPolicies - KN2045_Bal_v4 @@ -58,7 +58,7 @@ scenario: ll: - vopt clusters: - - 22 + - 44 opts: - '' sector_opts: @@ -88,22 +88,22 @@ clustering: # simplify_network: # to_substations: true focus_weights: - # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" - 'DE': 0.3636 # 8/22 - 'AT': 0.0455 # 1/22 - 'BE': 0.0455 - 'CH': 0.0455 - 'CZ': 0.0455 - 'DK': 0.0909 # 2/22 - 'FR': 0.0454 - 'GB': 0.0909 # 2/22 - 'LU': 0.0454 - 'NL': 0.0454 - 'NO': 0.0454 - 'PL': 0.0454 - 'SE': 0.0454 + # 44 nodes: 30 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" (high spatial) + 'DE': 0.6818 # 30/44 ## 0.3636 # 8/22 + 'AT': 0.0227 # 1/44 ## 0.0455 # 1/22 + 'BE': 0.0227 ## 0.0455 + 'CH': 0.0227 ## 0.0455 + 'CZ': 0.0227 ## 0.0455 + 'DK': 0.0455 # 2/44 ## 0.0909 # 2/22 + 'FR': 0.0227 ## 0.0454 + 'GB': 0.0455 ## 0.0909 # 2/22 + 'LU': 0.0227 ## 0.0454 + 'NL': 0.0227 ## 0.0454 + 'NO': 0.0227 ## 0.0454 + 'PL': 0.0227 ## 0.0454 + 'SE': 0.0227 ## 0.0454 temporal: - resolution_sector: 365H + resolution_sector: 780H # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#co2-budget co2_budget: @@ -198,7 +198,7 @@ costs: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: - # solar_thermal: false + solar_thermal: false district_heating: potential: 0.4 progress: diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index fd3f59fcd..7fc530364 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -582,4 +582,111 @@ KN2045minus_SupplyFocus: 2030: 215 # PV strategy 2035: 215 # not forcing more EE 2040: 215 - 2045: 215 \ No newline at end of file + 2045: 215 + +KN2045_Bal_v4_high_spatial: +# Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren +# Breites Energieträgerportfolio in der Endenergie (Strom, Wasserstoff, synthetische Kraftstoffe) +# Ausbau der erneuerbare Stromerzeugung erreicht politisch gesetzte Ziele +# Importe erneuerbar erzeugter Energien auf mittlerem Niveau +# dient als Referenzszenario in der Familie der Ariadne-Szenarien + + iiasa_database: + reference_scenario: KN2045_Bal_v4 + co2_budget_DE_source: KSG + + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#scenario + # Wildcard docs in https://pypsa-eur.readthedocs.io/en/latest/wildcards.html + scenario: + simpl: + - '' + ll: + - vopt + clusters: + - 44 + opts: + - '' + sector_opts: + - none + planning_horizons: + - 2020 + - 2025 + - 2030 + - 2035 + - 2040 + - 2045 + + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable + enable: + retrieve: false # set to false once initial data is retrieved + retrieve_cutout: false # set to false once initial data is retrieved + clustering: + # simplify_network: + # to_substations: true + focus_weights: + # 44 nodes: 30 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" (high spatial) + 'DE': 0.6818 # 30/44 + 'AT': 0.0227 # 1/44 + 'BE': 0.0227 + 'CH': 0.0227 + 'CZ': 0.0227 + 'DK': 0.0454 # 2/44 + 'FR': 0.0224 + 'GB': 0.0454 + 'LU': 0.0227 + 'NL': 0.0227 + 'NO': 0.0227 + 'PL': 0.0227 + 'SE': 0.0227 + temporal: + resolution_sector: 780H + + costs: + horizon: "mean" + NEP: 2021 + transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") + + # boundary condition of maximum volumes + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 105 + 2040: 200 + 2045: 300 + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 \ No newline at end of file From b083e758fbb199a61b07c7ce52a747d618f9b145 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 11 Jun 2024 13:15:37 +0200 Subject: [PATCH 395/669] exporting FOM, VOM and capital costs of technologies --- workflow/scripts/export_ariadne_variables.py | 91 ++++++++++++++++++++ 1 file changed, 91 insertions(+) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 3a841fffe..687c20a87 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -3167,6 +3167,96 @@ def get_production(region, year): return var +def get_operational_and_capital_costs(year): + '''' + This function reads in the cost data from the costs.csv file and + brings it into the database format. + ''' + var = pd.Series() + ind = snakemake.params.planning_horizons.index(year) + costs = prepare_costs( + snakemake.input.costs[ind], + snakemake.params.costs, + nyears=1, + ) + + sector_dict = { + "BEV charger": "Electricity", + "CCGT": "Electricity", + "DAC": "Gases", + "H2 Electrolysis": "Hydrogen", + "H2 Fuel Cell": "Electricity", + "OCGT": "Electricity", + "PHS": "Electricity", + "V2G": "Electricity", + "battery charger": "Electricity", + "battery discharger": "Electricity", + "coal": "Electricity", + "gas pipeline": "Gases", + "home battery charger": "Electricity", + "home battery discharger": "Electricity", + "hydro": "Electricity", + "lignite": "Electricity", + "methanolisation": "Liquids", + "offwind-ac": "Electricity", + "offwind-dc": "Electricity", + "offwind-float": "Electricity", + "oil": "Electricity", + "onwind": "Electricity", + "ror": "Electricity", + "rural air heat pump": "Heat", + "rural ground heat pump": "Heat", + "rural resistive heater": "Heat", + "rural solar thermal": "Heat", + "solar": "Electricity", + "solar rooftop": "Electricity", + "solar-hsat": "Electricity", + "solid biomass": "Heat", + "urban central air heat pump": "Heat", + "urban central coal CHP": "Heat", + "urban central gas CHP": "Heat", + "urban central gas CHP CC": "Heat", + "urban central lignite CHP": "Heat", + "urban central oil CHP": "Heat", + "urban central resistive heater": "Heat", + "urban central solar thermal": "Heat", + "urban central solid biomass CHP": "Heat", + "urban central solid biomass CHP CC": "Heat", + "urban decentral air heat pump": "Heat", + "urban decentral resistive heater": "Heat", + "urban decentral solar thermal": "Heat", + "waste CHP": "Heat", + "waste CHP CC": "Heat", + } + + grid_connection = [ + "offwind-ac", + "offwind-dc", + "offwind-float", + "solar", + "solar-hsat", + ] + + for key, tech in costs_dict.items(): + if tech is None: + continue + sector = sector_dict[key] + + FOM = "OM Cost|Fixed" + "|" + sector + "|" + tech + VOM = "OM Cost|Variable" + "|" + sector + "|" + tech + capital = "Capital Cost" + "|" + sector + "|" + tech + + var[FOM] = costs.at[tech, "fixed"] / 1e3 # EUR/MW -> EUR/kW + var[VOM] = costs.at[tech, "VOM"] / MWh2GJ # EUR/MWh -> EUR/GJ + var[capital] = costs.at[tech, "investment"] / 1e3 # EUR/MW -> EUR/kW + + if key in grid_connection: + var[FOM] += costs.at["electricity grid connection", "fixed"] / 1e3 + var[capital] += costs.at["electricity grid connection", "investment"] / 1e3 + + return var + + def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): var = pd.concat([ @@ -3189,6 +3279,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): ), get_policy(n), get_trade(n, region), + get_operational_and_capital_costs(year), ]) return var From 58417876035e7e171f955575226c3093efb5d928 Mon Sep 17 00:00:00 2001 From: Julian Geis Date: Tue, 11 Jun 2024 14:17:25 +0200 Subject: [PATCH 396/669] Update scenarios.manual.yaml --- config/scenarios.manual.yaml | 107 ----------------------------------- 1 file changed, 107 deletions(-) diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 7fc530364..af1b9e345 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -583,110 +583,3 @@ KN2045minus_SupplyFocus: 2035: 215 # not forcing more EE 2040: 215 2045: 215 - -KN2045_Bal_v4_high_spatial: -# Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren -# Breites Energieträgerportfolio in der Endenergie (Strom, Wasserstoff, synthetische Kraftstoffe) -# Ausbau der erneuerbare Stromerzeugung erreicht politisch gesetzte Ziele -# Importe erneuerbar erzeugter Energien auf mittlerem Niveau -# dient als Referenzszenario in der Familie der Ariadne-Szenarien - - iiasa_database: - reference_scenario: KN2045_Bal_v4 - co2_budget_DE_source: KSG - - # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#scenario - # Wildcard docs in https://pypsa-eur.readthedocs.io/en/latest/wildcards.html - scenario: - simpl: - - '' - ll: - - vopt - clusters: - - 44 - opts: - - '' - sector_opts: - - none - planning_horizons: - - 2020 - - 2025 - - 2030 - - 2035 - - 2040 - - 2045 - - # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable - enable: - retrieve: false # set to false once initial data is retrieved - retrieve_cutout: false # set to false once initial data is retrieved - clustering: - # simplify_network: - # to_substations: true - focus_weights: - # 44 nodes: 30 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" (high spatial) - 'DE': 0.6818 # 30/44 - 'AT': 0.0227 # 1/44 - 'BE': 0.0227 - 'CH': 0.0227 - 'CZ': 0.0227 - 'DK': 0.0454 # 2/44 - 'FR': 0.0224 - 'GB': 0.0454 - 'LU': 0.0227 - 'NL': 0.0227 - 'NO': 0.0227 - 'PL': 0.0227 - 'SE': 0.0227 - temporal: - resolution_sector: 780H - - costs: - horizon: "mean" - NEP: 2021 - transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") - - # boundary condition of maximum volumes - limits_volume_max: - # constrain electricity import in TWh - electricity_import: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 40 - 2040: 80 - 2045: 125 - electrolysis: - DE: - 2020: 0 - 2025: 5 - 2030: 45 - 2035: 130 - 2040: 215 - 2045: 300 - h2_derivate_import: - DE: - 2020: 0 - 2025: 0 - 2030: 10 - 2035: 105 - 2040: 200 - 2045: 300 - h2_import: - DE: - 2020: 0 - 2025: 5 - 2030: 15 - 2035: 115 - 2040: 220 - 2045: 325 - limits_volume_min: - electrolysis: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 0 - 2040: 0 - 2045: 0 \ No newline at end of file From 34d5bcae3cf9b72b4fa46a754e9b49908199dff0 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 11 Jun 2024 15:16:30 +0200 Subject: [PATCH 397/669] adding ft and biofuels demand in shipping as meoh demand and unraveling meoh for industry and shipping --- workflow/scripts/additional_functionality.py | 8 +++- workflow/scripts/build_scenarios.py | 15 +++++-- workflow/scripts/modify_prenetwork.py | 47 ++++++++++++++++++-- 3 files changed, 60 insertions(+), 10 deletions(-) diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 40ef5635b..ce5ff361c 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -367,8 +367,12 @@ def add_h2_derivate_limit(n, snapshots, investment_year, config): logger.info(f"limiting H2 derivate imports in {ct} to {limit/1e6} TWh/a") - incoming = n.links.index[n.links.index.str.contains("EU renewable oil -> DE oil")] - outgoing = n.links.index[n.links.index.str.contains("DE renewable oil -> EU oil")] + oil_meoh_in = n.links.loc[["EU renewable oil -> DE oil", "EU methanol -> DE methanol"]].index + gas_in = n.links[(n.links.bus0.str[:2] != ct) & (n.links.bus1.str[:2] == ct) & (n.links.index.str.contains("pipeline"))].index + incoming = oil_meoh_in.union(gas_in) + gas_out = n.links[(n.links.bus0.str[:2] == ct) & (n.links.bus1.str[:2] != ct) & (n.links.index.str.contains("pipeline"))].index + oil_meoh_out = n.links.loc[["DE renewable oil -> EU oil", "DE methanol -> EU methanol"]].index + outgoing = oil_meoh_out.union(gas_out) incoming_p = (n.model["Link-p"].loc[:, incoming]*n.snapshot_weightings.generators).sum() outgoing_p = (n.model["Link-p"].loc[:, outgoing]*n.snapshot_weightings.generators).sum() diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index d995a188d..f6496401a 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -30,14 +30,21 @@ def get_transport_shares(df, planning_horizons): df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation"] + \ df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation"] navigation_liquid = \ - df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation|Liquids"] + \ - df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Liquids"] - + df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation|Liquids|Petroleum"] + \ + df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Liquids|Petroleum"] + + navigation_meoh = \ + df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation|Liquids|Biomass"] + \ + df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation|Liquids|Efuel"] + \ + df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Liquids|Biomass"] + \ + df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Liquids|Synthetic Fossil"] + \ + df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Liquids|Efuel"] + navigation_h2 = df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Hydrogen"] h2_share = navigation_h2 / total_navigation liquid_share = navigation_liquid / total_navigation - methanol_share = (1 - h2_share - liquid_share).round(6) + methanol_share = navigation_meoh / total_navigation naval_share = pd.concat( [liquid_share, h2_share, methanol_share]).set_index( diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 860b2ede2..d8eb72f23 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -294,6 +294,45 @@ def unravel_oilbus(n): e_cyclic=True, capital_cost=0.02, ) + + # unravel meoh + logger.info("Unraveling methanol bus") + # add bus + n.add( + "Bus", + "DE methanol", + location="DE", + x=n.buses.loc["DE","x"], + y=n.buses.loc["DE","y"], + carrier="methanol" + ) + + # change links from EU meoh to DE meoh + DE_meoh_out = n.links[(n.links.bus0=="EU methanol") & (n.links.index.str[:2]=="DE")].index + n.links.loc[DE_meoh_out, "bus0"] = "DE methanol" + DE_meoh_in = n.links[(n.links.bus1=="EU methanol") & (n.links.index.str[:2]=="DE")].index + n.links.loc[DE_meoh_in, "bus1"] = "DE methanol" + + # add links between methanol buses + n.madd( + "Link", + ["EU methanol -> DE methanol", "DE methanol -> EU methanol"], + bus0=["EU methanol", "DE methanol"], + bus1=["DE methanol", "EU methanol"], + carrier="methanol", + p_nom=1e6, + p_min_pu=0, + ) + + # add stores + n.add("Store", + "DE methanol Store", + bus="DE methanol", + carrier="methanol", + e_nom_extendable=True, + e_cyclic=True, + capital_cost=0.02, + ) def transmission_costs_from_modified_cost_data(n, costs, transmission, length_factor=1.0): @@ -355,10 +394,10 @@ def must_run_biomass(n, p_min_pu, regions): simpl="", clusters=22, opts="", - ll="v1.2", - sector_opts="365H-T-H-B-I-A-solar+p3-linemaxext15", - planning_horizons="2040", - run="KN2045_H2_v4" + ll="vopt", + sector_opts="none", + planning_horizons="2020", + run="KN2045_Bal_v4" ) logger.info("Adding Ariadne-specific functionality") From e73d2974e1171fbac28f384b5865566e5d83be5e Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 12 Jun 2024 15:52:50 +0200 Subject: [PATCH 398/669] add option for high spatial resolution in config --- config/config.yaml | 56 +++++++++++++++++++++++++++++----------------- 1 file changed, 36 insertions(+), 20 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index baad2a9fa..363479d79 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,12 +4,12 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240610highSpatial + prefix: 20240610highSpatialConfig name: - # - CurrentPolicies + - CurrentPolicies - KN2045_Bal_v4 - # - KN2045_Elec_v4 - # - KN2045_H2_v4 + #- KN2045_Elec_v4 + #- KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase @@ -58,7 +58,7 @@ scenario: ll: - vopt clusters: - - 44 + - 22 #current options: 22, 44 opts: - '' sector_opts: @@ -88,22 +88,38 @@ clustering: # simplify_network: # to_substations: true focus_weights: - # 44 nodes: 30 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" (high spatial) - 'DE': 0.6818 # 30/44 ## 0.3636 # 8/22 - 'AT': 0.0227 # 1/44 ## 0.0455 # 1/22 - 'BE': 0.0227 ## 0.0455 - 'CH': 0.0227 ## 0.0455 - 'CZ': 0.0227 ## 0.0455 - 'DK': 0.0455 # 2/44 ## 0.0909 # 2/22 - 'FR': 0.0227 ## 0.0454 - 'GB': 0.0455 ## 0.0909 # 2/22 - 'LU': 0.0227 ## 0.0454 - 'NL': 0.0227 ## 0.0454 - 'NO': 0.0227 ## 0.0454 - 'PL': 0.0227 ## 0.0454 - 'SE': 0.0227 ## 0.0454 + # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" (high spatial) + 'DE': 0.3636 # 8/22 + 'AT': 0.0455 # 1/22 + 'BE': 0.0455 + 'CH': 0.0455 + 'CZ': 0.0455 + 'DK': 0.0909 # 2/22 + 'FR': 0.0454 + 'GB': 0.0909 # 2/22 + 'LU': 0.0454 + 'NL': 0.0454 + 'NO': 0.0454 + 'PL': 0.0454 + 'SE': 0.0454 +# # high spatial resolution: change clusters to 44 +# focus_weights: +# # 44 nodes: 30 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" (high spatial) +# 'DE': 0.6818 # 30/44 +# 'AT': 0.0227 # 1/44 +# 'BE': 0.0227 +# 'CH': 0.0227 +# 'CZ': 0.0227 +# 'DK': 0.0455 # 2/44 +# 'FR': 0.0227 +# 'GB': 0.0455 +# 'LU': 0.0227 +# 'NL': 0.0227 +# 'NO': 0.0227 +# 'PL': 0.0227 +# 'SE': 0.0227 temporal: - resolution_sector: 780H + resolution_sector: 365H # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#co2-budget co2_budget: From e740201178e4e3671cfa1f19f8338b0bcc87b24a Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 12 Jun 2024 15:55:34 +0200 Subject: [PATCH 399/669] config fixes --- config/config.yaml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 363479d79..b4ddcd09c 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -6,10 +6,10 @@ run: prefix: 20240610highSpatialConfig name: - - CurrentPolicies + # - CurrentPolicies - KN2045_Bal_v4 - #- KN2045_Elec_v4 - #- KN2045_H2_v4 + # - KN2045_Elec_v4 + # - KN2045_H2_v4 # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase @@ -214,7 +214,7 @@ costs: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: - solar_thermal: false + # solar_thermal: false district_heating: potential: 0.4 progress: From d74624b3f9884c783e2420cd580f0b3d82f8b2cd Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 12 Jun 2024 15:58:37 +0200 Subject: [PATCH 400/669] more config fixes --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index b4ddcd09c..9380f4b6a 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -88,7 +88,7 @@ clustering: # simplify_network: # to_substations: true focus_weights: - # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" (high spatial) + # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" 'DE': 0.3636 # 8/22 'AT': 0.0455 # 1/22 'BE': 0.0455 From 27b434edb702d6809ddc8285cf534548cf411398 Mon Sep 17 00:00:00 2001 From: JulianGeis Date: Wed, 12 Jun 2024 16:01:00 +0200 Subject: [PATCH 401/669] ... --- config/config.yaml | 4 ++-- config/scenarios.manual.yaml | 1 + 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 9380f4b6a..4d3dedbd8 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -88,10 +88,10 @@ clustering: # simplify_network: # to_substations: true focus_weights: - # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" + # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" 'DE': 0.3636 # 8/22 'AT': 0.0455 # 1/22 - 'BE': 0.0455 + 'BE': 0.0455 'CH': 0.0455 'CZ': 0.0455 'DK': 0.0909 # 2/22 diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index af1b9e345..45f42fe10 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -583,3 +583,4 @@ KN2045minus_SupplyFocus: 2035: 215 # not forcing more EE 2040: 215 2045: 215 + From ebb774c9a4d139d1ff7a2532ab7e6eae1b52a12b Mon Sep 17 00:00:00 2001 From: Julian Geis Date: Wed, 12 Jun 2024 16:01:56 +0200 Subject: [PATCH 402/669] Update scenarios.manual.yaml --- config/scenarios.manual.yaml | 1 - 1 file changed, 1 deletion(-) diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 45f42fe10..af1b9e345 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -583,4 +583,3 @@ KN2045minus_SupplyFocus: 2035: 215 # not forcing more EE 2040: 215 2045: 215 - From 48a9d0a41161cd6243fc0d54358cda3ab82b1737 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 12 Jun 2024 16:52:37 +0200 Subject: [PATCH 403/669] removing CH4 from h2 derivative import limit and not taking shipping shares from database but default from config.default.yaml --- workflow/scripts/additional_functionality.py | 8 +--- workflow/scripts/build_scenarios.py | 39 +------------------- 2 files changed, 4 insertions(+), 43 deletions(-) diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index ce5ff361c..2aaee7287 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -367,12 +367,8 @@ def add_h2_derivate_limit(n, snapshots, investment_year, config): logger.info(f"limiting H2 derivate imports in {ct} to {limit/1e6} TWh/a") - oil_meoh_in = n.links.loc[["EU renewable oil -> DE oil", "EU methanol -> DE methanol"]].index - gas_in = n.links[(n.links.bus0.str[:2] != ct) & (n.links.bus1.str[:2] == ct) & (n.links.index.str.contains("pipeline"))].index - incoming = oil_meoh_in.union(gas_in) - gas_out = n.links[(n.links.bus0.str[:2] == ct) & (n.links.bus1.str[:2] != ct) & (n.links.index.str.contains("pipeline"))].index - oil_meoh_out = n.links.loc[["DE renewable oil -> EU oil", "DE methanol -> EU methanol"]].index - outgoing = oil_meoh_out.union(gas_out) + incoming = n.links.loc[["EU renewable oil -> DE oil", "EU methanol -> DE methanol"]].index + outgoing = n.links.loc[["DE renewable oil -> EU oil", "DE methanol -> EU methanol"]].index incoming_p = (n.model["Link-p"].loc[:, incoming]*n.snapshot_weightings.generators).sum() outgoing_p = (n.model["Link-p"].loc[:, outgoing]*n.snapshot_weightings.generators).sum() diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index f6496401a..2680e6251 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -25,33 +25,7 @@ def get_transport_shares(df, planning_horizons): transport_share = transport_share[planning_horizons] transport_share.set_index(pd.Index(["ICE", "BEV", "PHEV"]), inplace=True) - # Get share of Navigation fuels from corresponding "Ariadne Leitmodell" - total_navigation = \ - df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation"] + \ - df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation"] - navigation_liquid = \ - df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation|Liquids|Petroleum"] + \ - df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Liquids|Petroleum"] - - navigation_meoh = \ - df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation|Liquids|Biomass"] + \ - df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation|Liquids|Efuel"] + \ - df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Liquids|Biomass"] + \ - df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Liquids|Synthetic Fossil"] + \ - df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Liquids|Efuel"] - - navigation_h2 = df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Hydrogen"] - - h2_share = navigation_h2 / total_navigation - liquid_share = navigation_liquid / total_navigation - methanol_share = navigation_meoh / total_navigation - - naval_share = pd.concat( - [liquid_share, h2_share, methanol_share]).set_index( - pd.Index(["Oil", "H2", "MeOH"]) - )[planning_horizons] - - return transport_share, naval_share + return transport_share def get_transport_growth(df, planning_horizons): # Aviation growth factor - using REMIND-EU v1.1 since Aladin v1 does not include bunkers @@ -168,7 +142,7 @@ def write_to_scenario_yaml( planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] # for 2050 we still need data - transport_share, naval_share = get_transport_shares( + transport_share = get_transport_shares( df.loc[:, reference_scenario, :], planning_horizons, ) @@ -180,11 +154,6 @@ def write_to_scenario_yaml( 'BEV': 'land_transport_electric_share', 'ICE': 'land_transport_ice_share' } - mapping_navigation = { - 'H2': 'shipping_hydrogen_share', - 'MeOH': 'shipping_methanol_share', - 'Oil': 'shipping_oil_share', - } config[scenario]["sector"] = {} for key, sector_mapping in mapping_transport.items(): @@ -192,10 +161,6 @@ def write_to_scenario_yaml( for year in transport_share.columns: config[scenario]["sector"][sector_mapping][year] = round(transport_share.loc[key, year].item(), 4) - for key, sector_mapping in mapping_navigation.items(): - config[scenario]["sector"][sector_mapping] = {} - for year in naval_share.columns: - config[scenario]["sector"][sector_mapping][year] = round(naval_share.loc[key, year].item(), 4) config[scenario]["sector"]["land_transport_demand_factor"] = {} config[scenario]["sector"]["aviation_demand_factor"] = {} for year in planning_horizons: From e8ba87e8454fba338c3d0ff00fa554ba29232742 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 13 Jun 2024 10:58:51 +0200 Subject: [PATCH 404/669] start working on storage investments --- workflow/scripts/export_ariadne_variables.py | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 687c20a87..6865e92a3 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -186,6 +186,7 @@ def _f(*args, **kwargs): costs_dict = { + # capacities electricity 'BEV charger': None, 'CCGT': 'CCGT', 'DAC': 'direct air capture', @@ -234,6 +235,24 @@ def _f(*args, **kwargs): 'waste CHP CC': 'waste CHP CC', } +storage_costs_dict = { + 'H2': None, + 'Li ion': None, + 'PHS': None, + 'battery': 'battery storage', + 'biogas': None, + 'co2 sequestered': None, + 'co2 stored': None, + 'gas': 'gas storage', + 'home battery': 'home battery storage', + 'hydro': None, + 'oil': 0.02, + 'rural water tanks': 'decentral water tank storage', + 'solid biomass': None, + 'urban central water tanks': 'central water tank storage', + 'urban decentral water tanks': 'decentral water tank storage', +} + def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): From 86c9816fc3c96af5edd55bc0d7d7397293eb308d Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 13 Jun 2024 10:59:28 +0200 Subject: [PATCH 405/669] minor additions --- .syncignore-receive | 2 ++ 1 file changed, 2 insertions(+) diff --git a/.syncignore-receive b/.syncignore-receive index 09cc0f7f5..0e44a1fc9 100644 --- a/.syncignore-receive +++ b/.syncignore-receive @@ -11,4 +11,6 @@ __pycache__ # project specific data +resources *.nc +ariadne-data From 6497ee9991f0600a54c33c4c8c400bc3a41fe9ce Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 13 Jun 2024 16:50:37 +0200 Subject: [PATCH 406/669] add fallback for delayed scenarios --- config/config.yaml | 2 +- config/scenarios.manual.yaml | 8 ++++++++ workflow/Snakefile | 4 ++-- workflow/scripts/build_scenarios.py | 9 ++++++--- workflow/scripts/modify_existing_heating.py | 2 +- workflow/scripts/plot_ariadne_variables.py | 2 +- 6 files changed, 19 insertions(+), 8 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 9629e6e01..1975d7422 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240610scenariosredefined + prefix: 20240613scenariosredefined name: - CurrentPolicies - KN2045_Bal_v4 diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 6b196aa85..7aa7701be 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -13,6 +13,7 @@ CurrentPolicies: iiasa_database: reference_scenario: CurrentPolicies + fallback_reference_scenario: CurrentPolicies # if the reference scenario is not available (due to late uploads) co2_budget_DE_source: UBA @@ -111,6 +112,7 @@ KN2045_Bal_v4: iiasa_database: reference_scenario: KN2045_Bal_v4 + fallback_reference_scenario: KN2045_Bal_v4 co2_budget_DE_source: KSG costs: @@ -171,6 +173,7 @@ KN2045_Elec_v4: iiasa_database: reference_scenario: KN2045_Elec_v4 + fallback_reference_scenario: KN2045_Elec_v4 co2_budget_DE_source: KSG costs: @@ -230,6 +233,7 @@ KN2045_H2_v4: iiasa_database: reference_scenario: KN2045_H2_v4 + fallback_reference_scenario: KN2045_H2_v4 co2_budget_DE_source: KSG costs: @@ -293,6 +297,7 @@ KN2045plus_EasyRide: # Verlagerung der energieintensiven Grundstoffindustrie iiasa_database: reference_scenario: KN2045plus_EasyRide # TODO: wait for database + fallback_reference_scenario: KN2045_Bal_v4 co2_budget_DE_source: KSG costs: @@ -351,6 +356,7 @@ KN2045plus_LowDemand: # innerhalb Deutschlands und knappe Importe EE möglich iiasa_database: reference_scenario: KN2045plus_LowDemand # TODO: wait for database + fallback_reference_scenario: KN2045_Bal_v4 co2_budget_DE_source: KSG costs: @@ -411,6 +417,7 @@ KN2045minus_WorstCase: # eher knapper Ausbau EE und EE Importe iiasa_database: reference_scenario: KN2045minus_WorstCase + fallback_reference_scenario: CurrentPolicies co2_budget_DE_source: UBA @@ -499,6 +506,7 @@ KN2045minus_SupplyFocus: # Ausbau EE und EE Importe jetzt aber auskömmlich iiasa_database: reference_scenario: KN2045minus_SupplyFocus + fallback_reference_scenario: CurrentPolicies costs: horizon: "pessimist" diff --git a/workflow/Snakefile b/workflow/Snakefile index 42915c744..fca065ef9 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -139,7 +139,6 @@ rule modify_prenetwork: costs=config_provider("costs"), max_hours=config_provider("electricity", "max_hours"), length_factor=config_provider("lines", "length_factor"), - scenario=config_provider("iiasa_database", "reference_scenario"), technology_occurrence=config_provider("first_technology_occurrence"), fossil_boiler_ban=config_provider("new_decentral_fossil_boiler_ban"), coal_ban=config_provider("coal_generation_ban"), @@ -179,6 +178,7 @@ use rule solve_sector_network_myopic from pypsaeur with: rule modify_existing_heating: params: iiasa_reference_scenario=config_provider("iiasa_database", "reference_scenario"), + fallback_reference_scenario=config_provider("iiasa_database", "fallback_reference_scenario"), input: ariadne=resources("ariadne_database.csv"), existing_heating="data/existing_infrastructure/existing_heating_raw.csv", @@ -312,7 +312,6 @@ rule download_ariadne_template: rule export_ariadne_variables: params: - iiasa_scenario=config_provider("iiasa_database", "reference_scenario"), length_factor=config_provider("lines", "length_factor"), dg_cost_factor=config_provider("sector", "electricity_distribution_grid_cost_factor"), planning_horizons = config_provider("scenario","planning_horizons"), @@ -361,6 +360,7 @@ rule export_ariadne_variables: rule plot_ariadne_variables: params: iiasa_scenario=config_provider("iiasa_database", "reference_scenario"), + fallback_reference_scenario=config_provider("iiasa_database", "fallback_reference_scenario"), input: exported_variables_full=RESULTS + "ariadne/exported_variables_full.xlsx", ariadne_database=resources("ariadne_database.csv"), diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index d995a188d..73869be5d 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -152,21 +152,24 @@ def write_to_scenario_yaml( config = yaml.load(file_path) for scenario in scenarios: reference_scenario = config[scenario]["iiasa_database"]["reference_scenario"] + fallback_reference_scenario = config[scenario]["iiasa_database"]["fallback_reference_scenario"] + if reference_scenario == "KN2045plus_EasyRide": + fallback_reference_scenario = reference_scenario co2_budget_source = config[scenario]["co2_budget_DE_source"] co2_budget_fractions = get_co2_budget( - df.loc["REMIND-EU v1.1", reference_scenario], + df.loc["REMIND-EU v1.1", fallback_reference_scenario], co2_budget_source ) planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] # for 2050 we still need data transport_share, naval_share = get_transport_shares( - df.loc[:, reference_scenario, :], + df.loc[:, fallback_reference_scenario, :], planning_horizons, ) - aviation_demand_factor, land_transport_demand_factor = get_transport_growth(df.loc[:, reference_scenario, :], planning_horizons) + aviation_demand_factor, land_transport_demand_factor = get_transport_growth(df.loc[:, fallback_reference_scenario, :], planning_horizons) mapping_transport = { 'PHEV': 'land_transport_fuel_cell_share', diff --git a/workflow/scripts/modify_existing_heating.py b/workflow/scripts/modify_existing_heating.py index da0753627..9c667a172 100644 --- a/workflow/scripts/modify_existing_heating.py +++ b/workflow/scripts/modify_existing_heating.py @@ -12,7 +12,7 @@ index_col=["model", "scenario", "region", "variable", "unit"] ).loc[ leitmodell, - snakemake.params.iiasa_reference_scenario, + snakemake.params.fallback_reference_scenario, "Deutschland", :, "million", diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 28bbb279e..243cf0e17 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -211,7 +211,7 @@ def elec_val_plot(df, savepath): snakemake.input.ariadne_database, index_col=["model", "scenario", "region", "variable", "unit"] ).loc[ - leitmodell, snakemake.params.iiasa_scenario, "Deutschland" + leitmodell, snakemake.params.fallback_reference_scenario, "Deutschland" ][df.columns] dfremind.index.names = df.index.names From e438f2afbd2f43fdeb339dee84ca2f58852edde9 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 13 Jun 2024 16:56:29 +0200 Subject: [PATCH 407/669] for supplyfocus force capacity expansion --- config/config.yaml | 8 +++---- config/scenarios.manual.yaml | 44 ++++++++++++++++++++---------------- 2 files changed, 28 insertions(+), 24 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 1975d7422..1e4d6efaf 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -10,10 +10,10 @@ run: - KN2045_Bal_v4 - KN2045_Elec_v4 - KN2045_H2_v4 - # - KN2045plus_EasyRide - # - KN2045plus_LowDemand - # - KN2045minus_WorstCase - # - KN2045minus_SupplyFocus + - KN2045plus_EasyRide + - KN2045plus_LowDemand + - KN2045minus_WorstCase + - KN2045minus_SupplyFocus scenarios: enable: true file: config/scenarios.automated.yaml diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 7aa7701be..8335fc94a 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -567,23 +567,27 @@ KN2045minus_SupplyFocus: 2040: 0 2045: 0 limits_capacity_min: - Generator: - onwind: - DE: - 2030: 115 # Wind-an-Land Law - 2035: 115 # not forcing more EE - 2040: 115 - 2045: 115 - offwind: - DE: - 2030: 30 # Wind-auf-See Law - 2035: 30 # not forcing more EE - 2040: 30 - 2045: 30 - solar: - DE: - 2025: 101 - 2030: 215 # PV strategy - 2035: 215 # not forcing more EE - 2040: 215 - 2045: 215 \ No newline at end of file + Generator: + onwind: + DE: + 2030: 115 # Wind-an-Land Law + 2035: 157 # Wind-an-Land Law + 2040: 160 # Wind-an-Land Law + 2045: 160 + offwind: + DE: + 2030: 30 # Wind-auf-See Law + 2035: 40 # 40 Wind-auf-See Law + # assuming at least 1/3 of difference reached in 2040 + 2040: 50 + 2045: 70 #70 Wind-auf-See Law + solar: + DE: + # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, + # assuming at least 1/3 of difference reached in 2025 + 2025: 101 + 2030: 215 # PV strategy + 2035: 309 + 2040: 400 # PV strategy + 2045: 400 + # What about the EEG2023 "Strommengenpfad"? \ No newline at end of file From c7c4a58da833b7275b6c1df9534b8b4cd0e1b76a Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 13 Jun 2024 16:58:20 +0200 Subject: [PATCH 408/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index e922db47e..7fe259748 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit e922db47e32c3bb3965276811a0f32b7f535a47a +Subproject commit 7fe2597482fd57be94625786a5fe5f59caa37249 From 9669f6ebbaaaf29c28a8d1ab4aab61650884fd95 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 14 Jun 2024 10:37:35 +0200 Subject: [PATCH 409/669] fix assert in exporter --- workflow/scripts/export_ariadne_variables.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 100bc97b4..d4e97759a 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -901,7 +901,7 @@ def get_primary_energy(n, region): renewable_electricity.filter(like="wind").sum() assert isclose( - renewable_electricity.sum(), + renewable_electricity.sum() - solar_thermal_heat, ( var["Primary Energy|Hydro"] + var["Primary Energy|Solar"] From d533128f82bdef40468847d1784e6f67951662c9 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 14 Jun 2024 12:00:39 +0200 Subject: [PATCH 410/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index e922db47e..b6802a6bf 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit e922db47e32c3bb3965276811a0f32b7f535a47a +Subproject commit b6802a6bf95fa91415b222678105b8101b0ad632 From 35e1be2cdff67c0eeb725bc843dd415d45bb191a Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 14 Jun 2024 12:19:50 +0200 Subject: [PATCH 411/669] add methanol to co2 constraint --- workflow/scripts/additional_functionality.py | 28 +++++++++++++++++--- 1 file changed, 24 insertions(+), 4 deletions(-) diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 2aaee7287..eb4b431a3 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -270,12 +270,32 @@ def add_co2limit_country(n, limit_countries, snakemake, debug=False): lhs.append((n.model["Link-p"].loc[:, links]*efficiency*n.snapshot_weightings.generators).sum()) - incoming = n.links.index[n.links.index == "EU renewable oil -> DE oil"] - outgoing = n.links.index[n.links.index == "DE renewable oil -> EU oil"] + # Adding Efuel imports and exports to constraint + incoming_oil = n.links.index[n.links.index == "EU renewable oil -> DE oil"] + outgoing_oil = n.links.index[n.links.index == "DE renewable oil -> EU oil"] if not debug: - lhs.append((-1*n.model["Link-p"].loc[:, incoming]*0.2571*n.snapshot_weightings.generators).sum()) - lhs.append((n.model["Link-p"].loc[:, outgoing]*0.2571*n.snapshot_weightings.generators).sum()) + lhs.append( + (-1 * n.model["Link-p"].loc[:, incoming_oil] + * 0.2571 * n.snapshot_weightings.generators).sum()) + lhs.append( + (n.model["Link-p"].loc[:, outgoing_oil] + * 0.2571 * n.snapshot_weightings.generators).sum()) + + incoming_methanol = n.links.index[n.links.index == "EU methanol -> DE methanol"] + outgoing_methanol = n.links.index[n.links.index == "DE methanol -> EU methanol"] + + lhs.append( + (-1 * n.model["Link-p"].loc[:, incoming_methanol] + / snakemake.config["sector"]["MWh_MeOH_per_tCO2"] + * n.snapshot_weightings.generators).sum()) + + lhs.append( + (n.model["Link-p"].loc[:, outgoing_methanol] + / snakemake.config["sector"]["MWh_MeOH_per_tCO2"] + * n.snapshot_weightings.generators).sum()) + + # Methane still missing, because its complicated lhs = sum(lhs) From f480cd39931776d5647c249244c9589e1674c770 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 14 Jun 2024 13:40:53 +0200 Subject: [PATCH 412/669] deal with coke as secondary energy carrier --- workflow/scripts/export_ariadne_variables.py | 24 ++++++++++++++++---- 1 file changed, 20 insertions(+), 4 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 6865e92a3..e6908ddd6 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1013,7 +1013,7 @@ def get_primary_energy(n, region): return var -def get_secondary_energy(n, region): +def get_secondary_energy(n, region, _industry_demand): kwargs = { 'groupby': n.statistics.groupers.get_name_bus_and_carrier, 'nice_names': False, @@ -1286,7 +1286,7 @@ def get_secondary_energy(n, region): ) total_oil_fuel_usage = oil_fuel_usage.sum() - + var["Secondary Energy|Liquids|Fossil"] = \ var["Secondary Energy|Liquids|Oil"] = \ total_oil_fuel_usage * oil_fossil_fraction var["Secondary Energy|Liquids|Hydrogen"] = \ @@ -1368,6 +1368,18 @@ def get_secondary_energy(n, region): gas_fuel_usage.sum() ) + + industry_demand = _industry_demand.filter( + like=region, axis=0, + ).sum() + mwh_coal_per_mwh_coke = 1.366 + # Coke is added as a coal demand, so we need to convert back to units of coke for secondary energy + var["Secondary Energy|Solids|Coal"] = \ + var["Secondary Energy|Solids"] = \ + industry_demand.get("coke", 0) / mwh_coal_per_mwh_coke + + + electricity_withdrawal = n.statistics.withdrawal( bus_carrier=["low voltage", "AC"], **kwargs ).filter(like=region).groupby( @@ -1403,6 +1415,7 @@ def get_secondary_energy(n, region): + var["Secondary Energy|Hydrogen"] + var["Secondary Energy|Gases"] + var["Secondary Energy|Liquids"] + + var["Secondary Energy|Solids"] + var["Secondary Energy|Methanol"] ) @@ -1613,8 +1626,11 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): var["Final Energy|Industry excl Non-Energy Use|Solids|Biomass"] = \ var["Final Energy|Industry|Solids|Biomass"] + mwh_coal_per_mwh_coke = 1.366 + # Coke is added as a coal demand, so we need to convert back to units of coke for final energy var["Final Energy|Industry|Solids|Coal"] = \ - industry_demand.get(["coal", "coke"]).sum() + industry_demand.get("coal") + \ + industry_demand.get("coke") / mwh_coal_per_mwh_coke var["Final Energy|Industry excl Non-Energy Use|Solids|Coal"] = \ var["Final Energy|Industry|Solids|Coal"] @@ -3287,7 +3303,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): #get_capacity_additions_nstat(n, region), get_production(region, year), get_primary_energy(n, region), - get_secondary_energy(n, region), + get_secondary_energy(n, region, industry_demand), get_final_energy(n, region, industry_demand, energy_totals, year), get_prices(n,region), get_emissions(n, region, energy_totals), From 429eba503377a8b60a962252bea4f7bcbe2ae35a Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 17 Jun 2024 17:45:32 +0200 Subject: [PATCH 413/669] start adding grid connection costs --- workflow/scripts/export_ariadne_variables.py | 31 +++++++++++++------- 1 file changed, 21 insertions(+), 10 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index e6908ddd6..019545fb4 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -175,7 +175,7 @@ def get_investments(n, costs, region): def _f(**kwargs): return n.statistics.optimal_capacity(**kwargs).sub( n.statistics.installed_capacity(**kwargs), fill_value=0) - return _get_capacities(n, region, _f, cap_string="Investments|", costs=costs) + return _get_capacities(n, region, _f, cap_string="Investment|", costs=costs) def get_capacity_additions_nstat(n, region): @@ -214,9 +214,9 @@ def _f(*args, **kwargs): 'rural ground heat pump': 'decentral ground-sourced heat pump', 'rural resistive heater': 'decentral resistive heater', 'rural solar thermal': 'decentral solar thermal', - 'solar': 'solar-utility', # TODO add grid connection cost - 'solar rooftop': 'solar-rooftop', # TODO add grid connection cost - 'solar-hsat': 'solar-utility single-axis tracking', # TODO add grid connection cost + 'solar': 'solar-utility', + 'solar rooftop': 'solar-rooftop', + 'solar-hsat': 'solar-utility single-axis tracking', 'solid biomass': 'central solid biomass CHP', 'urban central air heat pump': 'central air-sourced heat pump', 'urban central coal CHP': 'central coal CHP', @@ -274,12 +274,23 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): errors="ignore", ) - if cap_string.startswith("Investments"): - technology_investments = [ - 0 if costs_dict.get(key) is None else - costs.at[costs_dict.get(key), "investment"] - for key in capacities_electricity.index] - + if cap_string.startswith("Investment"): + technology_investments = pd.Series( + [ + 0 if costs_dict.get(key) is None else + costs.at[costs_dict.get(key), "investment"] + for key in capacities_electricity.index + ], + capacities_electricity.index + ) + for carrier in ["onwind", "solar", "solar-hsat"]: + technology_investments[carrier] += \ + costs.at["electricity grid connection", "investment"] + + for carrier in ["offwind-ac", "offwind-dc", "offwind-float"]: + technology_investments[carrier] = 0.0 # TODO add grid connection cost + # apply update_wind_solar_costs(n, costs) + capacities_electricity = \ capacities_electricity.div(5).multiply(technology_investments) else: From 11132eca49940784242864caa8ebb6664596d7c5 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 17 Jun 2024 17:46:12 +0200 Subject: [PATCH 414/669] start working on better plotting --- workflow/scripts/plot_ariadne_variables.py | 81 +++++++++++++++++----- 1 file changed, 63 insertions(+), 18 deletions(-) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 640d27629..f8a36fbe6 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -3,11 +3,52 @@ import os import numpy as np + +def secondary_energy_plot(ddf, name="Secondary Energy"): + # Get Secondary Energy data + df = ddf[ + ddf.index.get_level_values( + "Variable" + ).str.startswith(name)] + # Get Unit and delete Multiindex + unit = df.index.get_level_values("Unit").unique().dropna().item() + df.index = df.index.droplevel("Unit") + + # Simplify variable names + df.index = pd.Index( + map( + lambda x: x[(x.find("|") + 1):], + df.index, + ), + name=df.index.names[0], + ) + + # Get detailed data + exclude = ("Fossil", "Renewables", "Losses") # include Losses once fixed + detailed = df[ + (df.index.str.count("[|]") == 1) + & ~df.index.str.endswith(exclude)] + + ax = detailed.T.plot.area(ylabel=unit, title="Detailed" + name) + ax.legend(bbox_to_anchor=(1, 1)) + + coarse = df[ + (df.index.str.count("[|]") == 0)] + + ax = coarse.T.plot.area(ylabel=unit, title=name) + ax.legend(bbox_to_anchor=(1, 1)) + + def ariadne_subplot( df, ax, title, select_regex="", drop_regex="", stacked=True, -): +): + # Check that all values have the same Unit + + + df = df.T.copy() + if select_regex: df = df.filter( regex=select_regex, @@ -16,19 +57,21 @@ def ariadne_subplot( df = df.filter( regex=drop_regex, ) - # Check that all values have the same Unit - assert df.columns.unique(level="Unit").size == 1 + + unit = df.columns.get_level_values("Unit").unique().dropna().item() + + df.columns = df.columns.droplevel("Unit") # Simplify variable names df.columns = pd.Index( map( - lambda x: x[0][(x[0].find("|") + 1):], + lambda x: x[(x.find("|") + 1):], df.columns, ), name=df.columns.names[0], ) - return df.plot.area(ax=ax, title=title, legend=False, stacked=stacked) + return df.plot.area(ax=ax, title=title, legend=False, stacked=stacked, ylabel=unit) @@ -36,12 +79,14 @@ def side_by_side_plot( df, dfhybrid, title, savepath, rshift=1.25, **kwargs ): - idx = df.index.intersection(dfhybrid.index) - df = df.loc[idx] - dfhybrid = dfhybrid.loc[idx] + + idx = df.index.union(dfhybrid.index, sort=False) + print(idx) + df = df.reindex(idx) + dfhybrid = dfhybrid.reindex(idx) fig, axes = plt.subplots(ncols=2, sharey=True) - ax = ariadne_subplot(df, axes[0], "PyPSA-Eur", **kwargs) + ax = ariadne_subplot(df, axes[0], "PyP SA-Eur", **kwargs) ax2 = ariadne_subplot(dfhybrid, axes[1], "REMIND-EU v1.1", **kwargs) handles, labels = ax.get_legend_handles_labels() @@ -305,15 +350,15 @@ def elec_val_plot(df, savepath): drop_regex="^(?!.*(and)).+" ) - side_by_side_plot( - df, - dfremind, - "Detailed Emissions in Mt", - savepath=snakemake.output.co2_emissions, - select_regex="Emissions\|CO2\|[^|]*$", - stacked=False, - #drop_regex="^(?!.*(and)).+" - ) + # side_by_side_plot( + # df, + # dfremind, + # "Detailed Emissions in Mt", + # savepath=snakemake.output.co2_emissions, + # select_regex="Emissions\|CO2\|[^|]*$", + # stacked=False, + # #drop_regex="^(?!.*(and)).+" + # ) within_plot( df, From cf151953f9bbf16b361f594b26ea327660e4c8af Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 18 Jun 2024 12:18:14 +0200 Subject: [PATCH 415/669] new rule reading out aladin transport demand from ariadne database --- workflow/Snakefile | 16 ++++++ workflow/scripts/build_mobility_demand.py | 67 +++++++++++++++++++++++ 2 files changed, 83 insertions(+) create mode 100644 workflow/scripts/build_mobility_demand.py diff --git a/workflow/Snakefile b/workflow/Snakefile index 113ae8b8d..6697c6dbb 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -129,6 +129,22 @@ rule modify_cost_data: if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", True): ruleorder: modify_cost_data > retrieve_cost_data + +rule build_mobility_demand: + params: + reference_scenario=config_provider("iiasa_database", "reference_scenario"), + planning_horizons=config_provider("scenario", "planning_horizons"), + input: + ariadne=resources("ariadne_database.csv"), + clustered_pop_layout=resources("pop_layout_elec_s{simpl}_{clusters}.csv"), + output: + mobility_demand=resources("mobility_demand_aladin_{planning_horizons}.csv"), + resources: + mem_mb=1000 + script: + "scripts/build_mobility_demand.py" + + rule modify_prenetwork: params: enable_kernnetz=config_provider("wasserstoff_kernnetz", "enable"), diff --git a/workflow/scripts/build_mobility_demand.py b/workflow/scripts/build_mobility_demand.py new file mode 100644 index 000000000..ede14d9cd --- /dev/null +++ b/workflow/scripts/build_mobility_demand.py @@ -0,0 +1,67 @@ +import logging +import pandas as pd + +logger = logging.getLogger(__name__) + +def get_aladin_data(): + """ + Retrieve the German mobility demand from the Aladin model. + Sum over the subsectors Bus, LDV, Rail, and Truck for the fuels electricity, hydrogen, and synthetic fuels. + """ + # get aladin data + db = pd.read_csv( + snakemake.input.ariadne, + index_col=["model", "scenario", "region", "variable", "unit"] + ).loc[ + "Aladin v1", + snakemake.params.reference_scenario, + "Deutschland", + :, + "PJ/yr"] + year = snakemake.wildcards.planning_horizons + + subsectors = ["Bus", "LDV", "Rail", "Truck"] + fuels = ["Electricity", "Hydrogen", "Liquids"] + + transport_demand = pd.Series(0, index=fuels) + + for fuel in fuels: + for subsector in subsectors: + key = f"Final Energy|Transportation|{subsector}|{fuel}" + transport_demand.loc[fuel] += db.loc[key, year] + + return transport_demand + +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_mobility_demand", + clusters=22, + opts="", + ll="vopt", + sector_opts="none", + planning_horizons="2030", + run="KN2045_Bal_v4" + ) + + logger.info("Retrieving German mobility demand from Aladin model.") + # get aladin data + aladin = get_aladin_data() + + # get German mobility weighting + pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0) + # only get German data + pop_layout = pop_layout[pop_layout.ct == "DE"].fraction + + mobility_demand = pd.DataFrame(pop_layout.values[:, None] * aladin.values, index=pop_layout.index, columns=aladin.index) + + mobility_demand.div(3.6e-6) # convert PJ to MWh + + mobility_demand.to_csv(snakemake.output.mobility_demand) From 9ff14ef034996c66e6476362248d96245dda0cc7 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 18 Jun 2024 12:23:03 +0200 Subject: [PATCH 416/669] remove navigation and transport shares from building scenarios.yaml --- workflow/scripts/build_scenarios.py | 60 +---------------------------- 1 file changed, 1 insertion(+), 59 deletions(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 73869be5d..70d967cae 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -12,40 +12,6 @@ import pandas as pd import os -def get_transport_shares(df, planning_horizons): - # Get share of vehicles for transport sector - neglecting heavy duty vehicles - total_transport = df.loc["Aladin v1", "Stock|Transportation|LDV"] - tech_transport = df.loc["Aladin v1"].loc[[ - "Stock|Transportation|LDV|ICE", - "Stock|Transportation|LDV|BEV", - "Stock|Transportation|LDV|PHEV", - ]] - - transport_share = tech_transport / total_transport - transport_share = transport_share[planning_horizons] - transport_share.set_index(pd.Index(["ICE", "BEV", "PHEV"]), inplace=True) - - # Get share of Navigation fuels from corresponding "Ariadne Leitmodell" - total_navigation = \ - df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation"] + \ - df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation"] - navigation_liquid = \ - df.loc["REMIND-EU v1.1", "Final Energy|Bunkers|Navigation|Liquids"] + \ - df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Liquids"] - - navigation_h2 = df.loc["Aladin v1", "Final Energy|Transportation|Domestic Navigation|Hydrogen"] - - h2_share = navigation_h2 / total_navigation - liquid_share = navigation_liquid / total_navigation - methanol_share = (1 - h2_share - liquid_share).round(6) - - naval_share = pd.concat( - [liquid_share, h2_share, methanol_share]).set_index( - pd.Index(["Oil", "H2", "MeOH"]) - )[planning_horizons] - - return transport_share, naval_share - def get_transport_growth(df, planning_horizons): # Aviation growth factor - using REMIND-EU v1.1 since Aladin v1 does not include bunkers aviation_model = "REMIND-EU v1.1" @@ -163,35 +129,11 @@ def write_to_scenario_yaml( ) planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] # for 2050 we still need data - - transport_share, naval_share = get_transport_shares( - df.loc[:, fallback_reference_scenario, :], - planning_horizons, - ) aviation_demand_factor, land_transport_demand_factor = get_transport_growth(df.loc[:, fallback_reference_scenario, :], planning_horizons) - mapping_transport = { - 'PHEV': 'land_transport_fuel_cell_share', - 'BEV': 'land_transport_electric_share', - 'ICE': 'land_transport_ice_share' - } - mapping_navigation = { - 'H2': 'shipping_hydrogen_share', - 'MeOH': 'shipping_methanol_share', - 'Oil': 'shipping_oil_share', - } - config[scenario]["sector"] = {} - for key, sector_mapping in mapping_transport.items(): - config[scenario]["sector"][sector_mapping] = {} - for year in transport_share.columns: - config[scenario]["sector"][sector_mapping][year] = round(transport_share.loc[key, year].item(), 4) - - for key, sector_mapping in mapping_navigation.items(): - config[scenario]["sector"][sector_mapping] = {} - for year in naval_share.columns: - config[scenario]["sector"][sector_mapping][year] = round(naval_share.loc[key, year].item(), 4) + config[scenario]["sector"]["land_transport_demand_factor"] = {} config[scenario]["sector"]["aviation_demand_factor"] = {} for year in planning_horizons: From dc6f3efaf196693ead479c786eb6772208f13ffd Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 18 Jun 2024 12:38:56 +0200 Subject: [PATCH 417/669] remove road transport_growth_factor from scenarios.yaml --- workflow/scripts/build_scenarios.py | 18 ++---------------- 1 file changed, 2 insertions(+), 16 deletions(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 70d967cae..8172340ba 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -18,19 +18,7 @@ def get_transport_growth(df, planning_horizons): aviation = df.loc[aviation_model,"Final Energy|Bunkers|Aviation", "PJ/yr"] aviation_growth_factor = aviation / aviation[2020] - # Transport growth factor - using REMIND until Aladin v1 uploads variables - transport_model = "REMIND-EU v1.1" - freight = df.loc[transport_model, "Energy Service|Transportation|Freight|Road", "bn tkm/yr"] - person = df.loc[transport_model, "Energy Service|Transportation|Passenger|Road", "bn pkm/yr"] - freight_PJ = df.loc[transport_model, "Final Energy|Transportation|Truck", "PJ/yr"] - person_PJ = df.loc[transport_model, "Final Energy|Transportation|LDV", "PJ/yr"] - - transport_growth_factor = pd.Series() - for year in planning_horizons: - share = (person_PJ[year] / (person_PJ[year] + freight_PJ[year])) - transport_growth_factor.loc[year] = share * (person[year] / person[2020]) + (1 - share) * (freight[year] / freight[2020]) - - return aviation_growth_factor[planning_horizons], transport_growth_factor + return aviation_growth_factor[planning_horizons] def get_primary_steel_share(df, planning_horizons): @@ -130,15 +118,13 @@ def write_to_scenario_yaml( planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] # for 2050 we still need data - aviation_demand_factor, land_transport_demand_factor = get_transport_growth(df.loc[:, fallback_reference_scenario, :], planning_horizons) + aviation_demand_factor = get_transport_growth(df.loc[:, fallback_reference_scenario, :], planning_horizons) config[scenario]["sector"] = {} - config[scenario]["sector"]["land_transport_demand_factor"] = {} config[scenario]["sector"]["aviation_demand_factor"] = {} for year in planning_horizons: config[scenario]["sector"]["aviation_demand_factor"][year] = round(aviation_demand_factor.loc[year].item(), 4) - config[scenario]["sector"]["land_transport_demand_factor"][year] = round(land_transport_demand_factor.loc[year].item(), 4) st_primary_fraction = get_primary_steel_share(df.loc[:, reference_scenario, :], planning_horizons) From ba2b78f17d6342a7406c0ef737bd83c3fcddda37 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 18 Jun 2024 15:38:46 +0200 Subject: [PATCH 418/669] also reading out the stock of EVs for charging capacities --- workflow/scripts/build_mobility_demand.py | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/workflow/scripts/build_mobility_demand.py b/workflow/scripts/build_mobility_demand.py index ede14d9cd..df89caa14 100644 --- a/workflow/scripts/build_mobility_demand.py +++ b/workflow/scripts/build_mobility_demand.py @@ -17,7 +17,7 @@ def get_aladin_data(): snakemake.params.reference_scenario, "Deutschland", :, - "PJ/yr"] + :,] year = snakemake.wildcards.planning_horizons subsectors = ["Bus", "LDV", "Rail", "Truck"] @@ -28,7 +28,10 @@ def get_aladin_data(): for fuel in fuels: for subsector in subsectors: key = f"Final Energy|Transportation|{subsector}|{fuel}" - transport_demand.loc[fuel] += db.loc[key, year] + transport_demand.loc[fuel] += db.loc[key, year].iloc[0] + + transport_demand.div(3.6e-6) # convert PJ to MWh + transport_demand["number_of_cars"] = db.loc["Stock|Transportation|LDV|BEV", year].iloc[0] return transport_demand @@ -43,6 +46,7 @@ def get_aladin_data(): snakemake = mock_snakemake( "build_mobility_demand", + simpl="", clusters=22, opts="", ll="vopt", @@ -62,6 +66,4 @@ def get_aladin_data(): mobility_demand = pd.DataFrame(pop_layout.values[:, None] * aladin.values, index=pop_layout.index, columns=aladin.index) - mobility_demand.div(3.6e-6) # convert PJ to MWh - mobility_demand.to_csv(snakemake.output.mobility_demand) From 6baa143224062a9a8cc5affafc889a77906b181e Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 18 Jun 2024 15:40:36 +0200 Subject: [PATCH 419/669] modifying loads for transport sector --- workflow/Snakefile | 6 ++- workflow/scripts/modify_prenetwork.py | 68 +++++++++++++++++++++++++-- 2 files changed, 69 insertions(+), 5 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 6697c6dbb..8f5306403 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -138,7 +138,7 @@ rule build_mobility_demand: ariadne=resources("ariadne_database.csv"), clustered_pop_layout=resources("pop_layout_elec_s{simpl}_{clusters}.csv"), output: - mobility_demand=resources("mobility_demand_aladin_{planning_horizons}.csv"), + mobility_demand=resources("mobility_demand_aladin_{simpl}_{clusters}_{planning_horizons}.csv"), resources: mem_mb=1000 script: @@ -161,11 +161,15 @@ rule modify_prenetwork: H2_retrofit_capacity_per_CH4=config_provider("sector", "H2_retrofit_capacity_per_CH4"), transmission_costs=config_provider("costs", "transmission"), biomass_must_run=config_provider("must_run_biomass"), + clustering=config_provider("clustering", "temporal", "resolution_sector"), input: network=RESULTS + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", wkn=resources("wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv") if config_provider("wasserstoff_kernnetz", "enable") else [], costs=resources("costs_{planning_horizons}.csv"), + aladin_demand=resources("mobility_demand_aladin_{simpl}_{clusters}_{planning_horizons}.csv"), + transport_demand=resources("transport_demand_s{simpl}_{clusters}.csv"), + transport_data=resources("transport_data_s{simpl}_{clusters}.csv"), output: network=RESULTS + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 860b2ede2..ae252bea8 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -1,6 +1,7 @@ import logging import pandas as pd +import numpy as np import pypsa @@ -341,6 +342,63 @@ def must_run_biomass(n, p_min_pu, regions): n.links.loc[links_i, "p_min_pu"] = p_min_pu +def aladin_mobility_demand(n): + ''' + Change loads in Germany to use Aladin data for road demand. + ''' + # get aladin data + aladin_demand = pd.read_csv(snakemake.input.aladin_demand, index_col=0) + transport = pd.read_csv(snakemake.input.transport_demand, index_col=0, parse_dates=True).filter(like="DE") + # normalize transport by the sum of each column + rel_demand = transport.div(transport.sum(axis=0), axis=1) + # aggregate rel_demand to n timesteps + aggregation_map = pd.Series(index=rel_demand.index).astype("datetime64[ns]") + for i in range(0, 8760, int(snakemake.params.clustering[:-1])): + aggregation_map.iloc[i:i+int(snakemake.params.clustering[:-1])] = rel_demand.index[i] + + agg_rel = rel_demand.groupby(aggregation_map).sum() + + # oil demand + oil_index = n.loads[(n.loads.carrier == "land transport oil") & (n.loads.index.str[:2] == "DE")].index + oil_demand = agg_rel*aladin_demand.Liquids + + oil_demand.columns = [f"{i} land transport oil" for i in oil_demand.columns] + n.loads_t.p_set.loc[:, oil_index] = oil_demand + + # hydrogen demand + h2_index = n.loads[(n.loads.carrier == "land transport fuel cell") & (n.loads.index.str[:2] == "DE")].index + h2_demand = agg_rel*aladin_demand.Hydrogen + + h2_demand.columns = [f"{i} land transport fuel cell" for i in h2_demand.columns] + n.loads_t.p_set.loc[:, h2_index] = h2_demand + + # electricity demand + ev_index = n.loads[(n.loads.carrier == "land transport EV") & (n.loads.index.str[:2] == "DE")].index + ev_demand = rel_demand*aladin_demand.Electricity + ev_demand.columns = [f"{i} land transport EV" for i in ev_demand.columns] + n.loads_t.p_set.loc[:, ev_index] = ev_demand + + # TODO: do I need to take temperature profiles into account? + + # adjust BEV charger and V2G capacities + number_cars = pd.read_csv(snakemake.input.transport_data, index_col=0)[ + "number cars" + ].filter(like="DE") + + factor = aladin_demand.number_of_cars*1e6 / (number_cars*snakemake.config["sector"]["land_transport_electric_share"][int(snakemake.wildcards.planning_horizons)]) + + BEV_charger_i = n.links[(n.links.carrier == "BEV charger") & (n.links.bus0.str.startswith("DE"))].index + n.links.loc[BEV_charger_i].p_nom *= factor + + V2G_i = n.links[(n.links.carrier == "V2G") & (n.links.bus0.str.startswith("DE"))].index + if not V2G_i.empty: + n.links.loc[V2G_i].p_nom *= factor + + dsm_i = n.stores[(n.stores.carrier == "battery storage") & (n.stores.bus.str.startswith("DE"))].index + if not dsm_i.empty: + n.stores.loc[dsm_i].e_nom *= factor + + if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -355,10 +413,10 @@ def must_run_biomass(n, p_min_pu, regions): simpl="", clusters=22, opts="", - ll="v1.2", - sector_opts="365H-T-H-B-I-A-solar+p3-linemaxext15", - planning_horizons="2040", - run="KN2045_H2_v4" + ll="vopt", + sector_opts="none", + planning_horizons="2030", + run="KN2045_Bal_v4" ) logger.info("Adding Ariadne-specific functionality") @@ -374,6 +432,8 @@ def must_run_biomass(n, p_min_pu, regions): nyears, ) + aladin_mobility_demand(n) + new_boiler_ban(n) fix_new_boiler_profiles(n) From 53d52d540e40aa10cc4052e4c49ef5bf10bb6075 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 18 Jun 2024 17:53:23 +0200 Subject: [PATCH 420/669] snapshot_weightings are now accounted for --- config/config.yaml | 48 +++++++++++++++++------ workflow/scripts/build_mobility_demand.py | 4 +- workflow/scripts/modify_prenetwork.py | 15 +++++-- 3 files changed, 49 insertions(+), 18 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 1e4d6efaf..053396014 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,21 +4,21 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240613scenariosredefined + prefix: transport_aladin name: - - CurrentPolicies + # - CurrentPolicies - KN2045_Bal_v4 - - KN2045_Elec_v4 - - KN2045_H2_v4 - - KN2045plus_EasyRide - - KN2045plus_LowDemand - - KN2045minus_WorstCase - - KN2045minus_SupplyFocus + # - KN2045_Elec_v4 + # - KN2045_H2_v4 + # - KN2045plus_EasyRide + # - KN2045plus_LowDemand + # - KN2045minus_WorstCase + # - KN2045minus_SupplyFocus scenarios: enable: true file: config/scenarios.automated.yaml shared_resources: - policy: base #stops recalculating + policy: true #stops recalculating exclude: - existing_heating.csv # specify files which should not be shared between scenarios - costs @@ -223,7 +223,7 @@ costs: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: - # solar_thermal: false + solar_thermal: false district_heating: potential: 0.4 progress: @@ -257,6 +257,30 @@ sector: 2040: 0.29 2045: 0.36 2050: 0.43 + land_transport_fuel_cell_share: + 2020: 0.05 + 2025: 0.05 + 2030: 0.05 + 2035: 0.05 + 2040: 0.05 + 2045: 0.05 + 2050: 0.05 + land_transport_electric_share: + 2020: 0.05 + 2025: 0.15 + 2030: 0.3 + 2035: 0.45 + 2040: 0.7 + 2045: 0.85 + 2050: 0.95 + land_transport_ice_share: + 2020: 0.9 + 2025: 0.8 + 2030: 0.65 + 2035: 0.5 + 2040: 0.25 + 2045: 0.1 + 2050: 0.0 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry industry: @@ -316,11 +340,11 @@ solving: options: assign_all_duals: true load_shedding: false - skip_iterations: false # settings for post-discretization: false + skip_iterations: true # settings for post-discretization: false min_iterations: 1 # settings for post-discretization: 1 max_iterations: 1 # settings for post-discretization: 1 post_discretization: - enable: true + enable: false line_unit_size: 1700 line_threshold: 0.3 link_unit_size: diff --git a/workflow/scripts/build_mobility_demand.py b/workflow/scripts/build_mobility_demand.py index df89caa14..ff5b34663 100644 --- a/workflow/scripts/build_mobility_demand.py +++ b/workflow/scripts/build_mobility_demand.py @@ -30,7 +30,7 @@ def get_aladin_data(): key = f"Final Energy|Transportation|{subsector}|{fuel}" transport_demand.loc[fuel] += db.loc[key, year].iloc[0] - transport_demand.div(3.6e-6) # convert PJ to MWh + transport_demand = transport_demand.div(3.6e-6) # convert PJ to MWh transport_demand["number_of_cars"] = db.loc["Stock|Transportation|LDV|BEV", year].iloc[0] return transport_demand @@ -51,7 +51,7 @@ def get_aladin_data(): opts="", ll="vopt", sector_opts="none", - planning_horizons="2030", + planning_horizons="2020", run="KN2045_Bal_v4" ) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index ae252bea8..7dda9eeb1 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -352,9 +352,16 @@ def aladin_mobility_demand(n): # normalize transport by the sum of each column rel_demand = transport.div(transport.sum(axis=0), axis=1) # aggregate rel_demand to n timesteps - aggregation_map = pd.Series(index=rel_demand.index).astype("datetime64[ns]") - for i in range(0, 8760, int(snakemake.params.clustering[:-1])): - aggregation_map.iloc[i:i+int(snakemake.params.clustering[:-1])] = rel_demand.index[i] + # aggregation_map = pd.Series(index=rel_demand.index).astype("datetime64[ns]") + # for i in range(0, 8760, int(snakemake.params.clustering[:-1])): + # aggregation_map.iloc[i:i+int(snakemake.params.clustering[:-1])] = rel_demand.index[i] + aggregation_map = ( + pd.Series( + n.snapshot_weightings.index.get_indexer(n.snapshots), index=n.snapshots + ) + .astype(int) + .map(lambda i: n.snapshot_weightings.index[i]) + ) agg_rel = rel_demand.groupby(aggregation_map).sum() @@ -415,7 +422,7 @@ def aladin_mobility_demand(n): opts="", ll="vopt", sector_opts="none", - planning_horizons="2030", + planning_horizons="2020", run="KN2045_Bal_v4" ) From a78353adc234d2977f6e8dfa3067205ff87758c5 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 19 Jun 2024 10:20:00 +0200 Subject: [PATCH 421/669] fix snapshot weightings --- workflow/Snakefile | 1 - workflow/scripts/modify_prenetwork.py | 43 ++++++++++----------------- 2 files changed, 16 insertions(+), 28 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 8f5306403..507f458e1 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -168,7 +168,6 @@ rule modify_prenetwork: wkn=resources("wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv") if config_provider("wasserstoff_kernnetz", "enable") else [], costs=resources("costs_{planning_horizons}.csv"), aladin_demand=resources("mobility_demand_aladin_{simpl}_{clusters}_{planning_horizons}.csv"), - transport_demand=resources("transport_demand_s{simpl}_{clusters}.csv"), transport_data=resources("transport_data_s{simpl}_{clusters}.csv"), output: network=RESULTS diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 7dda9eeb1..910a06898 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -348,44 +348,33 @@ def aladin_mobility_demand(n): ''' # get aladin data aladin_demand = pd.read_csv(snakemake.input.aladin_demand, index_col=0) - transport = pd.read_csv(snakemake.input.transport_demand, index_col=0, parse_dates=True).filter(like="DE") - # normalize transport by the sum of each column - rel_demand = transport.div(transport.sum(axis=0), axis=1) - # aggregate rel_demand to n timesteps - # aggregation_map = pd.Series(index=rel_demand.index).astype("datetime64[ns]") - # for i in range(0, 8760, int(snakemake.params.clustering[:-1])): - # aggregation_map.iloc[i:i+int(snakemake.params.clustering[:-1])] = rel_demand.index[i] - aggregation_map = ( - pd.Series( - n.snapshot_weightings.index.get_indexer(n.snapshots), index=n.snapshots - ) - .astype(int) - .map(lambda i: n.snapshot_weightings.index[i]) - ) - - agg_rel = rel_demand.groupby(aggregation_map).sum() # oil demand + oil_demand = aladin_demand.Liquids oil_index = n.loads[(n.loads.carrier == "land transport oil") & (n.loads.index.str[:2] == "DE")].index - oil_demand = agg_rel*aladin_demand.Liquids + oil_demand.index = [f"{i} land transport oil" for i in oil_demand.index] - oil_demand.columns = [f"{i} land transport oil" for i in oil_demand.columns] - n.loads_t.p_set.loc[:, oil_index] = oil_demand + profile = n.loads_t.p_set.loc[:, oil_index] + profile /= profile.sum() + n.loads_t.p_set.loc[:, oil_index] = (oil_demand*profile).div(n.snapshot_weightings.objective, axis=0) # hydrogen demand + h2_demand = aladin_demand.Hydrogen h2_index = n.loads[(n.loads.carrier == "land transport fuel cell") & (n.loads.index.str[:2] == "DE")].index - h2_demand = agg_rel*aladin_demand.Hydrogen + h2_demand.index = [f"{i} land transport fuel cell" for i in h2_demand.index] - h2_demand.columns = [f"{i} land transport fuel cell" for i in h2_demand.columns] - n.loads_t.p_set.loc[:, h2_index] = h2_demand + profile = n.loads_t.p_set.loc[:, h2_index] + profile /= profile.sum() + n.loads_t.p_set.loc[:, h2_index] = (h2_demand*profile).div(n.snapshot_weightings.objective, axis=0) # electricity demand + ev_demand = aladin_demand.Electricity ev_index = n.loads[(n.loads.carrier == "land transport EV") & (n.loads.index.str[:2] == "DE")].index - ev_demand = rel_demand*aladin_demand.Electricity - ev_demand.columns = [f"{i} land transport EV" for i in ev_demand.columns] - n.loads_t.p_set.loc[:, ev_index] = ev_demand - - # TODO: do I need to take temperature profiles into account? + ev_demand.index = [f"{i} land transport EV" for i in ev_demand.index] + + profile = n.loads_t.p_set.loc[:, ev_index] + profile /= profile.sum() + n.loads_t.p_set.loc[:, ev_index] = (ev_demand*profile).div(n.snapshot_weightings.objective, axis=0) # adjust BEV charger and V2G capacities number_cars = pd.read_csv(snakemake.input.transport_data, index_col=0)[ From b84e472bae68df0d9afe907d4e2af30a5c0f0945 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 19 Jun 2024 13:57:30 +0200 Subject: [PATCH 422/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 7fe259748..b6802a6bf 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 7fe2597482fd57be94625786a5fe5f59caa37249 +Subproject commit b6802a6bf95fa91415b222678105b8101b0ad632 From 9753ff81a9f353ef32d0597baba76483461d1629 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 19 Jun 2024 14:42:31 +0200 Subject: [PATCH 423/669] harmonize CurrentPol and WorstCase --- config/scenarios.manual.yaml | 27 ++++++++++++--------------- 1 file changed, 12 insertions(+), 15 deletions(-) diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 8335fc94a..caffad948 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -47,7 +47,6 @@ CurrentPolicies: 2045: 22.5 solar: DE: - 2025: 101 2030: 161.25 # 75 % PV strategy 2035: 161.25 2040: 161.25 @@ -483,23 +482,22 @@ KN2045minus_WorstCase: Generator: onwind: DE: - 2030: 115 # Wind-an-Land Law - 2035: 115 # not forcing more EE - 2040: 115 - 2045: 115 + 2030: 86.5 # 75 % Wind-an-Land Law + 2035: 86.5 + 2040: 86.5 + 2045: 86.5 offwind: DE: - 2030: 30 # Wind-auf-See Law - 2035: 30 # not forcing more EE - 2040: 30 - 2045: 30 + 2030: 22.5 # 75 % Wind-auf-See Law + 2035: 22.5 + 2040: 22.5 + 2045: 22.5 solar: DE: - 2025: 101 - 2030: 215 # PV strategy - 2035: 215 # not forcing more EE - 2040: 215 - 2045: 215 + 2030: 161.25 # 75 % PV strategy + 2035: 161.25 + 2040: 161.25 + 2045: 161.25 KN2045minus_SupplyFocus: # Nachfrage genau so hoch wie in Szenario WorstCase @@ -585,7 +583,6 @@ KN2045minus_SupplyFocus: DE: # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, # assuming at least 1/3 of difference reached in 2025 - 2025: 101 2030: 215 # PV strategy 2035: 309 2040: 400 # PV strategy From d0eaa40f04ef5b8181f66a32e28acecf01f61cab Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 19 Jun 2024 16:47:01 +0200 Subject: [PATCH 424/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index b6802a6bf..f39f50306 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit b6802a6bf95fa91415b222678105b8101b0ad632 +Subproject commit f39f5030655247197689147d159f8c05ed4ec93c From 02e7b6d8ce061084ae4909d9d1c02ebf75ab3a7b Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 19 Jun 2024 16:50:36 +0200 Subject: [PATCH 425/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index f39f50306..7de9aab22 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit f39f5030655247197689147d159f8c05ed4ec93c +Subproject commit 7de9aab22ac491356802049c9e696171f135d9e0 From 4ef4f3d65f7f0eb6c03124c0b554acf98c66b1ba Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 25 Jun 2024 15:17:29 +0200 Subject: [PATCH 426/669] factor was not applied yet because of indices not matching --- workflow/scripts/modify_prenetwork.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 7829cafc5..7ff353480 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -423,15 +423,15 @@ def aladin_mobility_demand(n): factor = aladin_demand.number_of_cars*1e6 / (number_cars*snakemake.config["sector"]["land_transport_electric_share"][int(snakemake.wildcards.planning_horizons)]) BEV_charger_i = n.links[(n.links.carrier == "BEV charger") & (n.links.bus0.str.startswith("DE"))].index - n.links.loc[BEV_charger_i].p_nom *= factor + n.links.loc[BEV_charger_i].p_nom *= pd.Series(factor.values, index=BEV_charger_i) V2G_i = n.links[(n.links.carrier == "V2G") & (n.links.bus0.str.startswith("DE"))].index if not V2G_i.empty: - n.links.loc[V2G_i].p_nom *= factor + n.links.loc[V2G_i].p_nom *= pd.Series(factor.values, index=V2G_i) dsm_i = n.stores[(n.stores.carrier == "battery storage") & (n.stores.bus.str.startswith("DE"))].index if not dsm_i.empty: - n.stores.loc[dsm_i].e_nom *= factor + n.stores.loc[dsm_i].e_nom *= pd.Series(factor.values, index=dsm_i) if __name__ == "__main__": @@ -450,7 +450,7 @@ def aladin_mobility_demand(n): opts="", ll="vopt", sector_opts="none", - planning_horizons="2020", + planning_horizons="2030", run="KN2045_Bal_v4" ) From 41a331d0d8ee196d84cd243954ed8d563b9a017a Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 25 Jun 2024 16:24:35 +0200 Subject: [PATCH 427/669] pdf -> svg --- workflow/Snakefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 507f458e1..50e051e49 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -408,7 +408,7 @@ rule plot_ariadne_variables: rule ariadne_all: input: - expand(RESULTS + "graphs/costs.pdf", run=config_provider("run", "name")), + expand(RESULTS + "graphs/costs.svg", run=config_provider("run", "name")), expand(RESULTS + "ariadne/capacity_detailed.png", run=config_provider("run", "name")), exported_variables=expand(RESULTS + "ariadne/exported_variables_full.xlsx", run=config_provider("run", "name")), script: From f4eb474263fa8d693ec20edb9a6ec6b3ad530787 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 26 Jun 2024 10:12:04 +0200 Subject: [PATCH 428/669] svg -> pdf --- workflow/Snakefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 50e051e49..507f458e1 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -408,7 +408,7 @@ rule plot_ariadne_variables: rule ariadne_all: input: - expand(RESULTS + "graphs/costs.svg", run=config_provider("run", "name")), + expand(RESULTS + "graphs/costs.pdf", run=config_provider("run", "name")), expand(RESULTS + "ariadne/capacity_detailed.png", run=config_provider("run", "name")), exported_variables=expand(RESULTS + "ariadne/exported_variables_full.xlsx", run=config_provider("run", "name")), script: From 7e671707eff211bce667bd84df4ec3897266b3bf Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 26 Jun 2024 16:53:30 +0200 Subject: [PATCH 429/669] rename EV battery --- workflow/scripts/export_ariadne_variables.py | 2 +- workflow/scripts/modify_prenetwork.py | 2 +- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index d4e97759a..8935b3139 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -391,7 +391,7 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): }).sum() var[cap_string + "Electricity|Storage Reservoir|Vehicles"] = \ - storage_capacities.get("Li ion", 0) + storage_capacities.get("EV battery", 0) var[cap_string + "Electricity|Storage Reservoir"] = \ var[[ diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 7ff353480..c3f21c6d0 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -429,7 +429,7 @@ def aladin_mobility_demand(n): if not V2G_i.empty: n.links.loc[V2G_i].p_nom *= pd.Series(factor.values, index=V2G_i) - dsm_i = n.stores[(n.stores.carrier == "battery storage") & (n.stores.bus.str.startswith("DE"))].index + dsm_i = n.stores[(n.stores.carrier == "EV battery") & (n.stores.bus.str.startswith("DE"))].index if not dsm_i.empty: n.stores.loc[dsm_i].e_nom *= pd.Series(factor.values, index=dsm_i) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 04f292c4d..33ab85e51 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 04f292c4dc1d9da40f4cdecdfa01fea20cbadcb3 +Subproject commit 33ab85e51b5c26db4a34177a3ca73b0bc627962e From 7c284749d1e6048aee67abecd7d579fe6b55ecbc Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 26 Jun 2024 17:21:47 +0200 Subject: [PATCH 430/669] minor fixes --- config/config.yaml | 4 ++-- workflow/scripts/export_ariadne_variables.py | 9 ++++++--- workflow/scripts/plot_ariadne_variables.py | 6 +++++- 3 files changed, 13 insertions(+), 6 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 053396014..d67f1b873 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: transport_aladin + prefix: 20240625transport_aladin name: # - CurrentPolicies - KN2045_Bal_v4 @@ -18,7 +18,7 @@ run: enable: true file: config/scenarios.automated.yaml shared_resources: - policy: true #stops recalculating + policy: base #stops recalculating exclude: - existing_heating.csv # specify files which should not be shared between scenarios - costs diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 8935b3139..7a10afcf7 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -452,9 +452,9 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|"): # if desired by Ariadne # var[cap_string + "Heat|Biomass|w/ CCS"] = \ - capacities_central_heat.get('urban central solid biomass CHP CC',0) + capacities_central_heat.get('urban central solid biomass CHP CC', 0) var[cap_string + "Heat|Biomass|w/o CCS"] = \ - capacities_central_heat.get('urban central solid biomass CHP') \ + capacities_central_heat.get('urban central solid biomass CHP', 0) \ + capacities_central_heat.filter(like="biomass boiler").sum() var[cap_string + "Heat|Biomass"] = \ @@ -1216,7 +1216,7 @@ def get_secondary_energy(n, region): ["carrier"] ).sum().multiply(MWh2PJ) - assert methanol_production.size <= 1 # only methanolisation + assert methanol_production.size <= 2 # only methanolisation and methanol imports # var["Production|Chemicals|Methanol"] = \ # here units are Mt/year var["Secondary Energy|Methanol"] = \ @@ -3017,6 +3017,9 @@ def get_export_import_links(n, region, carriers): exports_oil_renew * MWh2PJ # Trade|Secondary Energy|Gases|Hydrogen|Volume + + # TODO add methanol trade + # Trade|Primary Energy|Coal|Volume # Trade|Primary Energy|Gas|Volume kwargs = { diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 243cf0e17..7deddb87e 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -232,7 +232,11 @@ def elec_val_plot(df, savepath): select_regex="Primary Energy\|[^|]*\|[^|]*$", drop_regex="^(?!.*(CCS|Price|Volume)).+" ) - + if df.loc["Final Energy|Industry excl Non-Energy Use|Hydrogen", "2025"].item() < 0: + val = df.loc["Final Energy|Industry excl Non-Energy Use|Hydrogen", "2025"] + df.loc["Final Energy|Industry excl Non-Energy Use|Hydrogen", "2025"] = 0 + df.loc["Final Energy|Hydrogen", "2025"] = 0 + print("WARNING! NEGATIVE HYDROGEN DEMAND IN INDUSTRY IN 2025! ", val) side_by_side_plot( df, dfremind, From c0ea5cc6031862eedbc266f84f009baca33560de Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 27 Jun 2024 13:56:34 +0200 Subject: [PATCH 431/669] up submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 33ab85e51..11b42eaec 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 33ab85e51b5c26db4a34177a3ca73b0bc627962e +Subproject commit 11b42eaec92a119c41815b325ebb4b3d49696286 From 88b959ba2cd5329b4e6a00813d240f7bf5a04696 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 27 Jun 2024 14:34:07 +0200 Subject: [PATCH 432/669] add renewable capacity limits --- config/config.yaml | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/config/config.yaml b/config/config.yaml index d67f1b873..53bdc1295 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -121,14 +121,26 @@ limits_capacity_max: DE: 2020: 54.5 2025: 69 + 2030: 160 + 2035: 160 + 2040: 160 + 2045: 160 offwind: DE: 2020: 7.8 2025: 8 + 2030: 80 + 2035: 80 + 2040: 80 + 2045: 80 solar: DE: 2020: 53.7 2025: 110 # EEG2023; assumes for 2026: 128 GW, assuming a fair share reached by end of 2025 + 2030: 400 + 2035: 400 + 2040: 400 + 2045: 400 limits_capacity_min: Generator: From 75512466a45cc1c4686b63166a397047802db515 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 27 Jun 2024 15:38:03 +0200 Subject: [PATCH 433/669] use 2045 goals as limit for all carriers --- config/config.yaml | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 53bdc1295..507a18096 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240625transport_aladin + prefix: 20240627wind_limits name: # - CurrentPolicies - KN2045_Bal_v4 @@ -129,10 +129,10 @@ limits_capacity_max: DE: 2020: 7.8 2025: 8 - 2030: 80 - 2035: 80 - 2040: 80 - 2045: 80 + 2030: 70 + 2035: 70 + 2040: 70 + 2045: 70 solar: DE: 2020: 53.7 From affd68272a14ebe295050876306227aca891c8a2 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 27 Jun 2024 17:06:04 +0200 Subject: [PATCH 434/669] set up public config --- config/config.public.yaml | 34 ++++++++++++++++++++++++++++++++++ workflow/Snakefile | 2 +- 2 files changed, 35 insertions(+), 1 deletion(-) create mode 100644 config/config.public.yaml diff --git a/config/config.public.yaml b/config/config.public.yaml new file mode 100644 index 000000000..8e68b1f62 --- /dev/null +++ b/config/config.public.yaml @@ -0,0 +1,34 @@ +# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: CC0-1.0 + +run: + prefix: 20240627public_db + name: + - 8Gt_Bal_v3 + # - 8Gt_Elec_v3 + # - 8Gt_H2_v3 + scenarios: + enable: true + manual_file: config/scenarios.public.yaml + file: config/scenarios.automated.yaml + shared_resources: + policy: base #stops recalculating + exclude: + - existing_heating.csv # specify files which should not be shared between scenarios + - costs + - retrieve_cost # This is necessary to save retrieve_cost_data_{year}.log in the correct folder + +iiasa_database: + db_name: ariadne + leitmodelle: + general: REMIND-EU v1.1 + buildings: REMod v1.0 + transport: DLR-DEMO + industry: FORECAST v1.0 + scenarios: + - 8Gt_Bal_v3 + - 8Gt_Elec_v3 + - 8Gt_H2_v3 + reference_scenario: 8Gt_Bal_v3 + region: Deutschland \ No newline at end of file diff --git a/workflow/Snakefile b/workflow/Snakefile index 507f458e1..9b5f3e10d 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -419,7 +419,7 @@ rule build_scenarios: scenarios=config_provider("run", "name"), input: ariadne_database=resources("ariadne_database.csv"), - scenario_yaml="config/scenarios.manual.yaml", + scenario_yaml=config["run"]["scenarios"]["manual_file"], output: scenario_yaml=config["run"]["scenarios"]["file"], log: From 9e473305a5824b507b350e76503dd794cdd57e27 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 27 Jun 2024 17:06:28 +0200 Subject: [PATCH 435/669] define sectoral leitmodelle --- config/config.yaml | 9 +++++---- workflow/scripts/retrieve_ariadne_database.py | 2 +- 2 files changed, 6 insertions(+), 5 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 507a18096..3d5d951ba 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -16,6 +16,7 @@ run: # - KN2045minus_SupplyFocus scenarios: enable: true + manual_file: config/scenarios.public.yaml file: config/scenarios.automated.yaml shared_resources: policy: base #stops recalculating @@ -31,10 +32,10 @@ run: iiasa_database: db_name: ariadne2_intern leitmodelle: - - REMIND-EU v1.1 - - REMod v1.0 - - Aladin v1 - - FORECAST v1.0 + general: REMIND-EU v1.1 + buildings: REMod v1.0 + transport: Aladin v1 + industry: FORECAST v1.0 scenarios: - CurrentPolicies - KN2045_Elec_v4 diff --git a/workflow/scripts/retrieve_ariadne_database.py b/workflow/scripts/retrieve_ariadne_database.py index 94730749e..6ae278b24 100644 --- a/workflow/scripts/retrieve_ariadne_database.py +++ b/workflow/scripts/retrieve_ariadne_database.py @@ -13,7 +13,7 @@ db = pyam.read_iiasa( snakemake.params.db_name, - model=snakemake.params.leitmodelle, + model=snakemake.params.leitmodelle.values(), scenario=snakemake.params.scenarios, # Download only the most recent iterations of scenarios ) From 8b0a4315afb3f5c932d835b00e012575b7b33115 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 28 Jun 2024 12:45:37 +0200 Subject: [PATCH 436/669] scenario file for public db --- config/config.yaml | 2 +- config/scenarios.public.yaml | 174 +++++++++++++++++++++++++++++++++++ 2 files changed, 175 insertions(+), 1 deletion(-) create mode 100644 config/scenarios.public.yaml diff --git a/config/config.yaml b/config/config.yaml index 3d5d951ba..db2e2294b 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -16,7 +16,7 @@ run: # - KN2045minus_SupplyFocus scenarios: enable: true - manual_file: config/scenarios.public.yaml + manual_file: config/scenarios.manual.yaml file: config/scenarios.automated.yaml shared_resources: policy: base #stops recalculating diff --git a/config/scenarios.public.yaml b/config/scenarios.public.yaml new file mode 100644 index 000000000..f2128ab57 --- /dev/null +++ b/config/scenarios.public.yaml @@ -0,0 +1,174 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT + + +8Gt_Bal_v3: + iiasa_database: + reference_scenario: 8Gt_Bal_v3 + fallback_reference_scenario: 8Gt_Bal_v3 + co2_budget_DE_source: KSG + + costs: + horizon: "mean" + NEP: 2023 + transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") + + # boundary condition of maximum volumes + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: -20 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 105 + 2040: 200 + 2045: 300 + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 + +8Gt_Elec_v3: + iiasa_database: + reference_scenario: 8Gt_Elec_v3 + fallback_reference_scenario: 8Gt_Elec_v3 + co2_budget_DE_source: KSG + + costs: + horizon: "mean" + NEP: 2023 + transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") + + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: -20 + 2025: 0 + 2030: 0 + 2035: 50 + 2040: 100 + 2045: 150 + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 95 + 2040: 145 + 2045: 200 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 70 + 2040: 130 + 2045: 200 + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 10 + 2035: 90 + 2040: 170 + 2045: 250 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 + +8Gt_H2_v3: + iiasa_database: + reference_scenario: 8Gt_H2_v3 + fallback_reference_scenario: 8Gt_H2_v3 + co2_budget_DE_source: KSG + + costs: + horizon: "mean" + NEP: 2023 + transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") + + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: -20 + 2025: 0 + 2030: 0 + 2035: 30 + 2040: 70 + 2045: 100 # scenario guidelines + + # constrain hydrogen import in TWh + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 45 # scenario guidelines + 2035: 155 + 2040: 265 + 2045: 400 # scenario guidelines + # import of h2 derivatives in TWh + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 # scenario guidelines + 2035: 140 + 2040: 270 + 2045: 400 # scenario guidelines + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 # scenario guidelines + 2035: 160 + 2040: 275 + 2045: 400 # scenario guidelines + + limits_volume_min: + electrolysis: + DE: + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 200 From 2b8cf22cda074ddf267347a2c89ec349d4fdbe86 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 28 Jun 2024 12:46:17 +0200 Subject: [PATCH 437/669] simplifying non-co2 computation --- workflow/scripts/build_scenarios.py | 31 +++++++++++++++++++---------- 1 file changed, 21 insertions(+), 10 deletions(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 8172340ba..31f0b3c1d 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -14,8 +14,12 @@ def get_transport_growth(df, planning_horizons): # Aviation growth factor - using REMIND-EU v1.1 since Aladin v1 does not include bunkers - aviation_model = "REMIND-EU v1.1" - aviation = df.loc[aviation_model,"Final Energy|Bunkers|Aviation", "PJ/yr"] + aviation_model = snakemake.params.leitmodelle["general"] + try: + aviation = df.loc[aviation_model,"Final Energy|Bunkers|Aviation", "PJ/yr"] + except KeyError: + aviation = df.loc[aviation_model,"Final Energy|Bunkers|Aviation", "TWh/yr"] * 3.6 # TWh to PJ + aviation_growth_factor = aviation / aviation[2020] return aviation_growth_factor[planning_horizons] @@ -23,14 +27,14 @@ def get_transport_growth(df, planning_horizons): def get_primary_steel_share(df, planning_horizons): # Get share of primary steel production - model = "FORECAST v1.0" + model = snakemake.params.leitmodelle["industry"] total_steel = df.loc[model, "Production|Steel"] primary_steel = df.loc[model, "Production|Steel|Primary"] primary_steel_share = primary_steel / total_steel primary_steel_share = primary_steel_share[planning_horizons] - if model == "FORECAST v1.0" and planning_horizons[0] == 2020: + if model == "FORECAST v1.0" and (planning_horizons[0] == 2020) and snakemake.params.db_name == "ariadne2_intern": logger.warning("FORECAST v1.0 does not have data for 2020. Using 2021 data for Production|Steel instead.") primary_steel_share[2020] = primary_steel[2021] / total_steel[2021] @@ -70,16 +74,23 @@ def get_co2_budget(df, source): raise ValueError("Invalid source for CO2 budget.") ## Compute nonco2 from Ariadne-Leitmodell (REMIND) + # co2 = ( + # df.loc["Emissions|CO2 incl Bunkers","Mt CO2/yr"] + # - df.loc["Emissions|CO2|Land-Use Change","Mt CO2-equiv/yr"] + # - df.loc["Emissions|CO2|Energy|Demand|Bunkers","Mt CO2/yr"] + # ) + # ghg = ( + # df.loc["Emissions|Kyoto Gases","Mt CO2-equiv/yr"] + # - df.loc["Emissions|Kyoto Gases|Land-Use Change","Mt CO2-equiv/yr"] + # # No Kyoto Gas emissions for Bunkers recorded in Ariadne DB + # ) + co2 = ( - df.loc["Emissions|CO2 incl Bunkers","Mt CO2/yr"] - - df.loc["Emissions|CO2|Land-Use Change","Mt CO2-equiv/yr"] - - df.loc["Emissions|CO2|Energy|Demand|Bunkers","Mt CO2/yr"] + df.loc["Emissions|CO2","Mt CO2/yr"] ) ghg = ( df.loc["Emissions|Kyoto Gases","Mt CO2-equiv/yr"] - - df.loc["Emissions|Kyoto Gases|Land-Use Change","Mt CO2-equiv/yr"] - # No Kyoto Gas emissions for Bunkers recorded in Ariadne DB ) nonco2 = ghg - co2 @@ -112,7 +123,7 @@ def write_to_scenario_yaml( co2_budget_source = config[scenario]["co2_budget_DE_source"] co2_budget_fractions = get_co2_budget( - df.loc["REMIND-EU v1.1", fallback_reference_scenario], + df.loc[snakemake.params.leitmodelle["general"], fallback_reference_scenario], co2_budget_source ) From c9498f1b22b84e695e20d0a04a2afa13781dcf49 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 28 Jun 2024 12:46:30 +0200 Subject: [PATCH 438/669] adjustments for old db --- config/config.public.yaml | 3 +- workflow/Snakefile | 5 +++ workflow/scripts/build_mobility_demand.py | 50 +++++++++++++--------- workflow/scripts/modify_industry_demand.py | 2 +- 4 files changed, 38 insertions(+), 22 deletions(-) diff --git a/config/config.public.yaml b/config/config.public.yaml index 8e68b1f62..878d657e8 100644 --- a/config/config.public.yaml +++ b/config/config.public.yaml @@ -24,7 +24,8 @@ iiasa_database: leitmodelle: general: REMIND-EU v1.1 buildings: REMod v1.0 - transport: DLR-DEMO + transport: DLR + transport_stock: DLR-VECTOR21 industry: FORECAST v1.0 scenarios: - 8Gt_Bal_v3 diff --git a/workflow/Snakefile b/workflow/Snakefile index 9b5f3e10d..c76f1ab29 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -132,8 +132,10 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", T rule build_mobility_demand: params: + db_name=config_provider("iiasa_database", "db_name"), reference_scenario=config_provider("iiasa_database", "reference_scenario"), planning_horizons=config_provider("scenario", "planning_horizons"), + leitmodelle=config_provider("iiasa_database", "leitmodelle"), input: ariadne=resources("ariadne_database.csv"), clustered_pop_layout=resources("pop_layout_elec_s{simpl}_{clusters}.csv"), @@ -246,6 +248,7 @@ use rule build_existing_heating_distribution from pypsaeur with: rule modify_industry_demand: input: + db_name=config_provider("iiasa_database", "db_name"), ariadne=resources("ariadne_database.csv"), industrial_production_per_country_tomorrow=resources("industrial_production_per_country_tomorrow_{planning_horizons}.csv"), output: @@ -417,6 +420,8 @@ rule ariadne_all: rule build_scenarios: params: scenarios=config_provider("run", "name"), + db_name=config_provider("iiasa_database","db_name"), + leitmodelle=config_provider("iiasa_database", "leitmodelle"), input: ariadne_database=resources("ariadne_database.csv"), scenario_yaml=config["run"]["scenarios"]["manual_file"], diff --git a/workflow/scripts/build_mobility_demand.py b/workflow/scripts/build_mobility_demand.py index ff5b34663..f766b9ee0 100644 --- a/workflow/scripts/build_mobility_demand.py +++ b/workflow/scripts/build_mobility_demand.py @@ -3,35 +3,35 @@ logger = logging.getLogger(__name__) -def get_aladin_data(): +def get_transport_data(db): """ - Retrieve the German mobility demand from the Aladin model. + Retrieve the German mobility demand from the transport_data model. Sum over the subsectors Bus, LDV, Rail, and Truck for the fuels electricity, hydrogen, and synthetic fuels. """ - # get aladin data - db = pd.read_csv( - snakemake.input.ariadne, - index_col=["model", "scenario", "region", "variable", "unit"] - ).loc[ - "Aladin v1", - snakemake.params.reference_scenario, - "Deutschland", - :, - :,] - year = snakemake.wildcards.planning_horizons + # get transport_data data + + df = db.loc[snakemake.params.leitmodelle["transport"]] subsectors = ["Bus", "LDV", "Rail", "Truck"] fuels = ["Electricity", "Hydrogen", "Liquids"] - transport_demand = pd.Series(0, index=fuels) + transport_demand = pd.Series(0.0, index=fuels) for fuel in fuels: for subsector in subsectors: key = f"Final Energy|Transportation|{subsector}|{fuel}" - transport_demand.loc[fuel] += db.loc[key, year].iloc[0] + if snakemake.params.db_name == "ariadne": + transport_demand.loc[fuel] += df.get((key, "TWh/yr"), 0.0) * 3.6 + else: + transport_demand.loc[fuel] += df.loc[key]["PJ/yr"] + transport_demand = transport_demand.div(3.6e-6) # convert PJ to MWh - transport_demand["number_of_cars"] = db.loc["Stock|Transportation|LDV|BEV", year].iloc[0] + + if "transport_stock" in snakemake.params.leitmodelle: + df = db.loc[snakemake.params.leitmodelle["transport_stock"]] + + transport_demand["number_of_cars"] = df.loc["Stock|Transportation|LDV|BEV", "million"] return transport_demand @@ -55,15 +55,25 @@ def get_aladin_data(): run="KN2045_Bal_v4" ) - logger.info("Retrieving German mobility demand from Aladin model.") - # get aladin data - aladin = get_aladin_data() + db = pd.read_csv( + snakemake.input.ariadne, + index_col=["model", "scenario", "region", "variable", "unit"] + ).loc[ + :, + snakemake.params.reference_scenario, + "Deutschland", + :, + :,][snakemake.wildcards.planning_horizons] + + logger.info("Retrieving German mobility demand from transport_data model.") + # get transport_data data + transport_data = get_transport_data(db) # get German mobility weighting pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0) # only get German data pop_layout = pop_layout[pop_layout.ct == "DE"].fraction - mobility_demand = pd.DataFrame(pop_layout.values[:, None] * aladin.values, index=pop_layout.index, columns=aladin.index) + mobility_demand = pd.DataFrame(pop_layout.values[:, None] * transport_data.values, index=pop_layout.index, columns=transport_data.index) mobility_demand.to_csv(snakemake.output.mobility_demand) diff --git a/workflow/scripts/modify_industry_demand.py b/workflow/scripts/modify_industry_demand.py index 951d6fb1d..b0a0c94fc 100644 --- a/workflow/scripts/modify_industry_demand.py +++ b/workflow/scripts/modify_industry_demand.py @@ -41,7 +41,7 @@ leitmodell="FORECAST v1.0" year = snakemake.input.industrial_production_per_country_tomorrow.split("_")[-1].split(".")[0] - if (snakemake.config["iiasa_database"]["db_name"] == "ariadne2_intern" + if (snakemake.params.db_name == "ariadne2_intern" and year == "2020"): logger.warning(f"Assuming {leitmodell} uses 2021 as base year instead of 2020.") year = "2021" From dec08aa2cd6d70d0a87c5d286499c47c57735c90 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 28 Jun 2024 14:39:08 +0200 Subject: [PATCH 439/669] fix snakemake error --- config/config.yaml | 2 +- workflow/Snakefile | 3 ++- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index db2e2294b..8d129b24b 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240627wind_limits + prefix: 20240628public_db name: # - CurrentPolicies - KN2045_Bal_v4 diff --git a/workflow/Snakefile b/workflow/Snakefile index c76f1ab29..8cb411a85 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -247,8 +247,9 @@ use rule build_existing_heating_distribution from pypsaeur with: existing_heating=resources("existing_heating.csv"), rule modify_industry_demand: - input: + params: db_name=config_provider("iiasa_database", "db_name"), + input: ariadne=resources("ariadne_database.csv"), industrial_production_per_country_tomorrow=resources("industrial_production_per_country_tomorrow_{planning_horizons}.csv"), output: From 581ec33e15ce9d0b81141cea1da9b123ca823738 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 28 Jun 2024 15:15:57 +0200 Subject: [PATCH 440/669] empty plot for empty data frames --- workflow/scripts/plot_ariadne_variables.py | 16 +++++++++++----- 1 file changed, 11 insertions(+), 5 deletions(-) diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 7deddb87e..00ca55dae 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -17,7 +17,7 @@ def ariadne_subplot( regex=drop_regex, ) # Check that all values have the same Unit - assert df.columns.unique(level="Unit").size == 1 + assert df.columns.unique(level="Unit").size <= 1 # Simplify variable names df.columns = pd.Index( @@ -27,8 +27,13 @@ def ariadne_subplot( ), name=df.columns.names[0], ) - - return df.plot.area(ax=ax, title=title, legend=False, stacked=stacked) + if df.empty: + # Create an empty plot if DataFrame is empty + ax.plot([], []) + ax.set_title("Ooops! Empty DataFrame") + return ax + else: + return df.plot.area(ax=ax, title=title, legend=False, stacked=stacked) @@ -193,8 +198,9 @@ def elec_val_plot(df, savepath): opts="", ll="v1.2", sector_opts="None", - planning_horizons="2050", - run="KN2045_Bal_v4" + planning_horizons="2045", + run="8Gt_Bal_v3", + configfiles="config/config.public.yaml" ) df = pd.read_excel( From 2cc872be47598b69f2a41250b07f5cc214d6f46a Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 28 Jun 2024 16:31:08 +0200 Subject: [PATCH 441/669] Explain new features of pypsa-de --- README.md | 58 ++++++++++++++++++++++++++++++++++++++++++------------- 1 file changed, 45 insertions(+), 13 deletions(-) diff --git a/README.md b/README.md index 5e7a6aaa8..790ecf6b9 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ -# Kopernikus-Projekt Ariadne - Gesamtsystemmodell PyPSA-Eur +# Kopernikus-Projekt Ariadne - Gesamtsystemmodell PyPSA-DE -Dieses Repository enthält das Gesamtsystemmodell für das Kopernikus-Projekt Ariadne, basierend auf der Toolbox PyPSA und dem Datensatz PyPSA-Eur. Das Modell bildet Deutschland mit hoher geographischer Auflösung, mit voller Sektorenkopplung und mit Integration in das europäische Energiesystem ab. +Dieses Repository enthält das Gesamtsystemmodell PyPSA-DE für das Kopernikus-Projekt Ariadne, basierend auf der Toolbox PyPSA und dem Datensatz PyPSA-Eur. Das Modell bildet Deutschland mit hoher geographischer Auflösung, mit voller Sektorenkopplung und mit Integration in das europäische Energiesystem ab. This repository contains the entire scientific project, including data sources and code. The philosophy behind this repository is that no intermediary results are included, but all results are computed from raw data and code. @@ -24,30 +24,43 @@ More information on Git Submodules can be found [here](https://git-scm.com/book/ ## Getting ready -You need [mamba](https://mamba.readthedocs.io/en/latest/) to run the analysis. Using mamba, you can create an environment from within you can run it: +You need conda or [mamba](https://mamba.readthedocs.io/en/latest/) to run the analysis. Using mamba, you can create an environment from within you can run it: mamba env create -f environment.yaml -## Provide login details +## For external users: Use config.public.yaml -The snakemake rule `retrieve_ariadne_database` logs into the IIASA Database via the [`pyam`](https://pyam-iamc.readthedocs.io/en/stable/tutorials/iiasa.html) package. The credentials for logging into this database have to be stored locally on your machine with `ixmp4`. To do this, run +The default workflow configured for this repository assumes access to the internal Ariadne2 database. Users that do not have the required login details can run the analysis based on the data published during the [first phase of the Ariadne project](https://data.ece.iiasa.ac.at/ariadne/). + +This is possible by providing an additional config to the snakemake workflow. For every `snakemake COMMAND` specified in the instructions below, public users may use: + +``` +snakemake --configfile=config/config.public.yaml COMMAND +``` + +If public users wish to edit the default scenario specifications, they should change `scenarios.public.yaml` instead of `scenarios.manual.yaml`. More details on using scenarios are given below. + +## For internal users: Provide login details + +The snakemake rule `retrieve_ariadne_database` logs into the interal Ariadne IIASA Database via the [`pyam`](https://pyam-iamc.readthedocs.io/en/stable/tutorials/iiasa.html) package. The credentials for logging into this database have to be stored locally on your machine with `ixmp4`. To do this activate the project environment and run ``` ixmp4 login ``` -You will be prompted to enter your ``. +You will be prompted to enter your ``. Caveat: These credentials are stored on your machine in plain text. +To switch between public and internal use, the command `ixmp4 logout` may be necessary. + ## Run the analysis -Before running any scenarios, the rule `build_scenarios` must be executed. This will write the file `config/scenarios.automated.yaml` which includes transport shares and ksg goals from the iiasa database as well as the information from the file `config/scenarios.manual.yaml`. +Before running any analysis with scenarios, the rule `build_scenarios` must be executed. This will write the file `config/scenarios.automated.yaml` which includes input data and CO2 targets from the IIASA Ariadne database as well as the information from the manual scenario file. [This file is specified in the default config.yaml via they key `run:scenarios:manual_file` (by default located at `config/scenarios.manual.yaml`)]. snakemake -call build_scenarios -f -Note that the hierarchy of scenario files is the following: `scenarios.automated.yaml` > `config.yaml` > `config.default.yaml` -Changes in the file `scenarios.manual.yaml` are only taken into account if the rule `build_scenarios` is executed. +Note that the hierarchy of scenario files is the following: `scenarios.automated.yaml` > (any `explicitly specified --configfiles`) > `config.yaml `> `config.default.yaml `Changes in the file `scenarios.manual.yaml `are only taken into account if the rule `build_scenarios` is executed. For the first run open config.yaml and set @@ -68,11 +81,30 @@ To generate a PDF of the dependency graph of all steps `build/dag.pdf` run: ## Repo structure * `config`: configurations used in the study -* `cutouts`: very large weather data cutouts supplied by atlite library -* `data`: place for raw data -* `resources`: place for intermediate/processing data for the workflow +* `ariadne-data`: Germany specific data from the Ariadne project +* `workflow`: contains the Snakemake workflow, including the submodule PyPSA-Eur and specific scripts for Germany +* `cutouts`: very large weather data cutouts supplied by atlite library (does not exist initially) +* `data`: place for raw data (does not exist initially) +* `resources`: place for intermediate/processing data for the workflow (does not exist initially) * `results`: will contain all results (does not exist initially) -* `workflow`: contains the Snakemake workflow, including the submodule PyPSA-Eur + +## Differences to PyPSA-EUR + +- Specific cost assumption for Germany: + - Gas, Oil, Coal prices + - electrolysis and heat-pump costs + - Infrastructure costs according to the Netzentwicklungsplan 23 (NEP23) + - option for pessimstic, mean and optimistic cost development +- Transport and Industry demands as well as heating stock imported from the sectoral models in the Ariadne consortium +- More detailed data on CHPs in Germany +- Option for building the German Wasserstoffkernnetz +- The model has been validated against 2020 electricity data for Germany +- National CO2-Targets according to the Klimaschutzgesetz +- Additional constraints that limit maximum capacity of specific technologies +- Import constraints +- Renewable build out according to the Wind-an-Land, Wind-auf-See and Solarstrategie laws +- A comprehensive reporting reporting module that exports Capacity Expansion, Primary/Secondary/Final Energy, CO2 Emissions per Sector, Trade, Investments, ... +- Plotting functionality to compare different scenarios ## License From 72b35a921e2cc71ef5c87827b1d982b4dd7b0b44 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 1 Jul 2024 10:49:10 +0200 Subject: [PATCH 442/669] some clarifications --- README.md | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index 790ecf6b9..4dae07d20 100644 --- a/README.md +++ b/README.md @@ -32,13 +32,13 @@ You need conda or [mamba](https://mamba.readthedocs.io/en/latest/) to run the an The default workflow configured for this repository assumes access to the internal Ariadne2 database. Users that do not have the required login details can run the analysis based on the data published during the [first phase of the Ariadne project](https://data.ece.iiasa.ac.at/ariadne/). -This is possible by providing an additional config to the snakemake workflow. For every `snakemake COMMAND` specified in the instructions below, public users may use: +This is possible by providing an additional config to the snakemake workflow. For every `snakemake COMMAND` specified in the instructions below, public users should use: ``` snakemake --configfile=config/config.public.yaml COMMAND ``` -If public users wish to edit the default scenario specifications, they should change `scenarios.public.yaml` instead of `scenarios.manual.yaml`. More details on using scenarios are given below. +The additional config file specifies the required database, model, and scenario names for Ariadne1. If public users wish to edit the default scenario specifications, they should change `scenarios.public.yaml` instead of `scenarios.manual.yaml`. More details on using scenarios are given below. ## For internal users: Provide login details @@ -52,17 +52,17 @@ You will be prompted to enter your ``. Caveat: These credentials are stored on your machine in plain text. -To switch between public and internal use, the command `ixmp4 logout` may be necessary. +To switch between internal and public use, the command `ixmp4 logout` may be necessary. ## Run the analysis -Before running any analysis with scenarios, the rule `build_scenarios` must be executed. This will write the file `config/scenarios.automated.yaml` which includes input data and CO2 targets from the IIASA Ariadne database as well as the information from the manual scenario file. [This file is specified in the default config.yaml via they key `run:scenarios:manual_file` (by default located at `config/scenarios.manual.yaml`)]. +Before running any analysis with scenarios, the rule `build_scenarios` must be executed. This will create the file `config/scenarios.automated.yaml` which includes input data and CO2 targets from the IIASA Ariadne database as well as the specifications from the manual scenario file. [This file is specified in the default config.yaml via they key `run:scenarios:manual_file` (by default located at `config/scenarios.manual.yaml`)]. snakemake -call build_scenarios -f Note that the hierarchy of scenario files is the following: `scenarios.automated.yaml` > (any `explicitly specified --configfiles`) > `config.yaml `> `config.default.yaml `Changes in the file `scenarios.manual.yaml `are only taken into account if the rule `build_scenarios` is executed. -For the first run open config.yaml and set +For the first run, open config.yaml and set enable: retrieve: true # set to false once initial data is retrieved @@ -80,7 +80,7 @@ To generate a PDF of the dependency graph of all steps `build/dag.pdf` run: ## Repo structure -* `config`: configurations used in the study +* `config`: configuration files * `ariadne-data`: Germany specific data from the Ariadne project * `workflow`: contains the Snakemake workflow, including the submodule PyPSA-Eur and specific scripts for Germany * `cutouts`: very large weather data cutouts supplied by atlite library (does not exist initially) @@ -103,7 +103,7 @@ To generate a PDF of the dependency graph of all steps `build/dag.pdf` run: - Additional constraints that limit maximum capacity of specific technologies - Import constraints - Renewable build out according to the Wind-an-Land, Wind-auf-See and Solarstrategie laws -- A comprehensive reporting reporting module that exports Capacity Expansion, Primary/Secondary/Final Energy, CO2 Emissions per Sector, Trade, Investments, ... +- A comprehensive reporting module that exports Capacity Expansion, Primary/Secondary/Final Energy, CO2 Emissions per Sector, Trade, Investments, ... - Plotting functionality to compare different scenarios ## License From 7f73110c2164d2a058a4d74b327fe78fd5d8df4c Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 1 Jul 2024 11:23:37 +0200 Subject: [PATCH 443/669] heat and storage dict --- workflow/Snakefile | 1 + workflow/scripts/export_ariadne_variables.py | 39 +++++++++++++++----- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 32 insertions(+), 10 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 5da3265b9..806aa4318 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -316,6 +316,7 @@ rule export_ariadne_variables: hours=config_provider("clustering","temporal","resolution_sector"), costs=config_provider("costs"), energy_totals_year=config_provider("energy", "energy_totals_year"), + co2_sequestration_cost=config_provider("sector","co2_sequestration_cost"), input: template=resources("template_ariadne_database.xlsx"), industry_demands=expand( diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 019545fb4..140a042fe 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -233,22 +233,42 @@ def _f(*args, **kwargs): 'urban decentral solar thermal': 'decentral solar thermal', 'waste CHP': 'waste CHP', 'waste CHP CC': 'waste CHP CC', + # Heat capacities + 'DAC': 'direct air capture', + 'Fischer-Tropsch': 'Fischer-Tropsch', + 'H2 Electrolysis': 'electrolysis', + 'H2 Fuel Cell': 'fuel cell', + 'Sabatier': 'methanation', + 'methanolisation': 'methanolisation', + # 'urban central air heat pump': 'central air-sourced heat pump', + # 'urban central coal CHP': 'central coal CHP', + # 'urban central gas CHP': 'central gas CHP', + # 'urban central gas CHP CC': 'central gas CHP', + # 'urban central lignite CHP': 'central coal CHP', + # 'urban central oil CHP': 'central gas CHP', + # 'urban central resistive heater': 'central resistive heater', + # 'urban central solid biomass CHP': 'central solid biomass CHP', + # 'urban central solid biomass CHP CC': 'central solid biomass CHP CC', + 'urban central water tanks charger': 'water tank charger', + 'urban central water tanks discharger': 'water tank discharger', + # 'waste CHP': 'waste CHP', + # 'waste CHP CC': 'waste CHP CC', } storage_costs_dict = { - 'H2': None, - 'Li ion': None, - 'PHS': None, + 'H2': 'hydrogen storage underground', + 'EV battery': None, # 0 i think + 'PHS': None, #'PHS', accounted already as generator?? 'battery': 'battery storage', - 'biogas': None, - 'co2 sequestered': None, - 'co2 stored': None, + 'biogas': None, # not a typical store, 0 i think + 'co2 sequestered': snakemake.params.co2_sequestration_cost, # TODO how to consider the co2_sequestration_lifetime here + 'co2 stored': 'CO2 storage tank', 'gas': 'gas storage', 'home battery': 'home battery storage', - 'hydro': None, + 'hydro': None, # `hydro`, , accounted already as generator?? 'oil': 0.02, 'rural water tanks': 'decentral water tank storage', - 'solid biomass': None, + 'solid biomass': None, # not a store, but a potential, 0 i think 'urban central water tanks': 'central water tank storage', 'urban decentral water tanks': 'decentral water tank storage', } @@ -283,7 +303,8 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): ], capacities_electricity.index ) - for carrier in ["onwind", "solar", "solar-hsat"]: + for carrier in technology_investments.index.intersection( + ["onwind", "solar", "solar-hsat"]): technology_investments[carrier] += \ costs.at["electricity grid connection", "investment"] diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 962e5d41d..11b42eaec 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 962e5d41d999e364dd586543eda4827c5ce8fdcc +Subproject commit 11b42eaec92a119c41815b325ebb4b3d49696286 From 2af4fe6d4dc4ce91ddfd43386de6d7da7f555f98 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 3 Jul 2024 16:46:29 +0200 Subject: [PATCH 444/669] changes to storage_dict --- workflow/scripts/export_ariadne_variables.py | 43 +++++++++++--------- 1 file changed, 24 insertions(+), 19 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 140a042fe..3caf93560 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -236,7 +236,8 @@ def _f(*args, **kwargs): # Heat capacities 'DAC': 'direct air capture', 'Fischer-Tropsch': 'Fischer-Tropsch', - 'H2 Electrolysis': 'electrolysis', + 'H2 Electrolysis': 'electrolysis', + 'H2 Fuel Cell': 'fuel cell', 'Sabatier': 'methanation', 'methanolisation': 'methanolisation', @@ -255,24 +256,6 @@ def _f(*args, **kwargs): # 'waste CHP CC': 'waste CHP CC', } -storage_costs_dict = { - 'H2': 'hydrogen storage underground', - 'EV battery': None, # 0 i think - 'PHS': None, #'PHS', accounted already as generator?? - 'battery': 'battery storage', - 'biogas': None, # not a typical store, 0 i think - 'co2 sequestered': snakemake.params.co2_sequestration_cost, # TODO how to consider the co2_sequestration_lifetime here - 'co2 stored': 'CO2 storage tank', - 'gas': 'gas storage', - 'home battery': 'home battery storage', - 'hydro': None, # `hydro`, , accounted already as generator?? - 'oil': 0.02, - 'rural water tanks': 'decentral water tank storage', - 'solid biomass': None, # not a store, but a potential, 0 i think - 'urban central water tanks': 'central water tank storage', - 'urban decentral water tanks': 'decentral water tank storage', -} - def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): @@ -3259,6 +3242,7 @@ def get_operational_and_capital_costs(year): "battery charger": "Electricity", "battery discharger": "Electricity", "coal": "Electricity", + "Fischer-Tropsch": "Liquids", "gas pipeline": "Gases", "home battery charger": "Electricity", "home battery discharger": "Electricity", @@ -3275,6 +3259,7 @@ def get_operational_and_capital_costs(year): "rural ground heat pump": "Heat", "rural resistive heater": "Heat", "rural solar thermal": "Heat", + "Sabatier": "Gases", "solar": "Electricity", "solar rooftop": "Electricity", "solar-hsat": "Electricity", @@ -3285,6 +3270,8 @@ def get_operational_and_capital_costs(year): "urban central gas CHP CC": "Heat", "urban central lignite CHP": "Heat", "urban central oil CHP": "Heat", + "urban central water tanks charger": "Heat", + "urban central water tanks discharger": "Heat", "urban central resistive heater": "Heat", "urban central solar thermal": "Heat", "urban central solid biomass CHP": "Heat", @@ -3404,6 +3391,24 @@ def get_data( ) + storage_costs_dict = { + 'H2': 'hydrogen storage underground', + 'EV battery': None, # 0 i think + 'PHS': None, #'PHS', accounted already as generator?? + 'battery': 'battery storage', + 'biogas': None, # not a typical store, 0 i think + 'co2 sequestered': snakemake.params.co2_sequestration_cost, # TODO how to consider the co2_sequestration_lifetime here + 'co2 stored': 'CO2 storage tank', + 'gas': 'gas storage', + 'home battery': 'home battery storage', + 'hydro': None, # `hydro`, , accounted already as generator?? + 'oil': 0.02, + 'rural water tanks': 'decentral water tank storage', + 'solid biomass': None, # not a store, but a potential, 0 i think + 'urban central water tanks': 'central water tank storage', + 'urban decentral water tanks': 'decentral water tank storage', + } + config = snakemake.config ariadne_template = pd.read_excel( snakemake.input.template, sheet_name=None) From b41324e3f3c97eae7871289e79579f40fe3e58d4 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 4 Jul 2024 14:36:49 +0200 Subject: [PATCH 445/669] start improving emissions accounting --- workflow/scripts/export_ariadne_variables.py | 41 +++++++++++++------- 1 file changed, 28 insertions(+), 13 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 3caf93560..d46329a4a 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -29,7 +29,13 @@ -def _get_oil_fossil_fraction(n, region, kwargs): +def _get_oil_fossil_fraction(n, region): + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'at_port': True, + 'nice_names': False, + } + if "DE" in region: total_oil_supply = n.statistics.supply( bus_carrier="oil", **kwargs @@ -265,7 +271,6 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): 'nice_names': False, } - var = pd.Series() capacities_electricity = cap_func( @@ -792,7 +797,7 @@ def get_primary_energy(n, region): var = pd.Series() - oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) + oil_fossil_fraction = _get_oil_fossil_fraction(n, region) oil_usage = n.statistics.withdrawal( bus_carrier="oil", @@ -1280,7 +1285,7 @@ def get_secondary_energy(n, region, _industry_demand): ].sum() ) - oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) + oil_fossil_fraction = _get_oil_fossil_fraction(n, region) oil_fuel_usage = n.statistics.withdrawal( @@ -1542,7 +1547,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): # write var var["Final Energy|Non-Energy Use|Gases"] = (non_energy_natural_gas + CH4_for_MeOH + CH4_for_NH3) * MWh2PJ - oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) + oil_fossil_fraction = _get_oil_fossil_fraction(n, region) var["Final Energy|Non-Energy Use|Liquids"] = non_energy_naphtha * MWh2PJ var["Final Energy|Non-Energy Use|Liquids|Petroleum"] = non_energy_naphtha * MWh2PJ * oil_fossil_fraction @@ -1762,7 +1767,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): # var["Final Energy|Residential and Commercial|Hydrogen"] = \ # ! Not implemented - oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) + oil_fossil_fraction = _get_oil_fossil_fraction(n, region) oil_usage = n.statistics.withdrawal( bus_carrier="oil", **kwargs ).filter(like=region).groupby( @@ -1847,7 +1852,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): + energy_totals["total international navigation"] ) - oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) + oil_fossil_fraction = _get_oil_fossil_fraction(n, region) var["Final Energy|Transportation|Liquids"] = ( sum_load(n, "land transport oil", region) @@ -2042,8 +2047,22 @@ def get_emissions(n, region, _energy_totals): co2_emissions = n.statistics.supply( bus_carrier="co2",**kwargs - ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) + ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) + + ## Account for e-fuels + + # At the moment the emissions from urban central oil CHP are not corrected with the oil fossil_fraction. Here we assert that they are neglible + assert co2_emissions.get("urban central oil CHP", 1e-14) < 0.1 + + oil_techs = co2_emissions[co2_emissions.index.str.contains("oil") & ~co2_emissions.index.str.contains("gas")].index + + oil_fossil_fraction = _get_oil_fossil_fraction(n, region) + # Assuming that efuel emissions are generated at the production site + var["Emissions|CO2|Energy|Supply|Liquids"] = \ + co2_emissions.loc[oil_techs].sum() * (1 - oil_fossil_fraction) + # Fossil fuel emissions are generated where they get burned + co2_emissions.loc[oil_techs] *= oil_fossil_fraction CHP_emissions = n.statistics.supply( bus_carrier="co2",**kwargs @@ -2255,10 +2274,6 @@ def get_emissions(n, region, _energy_totals): "waste CHP CC", ]).sum() - # var["Emissions|CO2|Energy|Supply|Liquids"] = \ - # Our only Liquid production is Fischer-Tropsch - # -> no emissions in this category - # var["Emissions|CO2|Energy|Supply|Liquids and Gases"] = \ # var["Emissions|CO2|Energy|Supply|Liquids"] # var["Emissions|CO2|Energy|Supply|Gases"] + \ @@ -2582,7 +2597,7 @@ def get_prices(n, region): nodal_prices_oil = n.buses_t.marginal_price[nodal_flows_oil.columns] # co2 part - oil_fossil_fraction = _get_oil_fossil_fraction(n, region, kwargs) + oil_fossil_fraction = _get_oil_fossil_fraction(n, region) co2_add_oil = oil_fossil_fraction * specific_emisisons["oil"] * co2_price var["Price|Primary Energy|Oil"] = \ From a94ca404a468c09629c7392d330b713ac6e13171 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 4 Jul 2024 14:41:05 +0200 Subject: [PATCH 446/669] consider land use change emissions --- workflow/scripts/build_scenarios.py | 11 ++++++++++- 1 file changed, 10 insertions(+), 1 deletion(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 31f0b3c1d..911bbfbf7 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -87,10 +87,19 @@ def get_co2_budget(df, source): co2 = ( df.loc["Emissions|CO2","Mt CO2/yr"] + - df.loc["Emissions|CO2|Land-Use Change","Mt CO2-equiv/yr"] ) - + try: + kyoto_land_use_change = ( + df.loc["Emissions|Kyoto Gases|Land-Use Change","Mt CO2-equiv/yr"] + ) + except KeyError: # Key not in Ariadne public database + # Guesstimate of difference from Ariadne 2 data + kyoto_land_use_change = df.loc["Emissions|CO2|Land-Use Change","Mt CO2-equiv/yr"] + 4.5 + ghg = ( df.loc["Emissions|Kyoto Gases","Mt CO2-equiv/yr"] + - kyoto_land_use_change ) nonco2 = ghg - co2 From cb050262c5f6eb82c53b916520a44e69de4410a7 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 5 Jul 2024 12:03:28 +0200 Subject: [PATCH 447/669] accounting synfuels as carbon neutral --- workflow/scripts/export_ariadne_variables.py | 169 +++++++++++++++---- 1 file changed, 136 insertions(+), 33 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index d46329a4a..1bb8141d6 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -61,7 +61,12 @@ def _get_oil_fossil_fraction(n, region): return oil_fossil_fraction -def _get_gas_fossil_fraction(n, region, kwargs): +def _get_gas_fossil_fraction(n): + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'at_port': True, + 'nice_names': False, + } total_gas_supply = n.statistics.supply( bus_carrier="gas", **kwargs ).drop("Store").groupby("carrier").sum() @@ -78,7 +83,12 @@ def _get_gas_fossil_fraction(n, region, kwargs): return gas_fossil_fraction -def _get_h2_fossil_fraction(n, region, kwargs): +def _get_h2_fossil_fraction(n): + kwargs = { + 'groupby': n.statistics.groupers.get_name_bus_and_carrier, + 'at_port': True, + 'nice_names': False, + } total_h2_supply = n.statistics.supply( bus_carrier="H2", **kwargs ).drop("Store").groupby("carrier").sum() @@ -1523,7 +1533,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): 'groupby': n.statistics.groupers.get_name_bus_and_carrier, 'nice_names': False, } - h2_fossil_fraction = _get_h2_fossil_fraction(n, region, kwargs) + h2_fossil_fraction = _get_h2_fossil_fraction(n) if config["industry"]["ammonia"]: # MWh/a @@ -1746,7 +1756,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): + decentral_heat_supply_rescom.filter(like="solar thermal").sum() ) # Assuming for solar thermal secondary energy == Final energy - gas_fossil_fraction = _get_gas_fossil_fraction(n, region, kwargs) + gas_fossil_fraction = _get_gas_fossil_fraction(n) gas_usage = n.statistics.withdrawal( bus_carrier="gas", **kwargs @@ -2047,22 +2057,18 @@ def get_emissions(n, region, _energy_totals): co2_emissions = n.statistics.supply( bus_carrier="co2",**kwargs - ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) + ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) - ## Account for e-fuels + co2_negative_emissions = n.statistics.withdrawal( + bus_carrier="co2",**kwargs + ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) - # At the moment the emissions from urban central oil CHP are not corrected with the oil fossil_fraction. Here we assert that they are neglible - assert co2_emissions.get("urban central oil CHP", 1e-14) < 0.1 + var["Emissions|CO2"] = \ + co2_emissions.sum() - co2_negative_emissions.sum() - oil_techs = co2_emissions[co2_emissions.index.str.contains("oil") & ~co2_emissions.index.str.contains("gas")].index - - - oil_fossil_fraction = _get_oil_fossil_fraction(n, region) - # Assuming that efuel emissions are generated at the production site - var["Emissions|CO2|Energy|Supply|Liquids"] = \ - co2_emissions.loc[oil_techs].sum() * (1 - oil_fossil_fraction) - # Fossil fuel emissions are generated where they get burned - co2_emissions.loc[oil_techs] *= oil_fossil_fraction + co2_storage = n.statistics.supply( + bus_carrier ="co2 stored",**kwargs + ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) CHP_emissions = n.statistics.supply( bus_carrier="co2",**kwargs @@ -2073,6 +2079,65 @@ def get_emissions(n, region, _energy_totals): ~CHP_emissions.index.get_level_values( "carrier").str.contains("waste")] + ## Account for carbon neutral fuels (e-fuels, biogas, ...) + + oil_techs = [ + "HVC to air", + "agriculture machinery oil", + "kerosene for aviation", + "land transport oil", + "oil", + "shipping oil", + "waste CHP", + "waste CHP CC", + "urban decentral oil boiler", + "rural oil boiler", + "urban central oil CHP", + ] + + oil_fossil_fraction = _get_oil_fossil_fraction(n, region) + # Assuming that efuel emissions are generated at the production site + var["Emissions|CO2|Energy|Production| From Liquids"] = \ + co2_emissions.loc[ + co2_emissions.index.isin(oil_techs) + ].sum() * (1 - oil_fossil_fraction) + + # Fossil fuel emissions are generated where they get burned + + co2_emissions.loc[ + co2_emissions.index.isin(oil_techs) + ] *= oil_fossil_fraction + + CHP_emissions.loc[ + CHP_emissions.index.get_level_values("carrier").isin(oil_techs) + ] *= oil_fossil_fraction + + gas_techs = [ + "CCGT", + "OCGT", + "SMR", + "SMR CC", + "gas for industry", + "gas for industry CC", + "rural gas boiler", + "urban decentral gas boiler", + "urban central gas CHP", + "urban central gas CHP CC", + ] + + gas_fossil_fraction = _get_gas_fossil_fraction(n) + var["Emissions|CO2|Energy|Production| From Gases"] = \ + co2_emissions.loc[ + co2_emissions.index.isin(gas_techs) + ].sum() * (1 - gas_fossil_fraction) + co2_emissions.loc[ + co2_emissions.index.isin(gas_techs) + ] *= gas_fossil_fraction + CHP_emissions.loc[ + CHP_emissions.index.get_level_values("carrier").isin(gas_techs) + ] *= gas_fossil_fraction + + # TODO Methanol CHP_E_to_H = ( n.links.loc[CHP_emissions.index.get_level_values("name")].efficiency / n.links.loc[CHP_emissions.index.get_level_values("name")].efficiency2 @@ -2097,18 +2162,45 @@ def get_emissions(n, region, _energy_totals): 1 / (negative_CHP_E_to_H + 1) ) - co2_negative_emissions = n.statistics.withdrawal( - bus_carrier="co2",**kwargs - ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) - co2_storage = n.statistics.supply( - bus_carrier ="co2 stored",**kwargs - ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) - var["Carbon Sequestration"] = \ - n.statistics.supply( + fossil_cc = co2_storage.reindex( + [ + "SMR CC", + "gas for industry CC", + "process emissions CC", + "urban central gas CHP CC", + "waste CHP CC" + ]) + + negative_cc = co2_storage.reindex( + [ + "DAC", + "biogas to gas CC", + "solid biomass for industry CC", + "urban central solid biomass CHP CC" + ]) + + assert isclose( + fossil_cc.sum() + negative_cc.sum(), + co2_storage.drop("co2 stored").sum() + ) + # Neglible numerical errors in stored CO2 + assert co2_storage["co2 stored"] < 1e-3 + + total_ccs = n.statistics.supply( bus_carrier="co2 sequestered",**kwargs - ).filter(like=region).groupby("carrier").sum().multiply(t2Mt).sum() + ).filter(like=region).groupby("carrier").sum().multiply(t2Mt).sum() + + + # All captures fossil should be sequestered for e-fuels to be carbon neutral + # We allow for a small margin of error (0.1 Mt CO2) + # If this assert fails repeatedly we will need to add a hard constraint for this + assert total_ccs + 0.1 > fossil_cc.sum() + negative_ccs = total_ccs - fossil_cc.sum() + + var["Carbon Sequestration"] = total_ccs + var["Carbon Sequestration|DACCS"] = \ var["Carbon Sequestration"] * ( @@ -2129,8 +2221,6 @@ def get_emissions(n, region, _energy_totals): ) - var["Emissions|CO2"] = \ - co2_emissions.sum() - co2_negative_emissions.sum() # ! LULUCF should also be subtracted (or added??), we get from REMIND, # TODO how to consider it here? @@ -2144,8 +2234,7 @@ def get_emissions(n, region, _energy_totals): co2_emissions.get("industry methanol", 0) # TODO not sure methanol emissions are right here - # !!! We do not strictly separate fuel combustion emissions from - # process emissions in industry, so some should go to: + var["Emissions|CO2|Energy|Demand|Industry"] = \ co2_emissions.reindex([ "gas for industry", @@ -2281,7 +2370,8 @@ def get_emissions(n, region, _energy_totals): var["Emissions|CO2|Energy|Supply"] = \ var["Emissions|CO2|Energy|Supply|Gases"] + \ var["Emissions|CO2|Energy|Supply|Hydrogen"] + \ - var["Emissions|CO2|Energy|Supply|Electricity and Heat"] + var["Emissions|CO2|Energy|Supply|Electricity and Heat"] # + \ + # var["Emissions|CO2|Energy|Supply|Liquids"] # var["Emissions|CO2|Energy|Supply|Other Sector"] = \ # var["Emissions|CO2|Energy|Supply|Solids"] = \ @@ -2303,6 +2393,17 @@ def get_emissions(n, region, _energy_totals): var["Emissions|Gross Fossil CO2|Energy|Supply|Heat"] + \ var["Emissions|Gross Fossil CO2|Energy|Supply|Hydrogen"] + print("Differences in accounting for CO2 emissions:", + var["Emissions|CO2"] - + ( + var["Emissions|CO2|Energy and Industrial Processes"] + + var["Emissions|CO2|Energy|Demand|Bunkers"] + + var["Emissions|CO2|Supply|Non-Renewable Waste"] + - co2_negative_emissions.get("DAC", 0) + + var["Emissions|CO2|Energy|Production| From Liquids"] + + var["Emissions|CO2|Energy|Production| From Gases"] + ) + ) assert isclose( var["Emissions|CO2"], ( @@ -2310,6 +2411,8 @@ def get_emissions(n, region, _energy_totals): + var["Emissions|CO2|Energy|Demand|Bunkers"] + var["Emissions|CO2|Supply|Non-Renewable Waste"] - co2_negative_emissions.get("DAC", 0) + + var["Emissions|CO2|Energy|Production| From Liquids"] + + var["Emissions|CO2|Energy|Production| From Gases"] ) ) return var @@ -2584,7 +2687,7 @@ def get_prices(n, region): nodal_prices_gas = n.buses_t.marginal_price[nodal_flows_gas.columns] # co2 part - gas_fossil_fraction = _get_gas_fossil_fraction(n, region, kwargs) + gas_fossil_fraction = _get_gas_fossil_fraction(n) co2_add_gas = gas_fossil_fraction * specific_emisisons["gas"] * co2_price @@ -3204,7 +3307,7 @@ def get_net_export_links(n, region, carriers): 'nice_names': False, } var["Trade|Primary Energy|Gas|Volume"] = \ - get_net_export_links(n, region, ["gas pipeline", "gas pipeline new"]) * _get_gas_fossil_fraction(n, region, kwargs) + get_net_export_links(n, region, ["gas pipeline", "gas pipeline new"]) * _get_gas_fossil_fraction(n) # Trade|Primary Energy|Oil|Volume From 5024b64826ff0fe69495670fa045cffc780cc632 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 5 Jul 2024 14:45:35 +0200 Subject: [PATCH 448/669] account negative CHP emissions correctly --- workflow/scripts/export_ariadne_variables.py | 75 ++++++++++++-------- 1 file changed, 45 insertions(+), 30 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 1bb8141d6..356c401e5 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2059,12 +2059,12 @@ def get_emissions(n, region, _energy_totals): bus_carrier="co2",**kwargs ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) - co2_negative_emissions = n.statistics.withdrawal( + co2_atmosphere_withdrawal = n.statistics.withdrawal( bus_carrier="co2",**kwargs ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) var["Emissions|CO2"] = \ - co2_emissions.sum() - co2_negative_emissions.sum() + co2_emissions.sum() - co2_atmosphere_withdrawal.sum() co2_storage = n.statistics.supply( bus_carrier ="co2 stored",**kwargs @@ -2097,7 +2097,7 @@ def get_emissions(n, region, _energy_totals): oil_fossil_fraction = _get_oil_fossil_fraction(n, region) # Assuming that efuel emissions are generated at the production site - var["Emissions|CO2|Energy|Production| From Liquids"] = \ + var["Emissions|CO2|Energy|Production|From Liquids"] = \ co2_emissions.loc[ co2_emissions.index.isin(oil_techs) ].sum() * (1 - oil_fossil_fraction) @@ -2126,7 +2126,7 @@ def get_emissions(n, region, _energy_totals): ] gas_fossil_fraction = _get_gas_fossil_fraction(n) - var["Emissions|CO2|Energy|Production| From Gases"] = \ + var["Emissions|CO2|Energy|Production|From Gases"] = \ co2_emissions.loc[ co2_emissions.index.isin(gas_techs) ].sum() * (1 - gas_fossil_fraction) @@ -2145,24 +2145,6 @@ def get_emissions(n, region, _energy_totals): CHP_E_fraction = CHP_E_to_H * (1 / (CHP_E_to_H + 1)) - negative_CHP_emissions = n.statistics.withdrawal( - bus_carrier="co2",**kwargs - ).filter(like=region).filter(like="CHP").multiply(t2Mt) - - negative_CHP_E_to_H = ( - n.links.loc[ - negative_CHP_emissions.index.get_level_values("name") - ].efficiency - / n.links.loc[ - negative_CHP_emissions.index.get_level_values("name") - ].efficiency2 - ) - - negative_CHP_E_fraction = negative_CHP_E_to_H * ( - 1 / (negative_CHP_E_to_H + 1) - ) - - fossil_cc = co2_storage.reindex( [ @@ -2185,20 +2167,52 @@ def get_emissions(n, region, _energy_totals): fossil_cc.sum() + negative_cc.sum(), co2_storage.drop("co2 stored").sum() ) - # Neglible numerical errors in stored CO2 + # Assert neglible numerical errors in stored CO2 assert co2_storage["co2 stored"] < 1e-3 total_ccs = n.statistics.supply( bus_carrier="co2 sequestered",**kwargs - ).filter(like=region).groupby("carrier").sum().multiply(t2Mt).sum() + ).filter(like=region).groupby( + "carrier" + ).sum().multiply(t2Mt).sum() # All captures fossil should be sequestered for e-fuels to be carbon neutral # We allow for a small margin of error (0.1 Mt CO2) # If this assert fails repeatedly we will need to add a hard constraint for this assert total_ccs + 0.1 > fossil_cc.sum() + negative_ccs = total_ccs - fossil_cc.sum() + co2_negative_emissions = co2_storage.multiply( + negative_ccs / co2_storage.sum() + ).reindex( + co2_atmosphere_withdrawal.index).fillna(0) + + negative_CHP_emissions = n.statistics.withdrawal( + bus_carrier="co2",**kwargs + ).filter(like=region).filter( + like="solid biomass CHP CC" + ).multiply(t2Mt).multiply( # Correcting for actual negative emissions + co2_negative_emissions["urban central solid biomass CHP CC"] + ).divide( + co2_atmosphere_withdrawal["urban central solid biomass CHP CC"] + ) + + negative_CHP_E_to_H = ( + n.links.loc[ + negative_CHP_emissions.index.get_level_values("name") + ].efficiency + / n.links.loc[ + negative_CHP_emissions.index.get_level_values("name") + ].efficiency2 + ) + + negative_CHP_E_fraction = negative_CHP_E_to_H * ( + 1 / (negative_CHP_E_to_H + 1) + ) + + var["Carbon Sequestration"] = total_ccs @@ -2220,8 +2234,6 @@ def get_emissions(n, region, _energy_totals): - var["Carbon Sequestration|BECCS"] ) - - # ! LULUCF should also be subtracted (or added??), we get from REMIND, # TODO how to consider it here? @@ -2400,8 +2412,9 @@ def get_emissions(n, region, _energy_totals): + var["Emissions|CO2|Energy|Demand|Bunkers"] + var["Emissions|CO2|Supply|Non-Renewable Waste"] - co2_negative_emissions.get("DAC", 0) - + var["Emissions|CO2|Energy|Production| From Liquids"] - + var["Emissions|CO2|Energy|Production| From Gases"] + + var["Emissions|CO2|Energy|Production|From Liquids"] + + var["Emissions|CO2|Energy|Production|From Gases"] + - co2_atmosphere_withdrawal.subtract(co2_negative_emissions).sum() ) ) assert isclose( @@ -2411,8 +2424,10 @@ def get_emissions(n, region, _energy_totals): + var["Emissions|CO2|Energy|Demand|Bunkers"] + var["Emissions|CO2|Supply|Non-Renewable Waste"] - co2_negative_emissions.get("DAC", 0) - + var["Emissions|CO2|Energy|Production| From Liquids"] - + var["Emissions|CO2|Energy|Production| From Gases"] + # Correction Terms + + var["Emissions|CO2|Energy|Production|From Liquids"] + + var["Emissions|CO2|Energy|Production|From Gases"] + - co2_atmosphere_withdrawal.subtract(co2_negative_emissions).sum() ) ) return var From db488aa902c471ffd9a25d4372b227a78eb84abc Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 5 Jul 2024 16:55:32 +0200 Subject: [PATCH 449/669] some more keys for investments --- workflow/scripts/export_ariadne_variables.py | 33 ++++++++++++++++++-- 1 file changed, 30 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 356c401e5..f67365131 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -250,8 +250,9 @@ def _f(*args, **kwargs): 'waste CHP': 'waste CHP', 'waste CHP CC': 'waste CHP CC', # Heat capacities + # TODO Check the units of the investments 'DAC': 'direct air capture', - 'Fischer-Tropsch': 'Fischer-Tropsch', + 'Fischer-Tropsch': None, #'Fischer-Tropsch' * "efficiency" , 'H2 Electrolysis': 'electrolysis', 'H2 Fuel Cell': 'fuel cell', @@ -269,7 +270,32 @@ def _f(*args, **kwargs): 'urban central water tanks charger': 'water tank charger', 'urban central water tanks discharger': 'water tank discharger', # 'waste CHP': 'waste CHP', - # 'waste CHP CC': 'waste CHP CC', + # 'waste CHP CC': 'waste CHP CC', + # Decentral Heat capacities + # TODO consider overdim_factor + #'rural air heat pump': None, + 'rural biomass boiler': 'biomass boiler', + 'rural gas boiler': 'decentral gas boiler', + #'rural ground heat pump': None, + 'rural oil boiler': 'decentral oil boiler', + 'rural resistive heater': 'decentral resistive heater', + 'rural water tanks charger': 'water tank charger', + 'rural water tanks discharger': 'water tank discharger', + #'urban decentral air heat pump': None, + 'urban decentral biomass boiler': 'biomass boiler', + 'urban decentral gas boiler': 'decentral gas boiler', + 'urban decentral oil boiler': 'decentral oil boiler', + 'urban decentral resistive heater': 'decentral resistive heater', + 'urban decentral water tanks charger': 'water tank charger', + 'urban decentral water tanks discharger': 'water tank discharger', + # Other capacities + # 'Sabatier': 'methanation',costs.at["methanation", "fixed"] + #* costs.at["methanation", "efficiency"] + 'biogas to gas': None, # TODO biogas + biogas upgrading + 'biogas to gas CC': None, # TODO costs.at["biogas CC", "fixed"] + # + costs.at["biogas upgrading", "fixed"] + # + costs.at["biomass CHP capture", "fixed"] + # * costs.at["biogas CC", "CO2 stored"], } @@ -2138,6 +2164,7 @@ def get_emissions(n, region, _energy_totals): ] *= gas_fossil_fraction # TODO Methanol + CHP_E_to_H = ( n.links.loc[CHP_emissions.index.get_level_values("name")].efficiency / n.links.loc[CHP_emissions.index.get_level_values("name")].efficiency2 @@ -2244,7 +2271,7 @@ def get_emissions(n, region, _energy_totals): "process emissions CC", ]).sum() + \ co2_emissions.get("industry methanol", 0) - # TODO not sure methanol emissions are right here + # process emissions is mainly cement, methanol is used for chemicals var["Emissions|CO2|Energy|Demand|Industry"] = \ From 304b88092da10fc130885e2d9497d2d75d8571e5 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 5 Jul 2024 17:37:27 +0200 Subject: [PATCH 450/669] more keys in sector dict --- config/config.yaml | 4 ++-- workflow/scripts/export_ariadne_variables.py | 10 ++++++++++ 2 files changed, 12 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 7a4e50bbc..9cb313caa 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240603postdiscretize + prefix: 20240705morevariables name: # - CurrentPolicies - KN2045_Bal_v4 @@ -196,7 +196,7 @@ costs: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: - # solar_thermal: false + solar_thermal: false district_heating: potential: 0.4 progress: diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index f67365131..631b6c3ca 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -3416,9 +3416,14 @@ def get_operational_and_capital_costs(year): "onwind": "Electricity", "ror": "Electricity", "rural air heat pump": "Heat", + "rural biomass boiler": "Heat", + "rural gas boiler": "Heat", + "rural oil boiler": "Heat", "rural ground heat pump": "Heat", "rural resistive heater": "Heat", "rural solar thermal": "Heat", + "rural water tanks charger": "Heat", + "rural water tanks discharger": "Heat", "Sabatier": "Gases", "solar": "Electricity", "solar rooftop": "Electricity", @@ -3439,6 +3444,11 @@ def get_operational_and_capital_costs(year): "urban decentral air heat pump": "Heat", "urban decentral resistive heater": "Heat", "urban decentral solar thermal": "Heat", + "urban decentral biomass boiler": "Heat", + "urban decentral gas boiler": "Heat", + "urban decentral oil boiler": "Heat", + "urban decentral water tanks charger": "Heat", + "urban decentral water tanks discharger": "Heat", "waste CHP": "Heat", "waste CHP CC": "Heat", } From 52c24f5be3e856dcb4964249a6bf00220cc7718d Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 5 Jul 2024 17:51:11 +0200 Subject: [PATCH 451/669] fix plotting issue --- workflow/scripts/export_ariadne_variables.py | 2 +- workflow/scripts/plot_ariadne_variables.py | 29 ++++++++++---------- 2 files changed, 16 insertions(+), 15 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 631b6c3ca..c24431668 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2214,7 +2214,7 @@ def get_emissions(n, region, _energy_totals): co2_negative_emissions = co2_storage.multiply( negative_ccs / co2_storage.sum() ).reindex( - co2_atmosphere_withdrawal.index).fillna(0) + co2_atmosphere_withdrawal.index).fillna(0.0) negative_CHP_emissions = n.statistics.withdrawal( bus_carrier="co2",**kwargs diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index f8a36fbe6..e1f8a1212 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -41,7 +41,7 @@ def secondary_energy_plot(ddf, name="Secondary Energy"): def ariadne_subplot( df, ax, title, - select_regex="", drop_regex="", stacked=True, + select_regex="", drop_regex="", stacked=True, unit=None, ): # Check that all values have the same Unit @@ -57,8 +57,8 @@ def ariadne_subplot( df = df.filter( regex=drop_regex, ) - - unit = df.columns.get_level_values("Unit").unique().dropna().item() + if not unit: + unit = df.columns.get_level_values("Unit").unique().dropna().item() df.columns = df.columns.droplevel("Unit") @@ -81,12 +81,12 @@ def side_by_side_plot( ): idx = df.index.union(dfhybrid.index, sort=False) - print(idx) + df = df.reindex(idx) dfhybrid = dfhybrid.reindex(idx) fig, axes = plt.subplots(ncols=2, sharey=True) - ax = ariadne_subplot(df, axes[0], "PyP SA-Eur", **kwargs) + ax = ariadne_subplot(df, axes[0], "PyPSA-Eur", **kwargs) ax2 = ariadne_subplot(dfhybrid, axes[1], "REMIND-EU v1.1", **kwargs) handles, labels = ax.get_legend_handles_labels() @@ -350,15 +350,16 @@ def elec_val_plot(df, savepath): drop_regex="^(?!.*(and)).+" ) - # side_by_side_plot( - # df, - # dfremind, - # "Detailed Emissions in Mt", - # savepath=snakemake.output.co2_emissions, - # select_regex="Emissions\|CO2\|[^|]*$", - # stacked=False, - # #drop_regex="^(?!.*(and)).+" - # ) + side_by_side_plot( + df, + dfremind, + "Detailed Emissions in Mt", + savepath=snakemake.output.co2_emissions, + select_regex="Emissions\|CO2\|[^|]*$", + stacked=False, + #drop_regex="^(?!.*(and)).+", + unit="Mt CO2equiv/yr" + ) within_plot( df, From d860733adac76742f9b7668bf851ff1d4cb9968e Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 8 Jul 2024 16:30:19 +0200 Subject: [PATCH 452/669] more comprehensive reporting of Renewable Gases --- workflow/scripts/export_ariadne_variables.py | 107 +++++++++---------- 1 file changed, 51 insertions(+), 56 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index c24431668..089957953 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -61,7 +61,7 @@ def _get_oil_fossil_fraction(n, region): return oil_fossil_fraction -def _get_gas_fossil_fraction(n): +def _get_gas_fractions(n): kwargs = { 'groupby': n.statistics.groupers.get_name_bus_and_carrier, 'at_port': True, @@ -74,14 +74,14 @@ def _get_gas_fossil_fraction(n): drops = ["gas pipeline", "gas pipeline new"] for d in drops: if d in total_gas_supply.index: - total_gas_supply.drop(d) + total_gas_supply.drop(d, inplace=True) - gas_fossil_fraction = ( - total_gas_supply.get("gas") - / total_gas_supply.sum() - ) - - return gas_fossil_fraction + gas_fractions = pd.Series({ + "Natural Gas": total_gas_supply.get("gas", 0), + "Biomass": total_gas_supply.filter(like="biogas").sum(), + "Efuel": total_gas_supply.get("Sabatier", 0), + }).divide(total_gas_supply.sum()) + return gas_fractions def _get_h2_fossil_fraction(n): kwargs = { @@ -860,23 +860,8 @@ def get_primary_energy(n, region): var["Primary Energy|Oil"] = oil_usage.sum() - regional_gas_supply = n.statistics.supply( - bus_carrier="gas", - **kwargs, - ).filter( - like=region - ).groupby( - ["component", "carrier"] - ).sum().drop([ - "Store", - ("Link", "gas pipeline"), - ("Link", "gas pipeline new"), - ]) + gas_fractions = _get_gas_fractions(n) - gas_fossil_fraction = ( - regional_gas_supply.get("Generator").get("gas") - / regional_gas_supply.sum() - ) # Eventhough biogas gets routed through the EU gas bus, # it should be counted separately as Primary Energy|Biomass gas_usage = n.statistics.withdrawal( @@ -892,10 +877,10 @@ def get_primary_energy(n, region): ("Link", "gas pipeline new"), ]).groupby( "carrier" - ).sum().multiply(gas_fossil_fraction).multiply(MWh2PJ) + ).sum().multiply(gas_fractions["Natural Gas"]).multiply(MWh2PJ) gas_CHP_E_usage, gas_CHP_H_usage = get_CHP_E_and_H_usage( - n, "gas", region, fossil_fraction=gas_fossil_fraction) + n, "gas", region, fossil_fraction=gas_fractions["Natural Gas"]) var["Primary Energy|Gas|Heat"] = \ gas_usage.filter(like="urban central gas boiler").sum() + gas_CHP_H_usage @@ -1123,11 +1108,6 @@ def get_secondary_energy(n, region, _industry_demand): var["Secondary Energy|Electricity|Biomass|w/o CCS"] + var["Secondary Energy|Electricity|Biomass|w/ CCS"] ) - # ! Biogas to gas should go into this category - # How to do that? (trace e.g., biogas to gas -> CCGT) - # If so: Should double counting with |Gas be avoided? - # -> Might use gas_fossil_fraction just like above - var["Secondary Energy|Electricity|Hydro"] = ( electricity_supply.get("hydro") @@ -1583,6 +1563,11 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): # write var var["Final Energy|Non-Energy Use|Gases"] = (non_energy_natural_gas + CH4_for_MeOH + CH4_for_NH3) * MWh2PJ + gas_fractions = _get_gas_fractions(n) + for gas_type in gas_fractions.index: + var[f"Final Energy|Non-Energy Use|Gases|{gas_type}"] = \ + var["Final Energy|Non-Energy Use|Gases"] * gas_fractions[gas_type] + oil_fossil_fraction = _get_oil_fossil_fraction(n, region) var["Final Energy|Non-Energy Use|Liquids"] = non_energy_naphtha * MWh2PJ @@ -1637,10 +1622,22 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): var["Final Energy|Industry|Gases"] = \ industry_demand.get("methane") + + for gas_type in gas_fractions.index: + var[f"Final Energy|Industry|Gases|{gas_type}"] = \ + var["Final Energy|Industry|Gases"] * gas_fractions[gas_type] + # "gas for industry" is now regionally resolved and could be used here # subtract non-energy used gases from total gas demand var["Final Energy|Industry excl Non-Energy Use|Gases"] = \ var["Final Energy|Industry|Gases"] - var["Final Energy|Non-Energy Use|Gases"] + + + for gas_type in gas_fractions.index: + var[f"Final Energy|Industry excl Non-Energy Use|Gases|{gas_type}"] = \ + var[f"Final Energy|Industry excl Non-Energy Use|Gases"] * gas_fractions[gas_type] + + # var["Final Energy|Industry|Power2Heat"] = \ # Q: misleading description @@ -1782,8 +1779,6 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): + decentral_heat_supply_rescom.filter(like="solar thermal").sum() ) # Assuming for solar thermal secondary energy == Final energy - gas_fossil_fraction = _get_gas_fossil_fraction(n) - gas_usage = n.statistics.withdrawal( bus_carrier="gas", **kwargs ).filter(like=region).groupby( @@ -1795,11 +1790,12 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): gas_usage.get("urban decentral gas boiler", 0) + \ gas_usage.get("rural gas boiler", 0) - var["Final Energy|Residential and Commercial|Gases|Natural Gas"] = ( - var["Final Energy|Residential and Commercial|Gases"] - * gas_fossil_fraction - ) - + for gas_type in gas_fractions.index: + var[f"Final Energy|Residential and Commercial|Gases|{gas_type}"] = ( + var["Final Energy|Residential and Commercial|Gases"] + * gas_fractions[gas_type] + ) + # var["Final Energy|Residential and Commercial|Hydrogen"] = \ # ! Not implemented @@ -1983,9 +1979,6 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): + var["Final Energy|Industry excl Non-Energy Use|Electricity"] ) - - # TODO The problem with all of these is that FEEDSTOCKS have to be excluded!!! - var["Final Energy|Solids"] = ( # var["Final Energy|Agriculture|Solids"] var["Final Energy|Residential and Commercial|Solids"] @@ -2004,9 +1997,11 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, year): var["Final Energy|Residential and Commercial|Gases"] + var["Final Energy|Industry excl Non-Energy Use|Gases"] ) - - var["Final Energy|Gases|Natural Gas"] = \ - var["Final Energy|Gases"] * gas_fossil_fraction + for gas_type in gas_fractions.index: + var[f"Final Energy|Gases|{gas_type}"] = ( + var["Final Energy|Gases"] + * gas_fractions[gas_type] + ) var["Final Energy|Liquids"] = ( @@ -2151,17 +2146,18 @@ def get_emissions(n, region, _energy_totals): "urban central gas CHP CC", ] - gas_fossil_fraction = _get_gas_fossil_fraction(n) + gas_fractions = _get_gas_fractions(n) + var["Emissions|CO2|Energy|Production|From Gases"] = \ co2_emissions.loc[ co2_emissions.index.isin(gas_techs) - ].sum() * (1 - gas_fossil_fraction) + ].sum() * (1 - gas_fractions["Natural Gas"]) co2_emissions.loc[ co2_emissions.index.isin(gas_techs) - ] *= gas_fossil_fraction + ] *= gas_fractions["Natural Gas"] CHP_emissions.loc[ CHP_emissions.index.get_level_values("carrier").isin(gas_techs) - ] *= gas_fossil_fraction + ] *= gas_fractions["Natural Gas"] # TODO Methanol @@ -2729,8 +2725,8 @@ def get_prices(n, region): nodal_prices_gas = n.buses_t.marginal_price[nodal_flows_gas.columns] # co2 part - gas_fossil_fraction = _get_gas_fossil_fraction(n) - co2_add_gas = gas_fossil_fraction * specific_emisisons["gas"] * co2_price + gas_fractions = _get_gas_fractions(n) + co2_add_gas = gas_fractions["Natural Gas"] * specific_emisisons["gas"] * co2_price var["Price|Primary Energy|Gas"] = \ @@ -3344,12 +3340,11 @@ def get_net_export_links(n, region, carriers): # Trade|Secondary Energy|Gases|Hydrogen|Volume # Trade|Primary Energy|Coal|Volume # Trade|Primary Energy|Gas|Volume - kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, - } + + + gas_fractions = _get_gas_fractions(n) var["Trade|Primary Energy|Gas|Volume"] = \ - get_net_export_links(n, region, ["gas pipeline", "gas pipeline new"]) * _get_gas_fossil_fraction(n) + get_net_export_links(n, region, ["gas pipeline", "gas pipeline new"]) * gas_fractions["Natural Gas"] # Trade|Primary Energy|Oil|Volume @@ -3503,7 +3498,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, costs, region, year): ), get_policy(n), get_trade(n, region), - get_operational_and_capital_costs(year), + #get_operational_and_capital_costs(year), ]) return var From 59b97b070adc67254de2e6b1f98ceb247a3df5d3 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 8 Jul 2024 17:03:59 +0200 Subject: [PATCH 453/669] replace assert by warning --- config/config.yaml | 2 +- workflow/scripts/export_ariadne_variables.py | 4 +++- 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 4f03ae78a..82eee428c 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240705morevariables + prefix: 20240708morevariables name: # - CurrentPolicies - KN2045_Bal_v4 diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index a790012d0..1ab26b58e 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2132,7 +2132,9 @@ def get_emissions(n, region, _energy_totals): # All captures fossil should be sequestered for e-fuels to be carbon neutral # We allow for a small margin of error (0.1 Mt CO2) # If this assert fails repeatedly we will need to add a hard constraint for this - assert total_ccs + 0.1 > fossil_cc.sum() + if not total_ccs + 0.1 > fossil_cc.sum(): + print("WARNING! Not all CO2 capture from fossil sources is captured!!!") + print("total_ccs - fossil_cc: ", total_ccs - fossil_cc.sum()) negative_ccs = total_ccs - fossil_cc.sum() From 97721a73d01cec181fb670718121fb4313d64173 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 9 Jul 2024 13:47:23 +0200 Subject: [PATCH 454/669] change V2G and offwind assumptions --- config/config.yaml | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 82eee428c..24ca673fb 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -226,9 +226,9 @@ first_technology_occurrence: renewable: offwind-ac: - capacity_per_sqkm: 10 + capacity_per_sqkm: 6 offwind-dc: - capacity_per_sqkm: 10 + capacity_per_sqkm: 6 costs: horizon: "mean" # "optimist", "pessimist" or "mean" @@ -236,6 +236,7 @@ costs: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: solar_thermal: false + v2g: false district_heating: potential: 0.4 progress: From 96f754ca87d32c85bcd487abe9f792a54006cd5d Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 9 Jul 2024 15:37:55 +0200 Subject: [PATCH 455/669] taking config[industry][DRI_fraction] from FORECAST to sort out coal use for steel in 2045 --- workflow/scripts/build_scenarios.py | 22 ++++++++++++++++++++++ 1 file changed, 22 insertions(+) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 8172340ba..8e856f04c 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -37,6 +37,24 @@ def get_primary_steel_share(df, planning_horizons): return primary_steel_share.set_index(pd.Index(["Primary_Steel_Share"])) +def get_DRI_share(df, planning_horizons): + # Get share of DRI steel production + model = "FORECAST v1.0" + total_steel = df.loc[model, "Production|Steel|Primary"] + # Assuming that only hydrogen DRI steel is sustainable and DRI using natural gas is phased out + DRI_steel = df.loc[model, "Production|Steel|Primary|Direct Reduction Hydrogen"] + + DRI_steel_share = DRI_steel / total_steel + + if model == "FORECAST v1.0" and planning_horizons[0] == 2020: + logger.warning("FORECAST v1.0 does not have data for 2020. Using 2021 data for DRI fraction instead.") + DRI_steel_share[2020] = DRI_steel_share[2021] / total_steel[2021] + + DRI_steel_share = DRI_steel_share[planning_horizons] + + return DRI_steel_share.set_index(pd.Index(["DRI_Steel_Share"])) + + def get_co2_budget(df, source): # relative to the DE emissions in 1990 *including bunkers*; also # account for non-CO2 GHG and allow extra room for international @@ -128,10 +146,14 @@ def write_to_scenario_yaml( st_primary_fraction = get_primary_steel_share(df.loc[:, reference_scenario, :], planning_horizons) + dri_fraction = get_DRI_share(df.loc[:, reference_scenario, :], planning_horizons) + config[scenario]["industry"] = {} config[scenario]["industry"]["St_primary_fraction"] = {} + config[scenario]["industry"]["DRI_fraction"] = {} for year in st_primary_fraction.columns: config[scenario]["industry"]["St_primary_fraction"][year] = round(st_primary_fraction.loc["Primary_Steel_Share", year].item(), 4) + config[scenario]["industry"]["DRI_fraction"][year] = round(dri_fraction.loc["DRI_Steel_Share", year].item(), 4) config[scenario]["co2_budget_national"] = {} for year, target in co2_budget_fractions.items(): config[scenario]["co2_budget_national"][year] = {} From 0bb044bd05aee619a8450a5f9c62121a6eddeeeb Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 9 Jul 2024 17:07:40 +0200 Subject: [PATCH 456/669] change key for ariadne 1 DB --- workflow/scripts/build_scenarios.py | 14 +++++++++----- 1 file changed, 9 insertions(+), 5 deletions(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 911bbfbf7..fa101ea59 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -85,17 +85,21 @@ def get_co2_budget(df, source): # # No Kyoto Gas emissions for Bunkers recorded in Ariadne DB # ) + try: + co2_land_use_change = df.loc["Emissions|CO2|Land-Use Change","Mt CO2-equiv/yr"] + except KeyError: # Key not in Ariadne public database + co2_land_use_change = df.loc["Emissions|CO2|AFOLU","Mt CO2/yr"] + co2 = ( df.loc["Emissions|CO2","Mt CO2/yr"] - - df.loc["Emissions|CO2|Land-Use Change","Mt CO2-equiv/yr"] + - co2_land_use_change ) + try: - kyoto_land_use_change = ( - df.loc["Emissions|Kyoto Gases|Land-Use Change","Mt CO2-equiv/yr"] - ) + kyoto_land_use_change = df.loc["Emissions|Kyoto Gases|Land-Use Change","Mt CO2-equiv/yr"] except KeyError: # Key not in Ariadne public database # Guesstimate of difference from Ariadne 2 data - kyoto_land_use_change = df.loc["Emissions|CO2|Land-Use Change","Mt CO2-equiv/yr"] + 4.5 + kyoto_land_use_change = co2_land_use_change + 4.5 ghg = ( df.loc["Emissions|Kyoto Gases","Mt CO2-equiv/yr"] From f73317f88e35da4a677bc68d10034036e8835bef Mon Sep 17 00:00:00 2001 From: toniseibold Date: Tue, 9 Jul 2024 17:17:21 +0200 Subject: [PATCH 457/669] reading steam_fractions from FORECAST Final Energy excl Non-Energy Use --- workflow/scripts/build_scenarios.py | 26 ++++++++++++++++++++++++++ 1 file changed, 26 insertions(+) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 8e856f04c..5cc895242 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -55,6 +55,22 @@ def get_DRI_share(df, planning_horizons): return DRI_steel_share.set_index(pd.Index(["DRI_Steel_Share"])) +def get_steam_share(df): + # Get share of steam production from FORECAST v1.0 + model = "FORECAST v1.0" + + biomass = df.loc[model, "Final Energy|Industry excl Non-Energy Use|Solids|Biomass"][2045] + hydrogen = df.loc[model, "Final Energy|Industry excl Non-Energy Use|Hydrogen"][2045] + electricity = df.loc[model, "Final Energy|Industry excl Non-Energy Use|Electricity"][2045] + total = biomass + hydrogen + electricity + + biomass_fraction = biomass / total + hydrogen_fraction = hydrogen / total + electricity_fraction = electricity / total + + return biomass_fraction.iloc[0], hydrogen_fraction.iloc[0], electricity_fraction.iloc[0] + + def get_co2_budget(df, source): # relative to the DE emissions in 1990 *including bunkers*; also # account for non-CO2 GHG and allow extra room for international @@ -154,6 +170,16 @@ def write_to_scenario_yaml( for year in st_primary_fraction.columns: config[scenario]["industry"]["St_primary_fraction"][year] = round(st_primary_fraction.loc["Primary_Steel_Share", year].item(), 4) config[scenario]["industry"]["DRI_fraction"][year] = round(dri_fraction.loc["DRI_Steel_Share", year].item(), 4) + + biomass_share, hydrogen_share, electricity_share = get_steam_share(df.loc[:, reference_scenario, :]) + + config[scenario]["industry"]["steam_biomass_fraction"] = {} + config[scenario]["industry"]["steam_hydrogen_fraction"] = {} + config[scenario]["industry"]["steam_electricity_fraction"] = {} + config[scenario]["industry"]["steam_biomass_fraction"] = float(round(biomass_share, 4)) + config[scenario]["industry"]["steam_hydrogen_fraction"] = float(round(hydrogen_share, 4)) + config[scenario]["industry"]["steam_electricity_fraction"] = float(round(electricity_share, 4)) + config[scenario]["co2_budget_national"] = {} for year, target in co2_budget_fractions.items(): config[scenario]["co2_budget_national"][year] = {} From 7ae96126d4cf48149b3e7bd01de3c8a884becee7 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 10 Jul 2024 09:16:20 +0200 Subject: [PATCH 458/669] exclude industry_sector_ratios.csv from shared resources --- config/config.yaml | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 24ca673fb..8f3dc508c 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240708morevariables + prefix: industry_steam_fractions name: # - CurrentPolicies - KN2045_Bal_v4 @@ -23,6 +23,8 @@ run: - existing_heating.csv # specify files which should not be shared between scenarios - costs - retrieve_cost # This is necessary to save retrieve_cost_data_{year}.log in the correct folder + - industry_sector_ratios + - build_industry_sector_ratios # This is necessary to save build_industry_sector_ratios_data.log in the correct folder disable_progressbar: true debug_co2_limit: false debug_h2deriv_limit: false @@ -344,6 +346,9 @@ industry: 2050: 0.20 waste_to_energy: true waste_to_energy_cc: true + steam_biomass_fraction: 0.4 + steam_hydrogen_fraction: 0.3 + steam_electricity_fraction: 0.3 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving From 446d44d487a0ae76fdb82d947dc7738ca7d04087 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 10 Jul 2024 09:28:25 +0200 Subject: [PATCH 459/669] remove steam_fraction config from config.yaml --- config/config.yaml | 4 ---- 1 file changed, 4 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 8f3dc508c..72fadf19e 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -346,10 +346,6 @@ industry: 2050: 0.20 waste_to_energy: true waste_to_energy_cc: true - steam_biomass_fraction: 0.4 - steam_hydrogen_fraction: 0.3 - steam_electricity_fraction: 0.3 - # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#solving solving: From 93cf951eba9b8d3fa72283ddb3cc8f63e01fc7c2 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 10 Jul 2024 10:17:07 +0200 Subject: [PATCH 460/669] update submodule --- config/config.yaml | 2 +- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 24ca673fb..fcfc6e772 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240708morevariables + prefix: 20240710limitwasteheat name: # - CurrentPolicies - KN2045_Bal_v4 diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 11b42eaec..a595308a6 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 11b42eaec92a119c41815b325ebb4b3d49696286 +Subproject commit a595308a624844431241e7af8eb776b5bc5cdcba From a51d0753efb44748536ddc0770fecd626f24f7f8 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 10 Jul 2024 13:45:56 +0200 Subject: [PATCH 461/669] PyPSA-Ariadne specific steam fractions independent from FORECAST --- config/scenarios.manual.yaml | 41 ++++++++++++++++++++++++++++- workflow/scripts/build_scenarios.py | 25 ------------------ 2 files changed, 40 insertions(+), 26 deletions(-) diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index caffad948..6482a7a64 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -100,6 +100,11 @@ CurrentPolicies: 2040: 0 2045: 0 + industry: + steam_biomass_fraction: 0.4 + steam_hydrogen_fraction: 0.3 + steam_electricity_fraction: 0.3 + KN2045_Bal_v4: @@ -164,6 +169,11 @@ KN2045_Bal_v4: 2040: 0 2045: 0 + industry: + steam_biomass_fraction: 0.4 + steam_hydrogen_fraction: 0.3 + steam_electricity_fraction: 0.3 + KN2045_Elec_v4: # Fokus auf dem Hochlauf von Technologien zur direkten Elektrifizierung der Sektoren # Strom als präferierter Energieträger in der Endenergie, andere Energieträger ergänzend, wo nötig (Wasserstoff, synthetische Kraftstoffe) @@ -224,6 +234,11 @@ KN2045_Elec_v4: 2040: 0 2045: 0 + industry: + steam_biomass_fraction: 0.4 + steam_hydrogen_fraction: 0.1 + steam_electricity_fraction: 0.5 + KN2045_H2_v4: # Fokus stärker auf dem Hochlauf von Technologien zur indirekten Elektrifizierung der Sektoren # Verstärkter Einsatz von Wasserstoff und synthetischen Kraftstoffen - erneuerbar erzeugt und auch importiert @@ -287,6 +302,10 @@ KN2045_H2_v4: 2040: 0 2045: 200 + industry: + steam_biomass_fraction: 0.4 + steam_hydrogen_fraction: 0.5 + steam_electricity_fraction: 0.1 KN2045plus_EasyRide: # Endenergienachfrage ist geringer im Vergleich zu Szenarien 1-3 @@ -349,6 +368,11 @@ KN2045plus_EasyRide: 2040: 0 2045: 0 + industry: + steam_biomass_fraction: 0.4 + steam_hydrogen_fraction: 0.3 + steam_electricity_fraction: 0.3 + KN2045plus_LowDemand: # Im Vergleich zu Easy Ride eher knappe EE Erzeugung @@ -408,6 +432,11 @@ KN2045plus_LowDemand: 2040: 0 2045: 0 + industry: + steam_biomass_fraction: 0.4 + steam_hydrogen_fraction: 0.3 + steam_electricity_fraction: 0.3 + KN2045minus_WorstCase: # Nachfrage nach Endenergie ist höher als in den Szenarien 1-3 # schlechtere Akzeptanz in der Bevölkerung, Verzögerungen im Infrastrukturausbau, @@ -499,6 +528,11 @@ KN2045minus_WorstCase: 2040: 161.25 2045: 161.25 + industry: + steam_biomass_fraction: 0.4 + steam_hydrogen_fraction: 0.3 + steam_electricity_fraction: 0.3 + KN2045minus_SupplyFocus: # Nachfrage genau so hoch wie in Szenario WorstCase # Ausbau EE und EE Importe jetzt aber auskömmlich @@ -587,4 +621,9 @@ KN2045minus_SupplyFocus: 2035: 309 2040: 400 # PV strategy 2045: 400 - # What about the EEG2023 "Strommengenpfad"? \ No newline at end of file + # What about the EEG2023 "Strommengenpfad"? + + industry: + steam_biomass_fraction: 0.4 + steam_hydrogen_fraction: 0.3 + steam_electricity_fraction: 0.3 \ No newline at end of file diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 5cc895242..dfc39aa76 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -55,22 +55,6 @@ def get_DRI_share(df, planning_horizons): return DRI_steel_share.set_index(pd.Index(["DRI_Steel_Share"])) -def get_steam_share(df): - # Get share of steam production from FORECAST v1.0 - model = "FORECAST v1.0" - - biomass = df.loc[model, "Final Energy|Industry excl Non-Energy Use|Solids|Biomass"][2045] - hydrogen = df.loc[model, "Final Energy|Industry excl Non-Energy Use|Hydrogen"][2045] - electricity = df.loc[model, "Final Energy|Industry excl Non-Energy Use|Electricity"][2045] - total = biomass + hydrogen + electricity - - biomass_fraction = biomass / total - hydrogen_fraction = hydrogen / total - electricity_fraction = electricity / total - - return biomass_fraction.iloc[0], hydrogen_fraction.iloc[0], electricity_fraction.iloc[0] - - def get_co2_budget(df, source): # relative to the DE emissions in 1990 *including bunkers*; also # account for non-CO2 GHG and allow extra room for international @@ -171,15 +155,6 @@ def write_to_scenario_yaml( config[scenario]["industry"]["St_primary_fraction"][year] = round(st_primary_fraction.loc["Primary_Steel_Share", year].item(), 4) config[scenario]["industry"]["DRI_fraction"][year] = round(dri_fraction.loc["DRI_Steel_Share", year].item(), 4) - biomass_share, hydrogen_share, electricity_share = get_steam_share(df.loc[:, reference_scenario, :]) - - config[scenario]["industry"]["steam_biomass_fraction"] = {} - config[scenario]["industry"]["steam_hydrogen_fraction"] = {} - config[scenario]["industry"]["steam_electricity_fraction"] = {} - config[scenario]["industry"]["steam_biomass_fraction"] = float(round(biomass_share, 4)) - config[scenario]["industry"]["steam_hydrogen_fraction"] = float(round(hydrogen_share, 4)) - config[scenario]["industry"]["steam_electricity_fraction"] = float(round(electricity_share, 4)) - config[scenario]["co2_budget_national"] = {} for year, target in co2_budget_fractions.items(): config[scenario]["co2_budget_national"][year] = {} From 905275b1de517428d9f227fc08c8837e1d22f0eb Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 10 Jul 2024 13:57:51 +0200 Subject: [PATCH 462/669] bug fix not initializing industry since it's already in the scenarios.manual.yaml file --- workflow/scripts/build_scenarios.py | 1 - 1 file changed, 1 deletion(-) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index dfc39aa76..63748f1e7 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -148,7 +148,6 @@ def write_to_scenario_yaml( dri_fraction = get_DRI_share(df.loc[:, reference_scenario, :], planning_horizons) - config[scenario]["industry"] = {} config[scenario]["industry"]["St_primary_fraction"] = {} config[scenario]["industry"]["DRI_fraction"] = {} for year in st_primary_fraction.columns: From 7febe6e2d4a3b91840ef4275273ec6bf631092b6 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 12 Jul 2024 11:51:14 +0200 Subject: [PATCH 463/669] improve numerical stability --- workflow/scripts/export_ariadne_variables.py | 14 +++++++++----- 1 file changed, 9 insertions(+), 5 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 1ab26b58e..0fec34687 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2120,14 +2120,14 @@ def get_emissions(n, region, _energy_totals): co2_storage.drop("co2 stored").sum() ) # Assert neglible numerical errors in stored CO2 - assert co2_storage["co2 stored"] < 1e-3 + assert co2_storage["co2 stored"] < 0.1 total_ccs = n.statistics.supply( bus_carrier="co2 sequestered",**kwargs ).filter(like=region).groupby( "carrier" ).sum().multiply(t2Mt).sum() - + # TODO should we account for e-fuels here??? # All captures fossil should be sequestered for e-fuels to be carbon neutral # We allow for a small margin of error (0.1 Mt CO2) @@ -2143,14 +2143,18 @@ def get_emissions(n, region, _energy_totals): ).reindex( co2_atmosphere_withdrawal.index).fillna(0.0) + biomass_CHP_correction_factor = min( + 1, # Can not be > 1, taking minimum to avoid numerical errors + co2_negative_emissions["urban central solid biomass CHP CC"] + / co2_atmosphere_withdrawal["urban central solid biomass CHP CC"], + ) + negative_CHP_emissions = n.statistics.withdrawal( bus_carrier="co2",**kwargs ).filter(like=region).filter( like="solid biomass CHP CC" ).multiply(t2Mt).multiply( # Correcting for actual negative emissions - co2_negative_emissions["urban central solid biomass CHP CC"] - ).divide( - co2_atmosphere_withdrawal["urban central solid biomass CHP CC"] + biomass_CHP_correction_factor ) negative_CHP_E_to_H = ( From 5db9f6f10b307204bc75314598ac335e382277ed Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 12 Jul 2024 12:10:01 +0200 Subject: [PATCH 464/669] improve numerical stability --- workflow/scripts/export_ariadne_variables.py | 23 +++++++------------- 1 file changed, 8 insertions(+), 15 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 0fec34687..9e371c4ff 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2363,31 +2363,24 @@ def get_emissions(n, region, _energy_totals): var["Emissions|Gross Fossil CO2|Energy|Supply|Heat"] + \ var["Emissions|Gross Fossil CO2|Energy|Supply|Hydrogen"] - print("Differences in accounting for CO2 emissions:", - var["Emissions|CO2"] - - ( - var["Emissions|CO2|Energy and Industrial Processes"] - + var["Emissions|CO2|Energy|Demand|Bunkers"] - + var["Emissions|CO2|Supply|Non-Renewable Waste"] - - co2_negative_emissions.get("DAC", 0) - + var["Emissions|CO2|Energy|Production|From Liquids"] - + var["Emissions|CO2|Energy|Production|From Gases"] - - co2_atmosphere_withdrawal.subtract(co2_negative_emissions).sum() - ) - ) - assert isclose( - var["Emissions|CO2"], + + emission_difference = var["Emissions|CO2"] - \ ( var["Emissions|CO2|Energy and Industrial Processes"] + var["Emissions|CO2|Energy|Demand|Bunkers"] + var["Emissions|CO2|Supply|Non-Renewable Waste"] - co2_negative_emissions.get("DAC", 0) - # Correction Terms + var["Emissions|CO2|Energy|Production|From Liquids"] + var["Emissions|CO2|Energy|Production|From Gases"] - co2_atmosphere_withdrawal.subtract(co2_negative_emissions).sum() ) + print( + "Differences in accounting for CO2 emissions:", + emission_difference, ) + + assert emission_difference < 1e-2 # Improve numerical stability + return var # functions for prices From a099f37ffac9b6ba7de99ce05cf894735850a571 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 12 Jul 2024 12:25:28 +0200 Subject: [PATCH 465/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index a595308a6..aa29f3c00 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit a595308a624844431241e7af8eb776b5bc5cdcba +Subproject commit aa29f3c005b5b1de217f29ec45874bfe58055619 From dfbe97e61f381623408dec8b43af67691cde5d72 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 12 Jul 2024 12:37:43 +0200 Subject: [PATCH 466/669] exclude the "co2 sequestered" store from accounting --- workflow/scripts/export_ariadne_variables.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 9e371c4ff..f5f20a5ce 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2124,7 +2124,7 @@ def get_emissions(n, region, _energy_totals): total_ccs = n.statistics.supply( bus_carrier="co2 sequestered",**kwargs - ).filter(like=region).groupby( + ).filter(like=region).drop("Store").groupby( "carrier" ).sum().multiply(t2Mt).sum() # TODO should we account for e-fuels here??? From cbab80dcbb5ef37d4e1451af21aea9c180308b29 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 12 Jul 2024 12:44:33 +0200 Subject: [PATCH 467/669] get "link" dont drop "store" to avoid errors --- workflow/scripts/export_ariadne_variables.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index f5f20a5ce..c19fbb53a 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2124,7 +2124,7 @@ def get_emissions(n, region, _energy_totals): total_ccs = n.statistics.supply( bus_carrier="co2 sequestered",**kwargs - ).filter(like=region).drop("Store").groupby( + ).filter(like=region).get("Link").groupby( "carrier" ).sum().multiply(t2Mt).sum() # TODO should we account for e-fuels here??? From bc33283b576b9df051ceeef081c529daa72dcb5d Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 15 Jul 2024 09:44:32 +0200 Subject: [PATCH 468/669] minor improvements for exports --- config/config.yaml | 2 +- workflow/scripts/export_ariadne_variables.py | 29 ++++++++++++-------- 2 files changed, 18 insertions(+), 13 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 640782c1d..e507ded30 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240712industrysteam + prefix: 20240710limitwasteheat name: # - CurrentPolicies - KN2045_Bal_v4 diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index c19fbb53a..4044e8e2e 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -2244,6 +2244,11 @@ def get_emissions(n, region, _energy_totals): * (1 - international_navigation_fraction) ) ) + + var["Emissions|CO2|Energy|Demand|Transportation|Domestic Aviation"] = ( + co2_emissions.get("kerosene for aviation") + * (1 - international_aviation_fraction) + ) var["Emissions|CO2|Energy|Demand|Bunkers|Aviation"] = ( co2_emissions.get("kerosene for aviation") @@ -3268,33 +3273,33 @@ def get_export_import_links(n, region, carriers): var["Trade|Secondary Energy|Electricity|Volume"] = \ ((exporting_p_ac - importing_p_ac) + (exports_dc - imports_dc)) * MWh2PJ - var["Trade|Secondary Energy|Electricity|Volume|Imports"] = \ + var["Trade|Secondary Energy|Electricity|Gross Import|Volume"] = \ (importing_p_ac + imports_dc) * MWh2PJ - var["Trade|Secondary Energy|Electricity|Volume|Exports"] = \ - (exporting_p_ac + exports_dc) * MWh2PJ + # var["Trade|Secondary Energy|Electricity|Volume|Exports"] = \ + # (exporting_p_ac + exports_dc) * MWh2PJ # Trade|Secondary Energy|Hydrogen|Volume h2_carriers = ["H2 pipeline", "H2 pipeline (Kernnetz)", "H2 pipeline retrofitted"] exports_h2, imports_h2 = get_export_import_links(n, region, h2_carriers) var["Trade|Secondary Energy|Hydrogen|Volume"] = \ (exports_h2 - imports_h2) * MWh2PJ - var["Trade|Secondary Energy|Hydrogen|Volume|Imports"] = \ + var["Trade|Secondary Energy|Hydrogen|Gross Import|Volume"] = \ imports_h2 * MWh2PJ - var["Trade|Secondary Energy|Hydrogen|Volume|Exports"] = \ - exports_h2 * MWh2PJ + # var["Trade|Secondary Energy|Hydrogen|Volume|Exports"] = \ + # exports_h2 * MWh2PJ # Trade|Secondary Energy|Liquids|Hydrogen|Volume exports_oil_renew, imports_oil_renew = get_export_import_links(n, region, ["renewable oil"]) var["Trade|Secondary Energy|Liquids|Hydrogen|Volume"] = \ (exports_oil_renew - imports_oil_renew) * MWh2PJ - var["Trade|Secondary Energy|Liquids|Hydrogen|Volume|Imports"] = \ + var["Trade|Secondary Energy|Liquids|Hydrogen|Gross Import|Volume"] = \ imports_oil_renew * MWh2PJ - var["Trade|Secondary Energy|Liquids|Hydrogen|Volume|Exports"] = \ - exports_oil_renew * MWh2PJ + # var["Trade|Secondary Energy|Liquids|Hydrogen|Volume|Exports"] = \ + # exports_oil_renew * MWh2PJ # Trade|Secondary Energy|Gases|Hydrogen|Volume - # TODO add methanol trade + # TODO add methanol trade, renewable gas trade # Trade|Primary Energy|Coal|Volume # Trade|Primary Energy|Gas|Volume @@ -3319,7 +3324,7 @@ def get_production(region, year): # read in the industrial production data years = [int(re.search(r'(\d{4})-modified\.csv', filename).group(1)) for filename in snakemake.input.industrial_production_per_country_tomorrow] index = next((idx for idx, y in enumerate(years) if y == year), None) - production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow[index], index_col=0) # kton/a + production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow[index], index_col=0).div(1e3) # kton/a -> Mton/a var["Production|Non-Metallic Minerals|Cement"] = production.loc[region, "Cement"] var["Production|Steel"] = production.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]].sum() @@ -3446,7 +3451,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, sector_ratios, industry_p #get_capacity_additions_simple(n,region), #get_installed_capacities(n,region), get_capacity_additions(n, region), - get_investments(n, costs, region), + #get_investments(n, costs, region), #get_capacity_additions_nstat(n, region), get_production(region, year), get_primary_energy(n, region), From 05ea328f1816e49461e344de2dee89e0445b5a0a Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 15 Jul 2024 15:33:23 +0200 Subject: [PATCH 469/669] checkout corresponding branch in pypsa-eur --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index aa29f3c00..a5cbcd699 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit aa29f3c005b5b1de217f29ec45874bfe58055619 +Subproject commit a5cbcd699be70559de8b140cc13dc85f42135a25 From 58353d2253589532b304f5f7820285349bc0dce7 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 17 Jul 2024 15:35:58 +0200 Subject: [PATCH 470/669] add config prefix --- config/config.yaml | 2 +- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 141e165c6..89656eb2f 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240710limitwasteheat + prefix: 20240715investments name: # - CurrentPolicies - KN2045_Bal_v4 diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index a5cbcd699..41bc26826 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit a5cbcd699be70559de8b140cc13dc85f42135a25 +Subproject commit 41bc26826ce202e64666bd0ac859732d9d917fbd From 4d6f5c0ef9d0e4a2daba97dc971b1b15516eefe3 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 17 Jul 2024 15:38:48 +0200 Subject: [PATCH 471/669] correct year for renewable estimation --- config/config.yaml | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 141e165c6..f360b42ff 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -246,7 +246,7 @@ sector: 2020: 0.0 2025: 0.15 2030: 0.3 - 2036: 0.45 + 2035: 0.45 2040: 0.6 2045: 0.8 2050: 1.0 @@ -408,6 +408,8 @@ electricity: powerplants_filter: (DateOut >= 2019 or DateOut != DateOut) and not (Country == "DE" and Set == "CHP") custom_powerplants: True custom_file: resources/german_chp.csv + estimate_renewable_capacities: + year: 2019 pypsa_eur: Bus: From 4ef47dae2f737a7c2efa345d00303e070e28154b Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 18 Jul 2024 14:12:29 +0200 Subject: [PATCH 472/669] limit offshore expansion in 2030 --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index f360b42ff..d4127d96d 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -132,7 +132,7 @@ limits_capacity_max: DE: 2020: 7.8 2025: 8 - 2030: 70 + 2030: 30 2035: 70 2040: 70 2045: 70 From 5805e4e462849d2a7393e511ebfc814879fe9765 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 22 Jul 2024 12:02:30 +0200 Subject: [PATCH 473/669] new cutout from Fabian --- config/config.yaml | 25 ++++++++++++++++++++++++- 1 file changed, 24 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index d4127d96d..a5e13e547 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240710limitwasteheat + prefix: 20240722newcutout name: # - CurrentPolicies - KN2045_Bal_v4 @@ -83,6 +83,29 @@ existing_capacities: # Germany plus 12 "Stromnachbarn" countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'PL', 'SE'] +atlite: + default_cutout: europe-2019-sarah3-era5-compressed + cutouts: + europe-2019-sarah3-era5-compressed: + module: [sarah, era5] # in priority order + x: [-12., 42.] + y: [33., 72] + dx: 0.3 + dy: 0.3 + time: ['2019', '2019'] +renewable: + onwind: + cutout: europe-2019-sarah3-era5-compressed + offwind-ac: + cutout: europe-2019-sarah3-era5-compressed + offwind-dc: + cutout: europe-2019-sarah3-era5-compressed + offwind-float: + cutout: europe-2019-sarah3-era5-compressed + solar: + cutout: europe-2019-sarah3-era5-compressed + hydro: + cutout: europe-2019-sarah3-era5-compressed # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: retrieve: false # set to false once initial data is retrieved From 506ef1e0253f9856393d6f416fd060c60460af5e Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 22 Jul 2024 12:03:12 +0200 Subject: [PATCH 474/669] additional keys --- config/config.yaml | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/config/config.yaml b/config/config.yaml index a5e13e547..c0891d895 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -104,8 +104,15 @@ renewable: cutout: europe-2019-sarah3-era5-compressed solar: cutout: europe-2019-sarah3-era5-compressed + solar-hsat: + cutout: europe-2019-sarah3-era5-compressed hydro: cutout: europe-2019-sarah3-era5-compressed + +lines: + dynamic_line_rating: + cutout: europe-2019-sarah3-era5-compressed + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: retrieve: false # set to false once initial data is retrieved From 2738d71a6a14cd6713f164b77035bfc0337ffb8c Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 23 Jul 2024 13:12:24 +0200 Subject: [PATCH 475/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index aa29f3c00..16bf5afb0 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit aa29f3c005b5b1de217f29ec45874bfe58055619 +Subproject commit 16bf5afb01350051cbfbfffc19198ccbf5940ab8 From 5e2bb1c0df0f53269ac82ff73f6b7a3b0314ac42 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 23 Jul 2024 17:48:58 +0200 Subject: [PATCH 476/669] use the modded n.statistics to get investments --- workflow/scripts/export_ariadne_variables.py | 85 ++++++++++---------- workflow/scripts/modify_prenetwork.py | 17 ++++ workflow/submodules/pypsa-eur | 2 +- 3 files changed, 61 insertions(+), 43 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 4044e8e2e..6fbd7257b 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -188,10 +188,12 @@ def _f(**kwargs): def get_investments(n, costs, region): - def _f(**kwargs): - return n.statistics.optimal_capacity(**kwargs).sub( - n.statistics.installed_capacity(**kwargs), fill_value=0) - return _get_capacities(n, region, _f, cap_string="Investment|", costs=costs) + return _get_capacities( + n, + region, + n.statistics.expanded_investments, + cap_string="Investment|", + costs=costs) def get_capacity_additions_nstat(n, region): @@ -316,33 +318,31 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): # transmission capacities ["AC", "DC", "electricity distribution grid"], errors="ignore", - ) + ).multiply(MW2GW) - if cap_string.startswith("Investment"): - technology_investments = pd.Series( - [ - 0 if costs_dict.get(key) is None else - costs.at[costs_dict.get(key), "investment"] - for key in capacities_electricity.index - ], - capacities_electricity.index - ) - for carrier in technology_investments.index.intersection( - ["onwind", "solar", "solar-hsat"]): - technology_investments[carrier] += \ - costs.at["electricity grid connection", "investment"] + # if cap_string.startswith("Investment"): + # technology_investments = pd.Series( + # [ + # 0 if costs_dict.get(key) is None else + # costs.at[costs_dict.get(key), "investment"] + # for key in capacities_electricity.index + # ], + # capacities_electricity.index + # ) + # for carrier in technology_investments.index.intersection( + # ["onwind", "solar", "solar-hsat"]): + # technology_investments[carrier] += \ + # costs.at["electricity grid connection", "investment"] - for carrier in ["offwind-ac", "offwind-dc", "offwind-float"]: - technology_investments[carrier] = 0.0 # TODO add grid connection cost - # apply update_wind_solar_costs(n, costs) - - capacities_electricity = \ - capacities_electricity.div(5).multiply(technology_investments) - else: - capacities_electricity = \ - capacities_electricity.multiply(MW2GW) + # for carrier in ["offwind-ac", "offwind-dc", "offwind-float"]: + # technology_investments[carrier] = 0.0 # TODO add grid connection cost + # # apply update_wind_solar_costs(n, costs) - + # capacities_electricity = \ + # capacities_electricity.div(5).multiply(technology_investments) + # else: + # capacities_electricity = \ + # capacities_electricity.multiply(MW2GW) capacities_biomass = capacities_electricity.filter(like="biomass") @@ -515,11 +515,15 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): cap_string + "Electricity|Storage Converter|Vehicles", ]].sum() - - storage_capacities = cap_func( - storage=True, - **kwargs, - ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) + if cap_string.startswith("Investment"): + storage_capacities = cap_func( + **kwargs, + ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) + else: + storage_capacities = cap_func( + storage=True, + **kwargs, + ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) # var[cap_string + "Electricity|Storage Reservoir|CAES"] = # ! Not implemented @@ -644,11 +648,6 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): var[cap_string + "Heat|Storage Converter"] = \ capacities_central_heat.filter(like="water tanks discharger").sum() - storage_capacities = cap_func( - storage=True, - **kwargs, - ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) - var[cap_string + "Heat|Storage Reservoir"] = \ storage_capacities.filter(like="water tanks").sum() @@ -727,10 +726,6 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): # ]).sum(), # if technology not build, reindex returns NaN # ) - storage_capacities = cap_func( - storage=True, - **kwargs, - ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) var[cap_string + "Hydrogen|Reservoir"] = \ storage_capacities.get("H2", 0) @@ -796,6 +791,8 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): print("Warning: carrier `methanol` not found in network.links.carrier! Assuming 0 capacities.") var[cap_string + "Methanol"] = 0 + if cap_string.startswith("Investment"): + var = var.div(MW2GW).mul(1e-9).div(5).round(3) # in bn € / year return var def get_CHP_E_and_H_usage(n, bus_carrier, region, fossil_fraction=1): @@ -3039,6 +3036,10 @@ def get_grid_investments(n, costs, region, dg_cost_factor=1.0, length_factor=1.0 # TODO Discretization units should be read from config var = pd.Series() + offwind = n.generators.filter(like="offwind",axis=0).filter(like="DE", axis=0) + offwind_connection_investment = ( + (offwind.p_nom_opt - offwind.p_nom) + * offwind.connection_investment).sum() * 1e-9 / 5 # capacities_electricity = n.statistics.expanded_capacity( # bus_carrier=["AC", "low voltage"], # **kwargs, diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index c3f21c6d0..c97e8634c 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -185,6 +185,7 @@ def add_wasserstoff_kernnetz(n, wkn, costs): build_year=wkn_new.build_year.values, length=wkn_new.length.values, capital_cost=costs.at["H2 (g) pipeline", "fixed"] * wkn_new.length.values, + investment=costs.at["H2 (g) pipeline", "investment"] * wkn_new.length.values, carrier="H2 pipeline (Kernnetz)", lifetime=costs.at["H2 (g) pipeline", "lifetime"], ) @@ -343,6 +344,9 @@ def transmission_costs_from_modified_cost_data(n, costs, transmission, length_fa n.lines["capital_cost"] = ( n.lines["length"] * length_factor * costs.at["HVAC overhead", "capital_cost"] ) + n.lines["investment"] = ( + n.lines["length"] * length_factor * costs.at["HVAC overhead", "investment"] + ) if n.links.empty: return @@ -370,7 +374,20 @@ def transmission_costs_from_modified_cost_data(n, costs, transmission, length_fa ) + costs.at["HVDC inverter pair", "capital_cost"] ) + + investment = ( + n.links.loc[dc_b, "length"] + * length_factor + * ( + (1.0 - n.links.loc[dc_b, "underwater_fraction"]) + * costs.at[links_costs, "investment"] + + n.links.loc[dc_b, "underwater_fraction"] + * costs.at["HVDC submarine", "investment"] + ) + + costs.at["HVDC inverter pair", "investment"] + ) n.links.loc[dc_b, "capital_cost"] = costs + n.links.loc[dc_b, "investment"] = investment def must_run_biomass(n, p_min_pu, regions): """ diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 41bc26826..5b1a10866 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 41bc26826ce202e64666bd0ac859732d9d917fbd +Subproject commit 5b1a10866bc57b10e61581d3b283b7564406ebf3 From 10823ab64b64081aa3f14df40a8ae5c315b22f60 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 24 Jul 2024 16:19:14 +0200 Subject: [PATCH 477/669] add offwind transmission investment --- workflow/scripts/export_ariadne_variables.py | 53 ++++++-------------- 1 file changed, 15 insertions(+), 38 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 6fbd7257b..47744dc12 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -192,7 +192,7 @@ def get_investments(n, costs, region): n, region, n.statistics.expanded_investments, - cap_string="Investment|", + cap_string="Investment|Energy Supply|", costs=costs) @@ -3039,38 +3039,9 @@ def get_grid_investments(n, costs, region, dg_cost_factor=1.0, length_factor=1.0 offwind = n.generators.filter(like="offwind",axis=0).filter(like="DE", axis=0) offwind_connection_investment = ( (offwind.p_nom_opt - offwind.p_nom) - * offwind.connection_investment).sum() * 1e-9 / 5 - # capacities_electricity = n.statistics.expanded_capacity( - # bus_carrier=["AC", "low voltage"], - # **kwargs, - # ).filter(like=region).groupby("carrier").sum() # in bn - # - # var["Investment"] = - # var["Investment|Energy Supply"] = \ - #var["Investment|Energy Supply|Electricity"] = \ - # capex_electricity.sum() - #var["Investment|Energy Supply|Electricity|Coal"] = \ - # capex_electricity.reindex(["coal", "lignite"]).sum() - # var["Investment|Energy Supply|Electricity|Coal|w/ CCS"] = \ - # var["Investment|Energy Supply|Electricity|Coal|w/o CCS"] = \ - # var["Investment|Energy Supply|Electricity|Gas"] = \ - # var["Investment|Energy Supply|Electricity|Gas|w/ CCS"] = \ - # var["Investment|Energy Supply|Electricity|Gas|w/o CCS"] = \ - # var["Investment|Energy Supply|Electricity|Oil"] = \ - # var["Investment|Energy Supply|Electricity|Oil|w/ CCS"] = \ - # var["Investment|Energy Supply|Electricity|Oil|w/o CCS"] = \ - # var["Investment|Energy Supply|Electricity|Non-fossil"] = \ - # var["Investment|Energy Supply|Electricity|Biomass"] = \ - # var["Investment|Energy Supply|Electricity|Biomass|w/ CCS"] = \ - # var["Investment|Energy Supply|Electricity|Biomass|w/o CCS"] = \ - # var["Investment|Energy Supply|Electricity|Nuclear"] = \ - # var["Investment|Energy Supply|Electricity|Non-Biomass Renewables"] = \ - # var["Investment|Energy Supply|Electricity|Hydro"] = - # var["Investment|Energy Supply|Electricity|Solar"] = - # var["Investment|Energy Supply|Electricity|Wind"] = \ - # var["Investment|Energy Supply|Electricity|Geothermal"] = \ - # var["Investment|Energy Supply|Electricity|Ocean"] = - # var["Investment|Energy Supply|Electricity|Other"] = + * offwind.connection_investment) * 1e-9 + offwind_connection_ac = offwind_connection_investment.filter(like="ac") + offwind_connection_dc = offwind_connection_investment.filter(regex="dc|float") dc_links = n.links[ (n.links.carrier=="DC") & @@ -3104,10 +3075,9 @@ def get_grid_investments(n, costs, region, dg_cost_factor=1.0, length_factor=1.0 ) ac_investments = ac_lines.length * length_factor * ac_expansion * costs.at["HVAC overhead", "investment"] var["Investment|Energy Supply|Electricity|Transmission|AC"] = \ - ac_investments.sum() / 5 + (ac_investments.sum() + offwind_connection_ac.sum()) / 5 var["Investment|Energy Supply|Electricity|Transmission|DC"] = \ - dc_investments.sum() / 5 - + (dc_investments.sum() + offwind_connection_dc.sum()) / 5 var["Investment|Energy Supply|Electricity|Transmission"] = \ var["Investment|Energy Supply|Electricity|Transmission|AC"] + \ var["Investment|Energy Supply|Electricity|Transmission|DC"] @@ -3347,7 +3317,7 @@ def get_operational_and_capital_costs(year): brings it into the database format. ''' var = pd.Series() - ind = snakemake.params.planning_horizons.index(year) + ind = planning_horizons.index(year) costs = prepare_costs( snakemake.input.costs[ind], snakemake.params.costs, @@ -3544,6 +3514,7 @@ def get_data( } config = snakemake.config + planning_horizons = snakemake.params.planning_horizons ariadne_template = pd.read_excel( snakemake.input.template, sheet_name=None) var2unit = ariadne_template["variable_definitions"].set_index("Variable")["Unit"] @@ -3611,7 +3582,7 @@ def get_data( } yearly_dfs = [] - for i, year in enumerate(snakemake.params.planning_horizons): + for i, year in enumerate(planning_horizons): print("Getting data for year {year}...".format(year=year)) yearly_dfs.append(get_data( networks[i], @@ -3634,6 +3605,12 @@ def get_data( yearly_dfs ) + print("Assigning mean investments of year and year + 5 to year.") + investment_rows = df.loc[df["Variable"].str.contains("Investment")] + df.loc[investment_rows.index, planning_horizons] = \ + investment_rows[planning_horizons].add( + investment_rows[planning_horizons].shift(-1,axis=1)).div(2) + df["Region"] = df["Region"].str.replace("DE", "DEU") df["Model"] = "PyPSA-Eur v0.10" From 5c99468ed959db36718104de02870e43e854be75 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 24 Jul 2024 16:49:44 +0200 Subject: [PATCH 478/669] minor fixes --- workflow/scripts/modify_prenetwork.py | 4 ++-- workflow/scripts/plot_ariadne_variables.py | 12 +++--------- 2 files changed, 5 insertions(+), 11 deletions(-) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index c97e8634c..6fb5a8b65 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -363,7 +363,7 @@ def transmission_costs_from_modified_cost_data(n, costs, transmission, length_fa elif transmission == "underground": links_costs = "HVDC submarine" - costs = ( + capital_cost = ( n.links.loc[dc_b, "length"] * length_factor * ( @@ -386,7 +386,7 @@ def transmission_costs_from_modified_cost_data(n, costs, transmission, length_fa ) + costs.at["HVDC inverter pair", "investment"] ) - n.links.loc[dc_b, "capital_cost"] = costs + n.links.loc[dc_b, "capital_cost"] = capital_cost n.links.loc[dc_b, "investment"] = investment def must_run_biomass(n, p_min_pu, regions): diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 9abdbcd63..1d18548bd 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -43,10 +43,6 @@ def ariadne_subplot( df, ax, title, select_regex="", drop_regex="", stacked=True, unit=None, ): - # Check that all values have the same Unit - - - df = df.T.copy() if select_regex: @@ -57,10 +53,8 @@ def ariadne_subplot( df = df.filter( regex=drop_regex, ) - + # Check that all values have the same Unit - assert df.columns.unique(level="Unit").size <= 1 - if not unit: unit = df.columns.get_level_values("Unit").unique().dropna().item() @@ -252,7 +246,7 @@ def elec_val_plot(df, savepath): ll="v1.2", sector_opts="None", planning_horizons="2045", - run="8Gt_Bal_v3", + run="KN2045_Bal_v4", configfiles="config/config.public.yaml" ) @@ -382,7 +376,7 @@ def elec_val_plot(df, savepath): select_regex="Emissions\|CO2\|[^|]*$", stacked=False, #drop_regex="^(?!.*(and)).+", - unit="Mt CO2equiv/yr" + unit="Mt CO2-equiv/yr" ) within_plot( From b50b4413b7112cec05a88e3abfe08f540a899346 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 24 Jul 2024 17:30:25 +0200 Subject: [PATCH 479/669] add endpoints to investment averages --- workflow/scripts/export_ariadne_variables.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 47744dc12..09bdea907 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -3607,9 +3607,12 @@ def get_data( print("Assigning mean investments of year and year + 5 to year.") investment_rows = df.loc[df["Variable"].str.contains("Investment")] - df.loc[investment_rows.index, planning_horizons] = \ - investment_rows[planning_horizons].add( + average_investments = investment_rows[planning_horizons].add( investment_rows[planning_horizons].shift(-1,axis=1)).div(2) + average_investments[planning_horizons[0]] += investment_rows[planning_horizons[0]].div(2) + average_investments[planning_horizons[-1]] += investment_rows[planning_horizons[-1]].div(2).fillna(0) + df.loc[investment_rows.index, planning_horizons] = average_investments + df["Region"] = df["Region"].str.replace("DE", "DEU") df["Model"] = "PyPSA-Eur v0.10" From ce826c3ccf4a724d50aba2442ae9a5cf0e519783 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 24 Jul 2024 17:30:37 +0200 Subject: [PATCH 480/669] adapt to pypsa upstream changes --- workflow/scripts/export_ariadne_variables.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 09bdea907..81fb88846 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -188,10 +188,12 @@ def _f(**kwargs): def get_investments(n, costs, region): + def _f(**kwargs): + return n.statistics.expanded_capex(**kwargs, cost_attribute="investment") return _get_capacities( n, region, - n.statistics.expanded_investments, + _f, cap_string="Investment|Energy Supply|", costs=costs) @@ -3422,7 +3424,7 @@ def get_ariadne_var(n, industry_demand, energy_totals, sector_ratios, industry_p #get_capacity_additions_simple(n,region), #get_installed_capacities(n,region), get_capacity_additions(n, region), - #get_investments(n, costs, region), + get_investments(n, costs, region), #get_capacity_additions_nstat(n, region), get_production(region, year), get_primary_energy(n, region), From 8452fafb13e0ec5c5d10cd783c5e6b7c61a34d87 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 24 Jul 2024 17:34:28 +0200 Subject: [PATCH 481/669] minor fix --- workflow/scripts/export_ariadne_variables.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 81fb88846..393c8ea42 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -3610,9 +3610,9 @@ def get_data( print("Assigning mean investments of year and year + 5 to year.") investment_rows = df.loc[df["Variable"].str.contains("Investment")] average_investments = investment_rows[planning_horizons].add( - investment_rows[planning_horizons].shift(-1,axis=1)).div(2) + investment_rows[planning_horizons].shift(-1,axis=1)).div(2).fillna(0) average_investments[planning_horizons[0]] += investment_rows[planning_horizons[0]].div(2) - average_investments[planning_horizons[-1]] += investment_rows[planning_horizons[-1]].div(2).fillna(0) + average_investments[planning_horizons[-1]] += investment_rows[planning_horizons[-1]].div(2) df.loc[investment_rows.index, planning_horizons] = average_investments From 3136f71484fe390dcd8061ebf2552734505f594d Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 24 Jul 2024 17:40:08 +0200 Subject: [PATCH 482/669] explicitly report offwind investments --- workflow/scripts/export_ariadne_variables.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 393c8ea42..a587e0c81 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -3044,7 +3044,8 @@ def get_grid_investments(n, costs, region, dg_cost_factor=1.0, length_factor=1.0 * offwind.connection_investment) * 1e-9 offwind_connection_ac = offwind_connection_investment.filter(like="ac") offwind_connection_dc = offwind_connection_investment.filter(regex="dc|float") - + var["Investment|Energy Supply|Electricity|Transmission|Offwind-AC"] = offwind_connection_ac.sum() / 5 + var["Investment|Energy Supply|Electricity|Transmission|Offwind-DC"] = offwind_connection_dc.sum() / 5 dc_links = n.links[ (n.links.carrier=="DC") & (n.links.bus0 + n.links.bus1).str.contains(region) & From 463b8995efd9efc45bc2d3cfad41dfa51316f853 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 25 Jul 2024 12:03:53 +0200 Subject: [PATCH 483/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 5b1a10866..6312578b5 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 5b1a10866bc57b10e61581d3b283b7564406ebf3 +Subproject commit 6312578b513fcc2bec1799720aceb85532e50858 From 1e0bff9183931b74d89bec3a9fe553fa46a4faba Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 25 Jul 2024 12:05:33 +0200 Subject: [PATCH 484/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index aa29f3c00..2ccb5806d 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit aa29f3c005b5b1de217f29ec45874bfe58055619 +Subproject commit 2ccb5806d71a001161978472ed61f6007f42c6e5 From 59333db0059a7ac4a72aa8814c649774528bf5de Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 25 Jul 2024 12:10:59 +0200 Subject: [PATCH 485/669] reduce DH buildout potential, especially for CurPol and WorstCase --- config/config.yaml | 2 +- config/scenarios.manual.yaml | 8 ++++++++ 2 files changed, 9 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index d4127d96d..59dc896aa 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -241,7 +241,7 @@ sector: solar_thermal: false v2g: false district_heating: - potential: 0.4 + potential: 0.3 progress: 2020: 0.0 2025: 0.15 diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 6482a7a64..9f4b7be11 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -105,6 +105,10 @@ CurrentPolicies: steam_hydrogen_fraction: 0.3 steam_electricity_fraction: 0.3 + sector: + district_heating: + potential: 0.1 + KN2045_Bal_v4: @@ -533,6 +537,10 @@ KN2045minus_WorstCase: steam_hydrogen_fraction: 0.3 steam_electricity_fraction: 0.3 + sector: + district_heating: + potential: 0.1 + KN2045minus_SupplyFocus: # Nachfrage genau so hoch wie in Szenario WorstCase # Ausbau EE und EE Importe jetzt aber auskömmlich From d8f0d651d115f5ef70820d27234bde2d0fc13a14 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 26 Jul 2024 11:44:52 +0200 Subject: [PATCH 486/669] changes to update submodule to master --- environment.yaml | 2 +- workflow/scripts/plot_ariadne_variables.py | 20 ++++++++++---------- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 12 insertions(+), 12 deletions(-) diff --git a/environment.yaml b/environment.yaml index bb2d78049..d36913130 100644 --- a/environment.yaml +++ b/environment.yaml @@ -25,7 +25,7 @@ dependencies: - powerplantmatching>=0.5.11 - numpy - pandas>=2.1 -- geopandas>=0.11.0 +- geopandas>=1.0 - xarray>=2023.11.0 - rioxarray - netcdf4 diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index 9abdbcd63..665b93898 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -59,8 +59,6 @@ def ariadne_subplot( ) # Check that all values have the same Unit - assert df.columns.unique(level="Unit").size <= 1 - if not unit: unit = df.columns.get_level_values("Unit").unique().dropna().item() @@ -252,8 +250,8 @@ def elec_val_plot(df, savepath): ll="v1.2", sector_opts="None", planning_horizons="2045", - run="8Gt_Bal_v3", - configfiles="config/config.public.yaml" + run="KN2045_Bal_v4", + #configfiles="config/config.public.yaml" ) df = pd.read_excel( @@ -291,11 +289,7 @@ def elec_val_plot(df, savepath): select_regex="Primary Energy\|[^|]*\|[^|]*$", drop_regex="^(?!.*(CCS|Price|Volume)).+" ) - if df.loc["Final Energy|Industry excl Non-Energy Use|Hydrogen", "2025"].item() < 0: - val = df.loc["Final Energy|Industry excl Non-Energy Use|Hydrogen", "2025"] - df.loc["Final Energy|Industry excl Non-Energy Use|Hydrogen", "2025"] = 0 - df.loc["Final Energy|Hydrogen", "2025"] = 0 - print("WARNING! NEGATIVE HYDROGEN DEMAND IN INDUSTRY IN 2025! ", val) + side_by_side_plot( df, dfremind, @@ -317,6 +311,12 @@ def elec_val_plot(df, savepath): drop_regex= "^(?!.*(Fossil|Renewables|Losses|Price|Volume)).+" ) + if df.loc["Final Energy|Industry excl Non-Energy Use|Hydrogen", "2020"].item() < 0: + val = df.loc["Final Energy|Industry excl Non-Energy Use|Hydrogen", "2020"] + df.loc["Final Energy|Industry excl Non-Energy Use|Hydrogen", "2020"] = 0 + df.loc["Final Energy|Hydrogen", "2020"] = 0 + print("WARNING! NEGATIVE HYDROGEN DEMAND IN INDUSTRY IN 2020! ", val) + side_by_side_plot( df, dfremind, @@ -382,7 +382,7 @@ def elec_val_plot(df, savepath): select_regex="Emissions\|CO2\|[^|]*$", stacked=False, #drop_regex="^(?!.*(and)).+", - unit="Mt CO2equiv/yr" + unit="Mt CO2-equiv/yr" ) within_plot( diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 2ccb5806d..7df224a3d 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 2ccb5806d71a001161978472ed61f6007f42c6e5 +Subproject commit 7df224a3dc614f5edd099c235e17eabfd58f8e86 From 42d1ca1a87bb6ff974464538ec9cc17755640452 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 29 Jul 2024 11:32:39 +0200 Subject: [PATCH 487/669] update to upstream changes --- workflow/Snakefile | 2 +- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 7e12cf5eb..2e64acad7 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -413,7 +413,7 @@ rule plot_ariadne_variables: rule ariadne_all: input: - expand(RESULTS + "graphs/costs.pdf", run=config_provider("run", "name")), + expand(RESULTS + "graphs/costs.svg", run=config_provider("run", "name")), expand(RESULTS + "ariadne/capacity_detailed.png", run=config_provider("run", "name")), exported_variables=expand(RESULTS + "ariadne/exported_variables_full.xlsx", run=config_provider("run", "name")), script: diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 7df224a3d..b482efb9f 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 7df224a3dc614f5edd099c235e17eabfd58f8e86 +Subproject commit b482efb9f1be999a29956b0a80c39457699a6a00 From ec3fa2db4d40204af72febfe9851659ec7d1c7c8 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 29 Jul 2024 15:32:02 +0200 Subject: [PATCH 488/669] adapt to pypsa changes --- workflow/scripts/export_ariadne_variables.py | 125 ++++++++++--------- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 65 insertions(+), 62 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index a587e0c81..da0cd4e40 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -39,20 +39,20 @@ def _get_oil_fossil_fraction(n, region): if "DE" in region: total_oil_supply = n.statistics.supply( bus_carrier="oil", **kwargs - ).groupby("name").sum().get([ + ).groupby("name").sum().reindex([ "DE oil", "DE renewable oil -> DE oil", "EU renewable oil -> DE oil", - ]) + ]).dropna() # If links are not used they are dropped here else: total_oil_supply = n.statistics.supply( bus_carrier="oil", **kwargs - ).groupby("name").sum().get([ + ).groupby("name").sum().reindex([ "EU oil", "DE renewable oil -> EU oil", "EU renewable oil -> EU oil", - ]) + ]).dropna() oil_fossil_fraction = ( total_oil_supply[~total_oil_supply.index.str.contains("renewable")].sum() @@ -1168,18 +1168,19 @@ def get_secondary_energy(n, region, _industry_demand): ) ).multiply(MWh2PJ).sum() - var["Secondary Energy|Electricity|Transmission Losses"] = \ - n.statistics.withdrawal( - bus_carrier=["AC", "low voltage"], **kwargs - ).filter(like=region).groupby(["carrier"]).sum().get( - ["AC", "DC", "electricity distribution grid"] - ).subtract( - n.statistics.supply( - bus_carrier=["AC", "low voltage"], **kwargs - ).filter(like=region).groupby(["carrier"]).sum().get( - ["AC", "DC", "electricity distribution grid"] - ) - ).multiply(MWh2PJ).sum() + # TODO Compute transmission losses via links_t + # var["Secondary Energy|Electricity|Transmission Losses"] = \ + # n.statistics.withdrawal( + # bus_carrier=["AC", "low voltage"], **kwargs + # ).filter(like=region).groupby(["carrier"]).sum().get( + # ["AC", "DC", "electricity distribution grid"] + # ).subtract( + # n.statistics.supply( + # bus_carrier=["AC", "low voltage"], **kwargs + # ).filter(like=region).groupby(["carrier"]).sum().get( + # ["AC", "DC", "electricity distribution grid"] + # ) + # ).multiply(MWh2PJ).sum() # supply - withdrawal # var["Secondary Energy|Electricity|Storage"] = \ @@ -1419,9 +1420,7 @@ def get_secondary_energy(n, region, _industry_demand): bus_carrier=["low voltage", "AC"], **kwargs ).filter(like=region).groupby( ["carrier"] - ).sum().multiply(MWh2PJ).drop( - ["AC", "DC", "electricity distribution grid"], - ) + ).sum().multiply(MWh2PJ) var["Secondary Energy Input|Electricity|Hydrogen"] = \ electricity_withdrawal.get("H2 Electrolysis", 0) @@ -1685,7 +1684,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios ).groupby("carrier").sum().drop([ # chargers affect all sectors equally "urban decentral water tanks charger", "rural water tanks charger", - ]).multiply(MWh2PJ) + ], errors="ignore").multiply(MWh2PJ) decentral_heat_residential_and_commercial_fraction = ( sum_load(n, ["urban decentral heat", "rural heat"], region) @@ -2019,6 +2018,10 @@ def get_emissions(n, region, _energy_totals): bus_carrier ="co2 stored",**kwargs ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) + # Assert neglible numerical errors / leakage in stored CO2 + assert co2_storage.get("co2 stored", 0) < 0.1 + co2_storage.drop("co2 stored", inplace=True, errors="ignore") + CHP_emissions = n.statistics.supply( bus_carrier="co2",**kwargs ).filter(like=region).filter(like="CHP").multiply(t2Mt) @@ -2096,57 +2099,57 @@ def get_emissions(n, region, _energy_totals): CHP_E_fraction = CHP_E_to_H * (1 / (CHP_E_to_H + 1)) - - fossil_cc = co2_storage.reindex( - [ - "SMR CC", - "gas for industry CC", - "process emissions CC", - "urban central gas CHP CC", - "waste CHP CC" - ]) - - negative_cc = co2_storage.reindex( - [ - "DAC", - "biogas to gas CC", - "solid biomass for industry CC", - "urban central solid biomass CHP CC" - ]) + ccs_carriers = co2_storage.index.intersection( + co2_atmosphere_withdrawal.index) + fossil_cc_carriers = co2_storage.index.difference( + co2_atmosphere_withdrawal.index) + + negative_cc = co2_storage.reindex(ccs_carriers) + fossil_cc = co2_storage.reindex(fossil_cc_carriers) assert isclose( fossil_cc.sum() + negative_cc.sum(), - co2_storage.drop("co2 stored").sum() + co2_storage.sum() ) - # Assert neglible numerical errors in stored CO2 - assert co2_storage["co2 stored"] < 0.1 - total_ccs = n.statistics.supply( - bus_carrier="co2 sequestered",**kwargs - ).filter(like=region).get("Link").groupby( - "carrier" - ).sum().multiply(t2Mt).sum() - # TODO should we account for e-fuels here??? + try: + total_ccs = n.statistics.supply( + bus_carrier="co2 sequestered",**kwargs + ).filter(like=region).get("Link").groupby( + "carrier" + ).sum().multiply(t2Mt).sum() + except AttributeError: # no sequestration in 2020 -> NoneType + total_ccs = 0.0 - # All captures fossil should be sequestered for e-fuels to be carbon neutral - # We allow for a small margin of error (0.1 Mt CO2) - # If this assert fails repeatedly we will need to add a hard constraint for this - if not total_ccs + 0.1 > fossil_cc.sum(): - print("WARNING! Not all CO2 capture from fossil sources is captured!!!") - print("total_ccs - fossil_cc: ", total_ccs - fossil_cc.sum()) negative_ccs = total_ccs - fossil_cc.sum() - co2_negative_emissions = co2_storage.multiply( - negative_ccs / co2_storage.sum() - ).reindex( - co2_atmosphere_withdrawal.index).fillna(0.0) - - biomass_CHP_correction_factor = min( - 1, # Can not be > 1, taking minimum to avoid numerical errors - co2_negative_emissions["urban central solid biomass CHP CC"] - / co2_atmosphere_withdrawal["urban central solid biomass CHP CC"], + co2_negative_emissions = negative_cc.multiply( + negative_ccs / negative_cc.sum() ) + + if negative_ccs < 0: + co2_negative_emissions *= 0 + # If not enough CO2 is captured, than additional emissions occur + fossil_cc_emissions = - fossil_cc.multiply( + negative_ccs / fossil_cc.sum() + ) + # All captured fossil should be sequestered for e-fuels to be carbon neutral + # If this warning appears repeatedly we will need to add a hard constraint + print("WARNING! Not all CO2 capture from fossil sources is captured!!!") + print("total_ccs - fossil_cc: ", total_ccs - fossil_cc.sum()) + # TODO what to do with fossil_cc_emissions??? + if n.links.build_year.max() == 2045: + raise Exception("Not enough CCS in 2045!") + + if not co2_atmosphere_withdrawal.get("urban central solid biomass CHP CC"): + biomass_CHP_correction_factor = 0 + else: + biomass_CHP_correction_factor = min( + 1, # Can not be > 1, taking minimum to avoid numerical errors + co2_negative_emissions.get("urban central solid biomass CHP CC") + / co2_atmosphere_withdrawal.get("urban central solid biomass CHP CC"), + ) negative_CHP_emissions = n.statistics.withdrawal( bus_carrier="co2",**kwargs diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 6312578b5..5cbee8daf 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 6312578b513fcc2bec1799720aceb85532e50858 +Subproject commit 5cbee8daf53173ccd8b10532b32c37a79f7758b5 From 7c58bf8e0c898685dd6e2b9a06072bd4b43213e1 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 30 Jul 2024 09:55:36 +0200 Subject: [PATCH 489/669] rename investment -> overnight_cost --- config/config.yaml | 2 +- workflow/scripts/export_ariadne_variables.py | 2 +- workflow/scripts/modify_prenetwork.py | 6 +++--- workflow/submodules/pypsa-eur | 2 +- 4 files changed, 6 insertions(+), 6 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 40ccabc09..74f3e1014 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240715investments + prefix: 20240730overnight_costs name: # - CurrentPolicies - KN2045_Bal_v4 diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index da0cd4e40..f7598a385 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -189,7 +189,7 @@ def _f(**kwargs): def get_investments(n, costs, region): def _f(**kwargs): - return n.statistics.expanded_capex(**kwargs, cost_attribute="investment") + return n.statistics.expanded_capex(**kwargs, cost_attribute="overnight_cost") return _get_capacities( n, region, diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 6fb5a8b65..56bc66c91 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -185,7 +185,7 @@ def add_wasserstoff_kernnetz(n, wkn, costs): build_year=wkn_new.build_year.values, length=wkn_new.length.values, capital_cost=costs.at["H2 (g) pipeline", "fixed"] * wkn_new.length.values, - investment=costs.at["H2 (g) pipeline", "investment"] * wkn_new.length.values, + overnight_cost=costs.at["H2 (g) pipeline", "investment"] * wkn_new.length.values, carrier="H2 pipeline (Kernnetz)", lifetime=costs.at["H2 (g) pipeline", "lifetime"], ) @@ -375,7 +375,7 @@ def transmission_costs_from_modified_cost_data(n, costs, transmission, length_fa + costs.at["HVDC inverter pair", "capital_cost"] ) - investment = ( + overnight_cost = ( n.links.loc[dc_b, "length"] * length_factor * ( @@ -387,7 +387,7 @@ def transmission_costs_from_modified_cost_data(n, costs, transmission, length_fa + costs.at["HVDC inverter pair", "investment"] ) n.links.loc[dc_b, "capital_cost"] = capital_cost - n.links.loc[dc_b, "investment"] = investment + n.links.loc[dc_b, "investment"] = overnight_cost def must_run_biomass(n, p_min_pu, regions): """ diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 5cbee8daf..67a5093f5 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 5cbee8daf53173ccd8b10532b32c37a79f7758b5 +Subproject commit 67a5093f5d7e61ba35e907ebdc0c53ddf41fca3c From a14c4a51dd40d73ca260cc6ace33130983d9258a Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 30 Jul 2024 10:07:14 +0200 Subject: [PATCH 490/669] more investment -> overnight_cost renaming --- workflow/scripts/modify_prenetwork.py | 4 ++-- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 56bc66c91..0368a9943 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -344,7 +344,7 @@ def transmission_costs_from_modified_cost_data(n, costs, transmission, length_fa n.lines["capital_cost"] = ( n.lines["length"] * length_factor * costs.at["HVAC overhead", "capital_cost"] ) - n.lines["investment"] = ( + n.lines["overnight_cost"] = ( n.lines["length"] * length_factor * costs.at["HVAC overhead", "investment"] ) @@ -387,7 +387,7 @@ def transmission_costs_from_modified_cost_data(n, costs, transmission, length_fa + costs.at["HVDC inverter pair", "investment"] ) n.links.loc[dc_b, "capital_cost"] = capital_cost - n.links.loc[dc_b, "investment"] = overnight_cost + n.links.loc[dc_b, "overnight_cost"] = overnight_cost def must_run_biomass(n, p_min_pu, regions): """ diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 67a5093f5..1376fbeff 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 67a5093f5d7e61ba35e907ebdc0c53ddf41fca3c +Subproject commit 1376fbeff74e9df918d0e878a81a0e14b3b28037 From bfe6e73ceec0148c81ff3e0e89d30f949febd298 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 30 Jul 2024 10:31:20 +0200 Subject: [PATCH 491/669] final touches for the renaming --- workflow/Snakefile | 2 +- workflow/scripts/export_ariadne_variables.py | 8 ++++---- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 6 insertions(+), 6 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 7e12cf5eb..2e64acad7 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -413,7 +413,7 @@ rule plot_ariadne_variables: rule ariadne_all: input: - expand(RESULTS + "graphs/costs.pdf", run=config_provider("run", "name")), + expand(RESULTS + "graphs/costs.svg", run=config_provider("run", "name")), expand(RESULTS + "ariadne/capacity_detailed.png", run=config_provider("run", "name")), exported_variables=expand(RESULTS + "ariadne/exported_variables_full.xlsx", run=config_provider("run", "name")), script: diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index f7598a385..8a6f7198a 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -3042,11 +3042,11 @@ def get_grid_investments(n, costs, region, dg_cost_factor=1.0, length_factor=1.0 var = pd.Series() offwind = n.generators.filter(like="offwind",axis=0).filter(like="DE", axis=0) - offwind_connection_investment = ( + offwind_connection_overnight_cost = ( (offwind.p_nom_opt - offwind.p_nom) - * offwind.connection_investment) * 1e-9 - offwind_connection_ac = offwind_connection_investment.filter(like="ac") - offwind_connection_dc = offwind_connection_investment.filter(regex="dc|float") + * offwind.connection_overnight_cost) * 1e-9 + offwind_connection_ac = offwind_connection_overnight_cost.filter(like="ac") + offwind_connection_dc = offwind_connection_overnight_cost.filter(regex="dc|float") var["Investment|Energy Supply|Electricity|Transmission|Offwind-AC"] = offwind_connection_ac.sum() / 5 var["Investment|Energy Supply|Electricity|Transmission|Offwind-DC"] = offwind_connection_dc.sum() / 5 dc_links = n.links[ diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 1376fbeff..06ca0f7d1 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 1376fbeff74e9df918d0e878a81a0e14b3b28037 +Subproject commit 06ca0f7d1f2178d17b7c5540b14090c3650ff2e9 From 083e6abc9810ebf625f5a6cba8cba8aa2de6522d Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 12 Jun 2024 18:00:47 +0200 Subject: [PATCH 492/669] added new script for DH modifications --- workflow/Snakefile | 20 +++- workflow/scripts/modify_dh_systems.py | 166 ++++++++++++++++++++++++++ 2 files changed, 185 insertions(+), 1 deletion(-) create mode 100644 workflow/scripts/modify_dh_systems.py diff --git a/workflow/Snakefile b/workflow/Snakefile index 7e12cf5eb..e2957e739 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -146,6 +146,24 @@ rule build_mobility_demand: script: "scripts/build_mobility_demand.py" +rule modify_dh_systems: + params: + enable_subnodes_de=config_provider("district_heating", "enable_subnodes_de"), + input: + network=RESULTS + + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + fn="data/demandregio_spatial.json", + fn_map="data/mapping_from_4_to_38.json", + nuts3=resources("nuts3_shapes.geojson"), + regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"), + triebs="data/Gesamtdaten_Triebs.xlsx", + output: + network=RESULTS + + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc" + resources: + mem_mb=1000 + script: + "scripts/modify_prenetwork.py" rule modify_prenetwork: params: @@ -166,7 +184,7 @@ rule modify_prenetwork: clustering=config_provider("clustering", "temporal", "resolution_sector"), input: network=RESULTS - + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc", wkn=resources("wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv") if config_provider("wasserstoff_kernnetz", "enable") else [], costs=resources("costs_{planning_horizons}.csv"), aladin_demand=resources("mobility_demand_aladin_{simpl}_{clusters}_{planning_horizons}.csv"), diff --git a/workflow/scripts/modify_dh_systems.py b/workflow/scripts/modify_dh_systems.py new file mode 100644 index 000000000..d523e2231 --- /dev/null +++ b/workflow/scripts/modify_dh_systems.py @@ -0,0 +1,166 @@ +import logging + +logger = logging.getLogger(__name__) +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +import geopandas as gpd +from shapely.geometry import Point +import json +import pypsa + + +def load_egon(): + """ + Load and prepares the egon data about district heating in Germany on NUTS3 level. + + Returns: + GeoDataFrame: A GeoDataFrame containing the processed egon data. + """ + + nuts3 = gpd.read_file(snakemake.input.nuts3)[ + ["index", "pop", "geometry"] + ] # Keep only necessary columns + + internal_id = { + 71: "District heating", + } + + df = pd.read_json(snakemake.input.fn) + id_region = pd.read_json(snakemake.input.fn_map) + + df["internal_id"] = df["internal_id"].apply(lambda x: x[0]) + df = df[df["internal_id"] == 71] # Keep only rows with district heating + + df["nuts3"] = df.id_region.map( + id_region.set_index(id_region.id_region_from).kuerzel_to + ) + + heat_tech_per_region = df.groupby([df.nuts3, df.internal_id]).sum().value.unstack() + heat_tech_per_region.rename(columns=internal_id, inplace=True) + + egon_df = heat_tech_per_region.merge(nuts3, left_on="nuts3", right_on="index") + egon_gdf = gpd.GeoDataFrame(egon_df) # Convert merged DataFrame to GeoDataFrame + + return egon_gdf + + +def update_dist_shares(egon_gdf, n_pre): + """ + Update district heating shares of clusters according to egon data on NUTS3 level. + """ + + n = n_pre.copy() + regions_onshore = gpd.read_file( + snakemake.input.regions_onshore + ) # shared resources true + regions_onshore.set_index("name", inplace=True) + # Map NUTS3 regions of egon data to corresponding clusters according to maximum overlap + + egon_gdf["cluster"] = egon_gdf.apply( + lambda x: regions_onshore.geometry.intersection(x.geometry).area.idxmax(), + axis=1, + ) + + # Calculate DH demand shares + dh_shares = ( + egon_gdf.groupby("cluster")["District heating"].sum() + / egon_gdf["District heating"].sum() + ) + + # Current DH demands by cluster + dh_demand = n.loads_t.p_set.filter(regex="DE\d.*urban central heat") + + return n + + +def prepare_subnodes_de(egon_gdf): + # TODO: Embed I&O in snakemake rule, add potentials, match CHP capacities + + # Load and prepare Triebs data + dh_areas_triebs = pd.read_excel( + snakemake.input.triebs, + sheet_name="Staedte", + ) + # convert dataframe dh_areas_triebs to geopandas dataframe using the Latirude and Longitude columns for geometry column as point coordinates + dh_areas_triebs["geometry"] = gpd.points_from_xy( + dh_areas_triebs["Longitude"], dh_areas_triebs["Latitude"] + ) + dh_areas_triebs = gpd.GeoDataFrame(dh_areas_triebs, geometry="geometry") + + # Merge merged_gdf with dh_areas_triebs using the nuts3 id + merged_gdf = egon_gdf.merge( + dh_areas_triebs, left_on="index", right_on="NUTS3", how="right" + ) + # Create additional column nuts_3_matchshape that contains the value of the index column in merged_gdf of the row where the geometry column of dh_areas_triebs intersects with the geometry column of nuts3_shapes + + merged_gdf.loc[merged_gdf.geometry_x.isna(), "geometry_x"] = merged_gdf.loc[ + merged_gdf.geometry_x.isna() + ].apply( + lambda x: egon_gdf.loc[ + egon_gdf.geometry.contains(x.geometry_y), "geometry" + ].item(), + axis=1, + ) + merged_gdf.loc[merged_gdf["index"].isna(), "index"] = merged_gdf.loc[ + merged_gdf["index"].isna() + ].apply( + lambda x: egon_gdf.loc[ + egon_gdf.geometry.contains(x.geometry_y), "index" + ].item(), + axis=1, + ) + merged_gdf.loc[ + merged_gdf["District heating"].isna(), "District heating" + ] = merged_gdf.loc[merged_gdf["District heating"].isna()].apply( + lambda x: egon_gdf.loc[ + egon_gdf.geometry.contains(x.geometry_y), "District heating" + ].item(), + axis=1, + ) + + # Intraregional distribution key according to population + merged_gdf["intrareg_dist_key"] = merged_gdf.apply( + lambda reg: reg["Einwohnerzahl [-]"] + / merged_gdf.loc[ + merged_gdf["index"] == reg["index"], "Einwohnerzahl [-]" + ].sum(), + axis=1, + ).sort_values() + # Multiply column District heating with distribution key + merged_gdf["demand_dh_subnode"] = ( + merged_gdf["District heating"] * merged_gdf["intrareg_dist_key"] + ) + + return merged_gdf + + +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + os.chdir(os.path.dirname(os.path.abspath(__file__))) + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "modify_dh_systems", + simpl="", + clusters=22, + opts="", + ll="vopt", + sector_opts="none", + planning_horizons="2020", + run="KN2045_Bal_v4", + ) + logger.info("Adding SysGF-specific functionality") + + n = pypsa.Network(snakemake.input.network) + egon_gdf = load_egon() + update_dist_shares(egon_gdf, n) + + if snakemake.params.enable_subnodes_de: + prepare_subnodes_de(egon_gdf) From 6a9286c94bc5a790cef379285fe097a592f8c885 Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 14 Jun 2024 10:56:29 +0200 Subject: [PATCH 493/669] function for update of urban heat loads --- workflow/scripts/modify_dh_systems.py | 85 +++++++++++++++++++++++---- 1 file changed, 74 insertions(+), 11 deletions(-) diff --git a/workflow/scripts/modify_dh_systems.py b/workflow/scripts/modify_dh_systems.py index d523e2231..ccd12e97c 100644 --- a/workflow/scripts/modify_dh_systems.py +++ b/workflow/scripts/modify_dh_systems.py @@ -23,14 +23,23 @@ def load_egon(): ] # Keep only necessary columns internal_id = { + 9: "Hard coal", + 10: "Brown coal", + 11: "Natural gas", + 34: "Heating oil", + 35: "Biomass (solid)", + 68: "Ambient heating", + 69: "Solar heat", 71: "District heating", + 72: "Electrical energy", + 218: "Biomass (excluding wood, biogas)", } df = pd.read_json(snakemake.input.fn) id_region = pd.read_json(snakemake.input.fn_map) df["internal_id"] = df["internal_id"].apply(lambda x: x[0]) - df = df[df["internal_id"] == 71] # Keep only rows with district heating + # df = df[df["internal_id"] == 71] # Keep only rows with district heating df["nuts3"] = df.id_region.map( id_region.set_index(id_region.id_region_from).kuerzel_to @@ -41,13 +50,15 @@ def load_egon(): egon_df = heat_tech_per_region.merge(nuts3, left_on="nuts3", right_on="index") egon_gdf = gpd.GeoDataFrame(egon_df) # Convert merged DataFrame to GeoDataFrame + egon_gdf = egon_gdf.to_crs("EPSG:4326") return egon_gdf -def update_dist_shares(egon_gdf, n_pre): +def update_urban_loads_de(egon_gdf, n_pre): """ - Update district heating shares of clusters according to egon data on NUTS3 level. + Update district heating demands of clusters according to shares in egon data on NUTS3 level for Germany. + Other heat loads are adjusted accodingly to ensure consistency of the nodal heat demand. """ n = n_pre.copy() @@ -62,16 +73,68 @@ def update_dist_shares(egon_gdf, n_pre): axis=1, ) - # Calculate DH demand shares - dh_shares = ( - egon_gdf.groupby("cluster")["District heating"].sum() - / egon_gdf["District heating"].sum() + # Calculate nodel DH shares according to households and modify index + egon_gdf_clustered = egon_gdf.groupby("cluster").sum(numeric_only=True) + nodal_dh_shares = egon_gdf_clustered["District heating"] / egon_gdf_clustered.drop( + "pop", axis=1 + ).sum(axis=1) + + nodal_dh_shares.index += " urban central heat" + + # District heating demands by cluster in German nodes before heat distribution + nodal_uc_demand = ( + n.loads_t.p_set.filter(regex="DE.*urban central heat") + .apply(lambda c: c * n.snapshot_weightings.generators) + .sum() + .div( + 1 + snakemake.config["sector"]["district_heating"]["district_heating_loss"] + ) + ) + + nodal_uc_losses = ( + nodal_uc_demand + - n.loads_t.p_set.filter(regex="DE.*urban central heat") + .apply(lambda c: c * n.snapshot_weightings.generators) + .sum() + ) + + # Sum of rural and urban heat demand + nodal_heat_demand = ( + n.loads_t.p_set.filter(regex="DE.*heat$") + .apply(lambda c: c * n.snapshot_weightings.generators) + .sum() + .sub(nodal_uc_losses, fill_value=0) + ) + + # Modify index of nodal_heat demand to align with urban central loads and aggregatze loads + nodal_heat_demand.index = nodal_heat_demand.index.str.replace( + "decentral", "central" + ).str.replace("rural", "urban central") + + nodal_heat_demand = nodal_heat_demand.groupby(nodal_heat_demand.index).sum() + + # Old district heating share + nodal_uc_shares = nodal_uc_demand / nodal_heat_demand + + # Scaling factor for update of urban central heat loads + + scaling_factor = nodal_dh_shares / nodal_uc_shares + scaling_factor.dropna( + inplace=True + ) # To deal with shape anomaly described in https://github.com/PyPSA/pypsa-eur/issues/1100 + + # Update urban heat loads + old_uc_loads = n.loads_t.p_set.filter(regex="DE.*urban central heat") + new_uc_loads = ( + n.loads_t.p_set.filter(regex="DE.*urban central heat") * scaling_factor ) + diff_update = new_uc_loads - old_uc_loads + diff_update.columns = diff_update.columns.str.replace("central", "decentral") - # Current DH demands by cluster - dh_demand = n.loads_t.p_set.filter(regex="DE\d.*urban central heat") + n_pre.loads_t.p_set[new_uc_loads.columns] = new_uc_loads + n_pre.loads_t.p_set[diff_update.columns] -= diff_update - return n + return n_pre def prepare_subnodes_de(egon_gdf): @@ -160,7 +223,7 @@ def prepare_subnodes_de(egon_gdf): n = pypsa.Network(snakemake.input.network) egon_gdf = load_egon() - update_dist_shares(egon_gdf, n) + update_urban_loads_de(egon_gdf, n) if snakemake.params.enable_subnodes_de: prepare_subnodes_de(egon_gdf) From dbc2c37e2985066bd6034fdf0bb18758444b809e Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 17 Jun 2024 10:30:55 +0200 Subject: [PATCH 494/669] Preserve aggregate DH demand --- workflow/scripts/modify_dh_systems.py | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/modify_dh_systems.py b/workflow/scripts/modify_dh_systems.py index ccd12e97c..ce290c423 100644 --- a/workflow/scripts/modify_dh_systems.py +++ b/workflow/scripts/modify_dh_systems.py @@ -73,7 +73,7 @@ def update_urban_loads_de(egon_gdf, n_pre): axis=1, ) - # Calculate nodel DH shares according to households and modify index + # Calculate nodal DH shares according to households and modify index egon_gdf_clustered = egon_gdf.groupby("cluster").sum(numeric_only=True) nodal_dh_shares = egon_gdf_clustered["District heating"] / egon_gdf_clustered.drop( "pop", axis=1 @@ -123,18 +123,20 @@ def update_urban_loads_de(egon_gdf, n_pre): inplace=True ) # To deal with shape anomaly described in https://github.com/PyPSA/pypsa-eur/issues/1100 - # Update urban heat loads + # Update urban heat loads changing distribution and restoring old scale old_uc_loads = n.loads_t.p_set.filter(regex="DE.*urban central heat") new_uc_loads = ( n.loads_t.p_set.filter(regex="DE.*urban central heat") * scaling_factor ) + restore_scalar = new_uc_loads.sum().sum() / old_uc_loads.sum().sum() + new_uc_loads = new_uc_loads / restore_scalar diff_update = new_uc_loads - old_uc_loads diff_update.columns = diff_update.columns.str.replace("central", "decentral") n_pre.loads_t.p_set[new_uc_loads.columns] = new_uc_loads n_pre.loads_t.p_set[diff_update.columns] -= diff_update - return n_pre + return def prepare_subnodes_de(egon_gdf): From 1559e74ba3b4cb01adf3c2ead8c6392f5da68e91 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 30 Jul 2024 12:52:42 +0200 Subject: [PATCH 495/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 06ca0f7d1..ef5ded993 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 06ca0f7d1f2178d17b7c5540b14090c3650ff2e9 +Subproject commit ef5ded9935fbce22c5616f4d91a17fde6e657eca From 2eb035d234e3fee552ab94846f3d2c3fa63ee398 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 30 Jul 2024 13:03:55 +0200 Subject: [PATCH 496/669] quickfix for pypsa version until new release --- environment.yaml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/environment.yaml b/environment.yaml index d36913130..45b8d390b 100644 --- a/environment.yaml +++ b/environment.yaml @@ -8,7 +8,7 @@ dependencies: - pip - atlite>=0.2.9 -- pypsa>=0.28.0 +# - pypsa>=0.28.0 - linopy - dask @@ -65,4 +65,5 @@ dependencies: - snakemake-executor-plugin-slurm - snakemake-executor-plugin-cluster-generic - highspy + - git+https://github.com/PyPSA/pypsa@master # Until new release From 8f3d74351684e47117308065ea555ebdf0f3aad4 Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 31 Jul 2024 11:34:46 +0200 Subject: [PATCH 497/669] add subnodes and loads --- workflow/scripts/modify_dh_systems.py | 113 ++++++++++++++++++++++---- 1 file changed, 95 insertions(+), 18 deletions(-) diff --git a/workflow/scripts/modify_dh_systems.py b/workflow/scripts/modify_dh_systems.py index ce290c423..89d36aec5 100644 --- a/workflow/scripts/modify_dh_systems.py +++ b/workflow/scripts/modify_dh_systems.py @@ -55,10 +55,10 @@ def load_egon(): return egon_gdf -def update_urban_loads_de(egon_gdf, n_pre): +def update_urban_loads(egon_gdf, n_pre): """ Update district heating demands of clusters according to shares in egon data on NUTS3 level for Germany. - Other heat loads are adjusted accodingly to ensure consistency of the nodal heat demand. + Other heat loads are adjusted accordingly to ensure consistency of the nodal heat demand. """ n = n_pre.copy() @@ -106,7 +106,7 @@ def update_urban_loads_de(egon_gdf, n_pre): .sub(nodal_uc_losses, fill_value=0) ) - # Modify index of nodal_heat demand to align with urban central loads and aggregatze loads + # Modify index of nodal_heat demand to align with urban central loads and aggregate loads nodal_heat_demand.index = nodal_heat_demand.index.str.replace( "decentral", "central" ).str.replace("rural", "urban central") @@ -139,7 +139,7 @@ def update_urban_loads_de(egon_gdf, n_pre): return -def prepare_subnodes_de(egon_gdf): +def prepare_subnodes(egon_gdf, head=40): # TODO: Embed I&O in snakemake rule, add potentials, match CHP capacities # Load and prepare Triebs data @@ -153,17 +153,23 @@ def prepare_subnodes_de(egon_gdf): ) dh_areas_triebs = gpd.GeoDataFrame(dh_areas_triebs, geometry="geometry") + # Keep only n largest district heating networks according to head parameter + to_keep = ["Stadtname", "NUTS3", "Einwohnerzahl [-]", "geometry"] + + dh_areas_triebs = dh_areas_triebs.sort_values( + by="Einwohnerzahl [-]", ascending=False + ).head(head)[to_keep] + # Merge merged_gdf with dh_areas_triebs using the nuts3 id - merged_gdf = egon_gdf.merge( - dh_areas_triebs, left_on="index", right_on="NUTS3", how="right" + merged_gdf = dh_areas_triebs.merge( + egon_gdf, left_on="NUTS3", right_on="index", how="left" ) - # Create additional column nuts_3_matchshape that contains the value of the index column in merged_gdf of the row where the geometry column of dh_areas_triebs intersects with the geometry column of nuts3_shapes - - merged_gdf.loc[merged_gdf.geometry_x.isna(), "geometry_x"] = merged_gdf.loc[ - merged_gdf.geometry_x.isna() + # DH systems without matching NUTS3 id the surrounding region is assigned using the geometries + merged_gdf.loc[merged_gdf.geometry_y.isna(), "geometry_y"] = merged_gdf.loc[ + merged_gdf.geometry_y.isna() ].apply( lambda x: egon_gdf.loc[ - egon_gdf.geometry.contains(x.geometry_y), "geometry" + egon_gdf.geometry.contains(x.geometry_x), "geometry" ].item(), axis=1, ) @@ -171,7 +177,15 @@ def prepare_subnodes_de(egon_gdf): merged_gdf["index"].isna() ].apply( lambda x: egon_gdf.loc[ - egon_gdf.geometry.contains(x.geometry_y), "index" + egon_gdf.geometry.contains(x.geometry_x), "index" + ].item(), + axis=1, + ) + merged_gdf.loc[merged_gdf["cluster"].isna(), "cluster"] = merged_gdf.loc[ + merged_gdf["cluster"].isna() + ].apply( + lambda x: egon_gdf.loc[ + egon_gdf.geometry.contains(x.geometry_x), "cluster" ].item(), axis=1, ) @@ -179,12 +193,12 @@ def prepare_subnodes_de(egon_gdf): merged_gdf["District heating"].isna(), "District heating" ] = merged_gdf.loc[merged_gdf["District heating"].isna()].apply( lambda x: egon_gdf.loc[ - egon_gdf.geometry.contains(x.geometry_y), "District heating" + egon_gdf.geometry.contains(x.geometry_x), "District heating" ].item(), axis=1, ) - # Intraregional distribution key according to population + # Intraregional distribution key according to population for NUTS3 regions with multiple DH systems merged_gdf["intrareg_dist_key"] = merged_gdf.apply( lambda reg: reg["Einwohnerzahl [-]"] / merged_gdf.loc[ @@ -193,13 +207,75 @@ def prepare_subnodes_de(egon_gdf): axis=1, ).sort_values() # Multiply column District heating with distribution key - merged_gdf["demand_dh_subnode"] = ( + merged_gdf["dh_hh_subnode"] = ( merged_gdf["District heating"] * merged_gdf["intrareg_dist_key"] ) + # Convert district heating counts to percentage of cluster demand + + merged_gdf["demand_share_subnode"] = merged_gdf.apply( + lambda x: x["dh_hh_subnode"] + / egon_gdf.loc[egon_gdf.cluster == x.cluster, "District heating"].sum(), + axis=1, + ) + + # TODO: Function to assign CHPs to subnodes return merged_gdf +def add_subnodes(n, subnodes, head=40): + """ + Add subnodes to the network and adjust loads and capacities accordingly. + """ + + n_sub = n.copy() + + # Add subnodes to network + for idx, row in subnodes.iterrows(): + name = f'{row["cluster"]} {row["Stadtname"]} urban central heat' + + # Add buses + n.madd( + "Bus", + [name], + y=row.geometry_x.y, + x=row.geometry_x.x, + country="DE", + location=row["cluster"], + carrier="urban central heat", + unit="MWh_th", + ) + + # Add heat loads + heat_load = row["demand_share_subnode"] * n.loads_t.p_set.filter( + regex=f"{row['cluster']} urban central heat" + ).rename( + { + f"{row['cluster']} urban central heat": f"{row['cluster']} {row['Stadtname']} urban central heat" + }, + axis=1, + ) + n.madd( + "Load", + [name], + bus=name, + p_set=heat_load, + carrier="urban central heat", + location=row["cluster"], + profile=row["cluster"], + ) + + # Adjust loads of cluster buses + for idx, row in ( + subnodes.groupby("cluster", as_index=False).sum(numeric_only=True).iterrows() + ): + n.loads_t.p_set.loc[:, f'{row["cluster"]} urban central heat'] *= ( + 1 - row["demand_share_subnode"] + ) + + return + + if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -225,7 +301,8 @@ def prepare_subnodes_de(egon_gdf): n = pypsa.Network(snakemake.input.network) egon_gdf = load_egon() - update_urban_loads_de(egon_gdf, n) + update_urban_loads(egon_gdf, n) - if snakemake.params.enable_subnodes_de: - prepare_subnodes_de(egon_gdf) + if snakemake.params.add_subnodes_de: + subnodes = prepare_subnodes(egon_gdf, snakemake.params.add_subnodes_de) + add_subnodes(n, subnodes) From 11bf8cfcae4fa277764c83ca642e4f4c5b082db3 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 31 Jul 2024 14:50:00 +0200 Subject: [PATCH 498/669] adjust snapshots --- config/config.yaml | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 47d267e38..2c51528b6 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240722newcutout + prefix: 20240731newcutout name: # - CurrentPolicies - KN2045_Bal_v4 @@ -83,6 +83,12 @@ existing_capacities: # Germany plus 12 "Stromnachbarn" countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'PL', 'SE'] +# docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#snapshots +snapshots: + start: "2019-01-01" + end: "2020-01-01" + inclusive: 'left' + atlite: default_cutout: europe-2019-sarah3-era5-compressed cutouts: From d40cd9fc8a793f08f8c9a9a03ec4adacb31f72d6 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 31 Jul 2024 14:54:16 +0200 Subject: [PATCH 499/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index b482efb9f..ef5ded993 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit b482efb9f1be999a29956b0a80c39457699a6a00 +Subproject commit ef5ded9935fbce22c5616f4d91a17fde6e657eca From 1154cbce6edf3b88b257727ccdb2e7da71ccc113 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 31 Jul 2024 16:19:56 +0200 Subject: [PATCH 500/669] ignore errors when dropping stores --- workflow/scripts/export_ariadne_variables.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 8a6f7198a..57841ddaf 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -69,7 +69,7 @@ def _get_gas_fractions(n): } total_gas_supply = n.statistics.supply( bus_carrier="gas", **kwargs - ).drop("Store").groupby("carrier").sum() + ).drop("Store", errors="ignore").groupby("carrier").sum() drops = ["gas pipeline", "gas pipeline new"] for d in drops: @@ -91,7 +91,7 @@ def _get_h2_fossil_fraction(n): } total_h2_supply = n.statistics.supply( bus_carrier="H2", **kwargs - ).drop("Store").groupby("carrier").sum() + ).drop("Store", errors="ignore").groupby("carrier").sum() h2_fossil_fraction = ( total_h2_supply.get("SMR") @@ -839,7 +839,7 @@ def get_primary_energy(n, region): **kwargs ).filter( like=region - ).drop("Store").groupby( + ).drop("Store", errors="ignore").groupby( "carrier" ).sum().multiply(oil_fossil_fraction).multiply(MWh2PJ) From 8449ab8ed1a674dec17e67936288920eac833efa Mon Sep 17 00:00:00 2001 From: Micha Date: Wed, 31 Jul 2024 17:01:07 +0200 Subject: [PATCH 501/669] Update pypsa version --- environment.yaml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/environment.yaml b/environment.yaml index 45b8d390b..d9868379f 100644 --- a/environment.yaml +++ b/environment.yaml @@ -8,7 +8,7 @@ dependencies: - pip - atlite>=0.2.9 -# - pypsa>=0.28.0 +- pypsa>=0.29.0 - linopy - dask @@ -65,5 +65,5 @@ dependencies: - snakemake-executor-plugin-slurm - snakemake-executor-plugin-cluster-generic - highspy - - git+https://github.com/PyPSA/pypsa@master # Until new release + # - git+https://github.com/PyPSA/pypsa@master # Until new release From 276542bef98510e25bab808dd281348f61c1a1cc Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 1 Aug 2024 15:50:07 +0200 Subject: [PATCH 502/669] use NEP DC costs --- ariadne-data/costs_2019-modifications.csv | 8 +++++++- ariadne-data/costs_2020-modifications.csv | 8 +++++++- ariadne-data/costs_2025-modifications.csv | 9 ++++++++- ariadne-data/costs_2030-modifications.csv | 8 +++++++- ariadne-data/costs_2035-modifications.csv | 9 ++++++++- ariadne-data/costs_2040-modifications.csv | 9 ++++++++- ariadne-data/costs_2045-modifications.csv | 9 ++++++++- ariadne-data/costs_2050-modifications.csv | 9 ++++++++- config/config.yaml | 4 ++-- config/scenarios.manual.yaml | 4 ++++ workflow/scripts/export_ariadne_variables.py | 2 +- 11 files changed, 68 insertions(+), 11 deletions(-) diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv index a53eb0301..0ceaa610e 100644 --- a/ariadne-data/costs_2019-modifications.csv +++ b/ariadne-data/costs_2019-modifications.csv @@ -11,4 +11,10 @@ HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 \ No newline at end of file +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" +offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index 9ac00e1e7..7766724f6 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -11,4 +11,10 @@ HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 \ No newline at end of file +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" +offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index 4f3123451..644fbc9ac 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -11,4 +11,11 @@ HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" +offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" + diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index 9abd6e73c..6d742b448 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -11,4 +11,10 @@ HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 \ No newline at end of file +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" +offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index 85fbdd633..c84f854c3 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -11,4 +11,11 @@ HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" +offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" + diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index cc9bf5825..adc13219e 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -11,4 +11,11 @@ HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" +offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" + diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index c64ce64e6..d0beab023 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -11,4 +11,11 @@ HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" +offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" + diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index 0a42092ce..77d7c4e58 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -11,4 +11,11 @@ HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023 +HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" +offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" +offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" + diff --git a/config/config.yaml b/config/config.yaml index 98dd1cb6a..4e1f79014 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240731highspatial + prefix: 20240801offwindconnectioncosts name: # - CurrentPolicies - KN2045_Bal_v4 @@ -13,7 +13,7 @@ run: # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase - # - KN2045minus_SupplyFocus + - KN2045minus_SupplyFocus scenarios: enable: true manual_file: config/scenarios.manual.yaml diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 075ac5b79..144b741ac 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -627,3 +627,7 @@ KN2045minus_SupplyFocus: 2035: 215 # not forcing more EE 2040: 215 2045: 215 + industry: + steam_biomass_fraction: 0.4 + steam_hydrogen_fraction: 0.3 + steam_electricity_fraction: 0.3 diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 57841ddaf..aac890e15 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1017,7 +1017,7 @@ def get_primary_energy(n, region): ).multiply(MWh2PJ).sum() var["Primary Energy|Hydro"] = \ - renewable_electricity.get([ + renewable_electricity.reindex([ "ror", "PHS", "hydro", ]).sum() From 64ee6f6dcded26e2a12d5a7df81cc1594bdf4ac9 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 2 Aug 2024 11:52:46 +0200 Subject: [PATCH 503/669] make unravelling of oil bus consistent with new refineries I.e. separate DE oil primary from DE oil. --- config/config.yaml | 55 +++++++++++++-------------- workflow/scripts/modify_prenetwork.py | 53 +++++++++++++++++--------- workflow/submodules/pypsa-eur | 2 +- 3 files changed, 62 insertions(+), 48 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 98dd1cb6a..c286b041c 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240731highspatial + prefix: 240802-testoil name: # - CurrentPolicies - KN2045_Bal_v4 @@ -18,7 +18,7 @@ run: enable: true manual_file: config/scenarios.manual.yaml file: config/scenarios.automated.yaml - shared_resources: + shared_resources: policy: base #stops recalculating exclude: - existing_heating.csv # specify files which should not be shared between scenarios @@ -107,20 +107,20 @@ clustering: 'SE': 0.0454 # # high spatial resolution: change clusters to 44 # focus_weights: -# # 44 nodes: 30 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" (high spatial) -# 'DE': 0.6818 # 30/44 -# 'AT': 0.0227 # 1/44 -# 'BE': 0.0227 -# 'CH': 0.0227 -# 'CZ': 0.0227 -# 'DK': 0.0455 # 2/44 -# 'FR': 0.0227 -# 'GB': 0.0455 -# 'LU': 0.0227 -# 'NL': 0.0227 -# 'NO': 0.0227 -# 'PL': 0.0227 -# 'SE': 0.0227 +# # 44 nodes: 30 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" (high spatial) +# 'DE': 0.6818 # 30/44 +# 'AT': 0.0227 # 1/44 +# 'BE': 0.0227 +# 'CH': 0.0227 +# 'CZ': 0.0227 +# 'DK': 0.0455 # 2/44 +# 'FR': 0.0227 +# 'GB': 0.0455 +# 'LU': 0.0227 +# 'NL': 0.0227 +# 'NO': 0.0227 +# 'PL': 0.0227 +# 'SE': 0.0227 temporal: resolution_sector: 365H @@ -172,17 +172,17 @@ limits_capacity_min: offwind: DE: 2030: 30 # Wind-auf-See Law - 2035: 30 + 2035: 30 2040: 30 - 2045: 30 + 2045: 30 solar: DE: - # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, + # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, # assuming at least 1/3 of difference reached in 2025 - 2025: 101 - 2030: 101 + 2025: 101 + 2030: 101 2035: 101 - 2040: 101 + 2040: 101 2045: 101 @@ -203,9 +203,9 @@ limits_capacity_min: # 2045: 70 #70 Wind-auf-See Law # solar: # DE: -# # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, +# # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, # # assuming at least 1/3 of difference reached in 2025 -# 2025: 101 +# 2025: 101 # 2030: 215 # PV strategy # 2035: 309 # 2040: 400 # PV strategy @@ -447,11 +447,10 @@ pypsa_eur: co2_price_add_on_fossils: - 2020: 25 + 2020: 25 2025: 60 - + must_run_biomass: enable: true - p_min_pu: 0.7 + p_min_pu: 0.7 regions: ['DE'] - diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index b9472d8b5..a31be2bf9 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -32,7 +32,7 @@ def first_technology_occurrence(n): if int(snakemake.wildcards.planning_horizons) < first_year: logger.info(f"{carrier} not extendable before {first_year}.") n.df(c).loc[n.df(c).carrier == carrier, "p_nom_extendable"] = False - + def fix_new_boiler_profiles(n): @@ -100,7 +100,7 @@ def coal_generation_ban(n): logger.info(f"Dropping {links}") n.links.drop(links, inplace=True) - + def nuclear_generation_ban(n): year = int(snakemake.wildcards.planning_horizons) @@ -112,7 +112,7 @@ def nuclear_generation_ban(n): links = n.links.index[(n.links.index.str[:2] == ct) & n.links.carrier.isin(["nuclear"])] logger.info(f"Dropping {links}") n.links.drop(links, - inplace=True) + inplace=True) def add_reversed_pipes(df): @@ -141,7 +141,7 @@ def reduce_capacity(targets, origins, carrier, origin_attr="removed_gas_cap", ta def apply_cut(row): match = targets[ - (targets.bus0 == row.bus0 + " " + carrier) & + (targets.bus0 == row.bus0 + " " + carrier) & (targets.bus1 == row.bus1 + " " + carrier) ].sort_index() cut = row[origin_attr] * conversion_rate @@ -249,33 +249,48 @@ def unravel_oilbus(n): # add buses n.add("Bus", "DE", location="DE", x=10.5, y=51.2, carrier="none") n.add("Bus", "DE oil", location="DE", x=10.5, y=51.2, carrier="oil") + n.add("Bus", "DE oil primary", location="DE", x=10.5, y=51.2, carrier="oil primary") n.add("Bus", "DE renewable oil", location="DE", x=10.5, y=51.2, carrier="renewable oil") n.add( - "Bus", - "EU renewable oil", + "Bus", + "EU renewable oil", location="EU", x=n.buses.loc["EU","x"], y=n.buses.loc["EU","y"], carrier="renewable oil" ) - # add one generator for DE oil + # add one generator for DE oil primary n.add("Generator", - name="DE oil", - bus="DE oil", - carrier="oil", + name="DE oil primary", + bus="DE oil primary", + carrier="oil primary", p_nom_extendable=True, - marginal_cost=n.generators.loc["EU oil"].marginal_cost, + marginal_cost=n.generators.loc["EU oil primary"].marginal_cost, ) - + + # add link for DE oil refining + n.add( + "Link", + "DE oil refining", + bus0="DE oil primary", + bus1="DE oil", + bus2="co2 atmosphere", + location="DE", + carrier="oil refining", + p_nom=1e6, + efficiency=1 - (snakemake.config["industry"]["fuel_refining"]["oil"]["emissions"] / costs.at["oil", "CO2 intensity"]), + efficiency2=snakemake.config["industry"]["fuel_refining"]["oil"]["emissions"], + ) + # change links from EU oil to DE oil german_oil_links = n.links[(n.links.bus0=="EU oil") & (n.links.index.str.contains("DE"))].index - german_FT_links = n.links[(n.links.bus1=="EU oil") & (n.links.index.str.contains("DE"))].index + german_FT_links = n.links[(n.links.bus1=="EU oil") & (n.links.index.str.contains("DE")) & (n.links.index.str.contains("Fischer-Tropsch"))].index n.links.loc[german_oil_links, "bus0"] = "DE oil" n.links.loc[german_FT_links, "bus1"] = "DE renewable oil" # change FT links in rest of Europe - europ_FT_links = n.links[n.links.bus1=="EU oil"].index + europ_FT_links = n.links[(n.links.bus1=="EU oil") & (n.links.index.str.contains("Fischer-Tropsch"))].index n.links.loc[europ_FT_links, "bus1"] = "EU renewable oil" # add links between oil buses @@ -298,19 +313,19 @@ def unravel_oilbus(n): e_cyclic=True, capital_cost=0.02, ) - + # unravel meoh logger.info("Unraveling methanol bus") # add bus n.add( - "Bus", - "DE methanol", + "Bus", + "DE methanol", location="DE", x=n.buses.loc["DE","x"], y=n.buses.loc["DE","y"], carrier="methanol" ) - + # change links from EU meoh to DE meoh DE_meoh_out = n.links[(n.links.bus0=="EU methanol") & (n.links.index.str[:2]=="DE")].index n.links.loc[DE_meoh_out, "bus0"] = "DE methanol" @@ -495,7 +510,7 @@ def aladin_mobility_demand(n): remove_old_boiler_profiles(n) coal_generation_ban(n) - + nuclear_generation_ban(n) first_technology_occurrence(n) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index ef5ded993..6c75e341a 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit ef5ded9935fbce22c5616f4d91a17fde6e657eca +Subproject commit 6c75e341aad535cedb3dd26d9e0f1d413ba4a432 From d231363a897fdab3329f1d710bac33572a59bbe8 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 2 Aug 2024 12:33:22 +0200 Subject: [PATCH 504/669] upstream fix for connection_overnight_cost --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index ef5ded993..ae185dd47 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit ef5ded9935fbce22c5616f4d91a17fde6e657eca +Subproject commit ae185dd47623731d298d79d09fc54223b8789b1b From c5bd06677f21fff062dabeff9110339fd608e528 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 2 Aug 2024 14:51:18 +0200 Subject: [PATCH 505/669] fix renwable: config key --- config/config.yaml | 11 ++++++----- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 7 insertions(+), 6 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 2c51528b6..39afa258c 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -99,14 +99,19 @@ atlite: dx: 0.3 dy: 0.3 time: ['2019', '2019'] + + renewable: onwind: cutout: europe-2019-sarah3-era5-compressed offwind-ac: + capacity_per_sqkm: 6 cutout: europe-2019-sarah3-era5-compressed offwind-dc: + capacity_per_sqkm: 6 cutout: europe-2019-sarah3-era5-compressed offwind-float: + capacity_per_sqkm: 6 cutout: europe-2019-sarah3-era5-compressed solar: cutout: europe-2019-sarah3-era5-compressed @@ -263,11 +268,7 @@ first_technology_occurrence: H2 Electrolysis: 2025 H2 pipeline retrofitted: 2025 -renewable: - offwind-ac: - capacity_per_sqkm: 6 - offwind-dc: - capacity_per_sqkm: 6 + costs: horizon: "mean" # "optimist", "pessimist" or "mean" diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index ef5ded993..ae185dd47 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit ef5ded9935fbce22c5616f4d91a17fde6e657eca +Subproject commit ae185dd47623731d298d79d09fc54223b8789b1b From e381c931eaac0793141d41f808cae4b273645df8 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 2 Aug 2024 15:27:40 +0200 Subject: [PATCH 506/669] rename cutout --- config/config.yaml | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 70dfb8a27..dbb0490fc 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -90,9 +90,9 @@ snapshots: inclusive: 'left' atlite: - default_cutout: europe-2019-sarah3-era5-compressed + default_cutout: europe-2019-sarah3-era5 cutouts: - europe-2019-sarah3-era5-compressed: + europe-2019-sarah3-era5: module: [sarah, era5] # in priority order x: [-12., 42.] y: [33., 72] @@ -103,26 +103,26 @@ atlite: renewable: onwind: - cutout: europe-2019-sarah3-era5-compressed + cutout: europe-2019-sarah3-era5 offwind-ac: capacity_per_sqkm: 6 - cutout: europe-2019-sarah3-era5-compressed + cutout: europe-2019-sarah3-era5 offwind-dc: capacity_per_sqkm: 6 - cutout: europe-2019-sarah3-era5-compressed + cutout: europe-2019-sarah3-era5 offwind-float: capacity_per_sqkm: 6 - cutout: europe-2019-sarah3-era5-compressed + cutout: europe-2019-sarah3-era5 solar: - cutout: europe-2019-sarah3-era5-compressed + cutout: europe-2019-sarah3-era5 solar-hsat: - cutout: europe-2019-sarah3-era5-compressed + cutout: europe-2019-sarah3-era5 hydro: - cutout: europe-2019-sarah3-era5-compressed + cutout: europe-2019-sarah3-era5 lines: dynamic_line_rating: - cutout: europe-2019-sarah3-era5-compressed + cutout: europe-2019-sarah3-era5 # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: From 986bfeee480bfba878cc144d8d7e21e7a18530bb Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 2 Aug 2024 16:54:29 +0200 Subject: [PATCH 507/669] update exporter --- workflow/scripts/export_ariadne_variables.py | 37 ++++++++++++-------- 1 file changed, 23 insertions(+), 14 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 57841ddaf..195401449 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -40,7 +40,7 @@ def _get_oil_fossil_fraction(n, region): total_oil_supply = n.statistics.supply( bus_carrier="oil", **kwargs ).groupby("name").sum().reindex([ - "DE oil", + "DE oil refining", "DE renewable oil -> DE oil", "EU renewable oil -> DE oil", ]).dropna() # If links are not used they are dropped here @@ -49,7 +49,7 @@ def _get_oil_fossil_fraction(n, region): total_oil_supply = n.statistics.supply( bus_carrier="oil", **kwargs ).groupby("name").sum().reindex([ - "EU oil", + "EU oil refining", "DE renewable oil -> EU oil", "EU renewable oil -> EU oil", ]).dropna() @@ -833,7 +833,7 @@ def get_primary_energy(n, region): var = pd.Series() oil_fossil_fraction = _get_oil_fossil_fraction(n, region) - + primary_oil_factor = n.links.query("carrier=='oil refining'").efficiency.unique().item() oil_usage = n.statistics.withdrawal( bus_carrier="oil", **kwargs @@ -850,14 +850,20 @@ def get_primary_energy(n, region): ## Primary Energy var["Primary Energy|Oil|Heat"] = \ - oil_usage.filter(like="urban central oil boiler").sum() + oil_CHP_H_usage + (oil_usage.filter(like="urban central oil boiler").sum() + oil_CHP_H_usage) * primary_oil_factor var["Primary Energy|Oil|Electricity"] = \ - oil_usage.get("oil", 0) + oil_CHP_E_usage + (oil_usage.get("oil", 0) + oil_CHP_E_usage) * primary_oil_factor - var["Primary Energy|Oil"] = oil_usage.sum() + var["Primary Energy|Oil"] = oil_usage.sum() * primary_oil_factor + # At the moment, everyting that is not electricity or heat is counted as liquid fuel + var["Primary Energy|Oil|Liquids"] = ( + var["Primary Energy|Oil"] + - var["Primary Energy|Oil|Electricity"] + - var["Primary Energy|Oil|Heat"] + ) gas_fractions = _get_gas_fractions(n) @@ -1285,7 +1291,7 @@ def get_secondary_energy(n, region, _industry_demand): hydrogen_production.get('H2 Electrolysis', 0) var["Secondary Energy|Hydrogen|Gas"] = \ - hydrogen_production.get(["SMR","SMR CC"]).sum() + hydrogen_production.reindex(["SMR","SMR CC"]).sum() var["Secondary Energy|Hydrogen"] = ( var["Secondary Energy|Hydrogen|Electricity"] @@ -1317,7 +1323,10 @@ def get_secondary_energy(n, region, _industry_demand): "kerosene for aviation", "land transport oil", "naphtha for industry", - "shipping oil" + "shipping oil", + # TODO is decentral heating oil considered a fuel? + "rural oil boiler", + "urban decentral oil boiler" ] ) @@ -1496,7 +1505,6 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios var[f"Final Energy|Non-Energy Use|Gases|{gas_type}"] = \ var["Final Energy|Non-Energy Use|Gases"] * gas_fractions[gas_type] - oil_fossil_fraction = _get_oil_fossil_fraction(n, region) var["Final Energy|Non-Energy Use|Liquids"] = non_energy.naphtha var["Final Energy|Non-Energy Use|Liquids|Petroleum"] = non_energy.naphtha * oil_fossil_fraction @@ -1726,7 +1734,6 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios # var["Final Energy|Residential and Commercial|Hydrogen"] = \ # ! Not implemented - oil_fossil_fraction = _get_oil_fossil_fraction(n, region) oil_usage = n.statistics.withdrawal( bus_carrier="oil", **kwargs ).filter(like=region).groupby( @@ -2340,15 +2347,17 @@ def get_emissions(n, region, _energy_totals): "waste CHP CC", ]).sum() - # var["Emissions|CO2|Energy|Supply|Liquids and Gases"] = \ - # var["Emissions|CO2|Energy|Supply|Liquids"] + var["Emissions|CO2|Energy|Supply|Liquids and Gases"] = \ + var["Emissions|CO2|Energy|Supply|Liquids"] = \ + co2_emissions.get("oil refining", 0) + # var["Emissions|CO2|Energy|Supply|Gases"] + \ var["Emissions|CO2|Energy|Supply"] = \ var["Emissions|CO2|Energy|Supply|Gases"] + \ var["Emissions|CO2|Energy|Supply|Hydrogen"] + \ - var["Emissions|CO2|Energy|Supply|Electricity and Heat"] # + \ - # var["Emissions|CO2|Energy|Supply|Liquids"] + var["Emissions|CO2|Energy|Supply|Electricity and Heat"] + \ + var["Emissions|CO2|Energy|Supply|Liquids"] # var["Emissions|CO2|Energy|Supply|Other Sector"] = \ # var["Emissions|CO2|Energy|Supply|Solids"] = \ From b71842a5c8aba7d7442b1dde442335e90a2ad9b6 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 2 Aug 2024 17:20:17 +0200 Subject: [PATCH 508/669] update DC stations costs --- ariadne-data/costs_2019-modifications.csv | 2 ++ ariadne-data/costs_2020-modifications.csv | 2 ++ ariadne-data/costs_2025-modifications.csv | 2 ++ ariadne-data/costs_2030-modifications.csv | 2 ++ ariadne-data/costs_2035-modifications.csv | 2 ++ ariadne-data/costs_2040-modifications.csv | 2 ++ ariadne-data/costs_2045-modifications.csv | 2 ++ ariadne-data/costs_2050-modifications.csv | 2 ++ 8 files changed, 16 insertions(+) diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv index 0ceaa610e..de5c7ad8f 100644 --- a/ariadne-data/costs_2019-modifications.csv +++ b/ariadne-data/costs_2019-modifications.csv @@ -18,3 +18,5 @@ offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" +offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index 7766724f6..8688e1960 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -18,3 +18,5 @@ offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" +offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index 644fbc9ac..55d885507 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -18,4 +18,6 @@ offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" +offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index 6d742b448..0ed5781e5 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -18,3 +18,5 @@ offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" +offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index c84f854c3..efbe90d44 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -18,4 +18,6 @@ offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" +offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index adc13219e..ff6310339 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -18,4 +18,6 @@ offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" +offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index d0beab023..b4730c7d9 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -18,4 +18,6 @@ offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" +offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index 77d7c4e58..3a0488215 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -18,4 +18,6 @@ offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" +offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" From ab563e6225f3aa98f4e0199d6f835ae33c6e9dbe Mon Sep 17 00:00:00 2001 From: Micha Date: Mon, 5 Aug 2024 15:32:25 +0200 Subject: [PATCH 509/669] Create Changelog.md --- Changelog.md | 3 +++ 1 file changed, 3 insertions(+) create mode 100644 Changelog.md diff --git a/Changelog.md b/Changelog.md new file mode 100644 index 000000000..b9c31c8b7 --- /dev/null +++ b/Changelog.md @@ -0,0 +1,3 @@ +# Changelog + +- added Changelog file From e2e41491430b5153a2efad8a5837dac4ec5b869b Mon Sep 17 00:00:00 2001 From: Micha Date: Mon, 5 Aug 2024 15:44:33 +0200 Subject: [PATCH 510/669] Create PULL_REQUEST_TEMPLATE.md --- .github/PULL_REQUEST_TEMPLATE.md | 6 ++++++ 1 file changed, 6 insertions(+) create mode 100644 .github/PULL_REQUEST_TEMPLATE.md diff --git a/.github/PULL_REQUEST_TEMPLATE.md b/.github/PULL_REQUEST_TEMPLATE.md new file mode 100644 index 000000000..ada30ac3e --- /dev/null +++ b/.github/PULL_REQUEST_TEMPLATE.md @@ -0,0 +1,6 @@ +Before asking for a review for this PR make sure to complete the following checklist: + +- [ ] Workflow with target rule `ariadne_all` completes without errors +- [ ] The logic of `export_ariadne_variables` has been adapted to the changes +- [ ] One or several figures that validate the changes in the PR have been posted as a comment +- [ ] A brief description of the changes has been added to `Changelog.md` From 7e06505595f859a9acd1e32a30c8af5812f2d2f8 Mon Sep 17 00:00:00 2001 From: lkstrp Date: Fri, 2 Aug 2024 15:53:56 +0200 Subject: [PATCH 511/669] ci: add validator --- .github/workflows/validate.yml | 63 ++++++++++++++++++++++++++++++++++ 1 file changed, 63 insertions(+) create mode 100644 .github/workflows/validate.yml diff --git a/.github/workflows/validate.yml b/.github/workflows/validate.yml new file mode 100644 index 000000000..93d5794f8 --- /dev/null +++ b/.github/workflows/validate.yml @@ -0,0 +1,63 @@ +name: Validator Bot + +on: + pull_request: + branches: + - master + - main + +concurrency: + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: true + +jobs: + run-validation: + name: Run validation + runs-on: self-hosted + steps: + - uses: lkstrp/pypsa-validator@main + with: + step: run-self-hosted-validation + env_file: environment.yaml + snakemake_config: config/config.yaml + pre_command: "-call build_scenarios -f" + + upload-artifacts: + name: Upload artifacts + needs: run-validation + runs-on: self-hosted + strategy: + matrix: + include: + - {artifact_name: "results (feature branch)", path: "~/pypsa-ariadne/feature/results"} + - {artifact_name: "results (base branch)", path: "~/pypsa-ariadne/main/results"} + - {artifact_name: "validator-metadata", path: "~/pypsa-ariadne/validator-metadata.yml"} + steps: + - name: Upload artifacts - ${{ matrix.artifact_name }} + uses: actions/upload-artifact@v4 + with: + name: ${{ matrix.artifact_name }} + path: | + ${{ matrix.path }} + if-no-files-found: error + retention-days: 90 + + comment-on-pr: + name: Comment on pull request + needs: upload-artifacts + runs-on: ubuntu-latest + steps: + - uses: lkstrp/pypsa-validator@main + with: + step: create-comment + snakemake_config: config/config.yaml + # The path starting from prefix in config + # For plot results///.png pass + # /.png + plots: > + " + KN2045_Bal_v4/graphs/energy.svg + KN2045_Bal_v4/graphs/costs.svg + KN2045_Bal_v4/graphs/balances-AC.svg + " + repo_private_key: ${{ secrets.REPO_PLOTS_PRIVATE_KEY }} From 15efdb1a5f2f18c33fb04a84d270df978f8201f0 Mon Sep 17 00:00:00 2001 From: lkstrp Date: Mon, 5 Aug 2024 17:42:53 +0200 Subject: [PATCH 512/669] select images and add repo owner path --- .github/workflows/validate.yml | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/.github/workflows/validate.yml b/.github/workflows/validate.yml index 93d5794f8..efe0cd28c 100644 --- a/.github/workflows/validate.yml +++ b/.github/workflows/validate.yml @@ -29,9 +29,9 @@ jobs: strategy: matrix: include: - - {artifact_name: "results (feature branch)", path: "~/pypsa-ariadne/feature/results"} - - {artifact_name: "results (base branch)", path: "~/pypsa-ariadne/main/results"} - - {artifact_name: "validator-metadata", path: "~/pypsa-ariadne/validator-metadata.yml"} + - {artifact_name: "results (feature branch)", path: "~/${{ github.repository }}/feature/results"} + - {artifact_name: "results (base branch)", path: "~/${{ github.repository }}/main/results"} + - {artifact_name: "validator-metadata", path: "~/${{ github.repository }}/validator-metadata.yml"} steps: - name: Upload artifacts - ${{ matrix.artifact_name }} uses: actions/upload-artifact@v4 @@ -56,8 +56,8 @@ jobs: # /.png plots: > " - KN2045_Bal_v4/graphs/energy.svg - KN2045_Bal_v4/graphs/costs.svg - KN2045_Bal_v4/graphs/balances-AC.svg + KN2045_Bal_v4/ariadne/primary_energy.png + KN2045_Bal_v4/ariadne/secondary_energy.png + KN2045_Bal_v4/ariadne/final_energy.png " repo_private_key: ${{ secrets.REPO_PLOTS_PRIVATE_KEY }} From 1778dc14b120121304340eb05b23be09606f749b Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 6 Aug 2024 09:03:10 +0200 Subject: [PATCH 513/669] load chps, change function header --- workflow/scripts/modify_dh_systems.py | 27 ++++++++++++++++++++++++--- 1 file changed, 24 insertions(+), 3 deletions(-) diff --git a/workflow/scripts/modify_dh_systems.py b/workflow/scripts/modify_dh_systems.py index 89d36aec5..7585a799c 100644 --- a/workflow/scripts/modify_dh_systems.py +++ b/workflow/scripts/modify_dh_systems.py @@ -55,7 +55,7 @@ def load_egon(): return egon_gdf -def update_urban_loads(egon_gdf, n_pre): +def update_urban_loads(n_pre, egon_gdf): """ Update district heating demands of clusters according to shares in egon data on NUTS3 level for Germany. Other heat loads are adjusted accordingly to ensure consistency of the nodal heat demand. @@ -140,6 +140,9 @@ def update_urban_loads(egon_gdf, n_pre): def prepare_subnodes(egon_gdf, head=40): + """ + Prepare subnodes for the network based on the Triebs data and the egon data. + """ # TODO: Embed I&O in snakemake rule, add potentials, match CHP capacities # Load and prepare Triebs data @@ -219,7 +222,6 @@ def prepare_subnodes(egon_gdf, head=40): axis=1, ) - # TODO: Function to assign CHPs to subnodes return merged_gdf @@ -276,6 +278,20 @@ def add_subnodes(n, subnodes, head=40): return +def modify_chps(chps): + """ + Modify the CHP dataframe to include the subnodes + """ + + chps["subnode"] = chps.apply( + lambda x: f'{x["cluster"]} {x["Stadtname"]} urban central heat', axis=1 + ) + + chps["capacity"] = chps["capacity"] * chps["demand_share_subnode"] + + return chps + + if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -301,8 +317,13 @@ def add_subnodes(n, subnodes, head=40): n = pypsa.Network(snakemake.input.network) egon_gdf = load_egon() - update_urban_loads(egon_gdf, n) + update_urban_loads(n, egon_gdf) + chps = pd.read_csv(snakemake.input.german_chp) if snakemake.params.add_subnodes_de: subnodes = prepare_subnodes(egon_gdf, snakemake.params.add_subnodes_de) add_subnodes(n, subnodes) + modify_chps(chps, subnodes) + + n.export_to_netcdf(snakemake.output.network) + chps.to_csv(snakemake.output.german_chp, index=False) From 1d12751323373018e46c6fa598e768194e8c8650 Mon Sep 17 00:00:00 2001 From: Micha Date: Tue, 6 Aug 2024 15:20:28 +0200 Subject: [PATCH 514/669] Update PULL_REQUEST_TEMPLATE.md --- .github/PULL_REQUEST_TEMPLATE.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/.github/PULL_REQUEST_TEMPLATE.md b/.github/PULL_REQUEST_TEMPLATE.md index ada30ac3e..c9b3172ca 100644 --- a/.github/PULL_REQUEST_TEMPLATE.md +++ b/.github/PULL_REQUEST_TEMPLATE.md @@ -4,3 +4,5 @@ Before asking for a review for this PR make sure to complete the following check - [ ] The logic of `export_ariadne_variables` has been adapted to the changes - [ ] One or several figures that validate the changes in the PR have been posted as a comment - [ ] A brief description of the changes has been added to `Changelog.md` +- [ ] The latest `main` has been merged into the PR +- [ ] The config has a new prefix of the format `YYYYMMDDdescriptivetitle From c15fdb353092bf629d94a2cea2cdc25ecc9ac534 Mon Sep 17 00:00:00 2001 From: Micha Date: Tue, 6 Aug 2024 15:21:36 +0200 Subject: [PATCH 515/669] Update Changelog.md --- Changelog.md | 1 + 1 file changed, 1 insertion(+) diff --git a/Changelog.md b/Changelog.md index b9c31c8b7..de2462ba3 100644 --- a/Changelog.md +++ b/Changelog.md @@ -1,3 +1,4 @@ # Changelog +- add primary oil bus and account for refinery emissions - added Changelog file From d7c98c211c397164ac2c70f893bb46e96d0c318c Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 6 Aug 2024 15:34:50 +0200 Subject: [PATCH 516/669] update submodule --- config/config.yaml | 2 +- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index f64187908..a75e4cb76 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -15,7 +15,7 @@ run: # - KN2045plus_EasyRide # - KN2045plus_LowDemand # - KN2045minus_WorstCase - - KN2045minus_SupplyFocus + # - KN2045minus_SupplyFocus scenarios: enable: true manual_file: config/scenarios.manual.yaml diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 6c75e341a..ad144ba19 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 6c75e341aad535cedb3dd26d9e0f1d413ba4a432 +Subproject commit ad144ba19cc658facc2359c05c923d0e7fdeb3b9 From 009f660e6571447812260b09bfd1b590417389f0 Mon Sep 17 00:00:00 2001 From: Lukas Trippe Date: Tue, 6 Aug 2024 15:56:11 +0200 Subject: [PATCH 517/669] Update .pre-commit-config.yaml --- .pre-commit-config.yaml | 104 +++++++++++++++++++++++++++++----------- 1 file changed, 76 insertions(+), 28 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 2d12d626d..72eabf9e6 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,44 +1,92 @@ +# SPDX-FileCopyrightText: : 2022 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: CC0-1.0 +exclude: "^LICENSES" + repos: - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v4.2.0 + rev: v4.6.0 hooks: - - id: trailing-whitespace + - id: check-merge-conflict - id: end-of-file-fixer + - id: fix-encoding-pragma - id: mixed-line-ending - - id: check-yaml - - id: check-merge-conflict + - id: trailing-whitespace - id: check-added-large-files - args: ['--maxkb=2000'] -- repo: https://github.com/psf/black - rev: 22.3.0 + args: ["--maxkb=2000"] + + # Sort package imports alphabetically +- repo: https://github.com/PyCQA/isort + rev: 5.13.2 + hooks: + - id: isort + args: ["--profile", "black", "--filter-files"] + + # Convert relative imports to absolute imports +- repo: https://github.com/MarcoGorelli/absolufy-imports + rev: v0.3.1 + hooks: + - id: absolufy-imports + + # Find common spelling mistakes in comments and docstrings +- repo: https://github.com/codespell-project/codespell + rev: v2.3.0 + hooks: + - id: codespell + args: ['--ignore-regex="(\b[A-Z]+\b)"', '--ignore-words-list=fom,appartment,bage,ore,setis,tabacco,berfore,vor'] # Ignore capital case words, e.g. country codes + types_or: [python, rst, markdown] + files: ^(scripts|doc)/ + + # Make docstrings PEP 257 compliant +- repo: https://github.com/PyCQA/docformatter + rev: v1.7.5 + hooks: + - id: docformatter + args: ["--in-place", "--make-summary-multi-line", "--pre-summary-newline"] + +- repo: https://github.com/keewis/blackdoc + rev: v0.3.9 hooks: + - id: blackdoc + + # Formatting with "black" coding style +- repo: https://github.com/psf/black-pre-commit-mirror + rev: 24.4.2 + hooks: + # Format Python files - id: black + # Format Jupyter Python notebooks - id: black-jupyter + + # Remove output from Jupyter notebooks - repo: https://github.com/aflc/pre-commit-jupyter rev: v1.2.1 hooks: - id: jupyter-notebook-cleanup + args: ["--remove-kernel-metadata"] + + # Do YAML formatting (before the linter checks it for misses) +- repo: https://github.com/macisamuele/language-formatters-pre-commit-hooks + rev: v2.14.0 + hooks: + - id: pretty-format-yaml + args: [--autofix, --indent, "2", --preserve-quotes] + + # Format Snakemake rule / workflow files - repo: https://github.com/snakemake/snakefmt - rev: v0.6.0 + rev: v0.10.2 hooks: - id: snakefmt -- repo: https://github.com/jonasbb/pre-commit-latex-hooks - rev: v1.3.0 - hooks: - - id: american-eg-ie - - id: cleveref-capitalization - - id: consistent-spelling - args: - [ - "--emph=et al.", - '--regex=naive=\bna(i|\\"i)ve', - '--regex=optimisation=\boptimi(s|z)ation', - ] - - id: ensure-labels-for-sections - - id: no-space-in-cite - - id: tilde-cite - - id: unique-labels -# - repo: https://github.com/fsfe/reuse-tool -# rev: latest -# hooks: -# - id: reuse \ No newline at end of file + + # For cleaning jupyter notebooks +- repo: https://github.com/aflc/pre-commit-jupyter + rev: v1.2.1 + hooks: + - id: jupyter-notebook-cleanup + exclude: examples/solve-on-remote.ipynb + + # Check for FSFE REUSE compliance (licensing) +- repo: https://github.com/fsfe/reuse-tool + rev: v4.0.3 + hooks: + - id: reuse From ceb7ce88831a5ab1a89f1551e18a41516298220b Mon Sep 17 00:00:00 2001 From: lkstrp Date: Tue, 6 Aug 2024 15:58:22 +0200 Subject: [PATCH 518/669] remove reuse check --- .pre-commit-config.yaml | 9 +-------- 1 file changed, 1 insertion(+), 8 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 72eabf9e6..7a6837aa4 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,6 +1,3 @@ -# SPDX-FileCopyrightText: : 2022 The PyPSA-Eur Authors -# -# SPDX-License-Identifier: CC0-1.0 exclude: "^LICENSES" repos: @@ -85,8 +82,4 @@ repos: - id: jupyter-notebook-cleanup exclude: examples/solve-on-remote.ipynb - # Check for FSFE REUSE compliance (licensing) -- repo: https://github.com/fsfe/reuse-tool - rev: v4.0.3 - hooks: - - id: reuse + From ca1f43c23f1c0936cb9f9e1062854fdf0060c409 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 6 Aug 2024 13:59:19 +0000 Subject: [PATCH 519/669] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- .github/workflows/validate.yml | 30 +- .pre-commit-config.yaml | 2 - .syncignore-send | 2 +- CITATION.cff | 2 +- ariadne-data/costs_2025-modifications.csv | 1 - ariadne-data/costs_2035-modifications.csv | 1 - ariadne-data/costs_2040-modifications.csv | 1 - ariadne-data/costs_2045-modifications.csv | 1 - ariadne-data/costs_2050-modifications.csv | 1 - config/config.personal.yaml | 2 +- config/config.public.yaml | 16 +- config/config.yaml | 72 +- config/scenarios.manual.yaml | 8 +- config/scenarios.public.yaml | 2 +- environment.yaml | 1 - workflow/Snakefile | 214 +- workflow/scripts/additional_functionality.py | 361 +- workflow/scripts/build_existing_chp_de.py | 12 +- workflow/scripts/build_mobility_demand.py | 34 +- workflow/scripts/build_scenarios.py | 149 +- .../scripts/build_wasserstoff_kernnetz.py | 45 +- workflow/scripts/check_sector_ratios.py | 6 +- .../scripts/cluster_wasserstoff_kernnetz.py | 15 +- workflow/scripts/export_ariadne_variables.py | 4073 +++++++++-------- workflow/scripts/modify_cost_data.py | 69 +- workflow/scripts/modify_energy_totals.py | 7 +- workflow/scripts/modify_existing_heating.py | 38 +- workflow/scripts/modify_industry_demand.py | 146 +- workflow/scripts/modify_prenetwork.py | 327 +- .../plot_ariadne_scenario_comparison.py | 31 +- workflow/scripts/plot_ariadne_variables.py | 349 +- workflow/scripts/retrieve_ariadne_database.py | 7 +- 32 files changed, 3509 insertions(+), 2516 deletions(-) diff --git a/.github/workflows/validate.yml b/.github/workflows/validate.yml index efe0cd28c..2430f1592 100644 --- a/.github/workflows/validate.yml +++ b/.github/workflows/validate.yml @@ -29,16 +29,16 @@ jobs: strategy: matrix: include: - - {artifact_name: "results (feature branch)", path: "~/${{ github.repository }}/feature/results"} - - {artifact_name: "results (base branch)", path: "~/${{ github.repository }}/main/results"} - - {artifact_name: "validator-metadata", path: "~/${{ github.repository }}/validator-metadata.yml"} + - {artifact_name: "results (feature branch)", path: "~/${{ github.repository }}/feature/results"} + - {artifact_name: "results (base branch)", path: "~/${{ github.repository }}/main/results"} + - {artifact_name: "validator-metadata", path: "~/${{ github.repository }}/validator-metadata.yml"} steps: - name: Upload artifacts - ${{ matrix.artifact_name }} uses: actions/upload-artifact@v4 with: name: ${{ matrix.artifact_name }} path: | - ${{ matrix.path }} + ${{ matrix.path }} if-no-files-found: error retention-days: 90 @@ -47,17 +47,17 @@ jobs: needs: upload-artifacts runs-on: ubuntu-latest steps: - - uses: lkstrp/pypsa-validator@main - with: - step: create-comment - snakemake_config: config/config.yaml + - uses: lkstrp/pypsa-validator@main + with: + step: create-comment + snakemake_config: config/config.yaml # The path starting from prefix in config # For plot results///.png pass # /.png - plots: > - " - KN2045_Bal_v4/ariadne/primary_energy.png - KN2045_Bal_v4/ariadne/secondary_energy.png - KN2045_Bal_v4/ariadne/final_energy.png - " - repo_private_key: ${{ secrets.REPO_PLOTS_PRIVATE_KEY }} + plots: > + " + KN2045_Bal_v4/ariadne/primary_energy.png + KN2045_Bal_v4/ariadne/secondary_energy.png + KN2045_Bal_v4/ariadne/final_energy.png + " + repo_private_key: ${{ secrets.REPO_PLOTS_PRIVATE_KEY }} diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 7a6837aa4..b0b0eb946 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -81,5 +81,3 @@ repos: hooks: - id: jupyter-notebook-cleanup exclude: examples/solve-on-remote.ipynb - - diff --git a/.syncignore-send b/.syncignore-send index 2aea6014c..7fddd27ae 100644 --- a/.syncignore-send +++ b/.syncignore-send @@ -9,4 +9,4 @@ __pycache__ .ipynb_checkpoints .vscode resources -results \ No newline at end of file +results diff --git a/CITATION.cff b/CITATION.cff index cc8d796c8..6ddaf4f18 100644 --- a/CITATION.cff +++ b/CITATION.cff @@ -10,4 +10,4 @@ authors: - family-names: Your surname given-names: Christoph Tries orcid: https://orcid.org/0009-0000-2425-0993 - \ No newline at end of file + diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index 55d885507..c9a17eec6 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -20,4 +20,3 @@ offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" - diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index efbe90d44..14cee9988 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -20,4 +20,3 @@ offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" - diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index ff6310339..79aee4026 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -20,4 +20,3 @@ offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" - diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index b4730c7d9..98b3dee78 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -20,4 +20,3 @@ offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" - diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index 3a0488215..3e36eaad2 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -20,4 +20,3 @@ offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" - diff --git a/config/config.personal.yaml b/config/config.personal.yaml index 61042763c..bbf12fb39 100644 --- a/config/config.personal.yaml +++ b/config/config.personal.yaml @@ -13,4 +13,4 @@ private: remote: ssh: "" - path: "" \ No newline at end of file + path: "" diff --git a/config/config.public.yaml b/config/config.public.yaml index 878d657e8..e28e62154 100644 --- a/config/config.public.yaml +++ b/config/config.public.yaml @@ -12,12 +12,12 @@ run: enable: true manual_file: config/scenarios.public.yaml file: config/scenarios.automated.yaml - shared_resources: + shared_resources: policy: base #stops recalculating exclude: - - existing_heating.csv # specify files which should not be shared between scenarios - - costs - - retrieve_cost # This is necessary to save retrieve_cost_data_{year}.log in the correct folder + - existing_heating.csv # specify files which should not be shared between scenarios + - costs + - retrieve_cost # This is necessary to save retrieve_cost_data_{year}.log in the correct folder iiasa_database: db_name: ariadne @@ -28,8 +28,8 @@ iiasa_database: transport_stock: DLR-VECTOR21 industry: FORECAST v1.0 scenarios: - - 8Gt_Bal_v3 - - 8Gt_Elec_v3 - - 8Gt_H2_v3 + - 8Gt_Bal_v3 + - 8Gt_Elec_v3 + - 8Gt_H2_v3 reference_scenario: 8Gt_Bal_v3 - region: Deutschland \ No newline at end of file + region: Deutschland diff --git a/config/config.yaml b/config/config.yaml index a75e4cb76..9e8dcb19e 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -23,11 +23,11 @@ run: shared_resources: policy: base #stops recalculating exclude: - - existing_heating.csv # specify files which should not be shared between scenarios - - costs - - retrieve_cost # This is necessary to save retrieve_cost_data_{year}.log in the correct folder - - industry_sector_ratios - - build_industry_sector_ratios # This is necessary to save build_industry_sector_ratios_data.log in the correct folder + - existing_heating.csv # specify files which should not be shared between scenarios + - costs + - retrieve_cost # This is necessary to save retrieve_cost_data_{year}.log in the correct folder + - industry_sector_ratios + - build_industry_sector_ratios # This is necessary to save build_industry_sector_ratios_data.log in the correct folder disable_progressbar: true debug_co2_limit: false debug_h2deriv_limit: false @@ -41,14 +41,14 @@ iiasa_database: transport: Aladin v1 industry: FORECAST v1.0 scenarios: - - CurrentPolicies - - KN2045_Elec_v4 - - KN2045_H2_v4 - - KN2045_Bal_v4 - - KN2045plus_EasyRide - - KN2045plus_LowDemand - - KN2045minus_WorstCase - - KN2045minus_SupplyFocus + - CurrentPolicies + - KN2045_Elec_v4 + - KN2045_H2_v4 + - KN2045_Bal_v4 + - KN2045plus_EasyRide + - KN2045plus_LowDemand + - KN2045minus_WorstCase + - KN2045minus_SupplyFocus reference_scenario: KN2045_Bal_v4 region: Deutschland @@ -67,7 +67,7 @@ scenario: opts: - '' sector_opts: - - none + - none planning_horizons: - 2020 - 2025 @@ -102,7 +102,7 @@ atlite: dy: 0.3 time: ['2019', '2019'] - + renewable: onwind: cutout: europe-2019-sarah3-era5 @@ -205,28 +205,28 @@ limits_capacity_max: 2045: 400 limits_capacity_min: - Generator: - onwind: - DE: - 2030: 115 # Wind-an-Land Law - 2035: 115 # Wind-an-Land Law - 2040: 115 # Wind-an-Land Law - 2045: 115 - offwind: - DE: - 2030: 30 # Wind-auf-See Law - 2035: 30 - 2040: 30 - 2045: 30 - solar: - DE: + Generator: + onwind: + DE: + 2030: 115 # Wind-an-Land Law + 2035: 115 # Wind-an-Land Law + 2040: 115 # Wind-an-Land Law + 2045: 115 + offwind: + DE: + 2030: 30 # Wind-auf-See Law + 2035: 30 + 2040: 30 + 2045: 30 + solar: + DE: # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, # assuming at least 1/3 of difference reached in 2025 - 2025: 101 - 2030: 101 - 2035: 101 - 2040: 101 - 2045: 101 + 2025: 101 + 2030: 101 + 2035: 101 + 2040: 101 + 2045: 101 # limits_capacity_min: @@ -461,7 +461,7 @@ plotting: #powerplants_filter: (DateOut >= 2019 or DateOut != DateOut) electricity: powerplants_filter: (DateOut >= 2019 or DateOut != DateOut) and not (Country == "DE" and Set == "CHP") - custom_powerplants: True + custom_powerplants: true custom_file: resources/german_chp.csv estimate_renewable_capacities: year: 2019 diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 144b741ac..507e8a5b4 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -275,7 +275,7 @@ KN2045_H2_v4: DE: 2020: 0 2025: 5 - 2030: 45 # scenario guidelines + 2030: 45 # scenario guidelines 2035: 155 2040: 265 2045: 400 # scenario guidelines @@ -377,9 +377,9 @@ KN2045plus_EasyRide: steam_hydrogen_fraction: 0.3 steam_electricity_fraction: 0.3 - + KN2045plus_LowDemand: -# Im Vergleich zu Easy Ride eher knappe EE Erzeugung +# Im Vergleich zu Easy Ride eher knappe EE Erzeugung # innerhalb Deutschlands und knappe Importe EE möglich iiasa_database: reference_scenario: KN2045plus_LowDemand # TODO: wait for database @@ -622,7 +622,7 @@ KN2045minus_SupplyFocus: 2045: 30 solar: DE: - 2025: 101 + 2025: 101 2030: 215 # PV strategy 2035: 215 # not forcing more EE 2040: 215 diff --git a/config/scenarios.public.yaml b/config/scenarios.public.yaml index f2128ab57..655ce97c2 100644 --- a/config/scenarios.public.yaml +++ b/config/scenarios.public.yaml @@ -142,7 +142,7 @@ DE: 2020: 0 2025: 5 - 2030: 45 # scenario guidelines + 2030: 45 # scenario guidelines 2035: 155 2040: 265 2045: 400 # scenario guidelines diff --git a/environment.yaml b/environment.yaml index d9868379f..5ab9a6ccf 100644 --- a/environment.yaml +++ b/environment.yaml @@ -66,4 +66,3 @@ dependencies: - snakemake-executor-plugin-cluster-generic - highspy # - git+https://github.com/PyPSA/pypsa@master # Until new release - diff --git a/workflow/Snakefile b/workflow/Snakefile index 2e64acad7..05c3c1c8c 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -6,22 +6,27 @@ from shutil import unpack_archive from snakemake.utils import min_version + include: "submodules/pypsa-eur/rules/common.smk" + import yaml, sys -from shutil import move +from shutil import move + sys.path.append("workflow/submodules/pypsa-eur/scripts") from _helpers import path_provider, get_scenarios, get_rdir min_version("8.5") + configfile: "workflow/submodules/pypsa-eur/config/config.default.yaml" configfile: "config/config.yaml" configfile: "config/config.personal.yaml" + run = config["run"] -scenarios = get_scenarios(run) # global variable +scenarios = get_scenarios(run) # global variable RDIR = get_rdir(run) policy = run["shared_resources"]["policy"] exclude = run["shared_resources"]["exclude"] @@ -31,6 +36,7 @@ resources = path_provider("resources/", RDIR, policy, exclude) RESULTS = "results/" + RDIR + wildcard_constraints: simpl="[a-zA-Z0-9]*", clusters="[0-9]+(m|c)?|all", @@ -40,6 +46,7 @@ wildcard_constraints: planning_horizons="[0-9]*", year="[0-9]*", + module pypsaeur: snakefile: "submodules/pypsa-eur/Snakefile" @@ -53,6 +60,8 @@ use rule * from pypsaeur from pathlib import Path data_dir = Path("workflow/submodules/pypsa-eur/data") + + rule get_data: output: [ @@ -68,13 +77,14 @@ rule get_data: rule clean: - message: "Remove all build results but keep downloaded data." + message: + "Remove all build results but keep downloaded data." run: - import shutil + import shutil - shutil.rmtree("resources") - shutil.rmtree("results") - print("Data downloaded to data/ has not been cleaned.") + shutil.rmtree("resources") + shutil.rmtree("results") + print("Data downloaded to data/ has not been cleaned.") rule retrieve_ariadne_database: @@ -85,9 +95,9 @@ rule retrieve_ariadne_database: output: data=resources("ariadne_database.csv"), log: - "logs/retrieve_ariadne_database.log" + "logs/retrieve_ariadne_database.log", resources: - mem_mb=1000 + mem_mb=1000, script: "scripts/retrieve_ariadne_database.py" @@ -113,20 +123,24 @@ rule modify_cost_data: cost_horizon=config_provider("costs", "horizon"), NEP=config_provider("costs", "NEP"), planning_horizons=config_provider("scenario", "planning_horizons"), - co2_price_add_on_fossils = config_provider("co2_price_add_on_fossils"), + co2_price_add_on_fossils=config_provider("co2_price_add_on_fossils"), input: modifications=lambda w: ( "ariadne-data/costs_2019-modifications.csv" - if w.planning_horizons == "2020" and config_provider("energy", "energy_totals_year") == 2019 - else "ariadne-data/costs_{planning_horizons}-modifications.csv") + if w.planning_horizons == "2020" + and config_provider("energy", "energy_totals_year") == 2019 + else "ariadne-data/costs_{planning_horizons}-modifications.csv" + ), output: resources("costs_{planning_horizons}.csv"), resources: - mem_mb=1000 + mem_mb=1000, script: "scripts/modify_cost_data.py" + if config["enable"]["retrieve"] and config["enable"].get("retrieve_cost_data", True): + ruleorder: modify_cost_data > retrieve_cost_data @@ -140,9 +154,11 @@ rule build_mobility_demand: ariadne=resources("ariadne_database.csv"), clustered_pop_layout=resources("pop_layout_elec_s{simpl}_{clusters}.csv"), output: - mobility_demand=resources("mobility_demand_aladin_{simpl}_{clusters}_{planning_horizons}.csv"), + mobility_demand=resources( + "mobility_demand_aladin_{simpl}_{clusters}_{planning_horizons}.csv" + ), resources: - mem_mb=1000 + mem_mb=1000, script: "scripts/build_mobility_demand.py" @@ -158,35 +174,57 @@ rule modify_prenetwork: coal_ban=config_provider("coal_generation_ban"), nuclear_ban=config_provider("nuclear_generation_ban"), planning_horizons=config_provider("scenario", "planning_horizons"), - H2_transmission_efficiency=config_provider("sector", "transmission_efficiency", "H2 pipeline"), + H2_transmission_efficiency=config_provider( + "sector", "transmission_efficiency", "H2 pipeline" + ), H2_retrofit=config_provider("sector", "H2_retrofit"), - H2_retrofit_capacity_per_CH4=config_provider("sector", "H2_retrofit_capacity_per_CH4"), + H2_retrofit_capacity_per_CH4=config_provider( + "sector", "H2_retrofit_capacity_per_CH4" + ), transmission_costs=config_provider("costs", "transmission"), biomass_must_run=config_provider("must_run_biomass"), clustering=config_provider("clustering", "temporal", "resolution_sector"), input: network=RESULTS + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", - wkn=resources("wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv") if config_provider("wasserstoff_kernnetz", "enable") else [], + wkn=( + resources("wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv") + if config_provider("wasserstoff_kernnetz", "enable") + else [] + ), costs=resources("costs_{planning_horizons}.csv"), - aladin_demand=resources("mobility_demand_aladin_{simpl}_{clusters}_{planning_horizons}.csv"), + aladin_demand=resources( + "mobility_demand_aladin_{simpl}_{clusters}_{planning_horizons}.csv" + ), transport_data=resources("transport_data_s{simpl}_{clusters}.csv"), output: network=RESULTS - + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" + + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", resources: - mem_mb=1000 + mem_mb=1000, script: "scripts/modify_prenetwork.py" + ruleorder: modify_industry_demand > build_industrial_production_per_country_tomorrow + use rule solve_sector_network_myopic from pypsaeur with: params: - **{k: v for k, v in rules.solve_sector_network_myopic.params.items() if k != "custom_extra_functionality"}, - custom_extra_functionality=os.path.join(os.path.dirname(workflow.snakefile), "scripts/additional_functionality.py"), + **{ + k: v + for k, v in rules.solve_sector_network_myopic.params.items() + if k != "custom_extra_functionality" + }, + custom_extra_functionality=os.path.join( + os.path.dirname(workflow.snakefile), "scripts/additional_functionality.py" + ), input: - **{k: v for k, v in rules.solve_sector_network_myopic.input.items() if k != "network"}, + **{ + k: v + for k, v in rules.solve_sector_network_myopic.input.items() + if k != "network" + }, network=RESULTS + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", co2_totals_name=resources("co2_totals.csv"), @@ -195,14 +233,16 @@ use rule solve_sector_network_myopic from pypsaeur with: rule modify_existing_heating: params: iiasa_reference_scenario=config_provider("iiasa_database", "reference_scenario"), - fallback_reference_scenario=config_provider("iiasa_database", "fallback_reference_scenario"), + fallback_reference_scenario=config_provider( + "iiasa_database", "fallback_reference_scenario" + ), input: ariadne=resources("ariadne_database.csv"), existing_heating="data/existing_infrastructure/existing_heating_raw.csv", output: existing_heating=resources("existing_heating.csv"), resources: - mem_mb=1000 + mem_mb=1000, script: "scripts/modify_existing_heating.py" @@ -236,33 +276,52 @@ rule build_existing_chp_de: script: "scripts/build_existing_chp_de.py" + use rule add_existing_baseyear from pypsaeur with: input: **rules.add_existing_baseyear.input, custom_powerplants=resources("german_chp.csv"), + use rule build_existing_heating_distribution from pypsaeur with: input: - **{k: v for k, v in rules.build_existing_heating_distribution.input.items() if k != "existing_heating"}, + **{ + k: v + for k, v in rules.build_existing_heating_distribution.input.items() + if k != "existing_heating" + }, existing_heating=resources("existing_heating.csv"), + rule modify_industry_demand: params: db_name=config_provider("iiasa_database", "db_name"), input: ariadne=resources("ariadne_database.csv"), - industrial_production_per_country_tomorrow=resources("industrial_production_per_country_tomorrow_{planning_horizons}.csv"), + industrial_production_per_country_tomorrow=resources( + "industrial_production_per_country_tomorrow_{planning_horizons}.csv" + ), output: - industrial_production_per_country_tomorrow=resources("industrial_production_per_country_tomorrow_{planning_horizons}-modified.csv"), + industrial_production_per_country_tomorrow=resources( + "industrial_production_per_country_tomorrow_{planning_horizons}-modified.csv" + ), resources: - mem_mb=1000 + mem_mb=1000, script: "scripts/modify_industry_demand.py" + use rule build_industrial_production_per_node from pypsaeur with: input: - **{k: v for k, v in rules.build_industrial_production_per_node.input.items() if k != "industrial_production_per_country_tomorrow"}, - industrial_production_per_country_tomorrow=resources("industrial_production_per_country_tomorrow_{planning_horizons}-modified.csv"), + **{ + k: v + for k, v in rules.build_industrial_production_per_node.input.items() + if k != "industrial_production_per_country_tomorrow" + }, + industrial_production_per_country_tomorrow=resources( + "industrial_production_per_country_tomorrow_{planning_horizons}-modified.csv" + ), + rule modify_energy_totals: input: @@ -271,14 +330,18 @@ rule modify_energy_totals: output: energy_totals=resources("energy_totals-modified.csv"), resources: - mem_mb=1000 + mem_mb=1000, script: "scripts/modify_energy_totals.py" use rule build_population_weighted_energy_totals from pypsaeur with: input: - **{k: v for k, v in rules.build_population_weighted_energy_totals.input.items() if k != "energy_totals"}, + **{ + k: v + for k, v in rules.build_population_weighted_energy_totals.input.items() + if k != "energy_totals" + }, energy_totals=resources("energy_totals-modified.csv"), @@ -307,13 +370,15 @@ rule build_wasserstoff_kernnetz: rule cluster_wasserstoff_kernnetz: params: - kernnetz = config_provider("wasserstoff_kernnetz") + kernnetz=config_provider("wasserstoff_kernnetz"), input: cleaned_h2_network=resources("wasserstoff_kernnetz.csv"), regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"), regions_offshore=resources("regions_offshore_elec_s{simpl}_{clusters}.geojson"), output: - clustered_h2_network=resources("wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv"), + clustered_h2_network=resources( + "wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv" + ), script: "scripts/cluster_wasserstoff_kernnetz.py" @@ -323,31 +388,37 @@ rule download_ariadne_template: storage( "https://github.com/iiasa/ariadne-intern-workflow/raw/main/attachments/2024-05-29_template_Ariadne.xlsx", keep_local=True, - ) + ), output: - resources("template_ariadne_database.xlsx") + resources("template_ariadne_database.xlsx"), run: move(input[0], output[0]) + rule export_ariadne_variables: params: length_factor=config_provider("lines", "length_factor"), - dg_cost_factor=config_provider("sector", "electricity_distribution_grid_cost_factor"), - planning_horizons = config_provider("scenario","planning_horizons"), - hours=config_provider("clustering","temporal","resolution_sector"), + dg_cost_factor=config_provider( + "sector", "electricity_distribution_grid_cost_factor" + ), + planning_horizons=config_provider("scenario", "planning_horizons"), + hours=config_provider("clustering", "temporal", "resolution_sector"), costs=config_provider("costs"), energy_totals_year=config_provider("energy", "energy_totals_year"), - co2_price_add_on_fossils = config_provider("co2_price_add_on_fossils"), - co2_sequestration_cost=config_provider("sector","co2_sequestration_cost"), + co2_price_add_on_fossils=config_provider("co2_price_add_on_fossils"), + co2_sequestration_cost=config_provider("sector", "co2_sequestration_cost"), input: template=resources("template_ariadne_database.xlsx"), industry_demands=expand( - resources("industrial_energy_demand_elec_s{simpl}_{clusters}_{planning_horizons}.csv"), + resources( + "industrial_energy_demand_elec_s{simpl}_{clusters}_{planning_horizons}.csv" + ), **config["scenario"], allow_missing=True, ), networks=expand( - RESULTS + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + RESULTS + + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", **config["scenario"], allow_missing=True, ), @@ -357,7 +428,9 @@ rule export_ariadne_variables: allow_missing=True, ), industrial_production_per_country_tomorrow=expand( - resources("industrial_production_per_country_tomorrow_{planning_horizons}-modified.csv"), + resources( + "industrial_production_per_country_tomorrow_{planning_horizons}-modified.csv" + ), **config["scenario"], allow_missing=True, ), @@ -372,7 +445,7 @@ rule export_ariadne_variables: exported_variables=RESULTS + "ariadne/exported_variables.xlsx", exported_variables_full=RESULTS + "ariadne/exported_variables_full.xlsx", log: - RESULTS + "logs/export_ariadne_variables.log" + RESULTS + "logs/export_ariadne_variables.log", script: "scripts/export_ariadne_variables.py" @@ -380,7 +453,9 @@ rule export_ariadne_variables: rule plot_ariadne_variables: params: iiasa_scenario=config_provider("iiasa_database", "reference_scenario"), - fallback_reference_scenario=config_provider("iiasa_database", "fallback_reference_scenario"), + fallback_reference_scenario=config_provider( + "iiasa_database", "fallback_reference_scenario" + ), input: exported_variables_full=RESULTS + "ariadne/exported_variables_full.xlsx", ariadne_database=resources("ariadne_database.csv"), @@ -396,17 +471,19 @@ rule plot_ariadne_variables: energy_demand_emissions=RESULTS + "ariadne/energy_demand_emissions.png", energy_supply_emissions=RESULTS + "ariadne/energy_supply_emissions.png", co2_emissions=RESULTS + "ariadne/co2_emissions.png", - primary_energy_price = RESULTS + "ariadne/primary_energy_price.png", - secondary_energy_price = RESULTS + "ariadne/secondary_energy_price.png", + primary_energy_price=RESULTS + "ariadne/primary_energy_price.png", + secondary_energy_price=RESULTS + "ariadne/secondary_energy_price.png", #final_energy_residential_price = RESULTS + "ariadne/final_energy_residential_price.png", - final_energy_industry_price = RESULTS + "ariadne/final_energy_industry_price.png", - final_energy_transportation_price = RESULTS + "ariadne/final_energy_transportation_price.png", - final_energy_residential_commercial_price = RESULTS + "ariadne/final_energy_residential_commercial_price.png", - all_prices = RESULTS + "ariadne/all_prices.png", - policy_carbon = RESULTS + "ariadne/policy_carbon.png", - investment_energy_supply = RESULTS + "ariadne/investment_energy_supply.png", - elec_val_2020 = RESULTS + "ariadne/elec_val_2020.png", - trade = RESULTS + "ariadne/trade.png", + final_energy_industry_price=RESULTS + "ariadne/final_energy_industry_price.png", + final_energy_transportation_price=RESULTS + + "ariadne/final_energy_transportation_price.png", + final_energy_residential_commercial_price=RESULTS + + "ariadne/final_energy_residential_commercial_price.png", + all_prices=RESULTS + "ariadne/all_prices.png", + policy_carbon=RESULTS + "ariadne/policy_carbon.png", + investment_energy_supply=RESULTS + "ariadne/investment_energy_supply.png", + elec_val_2020=RESULTS + "ariadne/elec_val_2020.png", + trade=RESULTS + "ariadne/trade.png", script: "scripts/plot_ariadne_variables.py" @@ -414,15 +491,22 @@ rule plot_ariadne_variables: rule ariadne_all: input: expand(RESULTS + "graphs/costs.svg", run=config_provider("run", "name")), - expand(RESULTS + "ariadne/capacity_detailed.png", run=config_provider("run", "name")), - exported_variables=expand(RESULTS + "ariadne/exported_variables_full.xlsx", run=config_provider("run", "name")), + expand( + RESULTS + "ariadne/capacity_detailed.png", + run=config_provider("run", "name"), + ), + exported_variables=expand( + RESULTS + "ariadne/exported_variables_full.xlsx", + run=config_provider("run", "name"), + ), script: "scripts/plot_ariadne_scenario_comparison.py" + rule build_scenarios: params: scenarios=config_provider("run", "name"), - db_name=config_provider("iiasa_database","db_name"), + db_name=config_provider("iiasa_database", "db_name"), leitmodelle=config_provider("iiasa_database", "leitmodelle"), input: ariadne_database=resources("ariadne_database.csv"), @@ -430,14 +514,16 @@ rule build_scenarios: output: scenario_yaml=config["run"]["scenarios"]["file"], log: - "logs/build_scenarios.log" + "logs/build_scenarios.log", script: "scripts/build_scenarios.py" + rule check_sector_ratios: input: - network=RESULTS + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + network=RESULTS + + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", log: - "logs/check_sector_ratios.log" + "logs/check_sector_ratios.log", script: "scripts/check_sector_ratios.py" diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 25fe97a01..a46817917 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -1,9 +1,9 @@ +# -*- coding: utf-8 -*- import logging import pandas as pd from prepare_sector_network import determine_emission_sectors - from xarray import DataArray logger = logging.getLogger(__name__) @@ -18,23 +18,36 @@ def add_min_limits(n, investment_year, config): for ct in config["limits_capacity_min"][c.name][carrier]: # check if the limit is defined for the investement year - if investment_year not in config["limits_capacity_min"][c.name][carrier][ct].keys(): + if ( + investment_year + not in config["limits_capacity_min"][c.name][carrier][ct].keys() + ): continue - limit = 1e3*config["limits_capacity_min"][c.name][carrier][ct][investment_year] + limit = ( + 1e3 + * config["limits_capacity_min"][c.name][carrier][ct][ + investment_year + ] + ) - logger.info(f"Adding constraint on {c.name} {carrier} capacity in {ct} to be greater than {limit} MW") + logger.info( + f"Adding constraint on {c.name} {carrier} capacity in {ct} to be greater than {limit} MW" + ) valid_components = ( - (c.df.index.str[:2] == ct) & - (c.df.carrier.str[:len(carrier)] == carrier) & - ~c.df.carrier.str.contains("thermal")) # exclude solar thermal - + (c.df.index.str[:2] == ct) + & (c.df.carrier.str[: len(carrier)] == carrier) + & ~c.df.carrier.str.contains("thermal") + ) # exclude solar thermal + existing_index = c.df.index[valid_components & ~c.df.p_nom_extendable] extendable_index = c.df.index[valid_components & c.df.p_nom_extendable] existing_capacity = c.df.loc[existing_index, "p_nom"].sum() - logger.info(f"Existing {c.name} {carrier} capacity in {ct}: {existing_capacity} MW") + logger.info( + f"Existing {c.name} {carrier} capacity in {ct}: {existing_capacity} MW" + ) p_nom = n.model[c.name + "-p_nom"].loc[extendable_index] @@ -54,7 +67,8 @@ def add_min_limits(n, investment_year, config): type="", carrier_attribute="", ) - + + def add_max_limits(n, investment_year, config): for c in n.iterate_components(config["limits_capacity_max"]): @@ -63,22 +77,35 @@ def add_max_limits(n, investment_year, config): for carrier in config["limits_capacity_max"][c.name]: for ct in config["limits_capacity_max"][c.name][carrier]: - if investment_year not in config["limits_capacity_max"][c.name][carrier][ct].keys(): + if ( + investment_year + not in config["limits_capacity_max"][c.name][carrier][ct].keys() + ): continue - limit = 1e3*config["limits_capacity_max"][c.name][carrier][ct][investment_year] + limit = ( + 1e3 + * config["limits_capacity_max"][c.name][carrier][ct][ + investment_year + ] + ) valid_components = ( - (c.df.index.str[:2] == ct) & - (c.df.carrier.str[:len(carrier)] == carrier) & - ~c.df.carrier.str.contains("thermal")) # exclude solar thermal - + (c.df.index.str[:2] == ct) + & (c.df.carrier.str[: len(carrier)] == carrier) + & ~c.df.carrier.str.contains("thermal") + ) # exclude solar thermal + existing_index = c.df.index[valid_components & ~c.df.p_nom_extendable] extendable_index = c.df.index[valid_components & c.df.p_nom_extendable] existing_capacity = c.df.loc[existing_index, "p_nom"].sum() - logger.info(f"Existing {c.name} {carrier} capacity in {ct}: {existing_capacity} MW") - logger.info(f"Adding constraint on {c.name} {carrier} capacity in {ct} to be smaller than {limit} MW") + logger.info( + f"Existing {c.name} {carrier} capacity in {ct}: {existing_capacity} MW" + ) + logger.info( + f"Adding constraint on {c.name} {carrier} capacity in {ct} to be smaller than {limit} MW" + ) p_nom = n.model[c.name + "-p_nom"].loc[extendable_index] @@ -86,13 +113,14 @@ def add_max_limits(n, investment_year, config): cname = f"capacity_maximum-{ct}-{c.name}-{carrier.replace(' ','-')}" if limit - existing_capacity <= 0: - n.model.add_constraints( - lhs <= 0, name=f"GlobalConstraint-{cname}" + n.model.add_constraints(lhs <= 0, name=f"GlobalConstraint-{cname}") + logger.warning( + f"Existing capacity in {ct} for carrier {carrier} already exceeds the limit of {limit} MW. Limiting capacity expansion for this investment period to 0." ) - logger.warning(f"Existing capacity in {ct} for carrier {carrier} already exceeds the limit of {limit} MW. Limiting capacity expansion for this investment period to 0.") else: n.model.add_constraints( - lhs <= limit - existing_capacity, name=f"GlobalConstraint-{cname}" + lhs <= limit - existing_capacity, + name=f"GlobalConstraint-{cname}", ) if cname not in n.global_constraints.index: n.add( @@ -108,24 +136,34 @@ def add_max_limits(n, investment_year, config): def h2_import_limits(n, snapshots, investment_year, config): for ct in config["limits_volume_max"]["h2_import"]: - limit = config["limits_volume_max"]["h2_import"][ct][investment_year]*1e6 + limit = config["limits_volume_max"]["h2_import"][ct][investment_year] * 1e6 logger.info(f"limiting H2 imports in {ct} to {limit/1e6} TWh/a") - incoming = n.links.index[(n.links.carrier == "H2 pipeline") & (n.links.bus0.str[:2] != ct) & (n.links.bus1.str[:2] == ct)] - outgoing = n.links.index[(n.links.carrier == "H2 pipeline") & (n.links.bus0.str[:2] == ct) & (n.links.bus1.str[:2] != ct)] - - incoming_p = (n.model["Link-p"].loc[:, incoming]*n.snapshot_weightings.generators).sum() - outgoing_p = (n.model["Link-p"].loc[:, outgoing]*n.snapshot_weightings.generators).sum() + incoming = n.links.index[ + (n.links.carrier == "H2 pipeline") + & (n.links.bus0.str[:2] != ct) + & (n.links.bus1.str[:2] == ct) + ] + outgoing = n.links.index[ + (n.links.carrier == "H2 pipeline") + & (n.links.bus0.str[:2] == ct) + & (n.links.bus1.str[:2] != ct) + ] + + incoming_p = ( + n.model["Link-p"].loc[:, incoming] * n.snapshot_weightings.generators + ).sum() + outgoing_p = ( + n.model["Link-p"].loc[:, outgoing] * n.snapshot_weightings.generators + ).sum() lhs = incoming_p - outgoing_p cname = f"H2_import_limit-{ct}" - n.model.add_constraints( - lhs <= limit, name=f"GlobalConstraint-{cname}" - ) - + n.model.add_constraints(lhs <= limit, name=f"GlobalConstraint-{cname}") + if cname not in n.global_constraints.index: n.add( "GlobalConstraint", @@ -136,22 +174,35 @@ def h2_import_limits(n, snapshots, investment_year, config): carrier_attribute="", ) + def h2_production_limits(n, snapshots, investment_year, config): for ct in config["limits_volume_max"]["electrolysis"]: if ct not in config["limits_volume_min"]["electrolysis"]: - logger.warning(f"no lower limit for H2 electrolysis in {ct} assuming 0 TWh/a") + logger.warning( + f"no lower limit for H2 electrolysis in {ct} assuming 0 TWh/a" + ) limit_lower = 0 else: - limit_lower = config["limits_volume_min"]["electrolysis"][ct][investment_year]*1e6 - - limit_upper = config["limits_volume_max"]["electrolysis"][ct][investment_year]*1e6 + limit_lower = ( + config["limits_volume_min"]["electrolysis"][ct][investment_year] * 1e6 + ) - logger.info(f"limiting H2 electrolysis in DE between {limit_lower/1e6} and {limit_upper/1e6} TWh/a") + limit_upper = ( + config["limits_volume_max"]["electrolysis"][ct][investment_year] * 1e6 + ) - production = n.links[(n.links.carrier == "H2 Electrolysis") & (n.links.bus0.str.contains(ct))].index + logger.info( + f"limiting H2 electrolysis in DE between {limit_lower/1e6} and {limit_upper/1e6} TWh/a" + ) + + production = n.links[ + (n.links.carrier == "H2 Electrolysis") & (n.links.bus0.str.contains(ct)) + ].index - lhs = (n.model["Link-p"].loc[:, production]*n.snapshot_weightings.generators).sum() + lhs = ( + n.model["Link-p"].loc[:, production] * n.snapshot_weightings.generators + ).sum() cname_upper = f"H2_production_limit_upper-{ct}" cname_lower = f"H2_production_limit_lower-{ct}" @@ -187,29 +238,53 @@ def h2_production_limits(n, snapshots, investment_year, config): def electricity_import_limits(n, snapshots, investment_year, config): for ct in config["limits_volume_max"]["electricity_import"]: - limit = config["limits_volume_max"]["electricity_import"][ct][investment_year]*1e6 + limit = ( + config["limits_volume_max"]["electricity_import"][ct][investment_year] * 1e6 + ) logger.info(f"limiting electricity imports in {ct} to {limit/1e6} TWh/a") - incoming_line = n.lines.index[(n.lines.carrier == "AC") & (n.lines.bus0.str[:2] != ct) & (n.lines.bus1.str[:2] == ct)] - outgoing_line = n.lines.index[(n.lines.carrier == "AC") & (n.lines.bus0.str[:2] == ct) & (n.lines.bus1.str[:2] != ct)] - - incoming_link = n.links.index[(n.links.carrier == "DC") & (n.links.bus0.str[:2] != ct) & (n.links.bus1.str[:2] == ct)] - outgoing_link = n.links.index[(n.links.carrier == "DC") & (n.links.bus0.str[:2] == ct) & (n.links.bus1.str[:2] != ct)] - - incoming_line_p = (n.model["Line-s"].loc[:, incoming_line]*n.snapshot_weightings.generators).sum() - outgoing_line_p = (n.model["Line-s"].loc[:, outgoing_line]*n.snapshot_weightings.generators).sum() - - incoming_link_p = (n.model["Link-p"].loc[:, incoming_link]*n.snapshot_weightings.generators).sum() - outgoing_link_p = (n.model["Link-p"].loc[:, outgoing_link]*n.snapshot_weightings.generators).sum() + incoming_line = n.lines.index[ + (n.lines.carrier == "AC") + & (n.lines.bus0.str[:2] != ct) + & (n.lines.bus1.str[:2] == ct) + ] + outgoing_line = n.lines.index[ + (n.lines.carrier == "AC") + & (n.lines.bus0.str[:2] == ct) + & (n.lines.bus1.str[:2] != ct) + ] + + incoming_link = n.links.index[ + (n.links.carrier == "DC") + & (n.links.bus0.str[:2] != ct) + & (n.links.bus1.str[:2] == ct) + ] + outgoing_link = n.links.index[ + (n.links.carrier == "DC") + & (n.links.bus0.str[:2] == ct) + & (n.links.bus1.str[:2] != ct) + ] + + incoming_line_p = ( + n.model["Line-s"].loc[:, incoming_line] * n.snapshot_weightings.generators + ).sum() + outgoing_line_p = ( + n.model["Line-s"].loc[:, outgoing_line] * n.snapshot_weightings.generators + ).sum() + + incoming_link_p = ( + n.model["Link-p"].loc[:, incoming_link] * n.snapshot_weightings.generators + ).sum() + outgoing_link_p = ( + n.model["Link-p"].loc[:, outgoing_link] * n.snapshot_weightings.generators + ).sum() lhs = (incoming_link_p - outgoing_link_p) + (incoming_line_p - outgoing_line_p) cname = f"Electricity_import_limit-{ct}" - n.model.add_constraints( - lhs <= limit, name=f"GlobalConstraint-{cname}" - ) + n.model.add_constraints(lhs <= limit, name=f"GlobalConstraint-{cname}") if cname not in n.global_constraints.index: n.add( @@ -239,7 +314,7 @@ def add_co2limit_country(n, limit_countries, snakemake, debug=False): nhours = n.snapshot_weightings.generators.sum() nyears = nhours / 8760 - sectors = determine_emission_sectors(n.config['sector']) + sectors = determine_emission_sectors(n.config["sector"]) # convert MtCO2 to tCO2 co2_totals = 1e6 * pd.read_csv(snakemake.input.co2_totals_name, index_col=0) @@ -247,7 +322,7 @@ def add_co2limit_country(n, limit_countries, snakemake, debug=False): co2_total_totals = co2_totals[sectors].sum(axis=1) * nyears for ct in limit_countries: - limit = co2_total_totals[ct]*limit_countries[ct] + limit = co2_total_totals[ct] * limit_countries[ct] logger.info( f"Limiting emissions in country {ct} to {limit_countries[ct]:.1%} of " f"1990 levels, i.e. {limit:,.2f} tCO2/a", @@ -257,18 +332,29 @@ def add_co2limit_country(n, limit_countries, snakemake, debug=False): for port in [col[3:] for col in n.links if col.startswith("bus")]: - links = n.links.index[(n.links.index.str[:2] == ct) & (n.links[f"bus{port}"] == "co2 atmosphere")] + links = n.links.index[ + (n.links.index.str[:2] == ct) + & (n.links[f"bus{port}"] == "co2 atmosphere") + ] - logger.info(f"For {ct} adding following link carriers to port {port} CO2 constraint: {n.links.loc[links,'carrier'].unique()}") + logger.info( + f"For {ct} adding following link carriers to port {port} CO2 constraint: {n.links.loc[links,'carrier'].unique()}" + ) if port == "0": - efficiency = -1. + efficiency = -1.0 elif port == "1": efficiency = n.links.loc[links, f"efficiency"] else: efficiency = n.links.loc[links, f"efficiency{port}"] - lhs.append((n.model["Link-p"].loc[:, links]*efficiency*n.snapshot_weightings.generators).sum()) + lhs.append( + ( + n.model["Link-p"].loc[:, links] + * efficiency + * n.snapshot_weightings.generators + ).sum() + ) # Adding Efuel imports and exports to constraint incoming_oil = n.links.index[n.links.index == "EU renewable oil -> DE oil"] @@ -276,25 +362,41 @@ def add_co2limit_country(n, limit_countries, snakemake, debug=False): if not debug: lhs.append( - (-1 * n.model["Link-p"].loc[:, incoming_oil] - * 0.2571 * n.snapshot_weightings.generators).sum()) + ( + -1 + * n.model["Link-p"].loc[:, incoming_oil] + * 0.2571 + * n.snapshot_weightings.generators + ).sum() + ) lhs.append( - (n.model["Link-p"].loc[:, outgoing_oil] - * 0.2571 * n.snapshot_weightings.generators).sum()) + ( + n.model["Link-p"].loc[:, outgoing_oil] + * 0.2571 + * n.snapshot_weightings.generators + ).sum() + ) incoming_methanol = n.links.index[n.links.index == "EU methanol -> DE methanol"] outgoing_methanol = n.links.index[n.links.index == "DE methanol -> EU methanol"] lhs.append( - (-1 * n.model["Link-p"].loc[:, incoming_methanol] - / snakemake.config["sector"]["MWh_MeOH_per_tCO2"] - * n.snapshot_weightings.generators).sum()) - + ( + -1 + * n.model["Link-p"].loc[:, incoming_methanol] + / snakemake.config["sector"]["MWh_MeOH_per_tCO2"] + * n.snapshot_weightings.generators + ).sum() + ) + lhs.append( - (n.model["Link-p"].loc[:, outgoing_methanol] - / snakemake.config["sector"]["MWh_MeOH_per_tCO2"] - * n.snapshot_weightings.generators).sum()) - + ( + n.model["Link-p"].loc[:, outgoing_methanol] + / snakemake.config["sector"]["MWh_MeOH_per_tCO2"] + * n.snapshot_weightings.generators + ).sum() + ) + # Methane still missing, because its complicated lhs = sum(lhs) @@ -316,24 +418,34 @@ def add_co2limit_country(n, limit_countries, snakemake, debug=False): carrier_attribute="", ) + def force_boiler_profiles_existing_per_load(n): - """this scales the boiler dispatch to the load profile with a factor common to all boilers at load""" + """ + This scales the boiler dispatch to the load profile with a factor common to + all boilers at load. + """ logger.info("Forcing boiler profiles for existing ones") - decentral_boilers = n.links.index[n.links.carrier.str.contains("boiler") - & ~n.links.carrier.str.contains("urban central") - & ~n.links.p_nom_extendable] + decentral_boilers = n.links.index[ + n.links.carrier.str.contains("boiler") + & ~n.links.carrier.str.contains("urban central") + & ~n.links.p_nom_extendable + ] if decentral_boilers.empty: return - boiler_loads = n.links.loc[decentral_boilers,"bus1"] + boiler_loads = n.links.loc[decentral_boilers, "bus1"] boiler_loads = boiler_loads[boiler_loads.isin(n.loads_t.p_set.columns)] decentral_boilers = boiler_loads.index - boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div(n.loads_t.p_set[boiler_loads].max(),axis=1) + boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div( + n.loads_t.p_set[boiler_loads].max(), axis=1 + ) boiler_profiles_pu.columns = decentral_boilers - boiler_profiles = DataArray(boiler_profiles_pu.multiply(n.links.loc[decentral_boilers,"p_nom"],axis=1)) + boiler_profiles = DataArray( + boiler_profiles_pu.multiply(n.links.loc[decentral_boilers, "p_nom"], axis=1) + ) boiler_load_index = pd.Index(boiler_loads.unique()) boiler_load_index.name = "Load" @@ -342,69 +454,92 @@ def force_boiler_profiles_existing_per_load(n): n.model.add_variables(coords=[boiler_load_index], name="Load-profile_factor") # clumsy indicator matrix to map boilers to loads - df = pd.DataFrame(index=boiler_load_index,columns=decentral_boilers,data=0.) - for k,v in boiler_loads.items(): - df.loc[v,k] = 1. + df = pd.DataFrame(index=boiler_load_index, columns=decentral_boilers, data=0.0) + for k, v in boiler_loads.items(): + df.loc[v, k] = 1.0 - lhs = n.model["Link-p"].loc[:,decentral_boilers] - (boiler_profiles*DataArray(df)*n.model["Load-profile_factor"]).sum("Load") + lhs = n.model["Link-p"].loc[:, decentral_boilers] - ( + boiler_profiles * DataArray(df) * n.model["Load-profile_factor"] + ).sum("Load") n.model.add_constraints(lhs, "=", 0, "Link-fixed_profile") # hack so that PyPSA doesn't complain there is nowhere to store the variable - n.loads["profile_factor_opt"] = 0. + n.loads["profile_factor_opt"] = 0.0 def force_boiler_profiles_existing_per_boiler(n): - """this scales each boiler dispatch to be proportional to the load profile""" + """ + This scales each boiler dispatch to be proportional to the load profile. + """ - logger.info("Forcing each existing boiler dispatch to be proportional to the load profile") + logger.info( + "Forcing each existing boiler dispatch to be proportional to the load profile" + ) - decentral_boilers = n.links.index[n.links.carrier.str.contains("boiler") - & ~n.links.carrier.str.contains("urban central") - & ~n.links.p_nom_extendable] + decentral_boilers = n.links.index[ + n.links.carrier.str.contains("boiler") + & ~n.links.carrier.str.contains("urban central") + & ~n.links.p_nom_extendable + ] if decentral_boilers.empty: return - boiler_loads = n.links.loc[decentral_boilers,"bus1"] + boiler_loads = n.links.loc[decentral_boilers, "bus1"] boiler_loads = boiler_loads[boiler_loads.isin(n.loads_t.p_set.columns)] decentral_boilers = boiler_loads.index - boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div(n.loads_t.p_set[boiler_loads].max(),axis=1) + boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div( + n.loads_t.p_set[boiler_loads].max(), axis=1 + ) boiler_profiles_pu.columns = decentral_boilers - boiler_profiles = DataArray(boiler_profiles_pu.multiply(n.links.loc[decentral_boilers,"p_nom"],axis=1)) + boiler_profiles = DataArray( + boiler_profiles_pu.multiply(n.links.loc[decentral_boilers, "p_nom"], axis=1) + ) - #will be per unit + # will be per unit n.model.add_variables(coords=[decentral_boilers], name="Link-fixed_profile_scaling") - lhs = (1, n.model["Link-p"].loc[:,decentral_boilers]), (-boiler_profiles, n.model["Link-fixed_profile_scaling"]) + lhs = (1, n.model["Link-p"].loc[:, decentral_boilers]), ( + -boiler_profiles, + n.model["Link-fixed_profile_scaling"], + ) n.model.add_constraints(lhs, "=", 0, "Link-fixed_profile_scaling") # hack so that PyPSA doesn't complain there is nowhere to store the variable - n.links["fixed_profile_scaling_opt"] = 0. + n.links["fixed_profile_scaling_opt"] = 0.0 def add_h2_derivate_limit(n, snapshots, investment_year, config): for ct in config["limits_volume_max"]["h2_derivate_import"]: - limit = config["limits_volume_max"]["h2_derivate_import"][ct][investment_year]*1e6 + limit = ( + config["limits_volume_max"]["h2_derivate_import"][ct][investment_year] * 1e6 + ) logger.info(f"limiting H2 derivate imports in {ct} to {limit/1e6} TWh/a") - incoming = n.links.loc[["EU renewable oil -> DE oil", "EU methanol -> DE methanol"]].index - outgoing = n.links.loc[["DE renewable oil -> EU oil", "DE methanol -> EU methanol"]].index + incoming = n.links.loc[ + ["EU renewable oil -> DE oil", "EU methanol -> DE methanol"] + ].index + outgoing = n.links.loc[ + ["DE renewable oil -> EU oil", "DE methanol -> EU methanol"] + ].index - incoming_p = (n.model["Link-p"].loc[:, incoming]*n.snapshot_weightings.generators).sum() - outgoing_p = (n.model["Link-p"].loc[:, outgoing]*n.snapshot_weightings.generators).sum() + incoming_p = ( + n.model["Link-p"].loc[:, incoming] * n.snapshot_weightings.generators + ).sum() + outgoing_p = ( + n.model["Link-p"].loc[:, outgoing] * n.snapshot_weightings.generators + ).sum() lhs = incoming_p - outgoing_p - + cname = f"H2_derivate_import_limit-{ct}" - n.model.add_constraints( - lhs <= limit, name=f"GlobalConstraint-{cname}" - ) - + n.model.add_constraints(lhs <= limit, name=f"GlobalConstraint-{cname}") + if cname not in n.global_constraints.index: n.add( "GlobalConstraint", @@ -427,19 +562,23 @@ def additional_functionality(n, snapshots, snakemake): add_max_limits(n, investment_year, snakemake.config) h2_import_limits(n, snapshots, investment_year, snakemake.config) - + electricity_import_limits(n, snapshots, investment_year, snakemake.config) - + if investment_year >= 2025: h2_production_limits(n, snapshots, investment_year, snakemake.config) - + if not snakemake.config["run"]["debug_h2deriv_limit"]: add_h2_derivate_limit(n, snapshots, investment_year, snakemake.config) - #force_boiler_profiles_existing_per_load(n) + # force_boiler_profiles_existing_per_load(n) force_boiler_profiles_existing_per_boiler(n) if snakemake.config["sector"]["co2_budget_national"]: limit_countries = snakemake.config["co2_budget_national"][investment_year] - add_co2limit_country(n, limit_countries, snakemake, - debug=snakemake.config["run"]["debug_co2_limit"]) + add_co2limit_country( + n, + limit_countries, + snakemake, + debug=snakemake.config["run"]["debug_co2_limit"], + ) diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py index 797908132..5c0274ada 100644 --- a/workflow/scripts/build_existing_chp_de.py +++ b/workflow/scripts/build_existing_chp_de.py @@ -4,6 +4,7 @@ # SPDX-License-Identifier: MIT """ Using BNetzA data to get a high resolution map of German CHP plants. + (https://open-mastr.readthedocs.io/en/latest/). """ @@ -11,9 +12,10 @@ logger = logging.getLogger(__name__) -import pandas as pd import os import sys + +import pandas as pd import pypsa from powerplantmatching.export import map_country_bus @@ -21,6 +23,7 @@ def clean_data(combustion, biomass, geodata): """ Clean the data and return a dataframe with the relevant information. + PLZ is translated to longitude and latitude using the pyGeoDb data. """ biomass.dropna(subset="Postleitzahl", inplace=True) @@ -177,8 +180,11 @@ def lookup_geodata(missing_plz): def calculate_efficiency(CHP_de): """ - Calculate the efficiency of the CHP plants depending on Capacity and DateIn. - Following Triebs et al. (https://doi.org/10.1016/j.ecmx.2020.100068) + Calculate the efficiency of the CHP plants depending on Capacity and + DateIn. + + Following Triebs et al. ( + https://doi.org/10.1016/j.ecmx.2020.100068) """ def EXT(cap, year): diff --git a/workflow/scripts/build_mobility_demand.py b/workflow/scripts/build_mobility_demand.py index f766b9ee0..5141fd3f8 100644 --- a/workflow/scripts/build_mobility_demand.py +++ b/workflow/scripts/build_mobility_demand.py @@ -1,12 +1,17 @@ +# -*- coding: utf-8 -*- import logging + import pandas as pd logger = logging.getLogger(__name__) + def get_transport_data(db): """ Retrieve the German mobility demand from the transport_data model. - Sum over the subsectors Bus, LDV, Rail, and Truck for the fuels electricity, hydrogen, and synthetic fuels. + + Sum over the subsectors Bus, LDV, Rail, and Truck for the fuels + electricity, hydrogen, and synthetic fuels. """ # get transport_data data @@ -25,16 +30,18 @@ def get_transport_data(db): else: transport_demand.loc[fuel] += df.loc[key]["PJ/yr"] - - transport_demand = transport_demand.div(3.6e-6) # convert PJ to MWh - + transport_demand = transport_demand.div(3.6e-6) # convert PJ to MWh + if "transport_stock" in snakemake.params.leitmodelle: df = db.loc[snakemake.params.leitmodelle["transport_stock"]] - transport_demand["number_of_cars"] = df.loc["Stock|Transportation|LDV|BEV", "million"] + transport_demand["number_of_cars"] = df.loc[ + "Stock|Transportation|LDV|BEV", "million" + ] return transport_demand + if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -52,28 +59,35 @@ def get_transport_data(db): ll="vopt", sector_opts="none", planning_horizons="2020", - run="KN2045_Bal_v4" + run="KN2045_Bal_v4", ) db = pd.read_csv( snakemake.input.ariadne, - index_col=["model", "scenario", "region", "variable", "unit"] + index_col=["model", "scenario", "region", "variable", "unit"], ).loc[ :, snakemake.params.reference_scenario, "Deutschland", :, - :,][snakemake.wildcards.planning_horizons] + :, + ][ + snakemake.wildcards.planning_horizons + ] logger.info("Retrieving German mobility demand from transport_data model.") # get transport_data data - transport_data = get_transport_data(db) + transport_data = get_transport_data(db) # get German mobility weighting pop_layout = pd.read_csv(snakemake.input.clustered_pop_layout, index_col=0) # only get German data pop_layout = pop_layout[pop_layout.ct == "DE"].fraction - mobility_demand = pd.DataFrame(pop_layout.values[:, None] * transport_data.values, index=pop_layout.index, columns=transport_data.index) + mobility_demand = pd.DataFrame( + pop_layout.values[:, None] * transport_data.values, + index=pop_layout.index, + columns=transport_data.index, + ) mobility_demand.to_csv(snakemake.output.mobility_demand) diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index 6ed611d6e..c6906ea55 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -5,20 +5,25 @@ # This script reads in data from the IIASA database to create the scenario.yaml file import logging + logger = logging.getLogger(__name__) -import ruamel.yaml +import os from pathlib import Path + import pandas as pd -import os +import ruamel.yaml + def get_transport_growth(df, planning_horizons): # Aviation growth factor - using REMIND-EU v1.1 since Aladin v1 does not include bunkers aviation_model = snakemake.params.leitmodelle["general"] try: - aviation = df.loc[aviation_model,"Final Energy|Bunkers|Aviation", "PJ/yr"] + aviation = df.loc[aviation_model, "Final Energy|Bunkers|Aviation", "PJ/yr"] except KeyError: - aviation = df.loc[aviation_model,"Final Energy|Bunkers|Aviation", "TWh/yr"] * 3.6 # TWh to PJ + aviation = ( + df.loc[aviation_model, "Final Energy|Bunkers|Aviation", "TWh/yr"] * 3.6 + ) # TWh to PJ aviation_growth_factor = aviation / aviation[2020] @@ -30,17 +35,23 @@ def get_primary_steel_share(df, planning_horizons): model = snakemake.params.leitmodelle["industry"] total_steel = df.loc[model, "Production|Steel"] primary_steel = df.loc[model, "Production|Steel|Primary"] - + primary_steel_share = primary_steel / total_steel primary_steel_share = primary_steel_share[planning_horizons] - if model == "FORECAST v1.0" and (planning_horizons[0] == 2020) and snakemake.params.db_name == "ariadne2_intern": - logger.warning("FORECAST v1.0 does not have data for 2020. Using 2021 data for Production|Steel instead.") + if ( + model == "FORECAST v1.0" + and (planning_horizons[0] == 2020) + and snakemake.params.db_name == "ariadne2_intern" + ): + logger.warning( + "FORECAST v1.0 does not have data for 2020. Using 2021 data for Production|Steel instead." + ) primary_steel_share[2020] = primary_steel[2021] / total_steel[2021] - return primary_steel_share.set_index(pd.Index(["Primary_Steel_Share"])) + def get_DRI_share(df, planning_horizons): # Get share of DRI steel production model = "FORECAST v1.0" @@ -51,9 +62,11 @@ def get_DRI_share(df, planning_horizons): DRI_steel_share = DRI_steel / total_steel if model == "FORECAST v1.0" and planning_horizons[0] == 2020: - logger.warning("FORECAST v1.0 does not have data for 2020. Using 2021 data for DRI fraction instead.") + logger.warning( + "FORECAST v1.0 does not have data for 2020. Using 2021 data for DRI fraction instead." + ) DRI_steel_share[2020] = DRI_steel_share[2021] / total_steel[2021] - + DRI_steel_share = DRI_steel_share[planning_horizons] return DRI_steel_share.set_index(pd.Index(["DRI_Steel_Share"])) @@ -70,13 +83,13 @@ def get_co2_budget(df, source): if source == "KSG": ## GHG targets according to KSG initial_years_co2 = pd.Series( - index = [2020, 2025, 2030], - data = [813, 643, 438], + index=[2020, 2025, 2030], + data=[813, 643, 438], ) later_years_co2 = pd.Series( - index = [2035, 2040, 2045, 2050], - data = [0.77, 0.88, 1.0, 1.0], + index=[2035, 2040, 2045, 2050], + data=[0.77, 0.88, 1.0, 1.0], ) targets_co2 = pd.concat( @@ -85,15 +98,15 @@ def get_co2_budget(df, source): elif source == "UBA": ## For Zielverfehlungsszenarien use UBA Projektionsbericht targets_co2 = pd.Series( - index = [2020, 2025, 2030, 2035, 2040, 2045, 2050], - data = [813, 655, 455, 309, 210, 169, 157], + index=[2020, 2025, 2030, 2035, 2040, 2045, 2050], + data=[813, 655, 455, 309, 210, 169, 157], ) else: raise ValueError("Invalid source for CO2 budget.") ## Compute nonco2 from Ariadne-Leitmodell (REMIND) # co2 = ( - # df.loc["Emissions|CO2 incl Bunkers","Mt CO2/yr"] + # df.loc["Emissions|CO2 incl Bunkers","Mt CO2/yr"] # - df.loc["Emissions|CO2|Land-Use Change","Mt CO2-equiv/yr"] # - df.loc["Emissions|CO2|Energy|Demand|Bunkers","Mt CO2/yr"] # ) @@ -103,80 +116,97 @@ def get_co2_budget(df, source): # # No Kyoto Gas emissions for Bunkers recorded in Ariadne DB # ) - try: - co2_land_use_change = df.loc["Emissions|CO2|Land-Use Change","Mt CO2-equiv/yr"] - except KeyError: # Key not in Ariadne public database - co2_land_use_change = df.loc["Emissions|CO2|AFOLU","Mt CO2/yr"] + try: + co2_land_use_change = df.loc["Emissions|CO2|Land-Use Change", "Mt CO2-equiv/yr"] + except KeyError: # Key not in Ariadne public database + co2_land_use_change = df.loc["Emissions|CO2|AFOLU", "Mt CO2/yr"] - co2 = ( - df.loc["Emissions|CO2","Mt CO2/yr"] - - co2_land_use_change - ) + co2 = df.loc["Emissions|CO2", "Mt CO2/yr"] - co2_land_use_change try: - kyoto_land_use_change = df.loc["Emissions|Kyoto Gases|Land-Use Change","Mt CO2-equiv/yr"] - except KeyError: # Key not in Ariadne public database + kyoto_land_use_change = df.loc[ + "Emissions|Kyoto Gases|Land-Use Change", "Mt CO2-equiv/yr" + ] + except KeyError: # Key not in Ariadne public database # Guesstimate of difference from Ariadne 2 data kyoto_land_use_change = co2_land_use_change + 4.5 - - ghg = ( - df.loc["Emissions|Kyoto Gases","Mt CO2-equiv/yr"] - - kyoto_land_use_change - ) + + ghg = df.loc["Emissions|Kyoto Gases", "Mt CO2-equiv/yr"] - kyoto_land_use_change nonco2 = ghg - co2 ## PyPSA disregards nonco2 GHG emissions, but includes bunkers targets_pypsa = ( - targets_co2 - nonco2 - + df.loc["Emissions|CO2|Energy|Demand|Bunkers","Mt CO2/yr"] + targets_co2 + - nonco2 + + df.loc["Emissions|CO2|Energy|Demand|Bunkers", "Mt CO2/yr"] ) - target_fractions_pypsa = ( - targets_pypsa.loc[targets_co2.index] / baseline_pypsa - ) + target_fractions_pypsa = targets_pypsa.loc[targets_co2.index] / baseline_pypsa return target_fractions_pypsa.round(3) -def write_to_scenario_yaml( - input, output, scenarios, df): +def write_to_scenario_yaml(input, output, scenarios, df): # read in yaml file yaml = ruamel.yaml.YAML() file_path = Path(input) config = yaml.load(file_path) for scenario in scenarios: reference_scenario = config[scenario]["iiasa_database"]["reference_scenario"] - fallback_reference_scenario = config[scenario]["iiasa_database"]["fallback_reference_scenario"] + fallback_reference_scenario = config[scenario]["iiasa_database"][ + "fallback_reference_scenario" + ] if reference_scenario == "KN2045plus_EasyRide": fallback_reference_scenario = reference_scenario co2_budget_source = config[scenario]["co2_budget_DE_source"] co2_budget_fractions = get_co2_budget( - df.loc[snakemake.params.leitmodelle["general"], fallback_reference_scenario], - co2_budget_source + df.loc[ + snakemake.params.leitmodelle["general"], fallback_reference_scenario + ], + co2_budget_source, + ) + + planning_horizons = [ + 2020, + 2025, + 2030, + 2035, + 2040, + 2045, + ] # for 2050 we still need data + + aviation_demand_factor = get_transport_growth( + df.loc[:, fallback_reference_scenario, :], planning_horizons ) - - planning_horizons = [2020, 2025, 2030, 2035, 2040, 2045] # for 2050 we still need data - - aviation_demand_factor = get_transport_growth(df.loc[:, fallback_reference_scenario, :], planning_horizons) config[scenario]["sector"] = {} - + config[scenario]["sector"]["aviation_demand_factor"] = {} for year in planning_horizons: - config[scenario]["sector"]["aviation_demand_factor"][year] = round(aviation_demand_factor.loc[year].item(), 4) + config[scenario]["sector"]["aviation_demand_factor"][year] = round( + aviation_demand_factor.loc[year].item(), 4 + ) + + st_primary_fraction = get_primary_steel_share( + df.loc[:, reference_scenario, :], planning_horizons + ) - st_primary_fraction = get_primary_steel_share(df.loc[:, reference_scenario, :], planning_horizons) - - dri_fraction = get_DRI_share(df.loc[:, reference_scenario, :], planning_horizons) + dri_fraction = get_DRI_share( + df.loc[:, reference_scenario, :], planning_horizons + ) config[scenario]["industry"]["St_primary_fraction"] = {} config[scenario]["industry"]["DRI_fraction"] = {} for year in st_primary_fraction.columns: - config[scenario]["industry"]["St_primary_fraction"][year] = round(st_primary_fraction.loc["Primary_Steel_Share", year].item(), 4) - config[scenario]["industry"]["DRI_fraction"][year] = round(dri_fraction.loc["DRI_Steel_Share", year].item(), 4) + config[scenario]["industry"]["St_primary_fraction"][year] = round( + st_primary_fraction.loc["Primary_Steel_Share", year].item(), 4 + ) + config[scenario]["industry"]["DRI_fraction"][year] = round( + dri_fraction.loc["DRI_Steel_Share", year].item(), 4 + ) config[scenario]["co2_budget_national"] = {} for year, target in co2_budget_fractions.items(): @@ -187,7 +217,6 @@ def write_to_scenario_yaml( yaml.dump(config, Path(output)) - if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -202,20 +231,16 @@ def write_to_scenario_yaml( # Set USERNAME and PASSWORD for the Ariadne DB ariadne_db = pd.read_csv( snakemake.input.ariadne_database, - index_col=["model", "scenario", "region", "variable", "unit"] + index_col=["model", "scenario", "region", "variable", "unit"], ) ariadne_db.columns = ariadne_db.columns.astype(int) - df = ariadne_db.loc[ - :, - :, - "Deutschland"] - + df = ariadne_db.loc[:, :, "Deutschland"] + scenarios = snakemake.params.scenarios input = snakemake.input.scenario_yaml output = snakemake.output.scenario_yaml # for scenario in scenarios: - write_to_scenario_yaml( - input, output, scenarios, df) + write_to_scenario_yaml(input, output, scenarios, df) diff --git a/workflow/scripts/build_wasserstoff_kernnetz.py b/workflow/scripts/build_wasserstoff_kernnetz.py index b9fdfc3a4..5824e3e44 100644 --- a/workflow/scripts/build_wasserstoff_kernnetz.py +++ b/workflow/scripts/build_wasserstoff_kernnetz.py @@ -11,28 +11,21 @@ logger = logging.getLogger(__name__) -import uuid - +import os +import sys import uuid import geopandas as gpd import numpy as np import pandas as pd from pypsa.geo import haversine_pts -import pandas as pd -from pypsa.geo import haversine_pts from shapely import wkt from shapely.geometry import LineString, Point -import os -import sys - paths = ["workflow/submodules/pypsa-eur/scripts", "../submodules/pypsa-eur/scripts"] for path in paths: sys.path.insert(0, os.path.abspath(path)) -from build_gas_network import ( - diameter_to_capacity -) +from build_gas_network import diameter_to_capacity MANUAL_ADDRESSES = { "Oude Statenzijl": (7.205108658430258, 53.20183834422634), @@ -58,22 +51,23 @@ "Eynatten": (6.083339457526605, 50.69260916361823), "Vlieghuis": (6.8382504272201095, 52.66036497820981), "Kalle": (6.921180663621839, 52.573992586428425), - 'Carling': (6.713267207127634, 49.16738919353264), - 'Legden': (7.099754098013676, 52.03269789265483), - 'Ledgen': (7.099754098013676, 52.03269789265483), - 'Reiningen': (8.374879149975513, 52.50849502371421), - 'Buchholz': (12.929212986885771, 52.15737808332214), - 'Sandkrug': (8.257391972093515, 53.05387937393471), + "Carling": (6.713267207127634, 49.16738919353264), + "Legden": (7.099754098013676, 52.03269789265483), + "Ledgen": (7.099754098013676, 52.03269789265483), + "Reiningen": (8.374879149975513, 52.50849502371421), + "Buchholz": (12.929212986885771, 52.15737808332214), + "Sandkrug": (8.257391972093515, 53.05387937393471), } def diameter_to_capacity_h2(pipe_diameter_mm): """ - Calculate pipe capacity in MW based on diameter in mm. Linear interpolation. + Calculate pipe capacity in MW based on diameter in mm. Linear + interpolation. - 20 inch (500 mm) 50 bar -> 1.2 GW H2 pipe capacity (LHV) - 36 inch (900 mm) 50 bar -> 4.7 GW H2 pipe capacity (LHV) - 48 inch (1200 mm) 80 bar -> 16.9 GW H2 pipe capacity (LHV) + 20 inch (500 mm) 50 bar -> 1.2 GW H2 pipe capacity (LHV) 36 inch + (900 mm) 50 bar -> 4.7 GW H2 pipe capacity (LHV) 48 inch (1200 + mm) 80 bar -> 16.9 GW H2 pipe capacity (LHV) Based on table 4 of https://ehb.eu/files/downloads/EHB-Analysing-the-future-demand-supply-and-transport-of-hydrogen-June-2021-v3.pdf @@ -164,7 +158,7 @@ def load_and_merge_raw(fn1, fn2): "Nenndurchmesser (DN)": "diameter_mm", "Länge (km)": "length", "Druckstufe (DP)[mind. 30 barg]": "max_pressure_bar", - "IPCEI-Projekt(Name/ nein)" : "ipcei", + "IPCEI-Projekt(Name/ nein)": "ipcei", } df_fn2_new["retrofitted"] = False @@ -203,10 +197,7 @@ def prepare_dataset(df): # clean build_year df.build_year = ( - df.build_year.astype(str) - .str.extract(r"(\b\d{4}\b)") - .astype(float) - .fillna(2032) + df.build_year.astype(str).str.extract(r"(\b\d{4}\b)").astype(float).fillna(2032) ) # create bidirectional and set true @@ -260,9 +251,7 @@ def geocode_locations(df): def get_location(row): def get_loc_A(loc="location", add_info=""): loc_A = Point( - gpd.tools.geocode(row[loc] + ", " + add_info, timeout=7)[ - "geometry" - ][0] + gpd.tools.geocode(row[loc] + ", " + add_info, timeout=7)["geometry"][0] ) return loc_A diff --git a/workflow/scripts/check_sector_ratios.py b/workflow/scripts/check_sector_ratios.py index 59abbcdc8..30d905622 100644 --- a/workflow/scripts/check_sector_ratios.py +++ b/workflow/scripts/check_sector_ratios.py @@ -1,7 +1,7 @@ +# -*- coding: utf-8 -*- import logging import pandas as pd - import pypsa logger = logging.getLogger(__name__) @@ -23,7 +23,7 @@ ll="v1.2", sector_opts="None", planning_horizons="2030", - run="KN2045_Bal_v4" + run="KN2045_Bal_v4", ) logger.info("Check sector ratios") @@ -31,4 +31,4 @@ # check the heating sector - # check the industry sector \ No newline at end of file + # check the industry sector diff --git a/workflow/scripts/cluster_wasserstoff_kernnetz.py b/workflow/scripts/cluster_wasserstoff_kernnetz.py index b68c958e6..f5f623227 100644 --- a/workflow/scripts/cluster_wasserstoff_kernnetz.py +++ b/workflow/scripts/cluster_wasserstoff_kernnetz.py @@ -10,22 +10,22 @@ logger = logging.getLogger(__name__) +import os +import sys + import pandas as pd +import pyproj from shapely import wkt from shapely.geometry import LineString, Point from shapely.ops import transform -import pyproj - -import os -import sys paths = ["workflow/submodules/pypsa-eur/scripts", "../submodules/pypsa-eur/scripts"] for path in paths: sys.path.insert(0, os.path.abspath(path)) from cluster_gas_network import ( + build_clustered_gas_network, load_bus_regions, reindex_pipes, - build_clustered_gas_network, ) # Define a function for projecting points to meters @@ -97,7 +97,8 @@ def split_line_by_length(line, segment_length_km): def divide_pipes(df, segment_length=10): """ - Divide a GeoPandas DataFrame of LineString geometries into segments of a specified length. + Divide a GeoPandas DataFrame of LineString geometries into segments of a + specified length. Parameters: - df (GeoDataFrame): The input DataFrame containing LineString geometries. @@ -122,6 +123,7 @@ def divide_pipes(df, segment_length=10): return result + def aggregate_parallel_pipes(df): strategies = { "bus0": "first", @@ -139,7 +141,6 @@ def aggregate_parallel_pipes(df): return df.groupby(df.index).agg(strategies) - if __name__ == "__main__": if "snakemake" not in globals(): import os diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index cd015ddfa..93c3ea33b 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1,58 +1,71 @@ -import pandas as pd -import pypsa -from functools import reduce -from numpy import isclose +# -*- coding: utf-8 -*- import math -import numpy as np import os import re import sys +from functools import reduce + +import numpy as np +import pandas as pd +import pypsa +from numpy import isclose paths = ["workflow/submodules/pypsa-eur/scripts", "../submodules/pypsa-eur/scripts"] for path in paths: sys.path.insert(0, os.path.abspath(path)) -from prepare_sector_network import prepare_costs from _helpers import mute_print +from prepare_sector_network import prepare_costs # Defining global varibales TWh2PJ = 3.6 -MWh2TJ = 3.6e-3 +MWh2TJ = 3.6e-3 MW2GW = 1e-3 t2Mt = 1e-6 MWh2GJ = 3.6 TWh2PJ = 3.6 MWh2PJ = 3.6e-6 -toe_to_MWh = 11.630 # GWh/ktoe OR MWh/toe - +toe_to_MWh = 11.630 # GWh/ktoe OR MWh/toe def _get_oil_fossil_fraction(n, region): kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'at_port': True, - 'nice_names': False, + "groupby": n.statistics.groupers.get_name_bus_and_carrier, + "at_port": True, + "nice_names": False, } - + if "DE" in region: - total_oil_supply = n.statistics.supply( - bus_carrier="oil", **kwargs - ).groupby("name").sum().reindex([ - "DE oil refining", - "DE renewable oil -> DE oil", - "EU renewable oil -> DE oil", - ]).dropna() # If links are not used they are dropped here + total_oil_supply = ( + n.statistics.supply(bus_carrier="oil", **kwargs) + .groupby("name") + .sum() + .reindex( + [ + "DE oil refining", + "DE renewable oil -> DE oil", + "EU renewable oil -> DE oil", + ] + ) + .dropna() + ) # If links are not used they are dropped here else: - total_oil_supply = n.statistics.supply( - bus_carrier="oil", **kwargs - ).groupby("name").sum().reindex([ - "EU oil refining", - "DE renewable oil -> EU oil", - "EU renewable oil -> EU oil", - ]).dropna() + total_oil_supply = ( + n.statistics.supply(bus_carrier="oil", **kwargs) + .groupby("name") + .sum() + .reindex( + [ + "EU oil refining", + "DE renewable oil -> EU oil", + "EU renewable oil -> EU oil", + ] + ) + .dropna() + ) oil_fossil_fraction = ( total_oil_supply[~total_oil_supply.index.str.contains("renewable")].sum() @@ -61,43 +74,50 @@ def _get_oil_fossil_fraction(n, region): return oil_fossil_fraction + def _get_gas_fractions(n): kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'at_port': True, - 'nice_names': False, + "groupby": n.statistics.groupers.get_name_bus_and_carrier, + "at_port": True, + "nice_names": False, } - total_gas_supply = n.statistics.supply( - bus_carrier="gas", **kwargs - ).drop("Store", errors="ignore").groupby("carrier").sum() + total_gas_supply = ( + n.statistics.supply(bus_carrier="gas", **kwargs) + .drop("Store", errors="ignore") + .groupby("carrier") + .sum() + ) drops = ["gas pipeline", "gas pipeline new"] for d in drops: if d in total_gas_supply.index: total_gas_supply.drop(d, inplace=True) - gas_fractions = pd.Series({ + gas_fractions = pd.Series( + { "Natural Gas": total_gas_supply.get("gas", 0), "Biomass": total_gas_supply.filter(like="biogas").sum(), "Efuel": total_gas_supply.get("Sabatier", 0), - }).divide(total_gas_supply.sum()) + } + ).divide(total_gas_supply.sum()) return gas_fractions + def _get_h2_fossil_fraction(n): kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'at_port': True, - 'nice_names': False, + "groupby": n.statistics.groupers.get_name_bus_and_carrier, + "at_port": True, + "nice_names": False, } - total_h2_supply = n.statistics.supply( - bus_carrier="H2", **kwargs - ).drop("Store", errors="ignore").groupby("carrier").sum() - - h2_fossil_fraction = ( - total_h2_supply.get("SMR") - / total_h2_supply.sum() + total_h2_supply = ( + n.statistics.supply(bus_carrier="H2", **kwargs) + .drop("Store", errors="ignore") + .groupby("carrier") + .sum() ) + h2_fossil_fraction = total_h2_supply.get("SMR") / total_h2_supply.sum() + return h2_fossil_fraction @@ -105,17 +125,21 @@ def _get_t_sum(df, df_t, carrier, region, snapshot_weightings, port): if type(carrier) == list: return sum( [ - _get_t_sum( - df, df_t, car, region, snapshot_weightings, port - ) for car in carrier - ] + _get_t_sum(df, df_t, car, region, snapshot_weightings, port) + for car in carrier + ] ) idx = df[df.carrier == carrier].filter(like=region, axis=0).index - return df_t[port][idx].multiply( - snapshot_weightings, - axis=0, - ).values.sum() + return ( + df_t[port][idx] + .multiply( + snapshot_weightings, + axis=0, + ) + .values.sum() + ) + def sum_load(n, carrier, region): return MWh2PJ * _get_t_sum( @@ -125,208 +149,234 @@ def sum_load(n, carrier, region): region, n.snapshot_weightings.generators, "p", - ) + ) + def sum_co2(n, carrier, region): if type(carrier) == list: return sum([sum_co2(n, car, region) for car in carrier]) try: - port = n.links.groupby( - "carrier" - ).first().loc[ - carrier - ].filter( - like="bus" - ).tolist().index("co2 atmosphere") + port = ( + n.links.groupby("carrier") + .first() + .loc[carrier] + .filter(like="bus") + .tolist() + .index("co2 atmosphere") + ) except KeyError: print( - "Warning: carrier `", carrier, "` not found in network.links.carrier!", - sep="") + "Warning: carrier `", + carrier, + "` not found in network.links.carrier!", + sep="", + ) return 0 - return -1 * t2Mt * _get_t_sum( - n.links, - n.links_t, - carrier, - region, - n.snapshot_weightings.generators, - f"p{port}", + return ( + -1 + * t2Mt + * _get_t_sum( + n.links, + n.links_t, + carrier, + region, + n.snapshot_weightings.generators, + f"p{port}", + ) ) def get_total_co2(n, region): - # including international bunker fuels and negative emissions + # including international bunker fuels and negative emissions df = n.links.filter(like=region, axis=0) co2 = 0 for port in [col[3:] for col in df if col.startswith("bus")]: links = df.index[df[f"bus{port}"] == "co2 atmosphere"] - co2 -= n.links_t[f"p{port}"][links].multiply( - n.snapshot_weightings.generators, - axis=0, - ).values.sum() + co2 -= ( + n.links_t[f"p{port}"][links] + .multiply( + n.snapshot_weightings.generators, + axis=0, + ) + .values.sum() + ) return t2Mt * co2 def get_capacities(n, region): return _get_capacities(n, region, n.statistics.optimal_capacity) + def get_installed_capacities(n, region): - return _get_capacities(n, region, - n.statistics.installed_capacity, cap_string="Installed Capacity|") + return _get_capacities( + n, region, n.statistics.installed_capacity, cap_string="Installed Capacity|" + ) + def get_capacity_additions_simple(n, region): caps = get_capacities(n, region) incaps = get_installed_capacities(n, region) - return pd.Series(data = caps.values - incaps.values, - index = "Capacity Additions" + caps.index.str[8:]) + return pd.Series( + data=caps.values - incaps.values, + index="Capacity Additions" + caps.index.str[8:], + ) + def get_capacity_additions(n, region): def _f(**kwargs): return n.statistics.optimal_capacity(**kwargs).sub( - n.statistics.installed_capacity(**kwargs), fill_value=0) + n.statistics.installed_capacity(**kwargs), fill_value=0 + ) + return _get_capacities(n, region, _f, cap_string="Capacity Additions|") def get_investments(n, costs, region): def _f(**kwargs): return n.statistics.expanded_capex(**kwargs, cost_attribute="overnight_cost") + return _get_capacities( - n, - region, - _f, - cap_string="Investment|Energy Supply|", - costs=costs) + n, region, _f, cap_string="Investment|Energy Supply|", costs=costs + ) def get_capacity_additions_nstat(n, region): def _f(*args, **kwargs): kwargs.pop("storage", None) return n.statistics.expanded_capacity(*args, **kwargs) + return _get_capacities(n, region, _f, cap_string="Capacity Additions Nstat|") costs_dict = { # capacities electricity - 'BEV charger': None, - 'CCGT': 'CCGT', - 'DAC': 'direct air capture', - 'H2 Electrolysis': 'electrolysis', - 'H2 Fuel Cell': 'fuel cell', - 'OCGT': 'OCGT', - 'PHS': 'PHS', - 'V2G': None, - 'battery charger': 'battery inverter', - 'battery discharger': 'battery inverter', - 'coal': 'coal', - 'gas pipeline': 'CH4 (g) pipeline', - 'home battery charger': 'home battery inverter', - 'home battery discharger': 'home battery inverter', - 'hydro': 'hydro', - 'lignite': 'lignite', - 'methanolisation': 'methanolisation', - 'offwind-ac': 'offwind', # TODO add grid connection cost - 'offwind-dc': 'offwind',# TODO add grid connection cost - 'offwind-float': 'offwind-float',# TODO add grid connection cost - 'oil': 'oil', - 'onwind': 'onwind', - 'ror': 'ror', - 'rural air heat pump': 'decentral air-sourced heat pump', - 'rural ground heat pump': 'decentral ground-sourced heat pump', - 'rural resistive heater': 'decentral resistive heater', - 'rural solar thermal': 'decentral solar thermal', - 'solar': 'solar-utility', - 'solar rooftop': 'solar-rooftop', - 'solar-hsat': 'solar-utility single-axis tracking', - 'solid biomass': 'central solid biomass CHP', - 'urban central air heat pump': 'central air-sourced heat pump', - 'urban central coal CHP': 'central coal CHP', - 'urban central gas CHP': 'central gas CHP', - 'urban central gas CHP CC': 'central gas CHP', - 'urban central lignite CHP': 'central coal CHP', - 'urban central oil CHP': 'central gas CHP', - 'urban central resistive heater': 'central resistive heater', - 'urban central solar thermal': 'central solar thermal', - 'urban central solid biomass CHP': 'central solid biomass CHP', - 'urban central solid biomass CHP CC': 'central solid biomass CHP CC', - 'urban decentral air heat pump': 'decentral air-sourced heat pump', - 'urban decentral resistive heater': 'decentral resistive heater', - 'urban decentral solar thermal': 'decentral solar thermal', - 'waste CHP': 'waste CHP', - 'waste CHP CC': 'waste CHP CC', + "BEV charger": None, + "CCGT": "CCGT", + "DAC": "direct air capture", + "H2 Electrolysis": "electrolysis", + "H2 Fuel Cell": "fuel cell", + "OCGT": "OCGT", + "PHS": "PHS", + "V2G": None, + "battery charger": "battery inverter", + "battery discharger": "battery inverter", + "coal": "coal", + "gas pipeline": "CH4 (g) pipeline", + "home battery charger": "home battery inverter", + "home battery discharger": "home battery inverter", + "hydro": "hydro", + "lignite": "lignite", + "methanolisation": "methanolisation", + "offwind-ac": "offwind", # TODO add grid connection cost + "offwind-dc": "offwind", # TODO add grid connection cost + "offwind-float": "offwind-float", # TODO add grid connection cost + "oil": "oil", + "onwind": "onwind", + "ror": "ror", + "rural air heat pump": "decentral air-sourced heat pump", + "rural ground heat pump": "decentral ground-sourced heat pump", + "rural resistive heater": "decentral resistive heater", + "rural solar thermal": "decentral solar thermal", + "solar": "solar-utility", + "solar rooftop": "solar-rooftop", + "solar-hsat": "solar-utility single-axis tracking", + "solid biomass": "central solid biomass CHP", + "urban central air heat pump": "central air-sourced heat pump", + "urban central coal CHP": "central coal CHP", + "urban central gas CHP": "central gas CHP", + "urban central gas CHP CC": "central gas CHP", + "urban central lignite CHP": "central coal CHP", + "urban central oil CHP": "central gas CHP", + "urban central resistive heater": "central resistive heater", + "urban central solar thermal": "central solar thermal", + "urban central solid biomass CHP": "central solid biomass CHP", + "urban central solid biomass CHP CC": "central solid biomass CHP CC", + "urban decentral air heat pump": "decentral air-sourced heat pump", + "urban decentral resistive heater": "decentral resistive heater", + "urban decentral solar thermal": "decentral solar thermal", + "waste CHP": "waste CHP", + "waste CHP CC": "waste CHP CC", # Heat capacities # TODO Check the units of the investments - 'DAC': 'direct air capture', - 'Fischer-Tropsch': None, #'Fischer-Tropsch' * "efficiency" , - 'H2 Electrolysis': 'electrolysis', - - 'H2 Fuel Cell': 'fuel cell', - 'Sabatier': 'methanation', - 'methanolisation': 'methanolisation', + "DAC": "direct air capture", + "Fischer-Tropsch": None, #'Fischer-Tropsch' * "efficiency" , + "H2 Electrolysis": "electrolysis", + "H2 Fuel Cell": "fuel cell", + "Sabatier": "methanation", + "methanolisation": "methanolisation", # 'urban central air heat pump': 'central air-sourced heat pump', # 'urban central coal CHP': 'central coal CHP', # 'urban central gas CHP': 'central gas CHP', # 'urban central gas CHP CC': 'central gas CHP', # 'urban central lignite CHP': 'central coal CHP', # 'urban central oil CHP': 'central gas CHP', - # 'urban central resistive heater': 'central resistive heater', + # 'urban central resistive heater': 'central resistive heater', # 'urban central solid biomass CHP': 'central solid biomass CHP', # 'urban central solid biomass CHP CC': 'central solid biomass CHP CC', - 'urban central water tanks charger': 'water tank charger', - 'urban central water tanks discharger': 'water tank discharger', + "urban central water tanks charger": "water tank charger", + "urban central water tanks discharger": "water tank discharger", # 'waste CHP': 'waste CHP', # 'waste CHP CC': 'waste CHP CC', # Decentral Heat capacities # TODO consider overdim_factor #'rural air heat pump': None, - 'rural biomass boiler': 'biomass boiler', - 'rural gas boiler': 'decentral gas boiler', + "rural biomass boiler": "biomass boiler", + "rural gas boiler": "decentral gas boiler", #'rural ground heat pump': None, - 'rural oil boiler': 'decentral oil boiler', - 'rural resistive heater': 'decentral resistive heater', - 'rural water tanks charger': 'water tank charger', - 'rural water tanks discharger': 'water tank discharger', + "rural oil boiler": "decentral oil boiler", + "rural resistive heater": "decentral resistive heater", + "rural water tanks charger": "water tank charger", + "rural water tanks discharger": "water tank discharger", #'urban decentral air heat pump': None, - 'urban decentral biomass boiler': 'biomass boiler', - 'urban decentral gas boiler': 'decentral gas boiler', - 'urban decentral oil boiler': 'decentral oil boiler', - 'urban decentral resistive heater': 'decentral resistive heater', - 'urban decentral water tanks charger': 'water tank charger', - 'urban decentral water tanks discharger': 'water tank discharger', + "urban decentral biomass boiler": "biomass boiler", + "urban decentral gas boiler": "decentral gas boiler", + "urban decentral oil boiler": "decentral oil boiler", + "urban decentral resistive heater": "decentral resistive heater", + "urban decentral water tanks charger": "water tank charger", + "urban decentral water tanks discharger": "water tank discharger", # Other capacities # 'Sabatier': 'methanation',costs.at["methanation", "fixed"] - #* costs.at["methanation", "efficiency"] - 'biogas to gas': None, # TODO biogas + biogas upgrading - 'biogas to gas CC': None, # TODO costs.at["biogas CC", "fixed"] + # * costs.at["methanation", "efficiency"] + "biogas to gas": None, # TODO biogas + biogas upgrading + "biogas to gas CC": None, # TODO costs.at["biogas CC", "fixed"] # + costs.at["biogas upgrading", "fixed"] # + costs.at["biomass CHP capture", "fixed"] - # * costs.at["biogas CC", "CO2 stored"], + # * costs.at["biogas CC", "CO2 stored"], } def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): kwargs = { - 'groupby': n.statistics.groupers.get_bus_and_carrier, - 'at_port': True, - 'nice_names': False, + "groupby": n.statistics.groupers.get_bus_and_carrier, + "at_port": True, + "nice_names": False, } var = pd.Series() - capacities_electricity = cap_func( - bus_carrier=["AC", "low voltage"], - **kwargs, - ).filter(like=region).groupby("carrier").sum().drop( - # transmission capacities - ["AC", "DC", "electricity distribution grid"], - errors="ignore", - ).multiply(MW2GW) + capacities_electricity = ( + cap_func( + bus_carrier=["AC", "low voltage"], + **kwargs, + ) + .filter(like=region) + .groupby("carrier") + .sum() + .drop( + # transmission capacities + ["AC", "DC", "electricity distribution grid"], + errors="ignore", + ) + .multiply(MW2GW) + ) # if cap_string.startswith("Investment"): # technology_investments = pd.Series( # [ # 0 if costs_dict.get(key) is None else - # costs.at[costs_dict.get(key), "investment"] + # costs.at[costs_dict.get(key), "investment"] # for key in capacities_electricity.index # ], # capacities_electricity.index @@ -335,7 +385,7 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): # ["onwind", "solar", "solar-hsat"]): # technology_investments[carrier] += \ # costs.at["electricity grid connection", "investment"] - + # for carrier in ["offwind-ac", "offwind-dc", "offwind-float"]: # technology_investments[carrier] = 0.0 # TODO add grid connection cost # # apply update_wind_solar_costs(n, costs) @@ -348,213 +398,240 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): capacities_biomass = capacities_electricity.filter(like="biomass") - var[cap_string + "Electricity|Biomass|w/ CCS"] = \ - capacities_biomass.filter(like="CC").sum() - - var[cap_string + "Electricity|Biomass|w/o CCS"] = \ - capacities_biomass.reindex( - ['urban central solid biomass CHP', - 'solid biomass']).sum() - - - var[cap_string + "Electricity|Biomass|Solids"] = \ - var[[ + var[cap_string + "Electricity|Biomass|w/ CCS"] = capacities_biomass.filter( + like="CC" + ).sum() + + var[cap_string + "Electricity|Biomass|w/o CCS"] = capacities_biomass.reindex( + ["urban central solid biomass CHP", "solid biomass"] + ).sum() + + var[cap_string + "Electricity|Biomass|Solids"] = var[ + [ cap_string + "Electricity|Biomass|w/ CCS", cap_string + "Electricity|Biomass|w/o CCS", - ]].sum() + ] + ].sum() # Ariadne does no checks, so we implement our own? - assert isclose(var[cap_string + "Electricity|Biomass|Solids"], - capacities_biomass.sum()) - - var[cap_string + "Electricity|Biomass"] = \ - var[cap_string + "Electricity|Biomass|Solids"] - - var[cap_string + "Electricity|Non-Renewable Waste"] = \ - capacities_electricity.filter(like="waste CHP").sum() - - var[cap_string + "Electricity|Coal|Hard Coal"] = \ - capacities_electricity.filter(like="coal").sum() - - var[cap_string + "Electricity|Coal|Lignite"] = \ - capacities_electricity.filter(like="lignite").sum() - - # var[cap_string + "Electricity|Coal|Hard Coal|w/ CCS"] = - # var[cap_string + "Electricity|Coal|Hard Coal|w/o CCS"] = - # var[cap_string + "Electricity|Coal|Lignite|w/ CCS"] = - # var[cap_string + "Electricity|Coal|Lignite|w/o CCS"] = - # var[cap_string + "Electricity|Coal|w/ CCS"] = - # var[cap_string + "Electricity|Coal|w/o CCS"] = + assert isclose( + var[cap_string + "Electricity|Biomass|Solids"], capacities_biomass.sum() + ) + + var[cap_string + "Electricity|Biomass"] = var[ + cap_string + "Electricity|Biomass|Solids" + ] + + var[cap_string + "Electricity|Non-Renewable Waste"] = capacities_electricity.filter( + like="waste CHP" + ).sum() + + var[cap_string + "Electricity|Coal|Hard Coal"] = capacities_electricity.filter( + like="coal" + ).sum() + + var[cap_string + "Electricity|Coal|Lignite"] = capacities_electricity.filter( + like="lignite" + ).sum() + + # var[cap_string + "Electricity|Coal|Hard Coal|w/ CCS"] = + # var[cap_string + "Electricity|Coal|Hard Coal|w/o CCS"] = + # var[cap_string + "Electricity|Coal|Lignite|w/ CCS"] = + # var[cap_string + "Electricity|Coal|Lignite|w/o CCS"] = + # var[cap_string + "Electricity|Coal|w/ CCS"] = + # var[cap_string + "Electricity|Coal|w/o CCS"] = # Q: CCS for coal Implemented, but not activated, should we use it? # !: No, because of Kohleausstieg # > config: coal_cc - - var[cap_string + "Electricity|Coal"] = \ - var[[ + var[cap_string + "Electricity|Coal"] = var[ + [ cap_string + "Electricity|Coal|Lignite", cap_string + "Electricity|Coal|Hard Coal", - ]].sum() + ] + ].sum() # var[cap_string + "Electricity|Gas|CC|w/ CCS"] = - # var[cap_string + "Electricity|Gas|CC|w/o CCS"] = - # ! Not implemented, rarely used - - var[cap_string + "Electricity|Gas|CC"] = \ - capacities_electricity.get('CCGT') - - var[cap_string + "Electricity|Gas|OC"] = \ - capacities_electricity.get('OCGT') - - var[cap_string + "Electricity|Gas|w/ CCS"] = \ - capacities_electricity.get('urban central gas CHP CC',0) - - var[cap_string + "Electricity|Gas|w/o CCS"] = \ - capacities_electricity.get('urban central gas CHP',0) + \ - var[[ - cap_string + "Electricity|Gas|CC", - cap_string + "Electricity|Gas|OC", - ]].sum() - - - var[cap_string + "Electricity|Gas"] = \ - var[[ + # var[cap_string + "Electricity|Gas|CC|w/o CCS"] = + # ! Not implemented, rarely used + + var[cap_string + "Electricity|Gas|CC"] = capacities_electricity.get("CCGT") + + var[cap_string + "Electricity|Gas|OC"] = capacities_electricity.get("OCGT") + + var[cap_string + "Electricity|Gas|w/ CCS"] = capacities_electricity.get( + "urban central gas CHP CC", 0 + ) + + var[cap_string + "Electricity|Gas|w/o CCS"] = ( + capacities_electricity.get("urban central gas CHP", 0) + + var[ + [ + cap_string + "Electricity|Gas|CC", + cap_string + "Electricity|Gas|OC", + ] + ].sum() + ) + + var[cap_string + "Electricity|Gas"] = var[ + [ cap_string + "Electricity|Gas|w/ CCS", cap_string + "Electricity|Gas|w/o CCS", - ]].sum() + ] + ].sum() - # var[cap_string + "Electricity|Geothermal"] = + # var[cap_string + "Electricity|Geothermal"] = # ! Not implemented - var[cap_string + "Electricity|Hydro"] = \ - capacities_electricity.reindex( - ["ror", "hydro"] - ).sum() - + var[cap_string + "Electricity|Hydro"] = capacities_electricity.reindex( + ["ror", "hydro"] + ).sum() + # Q!: Not counting PHS here, because it is a true storage, # as opposed to hydro - - # var[cap_string + "Electricity|Hydrogen|CC"] = + + # var[cap_string + "Electricity|Hydrogen|CC"] = # ! Not implemented - # var[cap_string + "Electricity|Hydrogen|OC"] = + # var[cap_string + "Electricity|Hydrogen|OC"] = # Q: "H2-turbine" # Q: What about retrofitted gas power plants? -> Lisa - var[cap_string + "Electricity|Hydrogen"] = \ - var[cap_string + "Electricity|Hydrogen|FC"] = \ - capacities_electricity.get("H2 Fuel Cell", 0) + var[cap_string + "Electricity|Hydrogen"] = var[ + cap_string + "Electricity|Hydrogen|FC" + ] = capacities_electricity.get("H2 Fuel Cell", 0) - var[cap_string + "Electricity|Nuclear"] = \ - capacities_electricity.get("nuclear", 0) + var[cap_string + "Electricity|Nuclear"] = capacities_electricity.get("nuclear", 0) - # var[cap_string + "Electricity|Ocean"] = + # var[cap_string + "Electricity|Ocean"] = # ! Not implemented - # var[cap_string + "Electricity|Oil|w/ CCS"] = - # var[cap_string + "Electricity|Oil|w/o CCS"] = + # var[cap_string + "Electricity|Oil|w/ CCS"] = + # var[cap_string + "Electricity|Oil|w/o CCS"] = # ! Not implemented - var[cap_string + "Electricity|Oil"] = \ - capacities_electricity.filter(like="oil").sum() + var[cap_string + "Electricity|Oil"] = capacities_electricity.filter( + like="oil" + ).sum() + var[cap_string + "Electricity|Solar|PV|Rooftop"] = capacities_electricity.get( + "solar rooftop", 0 + ) - var[cap_string + "Electricity|Solar|PV|Rooftop"] = \ - capacities_electricity.get("solar rooftop", 0) - - var[cap_string + "Electricity|Solar|PV|Open Field"] = \ - capacities_electricity.reindex(["solar", "solar-hsat"]).sum() + var[cap_string + "Electricity|Solar|PV|Open Field"] = ( + capacities_electricity.reindex(["solar", "solar-hsat"]).sum() + ) - var[cap_string + "Electricity|Solar|PV"] = \ - var[[ + var[cap_string + "Electricity|Solar|PV"] = var[ + [ cap_string + "Electricity|Solar|PV|Open Field", cap_string + "Electricity|Solar|PV|Rooftop", - ]].sum() - - # var[cap_string + "Electricity|Solar|CSP"] = + ] + ].sum() + + # var[cap_string + "Electricity|Solar|CSP"] = # ! not implemented - var[cap_string + "Electricity|Solar"] = \ - var[cap_string + "Electricity|Solar|PV"] - - var[cap_string + "Electricity|Wind|Offshore"] = \ - capacities_electricity.reindex( - ["offwind", "offwind-ac", "offwind-dc", "offwind-float"] - ).sum() + var[cap_string + "Electricity|Solar"] = var[cap_string + "Electricity|Solar|PV"] + + var[cap_string + "Electricity|Wind|Offshore"] = capacities_electricity.reindex( + ["offwind", "offwind-ac", "offwind-dc", "offwind-float"] + ).sum() - var[cap_string + "Electricity|Wind|Onshore"] = \ - capacities_electricity.get("onwind") - - var[cap_string + "Electricity|Wind"] = \ - capacities_electricity.filter(like="wind").sum() - - assert var[cap_string + "Electricity|Wind"] == \ - var[[ - cap_string + "Electricity|Wind|Offshore", - cap_string + "Electricity|Wind|Onshore", - ]].sum() + var[cap_string + "Electricity|Wind|Onshore"] = capacities_electricity.get("onwind") + var[cap_string + "Electricity|Wind"] = capacities_electricity.filter( + like="wind" + ).sum() + + assert ( + var[cap_string + "Electricity|Wind"] + == var[ + [ + cap_string + "Electricity|Wind|Offshore", + cap_string + "Electricity|Wind|Onshore", + ] + ].sum() + ) - # var[cap_string + "Electricity|Storage Converter|CAES"] = + # var[cap_string + "Electricity|Storage Converter|CAES"] = # ! Not implemented - var[cap_string + "Electricity|Storage Converter|Hydro Dam Reservoir"] = \ - capacities_electricity.get('hydro',0) - - var[cap_string + "Electricity|Storage Converter|Pump Hydro"] = \ - capacities_electricity.get('PHS',0) + var[cap_string + "Electricity|Storage Converter|Hydro Dam Reservoir"] = ( + capacities_electricity.get("hydro", 0) + ) - var[cap_string + "Electricity|Storage Converter|Stationary Batteries"] = \ - capacities_electricity.get("battery discharger",0) + \ - capacities_electricity.get("home battery discharger",0) + var[cap_string + "Electricity|Storage Converter|Pump Hydro"] = ( + capacities_electricity.get("PHS", 0) + ) - var[cap_string + "Electricity|Storage Converter|Vehicles"] = \ + var[cap_string + "Electricity|Storage Converter|Stationary Batteries"] = ( + capacities_electricity.get("battery discharger", 0) + + capacities_electricity.get("home battery discharger", 0) + ) + + var[cap_string + "Electricity|Storage Converter|Vehicles"] = ( capacities_electricity.get("V2G", 0) - - var[cap_string + "Electricity|Storage Converter"] = \ - var[[ + ) + + var[cap_string + "Electricity|Storage Converter"] = var[ + [ cap_string + "Electricity|Storage Converter|Hydro Dam Reservoir", cap_string + "Electricity|Storage Converter|Pump Hydro", cap_string + "Electricity|Storage Converter|Stationary Batteries", cap_string + "Electricity|Storage Converter|Vehicles", - ]].sum() - + ] + ].sum() + if cap_string.startswith("Investment"): - storage_capacities = cap_func( - **kwargs, - ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) + storage_capacities = ( + cap_func( + **kwargs, + ) + .filter(like=region) + .groupby("carrier") + .sum() + .multiply(MW2GW) + ) else: - storage_capacities = cap_func( - storage=True, - **kwargs, - ).filter(like=region).groupby("carrier").sum().multiply(MW2GW) + storage_capacities = ( + cap_func( + storage=True, + **kwargs, + ) + .filter(like=region) + .groupby("carrier") + .sum() + .multiply(MW2GW) + ) # var[cap_string + "Electricity|Storage Reservoir|CAES"] = # ! Not implemented - - var[cap_string + "Electricity|Storage Reservoir|Hydro Dam Reservoir"] = \ + + var[cap_string + "Electricity|Storage Reservoir|Hydro Dam Reservoir"] = ( storage_capacities.get("hydro") + ) - var[cap_string + "Electricity|Storage Reservoir|Pump Hydro"] = \ + var[cap_string + "Electricity|Storage Reservoir|Pump Hydro"] = ( storage_capacities.get("PHS") - - var[cap_string + "Electricity|Storage Reservoir|Stationary Batteries"] = \ - pd.Series({ - c: storage_capacities.get(c) - for c in ["battery", "home battery"] - }).sum() - - var[cap_string + "Electricity|Storage Reservoir|Vehicles"] = \ - storage_capacities.get("EV battery", 0) - - var[cap_string + "Electricity|Storage Reservoir"] = \ - var[[ + ) + + var[cap_string + "Electricity|Storage Reservoir|Stationary Batteries"] = pd.Series( + {c: storage_capacities.get(c) for c in ["battery", "home battery"]} + ).sum() + + var[cap_string + "Electricity|Storage Reservoir|Vehicles"] = storage_capacities.get( + "EV battery", 0 + ) + + var[cap_string + "Electricity|Storage Reservoir"] = var[ + [ cap_string + "Electricity|Storage Reservoir|Hydro Dam Reservoir", cap_string + "Electricity|Storage Reservoir|Pump Hydro", cap_string + "Electricity|Storage Reservoir|Stationary Batteries", cap_string + "Electricity|Storage Reservoir|Vehicles", - ]].sum() - + ] + ].sum() - var[cap_string + "Electricity"] = \ - var[[ + var[cap_string + "Electricity"] = var[ + [ cap_string + "Electricity|Wind", cap_string + "Electricity|Solar", cap_string + "Electricity|Oil", @@ -565,7 +642,8 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): cap_string + "Electricity|Hydrogen", cap_string + "Electricity|Nuclear", cap_string + "Electricity|Non-Renewable Waste", - ]].sum() + ] + ].sum() # Test if we forgot something # @@ -584,85 +662,107 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): # capacities_electricity.drop(_drop_idx).sum(), # ) - capacities_central_heat = cap_func( - bus_carrier=[ - "urban central heat", - ], - **kwargs, - ).filter(like=region).groupby("carrier").sum().drop( - ["urban central heat vent"], - errors="ignore", # drop existing labels or do nothing - ).multiply(MW2GW) - + capacities_central_heat = ( + cap_func( + bus_carrier=[ + "urban central heat", + ], + **kwargs, + ) + .filter(like=region) + .groupby("carrier") + .sum() + .drop( + ["urban central heat vent"], + errors="ignore", # drop existing labels or do nothing + ) + .multiply(MW2GW) + ) - var[cap_string + "Heat|Solar thermal"] = \ - capacities_central_heat.filter(like="solar thermal").sum() + var[cap_string + "Heat|Solar thermal"] = capacities_central_heat.filter( + like="solar thermal" + ).sum() # !!! Missing in the Ariadne database # We could be much more detailed for the heat sector (as for electricity) # if desired by Ariadne # - var[cap_string + "Heat|Biomass|w/ CCS"] = \ - capacities_central_heat.get('urban central solid biomass CHP CC', 0) - var[cap_string + "Heat|Biomass|w/o CCS"] = \ - capacities_central_heat.get('urban central solid biomass CHP', 0) \ - + capacities_central_heat.filter(like="biomass boiler").sum() - - var[cap_string + "Heat|Biomass"] = \ - var[cap_string + "Heat|Biomass|w/ CCS"] + \ - var[cap_string + "Heat|Biomass|w/o CCS"] + var[cap_string + "Heat|Biomass|w/ CCS"] = capacities_central_heat.get( + "urban central solid biomass CHP CC", 0 + ) + var[cap_string + "Heat|Biomass|w/o CCS"] = ( + capacities_central_heat.get("urban central solid biomass CHP", 0) + + capacities_central_heat.filter(like="biomass boiler").sum() + ) + + var[cap_string + "Heat|Biomass"] = ( + var[cap_string + "Heat|Biomass|w/ CCS"] + + var[cap_string + "Heat|Biomass|w/o CCS"] + ) assert isclose( var[cap_string + "Heat|Biomass"], - capacities_central_heat.filter(like="biomass").sum() + capacities_central_heat.filter(like="biomass").sum(), ) - var[cap_string + "Heat|Non-Renewable Waste"] = \ - capacities_central_heat.filter(like="waste CHP").sum() - - var[cap_string + "Heat|Resistive heater"] = \ - capacities_central_heat.filter(like="resistive heater").sum() - - var[cap_string + "Heat|Processes"] = \ - pd.Series({c: capacities_central_heat.get(c) for c in [ + var[cap_string + "Heat|Non-Renewable Waste"] = capacities_central_heat.filter( + like="waste CHP" + ).sum() + + var[cap_string + "Heat|Resistive heater"] = capacities_central_heat.filter( + like="resistive heater" + ).sum() + + var[cap_string + "Heat|Processes"] = pd.Series( + { + c: capacities_central_heat.get(c) + for c in [ "Fischer-Tropsch", "H2 Electrolysis", "H2 Fuel Cell", "Sabatier", "methanolisation", - ]}).sum() + ] + } + ).sum() # !!! Missing in the Ariadne database - var[cap_string + "Heat|Gas"] = \ - capacities_central_heat.filter(like="gas boiler").sum() \ + var[cap_string + "Heat|Gas"] = ( + capacities_central_heat.filter(like="gas boiler").sum() + capacities_central_heat.filter(like="gas CHP").sum() - + ) + # var[cap_string + "Heat|Geothermal"] = - # ! Not implemented + # ! Not implemented - var[cap_string + "Heat|Heat pump"] = \ - capacities_central_heat.filter(like="heat pump").sum() + var[cap_string + "Heat|Heat pump"] = capacities_central_heat.filter( + like="heat pump" + ).sum() - var[cap_string + "Heat|Oil"] = \ - capacities_central_heat.filter(like="oil boiler").sum() + var[cap_string + "Heat|Oil"] = capacities_central_heat.filter( + like="oil boiler" + ).sum() - var[cap_string + "Heat|Storage Converter"] = \ - capacities_central_heat.filter(like="water tanks discharger").sum() + var[cap_string + "Heat|Storage Converter"] = capacities_central_heat.filter( + like="water tanks discharger" + ).sum() - var[cap_string + "Heat|Storage Reservoir"] = \ - storage_capacities.filter(like="water tanks").sum() + var[cap_string + "Heat|Storage Reservoir"] = storage_capacities.filter( + like="water tanks" + ).sum() var[cap_string + "Heat"] = ( - var[cap_string + "Heat|Solar thermal"] + - var[cap_string + "Heat|Resistive heater"] + - var[cap_string + "Heat|Biomass"] + - var[cap_string + "Heat|Oil"] + - var[cap_string + "Heat|Gas"] + - var[cap_string + "Heat|Processes"] + - #var[cap_string + "Heat|Hydrogen"] + - var[cap_string + "Heat|Heat pump"] + - var[cap_string + "Heat|Non-Renewable Waste"] + var[cap_string + "Heat|Solar thermal"] + + var[cap_string + "Heat|Resistive heater"] + + var[cap_string + "Heat|Biomass"] + + var[cap_string + "Heat|Oil"] + + var[cap_string + "Heat|Gas"] + + var[cap_string + "Heat|Processes"] + + + # var[cap_string + "Heat|Hydrogen"] + + var[cap_string + "Heat|Heat pump"] + + var[cap_string + "Heat|Non-Renewable Waste"] ) # This check requires further changes to n.statistics @@ -674,47 +774,55 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): # ].sum() # ) - capacities_decentral_heat = cap_func( - bus_carrier=[ - "urban decentral heat", - "rural heat", - ], - **kwargs, - ).filter(like=region).groupby("carrier").sum().drop( - ["DAC"], - errors="ignore", # drop existing labels or do nothing - ).multiply(MW2GW) - - var[cap_string + "Decentral Heat|Solar thermal"] = \ - capacities_decentral_heat.filter(like="solar thermal").sum() - - - capacities_h2 = cap_func( - bus_carrier="H2", - **kwargs, - ).filter( - like=region - ).groupby("carrier").sum().multiply(MW2GW) - - var[cap_string + "Hydrogen|Gas|w/ CCS"] = \ - capacities_h2.get("SMR CC",0) - - var[cap_string + "Hydrogen|Gas|w/o CCS"] = \ - capacities_h2.get("SMR",0) - - var[cap_string + "Hydrogen|Gas"] = \ - capacities_h2.filter(like="SMR").sum() - - assert var[cap_string + "Hydrogen|Gas"] == \ - var[cap_string + "Hydrogen|Gas|w/ CCS"] + \ - var[cap_string + "Hydrogen|Gas|w/o CCS"] - - var[cap_string + "Hydrogen|Electricity"] = \ - capacities_h2.get("H2 Electrolysis", 0) + capacities_decentral_heat = ( + cap_func( + bus_carrier=[ + "urban decentral heat", + "rural heat", + ], + **kwargs, + ) + .filter(like=region) + .groupby("carrier") + .sum() + .drop( + ["DAC"], + errors="ignore", # drop existing labels or do nothing + ) + .multiply(MW2GW) + ) + + var[cap_string + "Decentral Heat|Solar thermal"] = capacities_decentral_heat.filter( + like="solar thermal" + ).sum() + + capacities_h2 = ( + cap_func( + bus_carrier="H2", + **kwargs, + ) + .filter(like=region) + .groupby("carrier") + .sum() + .multiply(MW2GW) + ) + + var[cap_string + "Hydrogen|Gas|w/ CCS"] = capacities_h2.get("SMR CC", 0) + + var[cap_string + "Hydrogen|Gas|w/o CCS"] = capacities_h2.get("SMR", 0) + + var[cap_string + "Hydrogen|Gas"] = capacities_h2.filter(like="SMR").sum() + + assert ( + var[cap_string + "Hydrogen|Gas"] + == var[cap_string + "Hydrogen|Gas|w/ CCS"] + + var[cap_string + "Hydrogen|Gas|w/o CCS"] + ) + + var[cap_string + "Hydrogen|Electricity"] = capacities_h2.get("H2 Electrolysis", 0) var[cap_string + "Hydrogen"] = ( - var[cap_string + "Hydrogen|Electricity"] - + var[cap_string + "Hydrogen|Gas"] + var[cap_string + "Hydrogen|Electricity"] + var[cap_string + "Hydrogen|Gas"] ) # This check requires further changes to n.statistics @@ -728,36 +836,36 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): # ]).sum(), # if technology not build, reindex returns NaN # ) + var[cap_string + "Hydrogen|Reservoir"] = storage_capacities.get("H2", 0) - var[cap_string + "Hydrogen|Reservoir"] = \ - storage_capacities.get("H2", 0) - - + capacities_gas = ( + cap_func( + bus_carrier="gas", + **kwargs, + ) + .filter(like=region) + .groupby("carrier") + .sum() + .drop( + # Drop Import (Generator, gas), Storage (Store, gas), + # and Transmission capacities + ["gas", "gas pipeline", "gas pipeline new"], + errors="ignore", + ) + .multiply(MW2GW) + ) - capacities_gas = cap_func( - bus_carrier="gas", - **kwargs, - ).filter( - like=region - ).groupby("carrier").sum().drop( - # Drop Import (Generator, gas), Storage (Store, gas), - # and Transmission capacities - ["gas", "gas pipeline", "gas pipeline new"], - errors="ignore", - ).multiply(MW2GW) + var[cap_string + "Gases|Hydrogen"] = capacities_gas.get("Sabatier", 0) - var[cap_string + "Gases|Hydrogen"] = \ - capacities_gas.get("Sabatier", 0) - - var[cap_string + "Gases|Biomass"] = \ - capacities_gas.reindex([ + var[cap_string + "Gases|Biomass"] = capacities_gas.reindex( + [ "biogas to gas", "biogas to gas CC", - ]).sum() + ] + ).sum() var[cap_string + "Gases"] = ( - var[cap_string + "Gases|Hydrogen"] + - var[cap_string + "Gases|Biomass"] + var[cap_string + "Gases|Hydrogen"] + var[cap_string + "Gases|Biomass"] ) # This check requires further changes to n.statistics @@ -767,97 +875,113 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): # capacities_gas.sum(), # ) - - capacities_liquids = cap_func( - bus_carrier="renewable oil", - **kwargs, - ).filter( - like=region - ).groupby("carrier").sum().multiply(MW2GW) + capacities_liquids = ( + cap_func( + bus_carrier="renewable oil", + **kwargs, + ) + .filter(like=region) + .groupby("carrier") + .sum() + .multiply(MW2GW) + ) # - var[cap_string + "Liquids|Hydrogen"] = \ - var[cap_string + "Liquids"] = \ - capacities_liquids.get("Fischer-Tropsch",0) - + var[cap_string + "Liquids|Hydrogen"] = var[cap_string + "Liquids"] = ( + capacities_liquids.get("Fischer-Tropsch", 0) + ) + try: - capacities_methanol = cap_func( - bus_carrier="methanol", - **kwargs, - ).filter( - like=region - ).groupby("carrier").sum().multiply(MW2GW) + capacities_methanol = ( + cap_func( + bus_carrier="methanol", + **kwargs, + ) + .filter(like=region) + .groupby("carrier") + .sum() + .multiply(MW2GW) + ) # - var[cap_string + "Methanol"] = \ - capacities_methanol.get("methanolisation", 0) + var[cap_string + "Methanol"] = capacities_methanol.get("methanolisation", 0) except KeyError: - print("Warning: carrier `methanol` not found in network.links.carrier! Assuming 0 capacities.") + print( + "Warning: carrier `methanol` not found in network.links.carrier! Assuming 0 capacities." + ) var[cap_string + "Methanol"] = 0 - + if cap_string.startswith("Investment"): - var = var.div(MW2GW).mul(1e-9).div(5).round(3) # in bn € / year - return var + var = var.div(MW2GW).mul(1e-9).div(5).round(3) # in bn € / year + return var + def get_CHP_E_and_H_usage(n, bus_carrier, region, fossil_fraction=1): kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, + "groupby": n.statistics.groupers.get_name_bus_and_carrier, + "nice_names": False, } - usage = n.statistics.withdrawal( - bus_carrier=bus_carrier, - **kwargs, - ).filter( - like=region - ).filter( - like="CHP" - ).multiply(MWh2PJ).multiply(fossil_fraction) + usage = ( + n.statistics.withdrawal( + bus_carrier=bus_carrier, + **kwargs, + ) + .filter(like=region) + .filter(like="CHP") + .multiply(MWh2PJ) + .multiply(fossil_fraction) + ) - E_to_H = ( + E_to_H = ( n.links.loc[usage.index.get_level_values("name")].efficiency / n.links.loc[usage.index.get_level_values("name")].efficiency2 ) - E_fraction = E_to_H * (1 / (E_to_H + 1)) + E_fraction = E_to_H * (1 / (E_to_H + 1)) E_usage = usage.multiply(E_fraction).sum() H_usage = usage.multiply(1 - E_fraction).sum() return E_usage, H_usage + def get_primary_energy(n, region): kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, + "groupby": n.statistics.groupers.get_name_bus_and_carrier, + "nice_names": False, } var = pd.Series() oil_fossil_fraction = _get_oil_fossil_fraction(n, region) - primary_oil_factor = n.links.query("carrier=='oil refining'").efficiency.unique().item() - oil_usage = n.statistics.withdrawal( - bus_carrier="oil", - **kwargs - ).filter( - like=region - ).drop("Store", errors="ignore").groupby( - "carrier" - ).sum().multiply(oil_fossil_fraction).multiply(MWh2PJ) - + primary_oil_factor = ( + n.links.query("carrier=='oil refining'").efficiency.unique().item() + ) + oil_usage = ( + n.statistics.withdrawal(bus_carrier="oil", **kwargs) + .filter(like=region) + .drop("Store", errors="ignore") + .groupby("carrier") + .sum() + .multiply(oil_fossil_fraction) + .multiply(MWh2PJ) + ) oil_CHP_E_usage, oil_CHP_H_usage = get_CHP_E_and_H_usage( - n, "oil", region, fossil_fraction=oil_fossil_fraction) + n, "oil", region, fossil_fraction=oil_fossil_fraction + ) ## Primary Energy - var["Primary Energy|Oil|Heat"] = \ - (oil_usage.filter(like="urban central oil boiler").sum() + oil_CHP_H_usage) * primary_oil_factor + var["Primary Energy|Oil|Heat"] = ( + oil_usage.filter(like="urban central oil boiler").sum() + oil_CHP_H_usage + ) * primary_oil_factor + + var["Primary Energy|Oil|Electricity"] = ( + oil_usage.get("oil", 0) + oil_CHP_E_usage + ) * primary_oil_factor - - var["Primary Energy|Oil|Electricity"] = \ - (oil_usage.get("oil", 0) + oil_CHP_E_usage) * primary_oil_factor - var["Primary Energy|Oil"] = oil_usage.sum() * primary_oil_factor - + # At the moment, everyting that is not electricity or heat is counted as liquid fuel var["Primary Energy|Oil|Liquids"] = ( var["Primary Energy|Oil"] @@ -869,86 +993,100 @@ def get_primary_energy(n, region): # Eventhough biogas gets routed through the EU gas bus, # it should be counted separately as Primary Energy|Biomass - gas_usage = n.statistics.withdrawal( - bus_carrier="gas", - **kwargs, - ).filter( - like=region - ).groupby( - ["component", "carrier"], - ).sum().drop([ - "Store", - ("Link", "gas pipeline"), - ("Link", "gas pipeline new"), - ]).groupby( - "carrier" - ).sum().multiply(gas_fractions["Natural Gas"]).multiply(MWh2PJ) + gas_usage = ( + n.statistics.withdrawal( + bus_carrier="gas", + **kwargs, + ) + .filter(like=region) + .groupby( + ["component", "carrier"], + ) + .sum() + .drop( + [ + "Store", + ("Link", "gas pipeline"), + ("Link", "gas pipeline new"), + ] + ) + .groupby("carrier") + .sum() + .multiply(gas_fractions["Natural Gas"]) + .multiply(MWh2PJ) + ) gas_CHP_E_usage, gas_CHP_H_usage = get_CHP_E_and_H_usage( - n, "gas", region, fossil_fraction=gas_fractions["Natural Gas"]) + n, "gas", region, fossil_fraction=gas_fractions["Natural Gas"] + ) - var["Primary Energy|Gas|Heat"] = \ - gas_usage.filter(like="urban central gas boiler").sum() + gas_CHP_H_usage - - var["Primary Energy|Gas|Electricity"] = \ + var["Primary Energy|Gas|Heat"] = ( + gas_usage.filter(like="urban central gas boiler").sum() + gas_CHP_H_usage + ) + + var["Primary Energy|Gas|Electricity"] = ( gas_usage.reindex( [ - 'CCGT', - 'OCGT', + "CCGT", + "OCGT", ], - ).sum() + gas_CHP_E_usage + ).sum() + + gas_CHP_E_usage + ) - var["Primary Energy|Gas|Hydrogen"] = \ - gas_usage.filter(like="SMR").sum() - - var["Primary Energy|Gas"] = gas_usage.sum() + var["Primary Energy|Gas|Hydrogen"] = gas_usage.filter(like="SMR").sum() + var["Primary Energy|Gas"] = gas_usage.sum() waste_CHP_E_usage, waste_CHP_H_usage = get_CHP_E_and_H_usage( - n, "non-sequestered HVC", region) + n, "non-sequestered HVC", region + ) - var["Primary Energy|Waste|Electricity"] = \ - waste_CHP_E_usage - var["Primary Energy|Waste|Heat"] = \ - waste_CHP_H_usage + var["Primary Energy|Waste|Electricity"] = waste_CHP_E_usage + var["Primary Energy|Waste|Heat"] = waste_CHP_H_usage var["Primary Energy|Waste"] = ( - var["Primary Energy|Waste|Electricity"] - + var["Primary Energy|Waste|Heat"] + var["Primary Energy|Waste|Electricity"] + var["Primary Energy|Waste|Heat"] ) + coal_usage = ( + n.statistics.withdrawal( + bus_carrier=["lignite", "coal"], + **kwargs, + ) + .filter(like=region) + .groupby("carrier") + .sum() + .multiply(MWh2PJ) + ) - coal_usage = n.statistics.withdrawal( - bus_carrier=["lignite", "coal"], - **kwargs, - ).filter( - like=region - ).groupby( - "carrier" - ).sum().multiply(MWh2PJ) - - coal_CHP_E_usage, coal_CHP_H_usage = get_CHP_E_and_H_usage( - n, "coal", region) + coal_CHP_E_usage, coal_CHP_H_usage = get_CHP_E_and_H_usage(n, "coal", region) lignite_CHP_E_usage, lignite_CHP_H_usage = get_CHP_E_and_H_usage( - n, "lignite", region) + n, "lignite", region + ) - var["Primary Energy|Coal|Hard Coal"] = \ + var["Primary Energy|Coal|Hard Coal"] = ( coal_usage.get("coal", 0) + coal_CHP_E_usage + coal_CHP_H_usage + ) - var["Primary Energy|Coal|Lignite"] = \ + var["Primary Energy|Coal|Lignite"] = ( coal_usage.get("lignite", 0) + lignite_CHP_E_usage + lignite_CHP_H_usage - - var["Primary Energy|Coal|Electricity"] = \ - var["Primary Energy|Coal|Hard Coal"] - coal_CHP_H_usage + \ - var["Primary Energy|Coal|Lignite"] - lignite_CHP_H_usage - - var["Primary Energy|Coal|Heat"] = \ - coal_CHP_H_usage + lignite_CHP_H_usage + ) + + var["Primary Energy|Coal|Electricity"] = ( + var["Primary Energy|Coal|Hard Coal"] + - coal_CHP_H_usage + + var["Primary Energy|Coal|Lignite"] + - lignite_CHP_H_usage + ) + + var["Primary Energy|Coal|Heat"] = coal_CHP_H_usage + lignite_CHP_H_usage var["Primary Energy|Coal"] = ( - var["Primary Energy|Coal|Heat"] + var["Primary Energy|Coal|Electricity"] + var["Primary Energy|Coal|Heat"] + + var["Primary Energy|Coal|Electricity"] + coal_usage.get("coal for industry", 0) ) - + assert isclose(var["Primary Energy|Coal"], coal_usage.sum()) var["Primary Energy|Fossil"] = ( @@ -957,103 +1095,123 @@ def get_primary_energy(n, region): + var["Primary Energy|Oil"] ) - biomass_usage = n.statistics.withdrawal( - bus_carrier=["solid biomass", "biogas"], - **kwargs, - ).filter( - like=region - ).groupby( - "carrier" - ).sum().multiply(MWh2PJ) + biomass_usage = ( + n.statistics.withdrawal( + bus_carrier=["solid biomass", "biogas"], + **kwargs, + ) + .filter(like=region) + .groupby("carrier") + .sum() + .multiply(MWh2PJ) + ) biomass_CHP_E_usage, biomass_CHP_H_usage = get_CHP_E_and_H_usage( - n, "solid biomass", region) - - var["Primary Energy|Biomass|Gases"] = \ - biomass_usage.filter(like="biogas to gas").sum() - - var["Primary Energy|Biomass|w/ CCS"] = \ - biomass_usage[biomass_usage.index.str.contains("CC")].sum() - - var["Primary Energy|Biomass|w/o CCS"] = \ - biomass_usage[~biomass_usage.index.str.contains("CC")].sum() - - var["Primary Energy|Biomass|Electricity"] = \ - biomass_CHP_E_usage + biomass_usage.get("solid biomass", 0) - var["Primary Energy|Biomass|Heat"] = \ - biomass_CHP_H_usage + biomass_usage.get("urban central solid biomass boiler", 0) - - + n, "solid biomass", region + ) + + var["Primary Energy|Biomass|Gases"] = biomass_usage.filter( + like="biogas to gas" + ).sum() + + var["Primary Energy|Biomass|w/ CCS"] = biomass_usage[ + biomass_usage.index.str.contains("CC") + ].sum() + + var["Primary Energy|Biomass|w/o CCS"] = biomass_usage[ + ~biomass_usage.index.str.contains("CC") + ].sum() + + var["Primary Energy|Biomass|Electricity"] = biomass_CHP_E_usage + biomass_usage.get( + "solid biomass", 0 + ) + var["Primary Energy|Biomass|Heat"] = biomass_CHP_H_usage + biomass_usage.get( + "urban central solid biomass boiler", 0 + ) + var["Primary Energy|Biomass"] = biomass_usage.sum() - - - var["Primary Energy|Nuclear"] = \ + var["Primary Energy|Nuclear"] = ( n.statistics.withdrawal( - bus_carrier=["uranium"], + bus_carrier=["uranium"], **kwargs, - ).filter( - like=region - ).groupby( - "carrier" - ).sum().multiply(MWh2PJ).get("nuclear", 0) + ) + .filter(like=region) + .groupby("carrier") + .sum() + .multiply(MWh2PJ) + .get("nuclear", 0) + ) + # ! This should basically be equivalent to secondary energy + renewable_electricity = ( + n.statistics.supply( + bus_carrier=["AC", "low voltage"], + **kwargs, + ) + .drop( + [ + # Assuming renewables are only generators and StorageUnits + "Link", + "Line", + ] + ) + .filter(like=region) + .groupby("carrier") + .sum() + .multiply(MWh2PJ) + ) + + solar_thermal_heat = ( + n.statistics.supply( + bus_carrier=[ + "urban decentral heat", + "urban central heat", + "rural heat", + ], + **kwargs, + ) + .filter(like=region) + .groupby("carrier") + .sum() + .filter(like="solar thermal") + .multiply(MWh2PJ) + .sum() + ) - # ! This should basically be equivalent to secondary energy - renewable_electricity = n.statistics.supply( - bus_carrier=["AC", "low voltage"], - **kwargs, - ).drop([ - # Assuming renewables are only generators and StorageUnits - "Link", "Line" - ]).filter(like=region).groupby("carrier").sum().multiply(MWh2PJ) - - - solar_thermal_heat = n.statistics.supply( - bus_carrier=[ - "urban decentral heat", - "urban central heat", - "rural heat", - ], - **kwargs, - ).filter( - like=region - ).groupby("carrier").sum().filter( - like="solar thermal" - ).multiply(MWh2PJ).sum() + var["Primary Energy|Hydro"] = renewable_electricity.reindex( + [ + "ror", + "PHS", + "hydro", + ] + ).sum() - var["Primary Energy|Hydro"] = \ - renewable_electricity.reindex([ - "ror", "PHS", "hydro", - ]).sum() - - var["Primary Energy|Solar"] = \ - renewable_electricity.filter(like="solar").sum() + \ - solar_thermal_heat + var["Primary Energy|Solar"] = ( + renewable_electricity.filter(like="solar").sum() + solar_thermal_heat + ) - - var["Primary Energy|Wind"] = \ - renewable_electricity.filter(like="wind").sum() + var["Primary Energy|Wind"] = renewable_electricity.filter(like="wind").sum() assert isclose( renewable_electricity.sum() - solar_thermal_heat, ( - var["Primary Energy|Hydro"] - + var["Primary Energy|Solar"] + var["Primary Energy|Hydro"] + + var["Primary Energy|Solar"] + var["Primary Energy|Wind"] - ) + ), ) # Primary Energy|Other # Not implemented - + var["Primary Energy"] = ( - var["Primary Energy|Fossil"] + - var["Primary Energy|Biomass"] + - var["Primary Energy|Hydro"] + - var["Primary Energy|Solar"] + - var["Primary Energy|Wind"] + - var["Primary Energy|Nuclear"] + - var["Primary Energy|Waste"] + var["Primary Energy|Fossil"] + + var["Primary Energy|Biomass"] + + var["Primary Energy|Hydro"] + + var["Primary Energy|Solar"] + + var["Primary Energy|Wind"] + + var["Primary Energy|Nuclear"] + + var["Primary Energy|Waste"] ) return var @@ -1061,73 +1219,80 @@ def get_primary_energy(n, region): def get_secondary_energy(n, region, _industry_demand): kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, + "groupby": n.statistics.groupers.get_name_bus_and_carrier, + "nice_names": False, } var = pd.Series() - electricity_supply = n.statistics.supply( - bus_carrier=["low voltage", "AC"], **kwargs - ).filter(like=region).groupby( - ["carrier"] - ).sum().multiply(MWh2PJ).drop( - ["AC", "DC", "electricity distribution grid"], + electricity_supply = ( + n.statistics.supply(bus_carrier=["low voltage", "AC"], **kwargs) + .filter(like=region) + .groupby(["carrier"]) + .sum() + .multiply(MWh2PJ) + .drop( + ["AC", "DC", "electricity distribution grid"], + ) ) - var["Secondary Energy|Electricity|Coal|Hard Coal"] = \ - electricity_supply.filter(like="coal").sum() - - var["Secondary Energy|Electricity|Coal|Lignite"] = \ - electricity_supply.filter(like="lignite").sum() - + var["Secondary Energy|Electricity|Coal|Hard Coal"] = electricity_supply.filter( + like="coal" + ).sum() + + var["Secondary Energy|Electricity|Coal|Lignite"] = electricity_supply.filter( + like="lignite" + ).sum() + var["Secondary Energy|Electricity|Coal"] = ( - var["Secondary Energy|Electricity|Coal|Hard Coal"] + var["Secondary Energy|Electricity|Coal|Hard Coal"] + var["Secondary Energy|Electricity|Coal|Lignite"] ) - - var["Secondary Energy|Electricity|Oil"] = \ - electricity_supply.filter(like="oil").sum() - - var["Secondary Energy|Electricity|Gas"] = \ - electricity_supply.reindex( - [ - 'CCGT', - 'OCGT', - 'urban central gas CHP', - 'urban central gas CHP CC', - ], - ).sum() - + + var["Secondary Energy|Electricity|Oil"] = electricity_supply.filter( + like="oil" + ).sum() + + var["Secondary Energy|Electricity|Gas"] = electricity_supply.reindex( + [ + "CCGT", + "OCGT", + "urban central gas CHP", + "urban central gas CHP CC", + ], + ).sum() + var["Secondary Energy|Electricity|Fossil"] = ( var["Secondary Energy|Electricity|Gas"] + var["Secondary Energy|Electricity|Oil"] + var["Secondary Energy|Electricity|Coal"] ) - var["Secondary Energy|Electricity|Biomass|w/o CCS"] = \ - electricity_supply.get('urban central solid biomass CHP', 0) + \ - electricity_supply.get('solid biomass', 0) - var["Secondary Energy|Electricity|Biomass|w/ CCS"] = \ - electricity_supply.get('urban central solid biomass CHP CC', 0) + var["Secondary Energy|Electricity|Biomass|w/o CCS"] = electricity_supply.get( + "urban central solid biomass CHP", 0 + ) + electricity_supply.get("solid biomass", 0) + var["Secondary Energy|Electricity|Biomass|w/ CCS"] = electricity_supply.get( + "urban central solid biomass CHP CC", 0 + ) var["Secondary Energy|Electricity|Biomass"] = ( - var["Secondary Energy|Electricity|Biomass|w/o CCS"] - + var["Secondary Energy|Electricity|Biomass|w/ CCS"] + var["Secondary Energy|Electricity|Biomass|w/o CCS"] + + var["Secondary Energy|Electricity|Biomass|w/ CCS"] ) - var["Secondary Energy|Electricity|Hydro"] = ( - electricity_supply.get("hydro") - + electricity_supply.get("ror") - ) + var["Secondary Energy|Electricity|Hydro"] = electricity_supply.get( + "hydro" + ) + electricity_supply.get("ror") # ! Neglecting PHS here because it is storage infrastructure - var["Secondary Energy|Electricity|Nuclear"] = \ - electricity_supply.filter(like="nuclear").sum() - var["Secondary Energy|Electricity|Solar"] = \ - electricity_supply.filter(like="solar").sum() - var["Secondary Energy|Electricity|Wind|Offshore"] = \ - electricity_supply.filter(like="offwind").sum() - var["Secondary Energy|Electricity|Wind|Onshore"] = \ - electricity_supply.get("onwind") + var["Secondary Energy|Electricity|Nuclear"] = electricity_supply.filter( + like="nuclear" + ).sum() + var["Secondary Energy|Electricity|Solar"] = electricity_supply.filter( + like="solar" + ).sum() + var["Secondary Energy|Electricity|Wind|Offshore"] = electricity_supply.filter( + like="offwind" + ).sum() + var["Secondary Energy|Electricity|Wind|Onshore"] = electricity_supply.get("onwind") var["Secondary Energy|Electricity|Wind"] = ( var["Secondary Energy|Electricity|Wind|Offshore"] + var["Secondary Energy|Electricity|Wind|Onshore"] @@ -1138,41 +1303,52 @@ def get_secondary_energy(n, region, _industry_demand): + var["Secondary Energy|Electricity|Wind"] ) - var["Secondary Energy|Electricity|Hydrogen"] = \ - electricity_supply.get("H2 Fuel Cell", 0) + var["Secondary Energy|Electricity|Hydrogen"] = electricity_supply.get( + "H2 Fuel Cell", 0 + ) # ! Add H2 Turbines if they get implemented - var["Secondary Energy|Electricity|Waste"] = \ - electricity_supply.filter(like="waste CHP").sum() + var["Secondary Energy|Electricity|Waste"] = electricity_supply.filter( + like="waste CHP" + ).sum() - var["Secondary Energy|Electricity|Curtailment"] = \ - n.statistics.curtailment( - bus_carrier=["AC", "low voltage"], **kwargs - ).filter(like=region).multiply(MWh2PJ).values.sum() - + var["Secondary Energy|Electricity|Curtailment"] = ( + n.statistics.curtailment(bus_carrier=["AC", "low voltage"], **kwargs) + .filter(like=region) + .multiply(MWh2PJ) + .values.sum() + ) - var["Secondary Energy|Electricity|Storage Losses"] = \ - n.statistics.withdrawal( - bus_carrier=["AC", "low voltage"], **kwargs - ).filter(like=region).groupby(["carrier"]).sum().reindex( + var["Secondary Energy|Electricity|Storage Losses"] = ( + n.statistics.withdrawal(bus_carrier=["AC", "low voltage"], **kwargs) + .filter(like=region) + .groupby(["carrier"]) + .sum() + .reindex( [ - "BEV charger", - "battery charger", + "BEV charger", + "battery charger", "home battery charger", "PHS", ] - ).subtract( - n.statistics.supply( - bus_carrier=["AC", "low voltage"], **kwargs - ).filter(like=region).groupby(["carrier"]).sum().reindex( + ) + .subtract( + n.statistics.supply(bus_carrier=["AC", "low voltage"], **kwargs) + .filter(like=region) + .groupby(["carrier"]) + .sum() + .reindex( [ - "V2G", - "battery discharger", + "V2G", + "battery discharger", "home battery discharger", "PHS", ] ) - ).multiply(MWh2PJ).sum() + ) + .multiply(MWh2PJ) + .sum() + ) # TODO Compute transmission losses via links_t # var["Secondary Energy|Electricity|Transmission Losses"] = \ @@ -1195,8 +1371,8 @@ def get_secondary_energy(n, region, _industry_demand): + var["Secondary Energy|Electricity|Biomass"] + var["Secondary Energy|Electricity|Non-Biomass Renewables"] + var["Secondary Energy|Electricity|Nuclear"] - #+ var["Secondary Energy|Electricity|Transmission Losses"] - #+ var["Secondary Energy|Electricity|Storage Losses"] + # + var["Secondary Energy|Electricity|Transmission Losses"] + # + var["Secondary Energy|Electricity|Storage Losses"] + var["Secondary Energy|Electricity|Hydrogen"] + var["Secondary Energy|Electricity|Waste"] ) @@ -1204,64 +1380,64 @@ def get_secondary_energy(n, region, _industry_demand): assert isclose( electricity_supply[ ~electricity_supply.index.str.contains( - "PHS" - "|battery discharger" - "|home battery discharger" - "|V2G" + "PHS" "|battery discharger" "|home battery discharger" "|V2G" ) ].sum(), var["Secondary Energy|Electricity"], ) - heat_supply = n.statistics.supply( - bus_carrier=[ - "urban central heat", - # rural and urban decentral heat do not produce secondary energy - ], **kwargs - ).filter(like=region).groupby( - ["carrier"] - ).sum().multiply(MWh2PJ) - - var["Secondary Energy|Heat|Gas"] = \ - heat_supply.filter(like="gas").sum() - - var["Secondary Energy|Heat|Biomass"] = \ - heat_supply.filter(like="biomass").sum() - - var["Secondary Energy|Heat|Coal"] = \ - heat_supply.filter(like="coal").sum() + \ - heat_supply.filter(like="lignite").sum() + heat_supply = ( + n.statistics.supply( + bus_carrier=[ + "urban central heat", + # rural and urban decentral heat do not produce secondary energy + ], + **kwargs, + ) + .filter(like=region) + .groupby(["carrier"]) + .sum() + .multiply(MWh2PJ) + ) + + var["Secondary Energy|Heat|Gas"] = heat_supply.filter(like="gas").sum() + + var["Secondary Energy|Heat|Biomass"] = heat_supply.filter(like="biomass").sum() + + var["Secondary Energy|Heat|Coal"] = ( + heat_supply.filter(like="coal").sum() + heat_supply.filter(like="lignite").sum() + ) # var["Secondary Energy|Heat|Geothermal"] = \ # var["Secondary Energy|Heat|Nuclear"] = \ # var["Secondary Energy|Heat|Other"] = \ # ! Not implemented - var["Secondary Energy|Heat|Oil"] = \ - heat_supply.filter(like="urban central oil").sum() - - var["Secondary Energy|Heat|Solar"] = \ - heat_supply.filter(like="solar thermal").sum() - - var["Secondary Energy|Heat|Electricity|Heat Pumps"] = \ - heat_supply.filter(like="heat pump").sum() - var["Secondary Energy|Heat|Electricity|Resistive"] = \ - heat_supply.filter(like="resistive heater").sum() + var["Secondary Energy|Heat|Oil"] = heat_supply.filter( + like="urban central oil" + ).sum() + + var["Secondary Energy|Heat|Solar"] = heat_supply.filter(like="solar thermal").sum() + + var["Secondary Energy|Heat|Electricity|Heat Pumps"] = heat_supply.filter( + like="heat pump" + ).sum() + var["Secondary Energy|Heat|Electricity|Resistive"] = heat_supply.filter( + like="resistive heater" + ).sum() var["Secondary Energy|Heat|Electricity"] = ( - var["Secondary Energy|Heat|Electricity|Heat Pumps"] - + var["Secondary Energy|Heat|Electricity|Resistive"] + var["Secondary Energy|Heat|Electricity|Heat Pumps"] + + var["Secondary Energy|Heat|Electricity|Resistive"] ) - var["Secondary Energy|Heat|Waste"] = \ - heat_supply.filter(like="waste CHP").sum() - var["Secondary Energy|Heat|Other"] = \ - heat_supply.reindex( - [ - "Fischer-Tropsch", - "H2 Fuel Cell", - "H2 Electrolysis", - "Sabatier", - "methanolisation", - ] - ).sum() + var["Secondary Energy|Heat|Waste"] = heat_supply.filter(like="waste CHP").sum() + var["Secondary Energy|Heat|Other"] = heat_supply.reindex( + [ + "Fischer-Tropsch", + "H2 Fuel Cell", + "H2 Electrolysis", + "Sabatier", + "methanolisation", + ] + ).sum() # TODO remember to specify in comments var["Secondary Energy|Heat"] = ( @@ -1276,25 +1452,27 @@ def get_secondary_energy(n, region, _industry_demand): ) assert isclose( var["Secondary Energy|Heat"], - heat_supply[ - ~heat_supply.index.str.contains("discharger") - ].sum() + heat_supply[~heat_supply.index.str.contains("discharger")].sum(), ) - hydrogen_production = n.statistics.supply( - bus_carrier="H2", **kwargs - ).filter(like=region).groupby( - ["carrier"] - ).sum().multiply(MWh2PJ) + hydrogen_production = ( + n.statistics.supply(bus_carrier="H2", **kwargs) + .filter(like=region) + .groupby(["carrier"]) + .sum() + .multiply(MWh2PJ) + ) - var["Secondary Energy|Hydrogen|Electricity"] = \ - hydrogen_production.get('H2 Electrolysis', 0) + var["Secondary Energy|Hydrogen|Electricity"] = hydrogen_production.get( + "H2 Electrolysis", 0 + ) - var["Secondary Energy|Hydrogen|Gas"] = \ - hydrogen_production.reindex(["SMR","SMR CC"]).sum() + var["Secondary Energy|Hydrogen|Gas"] = hydrogen_production.reindex( + ["SMR", "SMR CC"] + ).sum() var["Secondary Energy|Hydrogen"] = ( - var["Secondary Energy|Hydrogen|Electricity"] + var["Secondary Energy|Hydrogen|Electricity"] + var["Secondary Energy|Hydrogen|Gas"] ) @@ -1304,154 +1482,161 @@ def get_secondary_energy(n, region, _industry_demand): ~hydrogen_production.index.isin( ["H2", "H2 pipeline", "H2 pipeline (Kernnetz)"] ) - ].sum() + ].sum(), ) oil_fossil_fraction = _get_oil_fossil_fraction(n, region) - - oil_fuel_usage = n.statistics.withdrawal( - bus_carrier="oil", - **kwargs - ).filter( - like=region - ).groupby( - "carrier" - ).sum().multiply(MWh2PJ).reindex( - [ - "agriculture machinery oil", - "kerosene for aviation", - "land transport oil", - "naphtha for industry", - "shipping oil", - # TODO is decentral heating oil considered a fuel? - "rural oil boiler", - "urban decentral oil boiler" - ] + oil_fuel_usage = ( + n.statistics.withdrawal(bus_carrier="oil", **kwargs) + .filter(like=region) + .groupby("carrier") + .sum() + .multiply(MWh2PJ) + .reindex( + [ + "agriculture machinery oil", + "kerosene for aviation", + "land transport oil", + "naphtha for industry", + "shipping oil", + # TODO is decentral heating oil considered a fuel? + "rural oil boiler", + "urban decentral oil boiler", + ] + ) ) total_oil_fuel_usage = oil_fuel_usage.sum() - var["Secondary Energy|Liquids|Fossil"] = \ - var["Secondary Energy|Liquids|Oil"] = \ + var["Secondary Energy|Liquids|Fossil"] = var["Secondary Energy|Liquids|Oil"] = ( total_oil_fuel_usage * oil_fossil_fraction - var["Secondary Energy|Liquids|Hydrogen"] = \ - total_oil_fuel_usage * (1 - oil_fossil_fraction) - + ) + var["Secondary Energy|Liquids|Hydrogen"] = total_oil_fuel_usage * ( + 1 - oil_fossil_fraction + ) + var["Secondary Energy|Liquids"] = ( - var["Secondary Energy|Liquids|Oil"] - + var["Secondary Energy|Liquids|Hydrogen"] + var["Secondary Energy|Liquids|Oil"] + var["Secondary Energy|Liquids|Hydrogen"] ) - try: - methanol_production = n.statistics.supply( - bus_carrier="methanol", **kwargs - ).filter(like=region).groupby( - ["carrier"] - ).sum().multiply(MWh2PJ) + methanol_production = ( + n.statistics.supply(bus_carrier="methanol", **kwargs) + .filter(like=region) + .groupby(["carrier"]) + .sum() + .multiply(MWh2PJ) + ) - assert methanol_production.size <= 2 # only methanolisation and methanol imports + assert ( + methanol_production.size <= 2 + ) # only methanolisation and methanol imports # var["Production|Chemicals|Methanol"] = \ # here units are Mt/year - var["Secondary Energy|Methanol"] = \ - methanol_production.get("methanolisation", 0) + var["Secondary Energy|Methanol"] = methanol_production.get("methanolisation", 0) # Remeber to specify that Other Carrier == Methanol in Comments Tab except KeyError: var["Secondary Energy|Methanol"] = 0 - gas_production = n.statistics.supply( - bus_carrier="gas", **kwargs - ).filter(like=region).groupby( - ["carrier", "component"] - ).sum().multiply(MWh2PJ).drop( - ["gas pipeline", "gas pipeline new", ("gas", "Store")] - ).groupby("carrier").sum() + gas_production = ( + n.statistics.supply(bus_carrier="gas", **kwargs) + .filter(like=region) + .groupby(["carrier", "component"]) + .sum() + .multiply(MWh2PJ) + .drop(["gas pipeline", "gas pipeline new", ("gas", "Store")]) + .groupby("carrier") + .sum() + ) total_gas_production = gas_production.sum() - gas_fuel_usage = n.statistics.withdrawal( - bus_carrier="gas", **kwargs - ).filter(like=region).groupby( - ["carrier"] - ).sum().multiply(MWh2PJ).reindex( - [ - "gas for industry", - "gas for industry CC", - "rural gas boiler", - "urban decentral gas boiler" - ] - ) # Building, Transport and Industry sectors + gas_fuel_usage = ( + n.statistics.withdrawal(bus_carrier="gas", **kwargs) + .filter(like=region) + .groupby(["carrier"]) + .sum() + .multiply(MWh2PJ) + .reindex( + [ + "gas for industry", + "gas for industry CC", + "rural gas boiler", + "urban decentral gas boiler", + ] + ) + ) # Building, Transport and Industry sectors total_gas_fuel_usage = gas_fuel_usage.sum() # Fraction supplied by Hydrogen conversion var["Secondary Energy|Gases|Hydrogen"] = ( - total_gas_fuel_usage - * gas_production.get("Sabatier", 0) - / total_gas_production + total_gas_fuel_usage * gas_production.get("Sabatier", 0) / total_gas_production ) - + var["Secondary Energy|Gases|Biomass"] = ( total_gas_fuel_usage * gas_production.filter(like="biogas to gas").sum() / total_gas_production ) - + var["Secondary Energy|Gases|Natural Gas"] = ( - total_gas_fuel_usage - * gas_production.get("gas") - / total_gas_production + total_gas_fuel_usage * gas_production.get("gas") / total_gas_production ) var["Secondary Energy|Gases"] = ( - var["Secondary Energy|Gases|Hydrogen"] + var["Secondary Energy|Gases|Hydrogen"] + var["Secondary Energy|Gases|Biomass"] + var["Secondary Energy|Gases|Natural Gas"] ) - assert isclose( - var["Secondary Energy|Gases"], - gas_fuel_usage.sum() - ) - + assert isclose(var["Secondary Energy|Gases"], gas_fuel_usage.sum()) industry_demand = _industry_demand.filter( - like=region, axis=0, + like=region, + axis=0, ).sum() - mwh_coal_per_mwh_coke = 1.366 + mwh_coal_per_mwh_coke = 1.366 # Coke is added as a coal demand, so we need to convert back to units of coke for secondary energy - var["Secondary Energy|Solids|Coal"] = \ - var["Secondary Energy|Solids"] = \ - industry_demand.get("coke", 0) / mwh_coal_per_mwh_coke - - - - electricity_withdrawal = n.statistics.withdrawal( - bus_carrier=["low voltage", "AC"], **kwargs - ).filter(like=region).groupby( - ["carrier"] - ).sum().multiply(MWh2PJ) - - var["Secondary Energy Input|Electricity|Hydrogen"] = \ - electricity_withdrawal.get("H2 Electrolysis", 0) - - var["Secondary Energy Input|Electricity|Heat"] = \ - electricity_withdrawal.filter(like="urban central").sum() - - hydrogen_withdrawal = n.statistics.withdrawal( - bus_carrier="H2", **kwargs - ).filter(like=region).groupby( - ["carrier"] - ).sum().multiply(MWh2PJ) - - var["Secondary Energy Input|Hydrogen|Electricity"] = \ - hydrogen_withdrawal.get("H2 Fuel Cell", 0) - - var["Secondary Energy Input|Hydrogen|Gases"] = \ - hydrogen_withdrawal.get("Sabatier", 0) - - var["Secondary Energy Input|Hydrogen|Liquids"] = \ - hydrogen_withdrawal.get("Fischer-Tropsch", 0) - + var["Secondary Energy|Solids|Coal"] = var["Secondary Energy|Solids"] = ( + industry_demand.get("coke", 0) / mwh_coal_per_mwh_coke + ) + + electricity_withdrawal = ( + n.statistics.withdrawal(bus_carrier=["low voltage", "AC"], **kwargs) + .filter(like=region) + .groupby(["carrier"]) + .sum() + .multiply(MWh2PJ) + ) + + var["Secondary Energy Input|Electricity|Hydrogen"] = electricity_withdrawal.get( + "H2 Electrolysis", 0 + ) + + var["Secondary Energy Input|Electricity|Heat"] = electricity_withdrawal.filter( + like="urban central" + ).sum() + + hydrogen_withdrawal = ( + n.statistics.withdrawal(bus_carrier="H2", **kwargs) + .filter(like=region) + .groupby(["carrier"]) + .sum() + .multiply(MWh2PJ) + ) + + var["Secondary Energy Input|Hydrogen|Electricity"] = hydrogen_withdrawal.get( + "H2 Fuel Cell", 0 + ) + + var["Secondary Energy Input|Hydrogen|Gases"] = hydrogen_withdrawal.get( + "Sabatier", 0 + ) + + var["Secondary Energy Input|Hydrogen|Liquids"] = hydrogen_withdrawal.get( + "Fischer-Tropsch", 0 + ) + var["Secondary Energy"] = ( var["Secondary Energy|Electricity"] + var["Secondary Energy|Heat"] @@ -1461,29 +1646,44 @@ def get_secondary_energy(n, region, _industry_demand): + var["Secondary Energy|Solids"] + var["Secondary Energy|Methanol"] ) - + return var -def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios, _industry_production): +def get_final_energy( + n, region, _industry_demand, _energy_totals, _sector_ratios, _industry_production +): var = pd.Series() kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, - } + "groupby": n.statistics.groupers.get_name_bus_and_carrier, + "nice_names": False, + } h2_fossil_fraction = _get_h2_fossil_fraction(n) oil_fossil_fraction = _get_oil_fossil_fraction(n, region) if config["industry"]["ammonia"]: # MWh/a - Haber_Bosch_NH3 = n.statistics.supply( - bus_carrier="NH3", **kwargs - ).groupby("carrier").sum()["Haber-Bosch"] - - CH4_for_NH3 = Haber_Bosch_NH3 * h2_fossil_fraction * config["industry"]["MWh_CH4_per_tNH3_SMR"] / config["industry"]["MWh_NH3_per_tNH3"] * MWh2PJ - H2_for_NH3 = Haber_Bosch_NH3 * (1 - h2_fossil_fraction) / config["industry"]["MWh_H2_per_tNH3_electrolysis"] * MWh2PJ + Haber_Bosch_NH3 = ( + n.statistics.supply(bus_carrier="NH3", **kwargs) + .groupby("carrier") + .sum()["Haber-Bosch"] + ) + + CH4_for_NH3 = ( + Haber_Bosch_NH3 + * h2_fossil_fraction + * config["industry"]["MWh_CH4_per_tNH3_SMR"] + / config["industry"]["MWh_NH3_per_tNH3"] + * MWh2PJ + ) + H2_for_NH3 = ( + Haber_Bosch_NH3 + * (1 - h2_fossil_fraction) + / config["industry"]["MWh_H2_per_tNH3_electrolysis"] + * MWh2PJ + ) subcategories = ["HVC", "Methanol", "Chlorine"] else: @@ -1493,8 +1693,8 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios carrier = ["hydrogen", "methane", "naphtha"] - ip = _industry_production.loc[region, subcategories] # kt/a - sr = _sector_ratios["DE"].loc[carrier,subcategories] # MWh/tMaterial + ip = _industry_production.loc[region, subcategories] # kt/a + sr = _sector_ratios["DE"].loc[carrier, subcategories] # MWh/tMaterial non_energy = sr.multiply(ip).sum(axis=1) * 1e3 * MWh2PJ # write var @@ -1502,53 +1702,58 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios gas_fractions = _get_gas_fractions(n) for gas_type in gas_fractions.index: - var[f"Final Energy|Non-Energy Use|Gases|{gas_type}"] = \ + var[f"Final Energy|Non-Energy Use|Gases|{gas_type}"] = ( var["Final Energy|Non-Energy Use|Gases"] * gas_fractions[gas_type] + ) var["Final Energy|Non-Energy Use|Liquids"] = non_energy.naphtha - var["Final Energy|Non-Energy Use|Liquids|Petroleum"] = non_energy.naphtha * oil_fossil_fraction - var["Final Energy|Non-Energy Use|Liquids|Efuel"] = non_energy.naphtha * (1 - oil_fossil_fraction) + var["Final Energy|Non-Energy Use|Liquids|Petroleum"] = ( + non_energy.naphtha * oil_fossil_fraction + ) + var["Final Energy|Non-Energy Use|Liquids|Efuel"] = non_energy.naphtha * ( + 1 - oil_fossil_fraction + ) var["Final Energy|Non-Energy Use|Liquids|Biomass"] = 0 var["Final Energy|Non-Energy Use|Solids"] = 0 var["Final Energy|Non-Energy Use|Solids|Coal"] = 0 var["Final Energy|Non-Energy Use|Solids|Biomass"] = 0 - var["Final Energy|Non-Energy Use|Hydrogen"] = (non_energy.hydrogen + H2_for_NH3) + var["Final Energy|Non-Energy Use|Hydrogen"] = non_energy.hydrogen + H2_for_NH3 - var["Final Energy|Non-Energy Use"] = \ - non_energy.sum() + CH4_for_NH3 + H2_for_NH3 + var["Final Energy|Non-Energy Use"] = non_energy.sum() + CH4_for_NH3 + H2_for_NH3 assert isclose( var["Final Energy|Non-Energy Use"], var["Final Energy|Non-Energy Use|Gases"] + var["Final Energy|Non-Energy Use|Liquids"] + var["Final Energy|Non-Energy Use|Solids"] - + var["Final Energy|Non-Energy Use|Hydrogen"] + + var["Final Energy|Non-Energy Use|Hydrogen"], ) energy_totals = _energy_totals.loc[region[0:2]] industry_demand = _industry_demand.filter( - like=region, axis=0, + like=region, + axis=0, ).sum() # !: Pypsa-eur does not strictly distinguish between energy and # non-energy use - var["Final Energy|Industry|Electricity"] = \ - industry_demand.get("electricity") - # or use: sum_load(n, "industry electricity", region) + var["Final Energy|Industry|Electricity"] = industry_demand.get("electricity") + # or use: sum_load(n, "industry electricity", region) # electricity is not used for non-energy purposes - var["Final Energy|Industry excl Non-Energy Use|Electricity"] = \ - var["Final Energy|Industry|Electricity"] + var["Final Energy|Industry excl Non-Energy Use|Electricity"] = var[ + "Final Energy|Industry|Electricity" + ] - var["Final Energy|Industry|Heat"] = \ - industry_demand.get("low-temperature heat") + var["Final Energy|Industry|Heat"] = industry_demand.get("low-temperature heat") # heat is not used for non-energy purposes - var["Final Energy|Industry excl Non-Energy Use|Heat"] = \ - var["Final Energy|Industry|Heat"] + var["Final Energy|Industry excl Non-Energy Use|Heat"] = var[ + "Final Energy|Industry|Heat" + ] # var["Final Energy|Industry|Solar"] = \ # !: Included in |Heat @@ -1556,82 +1761,91 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios # var["Final Energy|Industry|Geothermal"] = \ # Not implemented - var["Final Energy|Industry|Gases"] = \ - industry_demand.get("methane") + var["Final Energy|Industry|Gases"] = industry_demand.get("methane") for gas_type in gas_fractions.index: - var[f"Final Energy|Industry|Gases|{gas_type}"] = \ + var[f"Final Energy|Industry|Gases|{gas_type}"] = ( var["Final Energy|Industry|Gases"] * gas_fractions[gas_type] - + ) + # "gas for industry" is now regionally resolved and could be used here # subtract non-energy used gases from total gas demand - var["Final Energy|Industry excl Non-Energy Use|Gases"] = \ + var["Final Energy|Industry excl Non-Energy Use|Gases"] = ( var["Final Energy|Industry|Gases"] - var["Final Energy|Non-Energy Use|Gases"] - + ) for gas_type in gas_fractions.index: - var[f"Final Energy|Industry excl Non-Energy Use|Gases|{gas_type}"] = \ - var[f"Final Energy|Industry excl Non-Energy Use|Gases"] * gas_fractions[gas_type] - - + var[f"Final Energy|Industry excl Non-Energy Use|Gases|{gas_type}"] = ( + var[f"Final Energy|Industry excl Non-Energy Use|Gases"] + * gas_fractions[gas_type] + ) # var["Final Energy|Industry|Power2Heat"] = \ # Q: misleading description - var["Final Energy|Industry|Hydrogen"] = \ - industry_demand.get("hydrogen") + var["Final Energy|Industry|Hydrogen"] = industry_demand.get("hydrogen") # subtract non-energy used hydrogen from total hydrogen demand - var["Final Energy|Industry excl Non-Energy Use|Hydrogen"] = \ - var["Final Energy|Industry|Hydrogen"] - var["Final Energy|Non-Energy Use|Hydrogen"] - - var["Final Energy|Industry|Liquids|Petroleum"] = \ + var["Final Energy|Industry excl Non-Energy Use|Hydrogen"] = ( + var["Final Energy|Industry|Hydrogen"] + - var["Final Energy|Non-Energy Use|Hydrogen"] + ) + + var["Final Energy|Industry|Liquids|Petroleum"] = ( sum_load(n, "naphtha for industry", region) * oil_fossil_fraction - + ) + # subtract non-energy used petroleum from total petroleum demand - var["Final Energy|Industry excl Non-Energy Use|Liquids|Petroleum"] = \ - var["Final Energy|Industry|Liquids|Petroleum"] - var["Final Energy|Non-Energy Use|Liquids|Petroleum"] - - var["Final Energy|Industry|Liquids|Efuel"] = \ - sum_load(n, "naphtha for industry", region) * (1 - oil_fossil_fraction) + var["Final Energy|Industry excl Non-Energy Use|Liquids|Petroleum"] = ( + var["Final Energy|Industry|Liquids|Petroleum"] + - var["Final Energy|Non-Energy Use|Liquids|Petroleum"] + ) + + var["Final Energy|Industry|Liquids|Efuel"] = sum_load( + n, "naphtha for industry", region + ) * (1 - oil_fossil_fraction) # subtract non-energy used efuels from total efuels demand - var["Final Energy|Industry excl Non-Energy Use|Liquids|Efuel"] = \ - var["Final Energy|Industry|Liquids|Efuel"] - var["Final Energy|Non-Energy Use|Liquids|Efuel"] + var["Final Energy|Industry excl Non-Energy Use|Liquids|Efuel"] = ( + var["Final Energy|Industry|Liquids|Efuel"] + - var["Final Energy|Non-Energy Use|Liquids|Efuel"] + ) - var["Final Energy|Industry|Liquids"] = \ - sum_load(n, "naphtha for industry", region) + var["Final Energy|Industry|Liquids"] = sum_load(n, "naphtha for industry", region) # subtract non-energy used liquids from total liquid demand - var["Final Energy|Industry excl Non-Energy Use|Liquids"] = \ - var["Final Energy|Industry|Liquids"] - var["Final Energy|Non-Energy Use|Liquids"] + var["Final Energy|Industry excl Non-Energy Use|Liquids"] = ( + var["Final Energy|Industry|Liquids"] + - var["Final Energy|Non-Energy Use|Liquids"] + ) - #TODO This is plastics not liquids for industry! Look in industry demand! - + # TODO This is plastics not liquids for industry! Look in industry demand! # var["Final Energy|Industry|Other"] = \ + var["Final Energy|Industry|Solids|Biomass"] = industry_demand.get("solid biomass") + var["Final Energy|Industry excl Non-Energy Use|Solids|Biomass"] = var[ + "Final Energy|Industry|Solids|Biomass" + ] - - var["Final Energy|Industry|Solids|Biomass"] = \ - industry_demand.get("solid biomass") - var["Final Energy|Industry excl Non-Energy Use|Solids|Biomass"] = \ - var["Final Energy|Industry|Solids|Biomass"] - mwh_coal_per_mwh_coke = 1.366 # Coke is added as a coal demand, so we need to convert back to units of coke for final energy - var["Final Energy|Industry|Solids|Coal"] = \ - industry_demand.get("coal") + \ - industry_demand.get("coke") / mwh_coal_per_mwh_coke - var["Final Energy|Industry excl Non-Energy Use|Solids|Coal"] = \ - var["Final Energy|Industry|Solids|Coal"] - - var["Final Energy|Industry|Solids"] = \ - var["Final Energy|Industry|Solids|Biomass"] + \ - var["Final Energy|Industry|Solids|Coal"] + var["Final Energy|Industry|Solids|Coal"] = ( + industry_demand.get("coal") + + industry_demand.get("coke") / mwh_coal_per_mwh_coke + ) + var["Final Energy|Industry excl Non-Energy Use|Solids|Coal"] = var[ + "Final Energy|Industry|Solids|Coal" + ] + + var["Final Energy|Industry|Solids"] = ( + var["Final Energy|Industry|Solids|Biomass"] + + var["Final Energy|Industry|Solids|Coal"] + ) # no solids used for non-energy purposes - var["Final Energy|Industry excl Non-Energy Use|Solids"] = \ - var["Final Energy|Industry|Solids"] + var["Final Energy|Industry excl Non-Energy Use|Solids"] = var[ + "Final Energy|Industry|Solids" + ] # Why is AMMONIA zero? - + # var["Final Energy|Industry excl Non-Energy Use|Non-Metallic Minerals"] = \ # var["Final Energy|Industry excl Non-Energy Use|Chemicals"] = \ # var["Final Energy|Industry excl Non-Energy Use|Steel"] = \ @@ -1644,37 +1858,45 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios # var["Final Energy|Industry excl Non-Energy Use|Vehicle Construction"] = \ # Q: Most of these could be found somewhere, but are model inputs! - var["Final Energy|Industry"] = \ - var.get([ + var["Final Energy|Industry"] = var.get( + [ "Final Energy|Industry|Electricity", "Final Energy|Industry|Heat", "Final Energy|Industry|Gases", "Final Energy|Industry|Hydrogen", "Final Energy|Industry|Liquids", "Final Energy|Industry|Solids", - ]).sum() - var["Final Energy|Industry excl Non-Energy Use"] = \ - var.get([ + ] + ).sum() + var["Final Energy|Industry excl Non-Energy Use"] = var.get( + [ "Final Energy|Industry excl Non-Energy Use|Electricity", "Final Energy|Industry excl Non-Energy Use|Heat", "Final Energy|Industry excl Non-Energy Use|Gases", "Final Energy|Industry excl Non-Energy Use|Hydrogen", "Final Energy|Industry excl Non-Energy Use|Liquids", "Final Energy|Industry excl Non-Energy Use|Solids", - ]).sum() + ] + ).sum() assert isclose( var["Final Energy|Industry"] - var["Final Energy|Non-Energy Use"], - var["Final Energy|Industry excl Non-Energy Use"] + var["Final Energy|Industry excl Non-Energy Use"], ) # Final energy is delivered to the consumers - low_voltage_electricity = n.statistics.withdrawal( - bus_carrier="low voltage", - **kwargs, - ).filter( - like=region, - ).groupby("carrier").sum().multiply(MWh2PJ) - - var["Final Energy|Residential and Commercial|Electricity"] = \ + low_voltage_electricity = ( + n.statistics.withdrawal( + bus_carrier="low voltage", + **kwargs, + ) + .filter( + like=region, + ) + .groupby("carrier") + .sum() + .multiply(MWh2PJ) + ) + + var["Final Energy|Residential and Commercial|Electricity"] = ( low_voltage_electricity[ # carrier does not contain one of the following substrings ~low_voltage_electricity.index.str.contains( @@ -1682,87 +1904,110 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios # Excluding chargers (battery and EV) ) ].sum() + ) # urban decentral heat and rural heat are delivered as different forms of energy # (gas, oil, biomass, ...) - decentral_heat_withdrawal = n.statistics.withdrawal( - bus_carrier=["rural heat", "urban decentral heat"], - **kwargs, - ).filter( - like=region, - ).groupby("carrier").sum().drop([ # chargers affect all sectors equally - "urban decentral water tanks charger", - "rural water tanks charger", - ], errors="ignore").multiply(MWh2PJ) + decentral_heat_withdrawal = ( + n.statistics.withdrawal( + bus_carrier=["rural heat", "urban decentral heat"], + **kwargs, + ) + .filter( + like=region, + ) + .groupby("carrier") + .sum() + .drop( + [ # chargers affect all sectors equally + "urban decentral water tanks charger", + "rural water tanks charger", + ], + errors="ignore", + ) + .multiply(MWh2PJ) + ) decentral_heat_residential_and_commercial_fraction = ( - sum_load(n, ["urban decentral heat", "rural heat"], region) + sum_load(n, ["urban decentral heat", "rural heat"], region) / decentral_heat_withdrawal.sum() ) - decentral_heat_supply_rescom = n.statistics.supply( - bus_carrier=["rural heat", "urban decentral heat"], - **kwargs, - ).filter( - like=region, - ).groupby("carrier").sum().multiply(MWh2PJ).multiply( - decentral_heat_residential_and_commercial_fraction + decentral_heat_supply_rescom = ( + n.statistics.supply( + bus_carrier=["rural heat", "urban decentral heat"], + **kwargs, + ) + .filter( + like=region, + ) + .groupby("carrier") + .sum() + .multiply(MWh2PJ) + .multiply(decentral_heat_residential_and_commercial_fraction) ) # Dischargers probably should not be considered, to avoid double counting var["Final Energy|Residential and Commercial|Heat"] = ( - sum_load(n, "urban central heat", region) # For urban central Final Energy is delivered as Heat + sum_load( + n, "urban central heat", region + ) # For urban central Final Energy is delivered as Heat + decentral_heat_supply_rescom.filter(like="solar thermal").sum() - ) # Assuming for solar thermal secondary energy == Final energy - - gas_usage = n.statistics.withdrawal( - bus_carrier="gas", **kwargs - ).filter(like=region).groupby( - ["carrier"] - ).sum().multiply(MWh2PJ) + ) # Assuming for solar thermal secondary energy == Final energy + + gas_usage = ( + n.statistics.withdrawal(bus_carrier="gas", **kwargs) + .filter(like=region) + .groupby(["carrier"]) + .sum() + .multiply(MWh2PJ) + ) # !!! Here the final is delivered as gas, not as heat - var["Final Energy|Residential and Commercial|Gases"] = \ - gas_usage.get("urban decentral gas boiler", 0) + \ - gas_usage.get("rural gas boiler", 0) - + var["Final Energy|Residential and Commercial|Gases"] = gas_usage.get( + "urban decentral gas boiler", 0 + ) + gas_usage.get("rural gas boiler", 0) + for gas_type in gas_fractions.index: var[f"Final Energy|Residential and Commercial|Gases|{gas_type}"] = ( var["Final Energy|Residential and Commercial|Gases"] * gas_fractions[gas_type] ) - # var["Final Energy|Residential and Commercial|Hydrogen"] = \ # ! Not implemented - oil_usage = n.statistics.withdrawal( - bus_carrier="oil", **kwargs - ).filter(like=region).groupby( - ["carrier"] - ).sum().multiply(MWh2PJ) - - var["Final Energy|Residential and Commercial|Liquids"] = \ - oil_usage.get("urban decentral oil boiler", 0) + \ - oil_usage.get("rural oil boiler", 0) - + oil_usage = ( + n.statistics.withdrawal(bus_carrier="oil", **kwargs) + .filter(like=region) + .groupby(["carrier"]) + .sum() + .multiply(MWh2PJ) + ) + + var["Final Energy|Residential and Commercial|Liquids"] = oil_usage.get( + "urban decentral oil boiler", 0 + ) + oil_usage.get("rural oil boiler", 0) + var["Final Energy|Residential and Commercial|Liquids|Petroleum"] = ( - var["Final Energy|Residential and Commercial|Liquids"] - * oil_fossil_fraction - ) - + var["Final Energy|Residential and Commercial|Liquids"] * oil_fossil_fraction + ) + # var["Final Energy|Residential and Commercial|Other"] = \ # var["Final Energy|Residential and Commercial|Solids|Coal"] = \ - # ! Not implemented + # ! Not implemented - biomass_usage = n.statistics.withdrawal( - bus_carrier="solid biomass", **kwargs - ).filter(like=region).groupby( - ["carrier"] - ).sum().multiply(MWh2PJ) + biomass_usage = ( + n.statistics.withdrawal(bus_carrier="solid biomass", **kwargs) + .filter(like=region) + .groupby(["carrier"]) + .sum() + .multiply(MWh2PJ) + ) - var["Final Energy|Residential and Commercial|Solids"] = \ - var["Final Energy|Residential and Commercial|Solids|Biomass"] = \ - biomass_usage.get("urban decentral biomass boiler", 0) + \ - biomass_usage.get("rural biomass boiler", 0) + var["Final Energy|Residential and Commercial|Solids"] = var[ + "Final Energy|Residential and Commercial|Solids|Biomass" + ] = biomass_usage.get("urban decentral biomass boiler", 0) + biomass_usage.get( + "rural biomass boiler", 0 + ) # Q: Everything else seems to be not implemented @@ -1784,17 +2029,16 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios + var["Final Energy|Residential and Commercial|Liquids"] + var["Final Energy|Residential and Commercial|Solids"] # resistive heaters and heat pumps - + low_voltage_electricity.filter(like="rural").sum() + + low_voltage_electricity.filter(like="rural").sum() + low_voltage_electricity.filter(like="urban decentral").sum() - ) - - + ) # var["Final Energy|Transportation|Other"] = \ - var["Final Energy|Transportation|Electricity"] = \ - sum_load(n, "land transport EV", region) - + var["Final Energy|Transportation|Electricity"] = sum_load( + n, "land transport EV", region + ) + # var["Final Energy|Transportation|Gases"] = \ # var["Final Energy|Transportation|Gases|Natural Gas"] = \ # var["Final Energy|Transportation|Gases|Biomass"] = \ @@ -1802,18 +2046,18 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios # var["Final Energy|Transportation|Gases|Synthetic Fossil"] = \ # ! Not implemented - var["Final Energy|Transportation|Hydrogen"] = \ - sum_load(n, "land transport fuel cell", region) - # ?? H2 for shipping - + var["Final Energy|Transportation|Hydrogen"] = sum_load( + n, "land transport fuel cell", region + ) + # ?? H2 for shipping - international_aviation_fraction = \ - energy_totals["total international aviation"] / ( - energy_totals["total domestic aviation"] - + energy_totals["total international aviation"] - ) - international_navigation_fraction = \ - energy_totals["total international navigation"] / ( + international_aviation_fraction = energy_totals["total international aviation"] / ( + energy_totals["total domestic aviation"] + + energy_totals["total international aviation"] + ) + international_navigation_fraction = energy_totals[ + "total international navigation" + ] / ( energy_totals["total domestic navigation"] + energy_totals["total international navigation"] ) @@ -1823,58 +2067,55 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios var["Final Energy|Transportation|Liquids"] = ( sum_load(n, "land transport oil", region) + ( - sum_load(n, "kerosene for aviation", region) + sum_load(n, "kerosene for aviation", region) * (1 - international_aviation_fraction) - ) + ( + ) + + ( sum_load(n, "shipping oil", region) * (1 - international_navigation_fraction) ) ) - var["Final Energy|Transportation|Methanol"] = \ - sum_load(n, "shipping methanol", region) * (1 - international_navigation_fraction) - + var["Final Energy|Transportation|Methanol"] = sum_load( + n, "shipping methanol", region + ) * (1 - international_navigation_fraction) + # var["Final Energy|Transportation|Liquids|Biomass"] = \ # var["Final Energy|Transportation|Liquids|Synthetic Fossil"] = \ var["Final Energy|Transportation|Liquids|Petroleum"] = ( - var["Final Energy|Transportation|Liquids"] - * oil_fossil_fraction - ) - - var["Final Energy|Transportation|Liquids|Efuel"] = ( - var["Final Energy|Transportation|Liquids"] - * (1 - oil_fossil_fraction) + var["Final Energy|Transportation|Liquids"] * oil_fossil_fraction ) + var["Final Energy|Transportation|Liquids|Efuel"] = var[ + "Final Energy|Transportation|Liquids" + ] * (1 - oil_fossil_fraction) - var["Final Energy|Bunkers|Aviation"] = \ - var["Final Energy|Bunkers|Aviation|Liquids"] = ( - sum_load(n, "kerosene for aviation", region) - * international_aviation_fraction - ) + var["Final Energy|Bunkers|Aviation"] = var[ + "Final Energy|Bunkers|Aviation|Liquids" + ] = (sum_load(n, "kerosene for aviation", region) * international_aviation_fraction) # TODO Navigation hydrogen - + var["Final Energy|Bunkers|Navigation|Liquids"] = ( - sum_load(n, "shipping oil", region) - * international_navigation_fraction + sum_load(n, "shipping oil", region) * international_navigation_fraction ) - var["Final Energy|Bunkers|Navigation|Methanol"] = \ + var["Final Energy|Bunkers|Navigation|Methanol"] = ( sum_load(n, "shipping methanol", region) * international_navigation_fraction + ) - - var["Final Energy|Bunkers|Navigation"] = \ - var["Final Energy|Bunkers|Navigation|Liquids"] \ + var["Final Energy|Bunkers|Navigation"] = ( + var["Final Energy|Bunkers|Navigation|Liquids"] + var["Final Energy|Bunkers|Navigation|Methanol"] + ) # var["Final Energy|Bunkers|Navigation|Gases"] = \ # ! Not implemented # var["Final Energy|Bunkers|Navigation|Hydrogen"] = \ # ! Not used - var["Final Energy|Bunkers"] = \ - var["Final Energy|Bunkers|Navigation"] \ - + var["Final Energy|Bunkers|Aviation"] + var["Final Energy|Bunkers"] = ( + var["Final Energy|Bunkers|Navigation"] + var["Final Energy|Bunkers|Aviation"] + ) var["Final Energy|Transportation"] = ( var["Final Energy|Transportation|Electricity"] @@ -1882,13 +2123,14 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios + var["Final Energy|Transportation|Hydrogen"] + var["Final Energy|Transportation|Methanol"] ) - - var["Final Energy|Agriculture|Electricity"] = \ - sum_load(n, "agriculture electricity", region) - var["Final Energy|Agriculture|Heat"] = \ - sum_load(n, "agriculture heat", region) - var["Final Energy|Agriculture|Liquids"] = \ - sum_load(n, "agriculture machinery oil", region) + + var["Final Energy|Agriculture|Electricity"] = sum_load( + n, "agriculture electricity", region + ) + var["Final Energy|Agriculture|Heat"] = sum_load(n, "agriculture heat", region) + var["Final Energy|Agriculture|Liquids"] = sum_load( + n, "agriculture machinery oil", region + ) # var["Final Energy|Agriculture|Gases"] = \ var["Final Energy|Agriculture"] = ( var["Final Energy|Agriculture|Electricity"] @@ -1899,20 +2141,18 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios # assert isclose( # var["Final Energy|Agriculture"], # energy_totals.get("total agriculture") - # ) + # ) # It's nice to do these double checks, but it's less # straightforward for the other categories # !!! TODO this assert is temporarily disbaled because of https://github.com/PyPSA/pypsa-eur/issues/985 - - var["Final Energy|Electricity"] = ( var["Final Energy|Agriculture|Electricity"] + var["Final Energy|Residential and Commercial|Electricity"] + var["Final Energy|Transportation|Electricity"] + var["Final Energy|Industry excl Non-Energy Use|Electricity"] ) - + var["Final Energy|Solids"] = ( # var["Final Energy|Agriculture|Solids"] var["Final Energy|Residential and Commercial|Solids"] @@ -1924,8 +2164,9 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios + var["Final Energy|Industry excl Non-Energy Use|Solids|Biomass"] ) - var["Final Energy|Solids|Coal"] = \ - var["Final Energy|Industry excl Non-Energy Use|Solids|Coal"] + var["Final Energy|Solids|Coal"] = var[ + "Final Energy|Industry excl Non-Energy Use|Solids|Coal" + ] var["Final Energy|Gases"] = ( var["Final Energy|Residential and Commercial|Gases"] @@ -1933,10 +2174,8 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios ) for gas_type in gas_fractions.index: var[f"Final Energy|Gases|{gas_type}"] = ( - var["Final Energy|Gases"] - * gas_fractions[gas_type] + var["Final Energy|Gases"] * gas_fractions[gas_type] ) - var["Final Energy|Liquids"] = ( var["Final Energy|Agriculture|Liquids"] @@ -1945,11 +2184,13 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios + var["Final Energy|Industry excl Non-Energy Use|Liquids"] ) - var["Final Energy|Liquids|Petroleum"] = \ + var["Final Energy|Liquids|Petroleum"] = ( var["Final Energy|Liquids"] * oil_fossil_fraction - - var["Final Energy|Liquids|Efuel"] = \ - var["Final Energy|Liquids"] * (1 - oil_fossil_fraction) + ) + + var["Final Energy|Liquids|Efuel"] = var["Final Energy|Liquids"] * ( + 1 - oil_fossil_fraction + ) var["Final Energy|Heat"] = ( var["Final Energy|Agriculture|Heat"] @@ -1957,23 +2198,28 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios + var["Final Energy|Industry excl Non-Energy Use|Heat"] ) # var["Final Energy|Solar"] = \ - var["Final Energy|Hydrogen"] = \ - var["Final Energy|Transportation|Hydrogen"] + \ - var["Final Energy|Industry excl Non-Energy Use|Hydrogen"] - + var["Final Energy|Hydrogen"] = ( + var["Final Energy|Transportation|Hydrogen"] + + var["Final Energy|Industry excl Non-Energy Use|Hydrogen"] + ) # var["Final Energy|Geothermal"] = \ # ! Not implemented - waste_withdrawal = n.statistics.withdrawal( - bus_carrier=["non-sequestered HVC"], - **kwargs, - ).filter( - like=region, - ).groupby("carrier").sum().multiply(MWh2PJ) + waste_withdrawal = ( + n.statistics.withdrawal( + bus_carrier=["non-sequestered HVC"], + **kwargs, + ) + .filter( + like=region, + ) + .groupby("carrier") + .sum() + .multiply(MWh2PJ) + ) - var["Final Energy|Waste"] = \ - waste_withdrawal.filter(like="waste CHP").sum() + var["Final Energy|Waste"] = waste_withdrawal.filter(like="waste CHP").sum() var["Final Energy incl Non-Energy Use incl Bunkers"] = ( var["Final Energy|Industry"] @@ -1982,7 +2228,7 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios + var["Final Energy|Transportation"] + var["Final Energy|Bunkers"] ) - + var["Final Energy"] = ( var["Final Energy|Industry excl Non-Energy Use"] + var["Final Energy|Residential and Commercial"] @@ -1990,7 +2236,6 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios + var["Final Energy|Transportation"] ) - # The general problem with final energy is that for most of these categories # feedstocks shouls be excluded (i.e., non-energy use) # However this is hard to do in PyPSA. @@ -2000,43 +2245,57 @@ def get_final_energy(n, region, _industry_demand, _energy_totals, _sector_ratios def get_emissions(n, region, _energy_totals): - + energy_totals = _energy_totals.loc[region[0:2]] kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, + "groupby": n.statistics.groupers.get_name_bus_and_carrier, + "nice_names": False, } var = pd.Series() - co2_emissions = n.statistics.supply( - bus_carrier="co2",**kwargs - ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) + co2_emissions = ( + n.statistics.supply(bus_carrier="co2", **kwargs) + .filter(like=region) + .groupby("carrier") + .sum() + .multiply(t2Mt) + ) - co2_atmosphere_withdrawal = n.statistics.withdrawal( - bus_carrier="co2",**kwargs - ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) + co2_atmosphere_withdrawal = ( + n.statistics.withdrawal(bus_carrier="co2", **kwargs) + .filter(like=region) + .groupby("carrier") + .sum() + .multiply(t2Mt) + ) - var["Emissions|CO2"] = \ - co2_emissions.sum() - co2_atmosphere_withdrawal.sum() + var["Emissions|CO2"] = co2_emissions.sum() - co2_atmosphere_withdrawal.sum() - co2_storage = n.statistics.supply( - bus_carrier ="co2 stored",**kwargs - ).filter(like=region).groupby("carrier").sum().multiply(t2Mt) + co2_storage = ( + n.statistics.supply(bus_carrier="co2 stored", **kwargs) + .filter(like=region) + .groupby("carrier") + .sum() + .multiply(t2Mt) + ) # Assert neglible numerical errors / leakage in stored CO2 assert co2_storage.get("co2 stored", 0) < 0.1 co2_storage.drop("co2 stored", inplace=True, errors="ignore") - CHP_emissions = n.statistics.supply( - bus_carrier="co2",**kwargs - ).filter(like=region).filter(like="CHP").multiply(t2Mt) + CHP_emissions = ( + n.statistics.supply(bus_carrier="co2", **kwargs) + .filter(like=region) + .filter(like="CHP") + .multiply(t2Mt) + ) # exclude waste CHPs because they are accounted separately CHP_emissions = CHP_emissions[ - ~CHP_emissions.index.get_level_values( - "carrier").str.contains("waste")] + ~CHP_emissions.index.get_level_values("carrier").str.contains("waste") + ] ## Account for carbon neutral fuels (e-fuels, biogas, ...) @@ -2053,23 +2312,20 @@ def get_emissions(n, region, _energy_totals): "rural oil boiler", "urban central oil CHP", ] - + oil_fossil_fraction = _get_oil_fossil_fraction(n, region) # Assuming that efuel emissions are generated at the production site - var["Emissions|CO2|Energy|Production|From Liquids"] = \ - co2_emissions.loc[ - co2_emissions.index.isin(oil_techs) - ].sum() * (1 - oil_fossil_fraction) + var["Emissions|CO2|Energy|Production|From Liquids"] = co2_emissions.loc[ + co2_emissions.index.isin(oil_techs) + ].sum() * (1 - oil_fossil_fraction) # Fossil fuel emissions are generated where they get burned - - co2_emissions.loc[ - co2_emissions.index.isin(oil_techs) - ] *= oil_fossil_fraction - + + co2_emissions.loc[co2_emissions.index.isin(oil_techs)] *= oil_fossil_fraction + CHP_emissions.loc[ CHP_emissions.index.get_level_values("carrier").isin(oil_techs) - ] *= oil_fossil_fraction + ] *= oil_fossil_fraction gas_techs = [ "CCGT", @@ -2086,61 +2342,54 @@ def get_emissions(n, region, _energy_totals): gas_fractions = _get_gas_fractions(n) - var["Emissions|CO2|Energy|Production|From Gases"] = \ - co2_emissions.loc[ - co2_emissions.index.isin(gas_techs) - ].sum() * (1 - gas_fractions["Natural Gas"]) - co2_emissions.loc[ + var["Emissions|CO2|Energy|Production|From Gases"] = co2_emissions.loc[ co2_emissions.index.isin(gas_techs) - ] *= gas_fractions["Natural Gas"] + ].sum() * (1 - gas_fractions["Natural Gas"]) + co2_emissions.loc[co2_emissions.index.isin(gas_techs)] *= gas_fractions[ + "Natural Gas" + ] CHP_emissions.loc[ CHP_emissions.index.get_level_values("carrier").isin(gas_techs) - ] *= gas_fractions["Natural Gas"] + ] *= gas_fractions["Natural Gas"] # TODO Methanol - CHP_E_to_H = ( - n.links.loc[CHP_emissions.index.get_level_values("name")].efficiency + CHP_E_to_H = ( + n.links.loc[CHP_emissions.index.get_level_values("name")].efficiency / n.links.loc[CHP_emissions.index.get_level_values("name")].efficiency2 ) - CHP_E_fraction = CHP_E_to_H * (1 / (CHP_E_to_H + 1)) + CHP_E_fraction = CHP_E_to_H * (1 / (CHP_E_to_H + 1)) + + ccs_carriers = co2_storage.index.intersection(co2_atmosphere_withdrawal.index) + fossil_cc_carriers = co2_storage.index.difference(co2_atmosphere_withdrawal.index) - ccs_carriers = co2_storage.index.intersection( - co2_atmosphere_withdrawal.index) - fossil_cc_carriers = co2_storage.index.difference( - co2_atmosphere_withdrawal.index) - negative_cc = co2_storage.reindex(ccs_carriers) fossil_cc = co2_storage.reindex(fossil_cc_carriers) - assert isclose( - fossil_cc.sum() + negative_cc.sum(), - co2_storage.sum() - ) + assert isclose(fossil_cc.sum() + negative_cc.sum(), co2_storage.sum()) try: - total_ccs = n.statistics.supply( - bus_carrier="co2 sequestered",**kwargs - ).filter(like=region).get("Link").groupby( - "carrier" - ).sum().multiply(t2Mt).sum() - except AttributeError: # no sequestration in 2020 -> NoneType + total_ccs = ( + n.statistics.supply(bus_carrier="co2 sequestered", **kwargs) + .filter(like=region) + .get("Link") + .groupby("carrier") + .sum() + .multiply(t2Mt) + .sum() + ) + except AttributeError: # no sequestration in 2020 -> NoneType total_ccs = 0.0 - negative_ccs = total_ccs - fossil_cc.sum() - co2_negative_emissions = negative_cc.multiply( - negative_ccs / negative_cc.sum() - ) - + co2_negative_emissions = negative_cc.multiply(negative_ccs / negative_cc.sum()) + if negative_ccs < 0: co2_negative_emissions *= 0 # If not enough CO2 is captured, than additional emissions occur - fossil_cc_emissions = - fossil_cc.multiply( - negative_ccs / fossil_cc.sum() - ) + fossil_cc_emissions = -fossil_cc.multiply(negative_ccs / fossil_cc.sum()) # All captured fossil should be sequestered for e-fuels to be carbon neutral # If this warning appears repeatedly we will need to add a hard constraint print("WARNING! Not all CO2 capture from fossil sources is captured!!!") @@ -2148,107 +2397,96 @@ def get_emissions(n, region, _energy_totals): # TODO what to do with fossil_cc_emissions??? if n.links.build_year.max() == 2045: raise Exception("Not enough CCS in 2045!") - + if not co2_atmosphere_withdrawal.get("urban central solid biomass CHP CC"): biomass_CHP_correction_factor = 0 else: biomass_CHP_correction_factor = min( - 1, # Can not be > 1, taking minimum to avoid numerical errors + 1, # Can not be > 1, taking minimum to avoid numerical errors co2_negative_emissions.get("urban central solid biomass CHP CC") / co2_atmosphere_withdrawal.get("urban central solid biomass CHP CC"), ) - negative_CHP_emissions = n.statistics.withdrawal( - bus_carrier="co2",**kwargs - ).filter(like=region).filter( - like="solid biomass CHP CC" - ).multiply(t2Mt).multiply( # Correcting for actual negative emissions - biomass_CHP_correction_factor - ) - - negative_CHP_E_to_H = ( - n.links.loc[ - negative_CHP_emissions.index.get_level_values("name") - ].efficiency - / n.links.loc[ - negative_CHP_emissions.index.get_level_values("name") - ].efficiency2 + negative_CHP_emissions = ( + n.statistics.withdrawal(bus_carrier="co2", **kwargs) + .filter(like=region) + .filter(like="solid biomass CHP CC") + .multiply(t2Mt) + .multiply( # Correcting for actual negative emissions + biomass_CHP_correction_factor + ) ) - negative_CHP_E_fraction = negative_CHP_E_to_H * ( - 1 / (negative_CHP_E_to_H + 1) + negative_CHP_E_to_H = ( + n.links.loc[negative_CHP_emissions.index.get_level_values("name")].efficiency + / n.links.loc[negative_CHP_emissions.index.get_level_values("name")].efficiency2 ) + negative_CHP_E_fraction = negative_CHP_E_to_H * (1 / (negative_CHP_E_to_H + 1)) var["Carbon Sequestration"] = total_ccs - - var["Carbon Sequestration|DACCS"] = \ - var["Carbon Sequestration"] * ( - co2_storage.filter(like="DAC").sum() - / co2_storage.sum() - ) - - var["Carbon Sequestration|BECCS"] = \ - var["Carbon Sequestration"] * ( - co2_storage.filter(like="bio").sum() - / co2_storage.sum() - ) - + var["Carbon Sequestration|DACCS"] = var["Carbon Sequestration"] * ( + co2_storage.filter(like="DAC").sum() / co2_storage.sum() + ) + + var["Carbon Sequestration|BECCS"] = var["Carbon Sequestration"] * ( + co2_storage.filter(like="bio").sum() / co2_storage.sum() + ) + var["Carbon Sequestration|Other"] = ( - var["Carbon Sequestration"] + var["Carbon Sequestration"] - var["Carbon Sequestration|DACCS"] - var["Carbon Sequestration|BECCS"] ) - # ! LULUCF should also be subtracted (or added??), we get from REMIND, + # ! LULUCF should also be subtracted (or added??), we get from REMIND, # TODO how to consider it here? - + # Make sure these values are about right - var["Emissions|CO2|Industrial Processes"] = \ - co2_emissions.reindex([ + var["Emissions|CO2|Industrial Processes"] = co2_emissions.reindex( + [ "process emissions", "process emissions CC", - ]).sum() + \ - co2_emissions.get("industry methanol", 0) + ] + ).sum() + co2_emissions.get("industry methanol", 0) # process emissions is mainly cement, methanol is used for chemicals - - - var["Emissions|CO2|Energy|Demand|Industry"] = \ - co2_emissions.reindex([ - "gas for industry", - "gas for industry CC", - "coal for industry" - ]).sum() - co2_negative_emissions.get( - "solid biomass for industry CC", - 0, - ) - - var["Emissions|CO2|Industry"] = \ - var["Emissions|CO2|Energy|Demand|Industry"] + \ - var["Emissions|CO2|Industrial Processes"] + + var["Emissions|CO2|Energy|Demand|Industry"] = co2_emissions.reindex( + ["gas for industry", "gas for industry CC", "coal for industry"] + ).sum() - co2_negative_emissions.get( + "solid biomass for industry CC", + 0, + ) + + var["Emissions|CO2|Industry"] = ( + var["Emissions|CO2|Energy|Demand|Industry"] + + var["Emissions|CO2|Industrial Processes"] + ) var["Emissions|CO2|Energy|Demand|Residential and Commercial"] = ( - co2_emissions.filter(like="urban decentral").sum() - + co2_emissions.filter(like="rural" ).sum() + co2_emissions.filter(like="urban decentral").sum() + + co2_emissions.filter(like="rural").sum() ) - international_aviation_fraction = \ - energy_totals["total international aviation"] / ( - energy_totals["total domestic aviation"] - + energy_totals["total international aviation"] - ) - international_navigation_fraction = \ - energy_totals["total international navigation"] / ( + international_aviation_fraction = energy_totals["total international aviation"] / ( + energy_totals["total domestic aviation"] + + energy_totals["total international aviation"] + ) + international_navigation_fraction = energy_totals[ + "total international navigation" + ] / ( energy_totals["total domestic navigation"] + energy_totals["total international navigation"] ) var["Emissions|CO2|Energy|Demand|Transportation"] = ( - co2_emissions.get("land transport oil", 0) + ( - co2_emissions.get("kerosene for aviation") + co2_emissions.get("land transport oil", 0) + + ( + co2_emissions.get("kerosene for aviation") * (1 - international_aviation_fraction) - ) + ( + ) + + ( co2_emissions.filter(like="shipping").sum() * (1 - international_navigation_fraction) ) @@ -2258,36 +2496,37 @@ def get_emissions(n, region, _energy_totals): co2_emissions.get("kerosene for aviation") * (1 - international_aviation_fraction) ) - + var["Emissions|CO2|Energy|Demand|Bunkers|Aviation"] = ( - co2_emissions.get("kerosene for aviation") - * international_aviation_fraction + co2_emissions.get("kerosene for aviation") * international_aviation_fraction ) var["Emissions|CO2|Energy|Demand|Bunkers|Navigation"] = ( - co2_emissions.filter(like="shipping").sum() - * international_navigation_fraction - ) - - var["Emissions|CO2|Energy|Demand|Bunkers"] = \ - var["Emissions|CO2|Energy|Demand|Bunkers|Aviation"] + \ - var["Emissions|CO2|Energy|Demand|Bunkers|Navigation"] - - var["Emissions|CO2|Energy|Demand|Other Sector"] = \ - co2_emissions.get("agriculture machinery oil") - - var["Emissions|CO2|Energy|Demand"] = \ - var.get([ + co2_emissions.filter(like="shipping").sum() * international_navigation_fraction + ) + + var["Emissions|CO2|Energy|Demand|Bunkers"] = ( + var["Emissions|CO2|Energy|Demand|Bunkers|Aviation"] + + var["Emissions|CO2|Energy|Demand|Bunkers|Navigation"] + ) + + var["Emissions|CO2|Energy|Demand|Other Sector"] = co2_emissions.get( + "agriculture machinery oil" + ) + + var["Emissions|CO2|Energy|Demand"] = var.get( + [ "Emissions|CO2|Energy|Demand|Industry", "Emissions|CO2|Energy|Demand|Transportation", "Emissions|CO2|Energy|Demand|Residential and Commercial", - "Emissions|CO2|Energy|Demand|Other Sector" - ]).sum() - var["Emissions|CO2|Energy incl Bunkers|Demand"] = \ - var["Emissions|CO2|Energy|Demand"] + \ - var["Emissions|CO2|Energy|Demand|Bunkers"] - - var["Emissions|Gross Fossil CO2|Energy|Supply|Electricity"] = \ + "Emissions|CO2|Energy|Demand|Other Sector", + ] + ).sum() + var["Emissions|CO2|Energy incl Bunkers|Demand"] = ( + var["Emissions|CO2|Energy|Demand"] + var["Emissions|CO2|Energy|Demand|Bunkers"] + ) + + var["Emissions|Gross Fossil CO2|Energy|Supply|Electricity"] = ( co2_emissions.reindex( [ "OCGT", @@ -2295,112 +2534,105 @@ def get_emissions(n, region, _energy_totals): "coal", "lignite", "oil", - ], - ).sum() + CHP_emissions.multiply( - CHP_E_fraction - ).values.sum() - - + ], + ).sum() + + CHP_emissions.multiply(CHP_E_fraction).values.sum() + ) var["Emissions|CO2|Energy|Supply|Electricity"] = ( var["Emissions|Gross Fossil CO2|Energy|Supply|Electricity"] - - negative_CHP_emissions.multiply( - negative_CHP_E_fraction - ).values.sum() + - negative_CHP_emissions.multiply(negative_CHP_E_fraction).values.sum() ) - var["Emissions|Gross Fossil CO2|Energy|Supply|Heat"] = \ - co2_emissions.filter( - like="urban central" - ).filter( - like="boiler" # in 2020 there might be central oil boilers?! - ).sum() + CHP_emissions.multiply( - 1 - CHP_E_fraction - ).values.sum() - + var["Emissions|Gross Fossil CO2|Energy|Supply|Heat"] = ( + co2_emissions.filter(like="urban central") + .filter(like="boiler") # in 2020 there might be central oil boilers?! + .sum() + + CHP_emissions.multiply(1 - CHP_E_fraction).values.sum() + ) var["Emissions|CO2|Energy|Supply|Heat"] = ( var["Emissions|Gross Fossil CO2|Energy|Supply|Heat"] - - negative_CHP_emissions.multiply( - 1 - negative_CHP_E_fraction - ).values.sum() - ) - - var["Emissions|CO2|Energy|Supply|Electricity and Heat"] = \ - var["Emissions|CO2|Energy|Supply|Heat"] + \ - var["Emissions|CO2|Energy|Supply|Electricity"] - - var["Emissions|CO2|Energy|Supply|Hydrogen"] = \ - var["Emissions|Gross Fossil CO2|Energy|Supply|Hydrogen"] = \ - co2_emissions.filter(like="SMR").sum() - - - var["Emissions|CO2|Energy|Supply|Gases"] = \ - (-1) * co2_negative_emissions.filter( - like="biogas to gas" - ).sum() - - var["Emissions|CO2|Supply|Non-Renewable Waste"] = \ - co2_emissions.reindex([ + - negative_CHP_emissions.multiply(1 - negative_CHP_E_fraction).values.sum() + ) + + var["Emissions|CO2|Energy|Supply|Electricity and Heat"] = ( + var["Emissions|CO2|Energy|Supply|Heat"] + + var["Emissions|CO2|Energy|Supply|Electricity"] + ) + + var["Emissions|CO2|Energy|Supply|Hydrogen"] = var[ + "Emissions|Gross Fossil CO2|Energy|Supply|Hydrogen" + ] = co2_emissions.filter(like="SMR").sum() + + var["Emissions|CO2|Energy|Supply|Gases"] = (-1) * co2_negative_emissions.filter( + like="biogas to gas" + ).sum() + + var["Emissions|CO2|Supply|Non-Renewable Waste"] = co2_emissions.reindex( + [ "HVC to air", "waste CHP", "waste CHP CC", - ]).sum() - - var["Emissions|CO2|Energy|Supply|Liquids and Gases"] = \ - var["Emissions|CO2|Energy|Supply|Liquids"] = \ - co2_emissions.get("oil refining", 0) - - # var["Emissions|CO2|Energy|Supply|Gases"] + \ - - var["Emissions|CO2|Energy|Supply"] = \ - var["Emissions|CO2|Energy|Supply|Gases"] + \ - var["Emissions|CO2|Energy|Supply|Hydrogen"] + \ - var["Emissions|CO2|Energy|Supply|Electricity and Heat"] + \ - var["Emissions|CO2|Energy|Supply|Liquids"] - - # var["Emissions|CO2|Energy|Supply|Other Sector"] = \ - # var["Emissions|CO2|Energy|Supply|Solids"] = \ - - var["Emissions|CO2|Energy"] = \ - var["Emissions|CO2|Energy|Demand"] + \ - var["Emissions|CO2|Energy|Supply"] - - var["Emissions|CO2|Energy incl Bunkers"] = \ - var["Emissions|CO2|Energy incl Bunkers|Demand"] + \ - var["Emissions|CO2|Energy|Supply"] - - var["Emissions|CO2|Energy and Industrial Processes"] = \ - var["Emissions|CO2|Energy"] + \ - var["Emissions|CO2|Industrial Processes"] - - var["Emissions|Gross Fossil CO2|Energy|Supply"] = \ - var["Emissions|Gross Fossil CO2|Energy|Supply|Electricity"] + \ - var["Emissions|Gross Fossil CO2|Energy|Supply|Heat"] + \ - var["Emissions|Gross Fossil CO2|Energy|Supply|Hydrogen"] - - - emission_difference = var["Emissions|CO2"] - \ - ( - var["Emissions|CO2|Energy and Industrial Processes"] - + var["Emissions|CO2|Energy|Demand|Bunkers"] - + var["Emissions|CO2|Supply|Non-Renewable Waste"] - - co2_negative_emissions.get("DAC", 0) - + var["Emissions|CO2|Energy|Production|From Liquids"] - + var["Emissions|CO2|Energy|Production|From Gases"] - - co2_atmosphere_withdrawal.subtract(co2_negative_emissions).sum() - ) + ] + ).sum() + + var["Emissions|CO2|Energy|Supply|Liquids and Gases"] = var[ + "Emissions|CO2|Energy|Supply|Liquids" + ] = co2_emissions.get("oil refining", 0) + + # var["Emissions|CO2|Energy|Supply|Gases"] + \ + + var["Emissions|CO2|Energy|Supply"] = ( + var["Emissions|CO2|Energy|Supply|Gases"] + + var["Emissions|CO2|Energy|Supply|Hydrogen"] + + var["Emissions|CO2|Energy|Supply|Electricity and Heat"] + + var["Emissions|CO2|Energy|Supply|Liquids"] + ) + + # var["Emissions|CO2|Energy|Supply|Other Sector"] = \ + # var["Emissions|CO2|Energy|Supply|Solids"] = \ + + var["Emissions|CO2|Energy"] = ( + var["Emissions|CO2|Energy|Demand"] + var["Emissions|CO2|Energy|Supply"] + ) + + var["Emissions|CO2|Energy incl Bunkers"] = ( + var["Emissions|CO2|Energy incl Bunkers|Demand"] + + var["Emissions|CO2|Energy|Supply"] + ) + + var["Emissions|CO2|Energy and Industrial Processes"] = ( + var["Emissions|CO2|Energy"] + var["Emissions|CO2|Industrial Processes"] + ) + + var["Emissions|Gross Fossil CO2|Energy|Supply"] = ( + var["Emissions|Gross Fossil CO2|Energy|Supply|Electricity"] + + var["Emissions|Gross Fossil CO2|Energy|Supply|Heat"] + + var["Emissions|Gross Fossil CO2|Energy|Supply|Hydrogen"] + ) + + emission_difference = var["Emissions|CO2"] - ( + var["Emissions|CO2|Energy and Industrial Processes"] + + var["Emissions|CO2|Energy|Demand|Bunkers"] + + var["Emissions|CO2|Supply|Non-Renewable Waste"] + - co2_negative_emissions.get("DAC", 0) + + var["Emissions|CO2|Energy|Production|From Liquids"] + + var["Emissions|CO2|Energy|Production|From Gases"] + - co2_atmosphere_withdrawal.subtract(co2_negative_emissions).sum() + ) print( "Differences in accounting for CO2 emissions:", - emission_difference, + emission_difference, ) - assert emission_difference < 1e-2 # Improve numerical stability + assert emission_difference < 1e-2 # Improve numerical stability + + return var - return var # functions for prices -def get_nodal_flows(n, bus_carrier, region, query='index == index or index != index'): +def get_nodal_flows(n, bus_carrier, region, query="index == index or index != index"): """ Get the nodal flows for a given bus carrier and region. @@ -2416,20 +2648,25 @@ def get_nodal_flows(n, bus_carrier, region, query='index == index or index != in groupby = n.statistics.groupers.get_name_bus_and_carrier - result = n.statistics.withdrawal( - bus_carrier=bus_carrier, - groupby=groupby, - aggregate_time=False, - ).query(query - ).groupby("bus" - ).sum().T.filter( - like=region, - axis=1, + result = ( + n.statistics.withdrawal( + bus_carrier=bus_carrier, + groupby=groupby, + aggregate_time=False, + ) + .query(query) + .groupby("bus") + .sum() + .T.filter( + like=region, + axis=1, + ) ) - - return result -def get_nodal_supply(n, bus_carrier, query='index == index or index != index'): + return result + + +def get_nodal_supply(n, bus_carrier, query="index == index or index != index"): """ Get the nodal flows for a given bus carrier and region. @@ -2445,16 +2682,20 @@ def get_nodal_supply(n, bus_carrier, query='index == index or index != index'): groupby = n.statistics.groupers.get_name_bus_and_carrier - result = n.statistics.supply( - bus_carrier=bus_carrier, - groupby=groupby, - aggregate_time=False, - ).query(query - ).groupby("bus" - ).sum().T - - return result - + result = ( + n.statistics.supply( + bus_carrier=bus_carrier, + groupby=groupby, + aggregate_time=False, + ) + .query(query) + .groupby("bus") + .sum() + .T + ) + + return result + def price_load(n, load_carrier, region): """ @@ -2469,17 +2710,22 @@ def price_load(n, load_carrier, region): - tuple: A tuple containing the average price and the total load of the specified load carrier in the region. """ - load = n.loads[(n.loads.carrier == load_carrier) & (n.loads.bus.str.contains(region))] + load = n.loads[ + (n.loads.carrier == load_carrier) & (n.loads.bus.str.contains(region)) + ] if n.loads_t.p[load.index].values.sum() < 1: return np.nan, 0 - result = (n.loads_t.p[load.index] * n.buses_t.marginal_price[load.bus].values).values.sum() + result = ( + n.loads_t.p[load.index] * n.buses_t.marginal_price[load.bus].values + ).values.sum() result /= n.loads_t.p[load.index].values.sum() return result, n.loads_t.p[load.index].values.sum() def costs_gen_generators(n, region, carrier): """ - Calculate the cost per unit of generated energy of a generators in a given region. + Calculate the cost per unit of generated energy of a generators in a given + region. Parameters: - n (pandas.DataFrame): The network model. @@ -2489,11 +2735,15 @@ def costs_gen_generators(n, region, carrier): Returns: - tuple: A tuple containing cost and total generation of the generators. """ - - gens = n.generators[(n.generators.carrier == carrier) - & (n.generators.bus.str.contains(region))] - gen = n.generators_t.p[gens.index].multiply( - n.snapshot_weightings.generators, axis="index").sum() + + gens = n.generators[ + (n.generators.carrier == carrier) & (n.generators.bus.str.contains(region)) + ] + gen = ( + n.generators_t.p[gens.index] + .multiply(n.snapshot_weightings.generators, axis="index") + .sum() + ) if gen.empty or gen.sum() < 1: return np.nan, 0 @@ -2502,7 +2752,7 @@ def costs_gen_generators(n, region, carrier): # OPEX opex = (gen * gens.marginal_cost).sum() - + result = (capex + opex) / gen.sum() return result, gen.sum() @@ -2521,24 +2771,29 @@ def costs_gen_links(n, region, carrier, gen_bus="p1"): tuple: A tuple containing the costs per unit of generetad energy and the total generation of the specified generator bus. """ - links = n.links[(n.links.carrier == carrier) - & (n.links.index.str.contains(region))] - gen = abs(n.links_t[gen_bus][links.index].multiply( - n.snapshot_weightings.generators, axis="index")).sum() + links = n.links[(n.links.carrier == carrier) & (n.links.index.str.contains(region))] + gen = abs( + n.links_t[gen_bus][links.index].multiply( + n.snapshot_weightings.generators, axis="index" + ) + ).sum() if gen.empty or gen.sum() < 1: return np.nan, 0 - + # CAPEX capex = (links.p_nom_opt * links.capital_cost).sum() # OPEX - input = abs(n.links_t["p0"][links.index].multiply( - n.snapshot_weightings.generators, axis="index")).sum() + input = abs( + n.links_t["p0"][links.index].multiply( + n.snapshot_weightings.generators, axis="index" + ) + ).sum() opex = (input * links.marginal_cost).sum() # input costs and output revenues other than main generation @ gen_bus sum = 0 - for i in range(0,5): + for i in range(0, 5): if f"p{i}" == gen_bus: continue elif links.empty: @@ -2547,13 +2802,15 @@ def costs_gen_links(n, region, carrier, gen_bus="p1"): break else: update_cost = ( - n.links_t[f"p{i}"][links.index] + ( + n.links_t[f"p{i}"][links.index] * n.buses_t.marginal_price[links[f"bus{i}"]].values - ).multiply( - n.snapshot_weightings.generators, axis="index" - ).values.sum() + ) + .multiply(n.snapshot_weightings.generators, axis="index") + .values.sum() + ) sum = sum + update_cost - + result = (capex + opex + sum) / gen.sum() return result, gen.sum() @@ -2561,18 +2818,19 @@ def costs_gen_links(n, region, carrier, gen_bus="p1"): def get_weighted_costs_links(carriers, n, region): numerator = 0 denominator = 0 - - for c in carriers: + + for c in carriers: cost_gen = costs_gen_links(n, region, c) if not math.isnan(cost_gen[0]): numerator += cost_gen[0] * cost_gen[1] denominator += cost_gen[1] - + if denominator == 0: return np.nan - result = numerator / denominator + result = numerator / denominator return result + def get_weighted_costs(costs, flows): cleaned_costs = [] @@ -2582,12 +2840,14 @@ def get_weighted_costs(costs, flows): if not math.isnan(cost) and not math.isnan(flow) and flow != 0: cleaned_costs.append(cost) cleaned_flows.append(flow) - + if not cleaned_costs or not cleaned_flows: return np.nan - - df_cleaned = pd.DataFrame({'costs': cleaned_costs, 'flows': cleaned_flows}) - result = (df_cleaned["costs"] * df_cleaned["flows"]).sum() / df_cleaned["flows"].sum() + + df_cleaned = pd.DataFrame({"costs": cleaned_costs, "flows": cleaned_flows}) + result = (df_cleaned["costs"] * df_cleaned["flows"]).sum() / df_cleaned[ + "flows" + ].sum() return result @@ -2610,60 +2870,88 @@ def get_prices(n, region): var = pd.Series() kwargs = { - 'groupby': n.statistics.groupers.get_name_bus_and_carrier, - 'nice_names': False, + "groupby": n.statistics.groupers.get_name_bus_and_carrier, + "nice_names": False, } # co2 additions - co2_price = -n.global_constraints.loc["CO2Limit", "mu"] - n.global_constraints.loc["co2_limit-DE", "mu"] + co2_price = ( + -n.global_constraints.loc["CO2Limit", "mu"] + - n.global_constraints.loc["co2_limit-DE", "mu"] + ) # specific emissions in tons CO2/MWh according to n.links[n.links.carrier =="your_carrier].efficiency2.unique().item() specific_emisisons = { - "oil" : 0.2571, - "gas" : 0.198, # OCGT - "hard coal" : 0.3361, - "lignite" : 0.4069, + "oil": 0.2571, + "gas": 0.198, # OCGT + "hard coal": 0.3361, + "lignite": 0.4069, } nodal_flows_lv = get_nodal_flows( - n, "low voltage", region, - query = "not carrier.str.contains('agriculture')" - "& not carrier.str.contains('industry')" - "& not carrier.str.contains('urban central')" - ) + n, + "low voltage", + region, + query="not carrier.str.contains('agriculture')" + "& not carrier.str.contains('industry')" + "& not carrier.str.contains('urban central')", + ) - nodal_prices_lv = n.buses_t.marginal_price[nodal_flows_lv.columns] + nodal_prices_lv = n.buses_t.marginal_price[nodal_flows_lv.columns] # electricity price at the final level in the residential sector. Prices should include the effect of carbon prices. - var["Price|Final Energy|Residential and Commercial|Electricity"] = \ - nodal_flows_lv.mul(nodal_prices_lv).values.sum() / nodal_flows_lv.values.sum() / MWh2GJ - + var["Price|Final Energy|Residential and Commercial|Electricity"] = ( + nodal_flows_lv.mul(nodal_prices_lv).values.sum() + / nodal_flows_lv.values.sum() + / MWh2GJ + ) + # vars: Tier 1, Category: energy(price) nodal_flows_bm = get_nodal_flows(n, "solid biomass", region) nodal_prices_bm = n.buses_t.marginal_price[nodal_flows_bm.columns] # primary energy consumption of purpose-grown bioenergy crops, crop and forestry residue bioenergy, municipal solid waste bioenergy, traditional biomass, including renewable waste - var["Price|Primary Energy|Biomass"] = \ - nodal_flows_bm.mul(nodal_prices_bm).values.sum() / nodal_flows_bm.values.sum() / MWh2GJ - + var["Price|Primary Energy|Biomass"] = ( + nodal_flows_bm.mul(nodal_prices_bm).values.sum() + / nodal_flows_bm.values.sum() + / MWh2GJ + ) + # Price|Primary Energy|Coal nf_coal = get_nodal_flows(n, "coal", "EU") nodal_prices_coal = n.buses_t.marginal_price[nf_coal.columns] - coal_price = nf_coal.mul(nodal_prices_coal).values.sum() / nf_coal.values.sum() if nf_coal.values.sum() > 0 else np.nan + coal_price = ( + nf_coal.mul(nodal_prices_coal).values.sum() / nf_coal.values.sum() + if nf_coal.values.sum() > 0 + else np.nan + ) nf_lignite = get_nodal_flows(n, "lignite", "EU") nodal_prices_lignite = n.buses_t.marginal_price[nf_lignite.columns] - lignite_price = nf_lignite.mul(nodal_prices_lignite).values.sum() / nf_lignite.values.sum() if nf_lignite.values.sum() > 0 else np.nan + lignite_price = ( + nf_lignite.mul(nodal_prices_lignite).values.sum() / nf_lignite.values.sum() + if nf_lignite.values.sum() > 0 + else np.nan + ) + + coal_fraction = nf_coal.values.sum() / ( + nf_coal.values.sum() + nf_lignite.values.sum() + ) + lignite_fraction = nf_lignite.values.sum() / ( + nf_coal.values.sum() + nf_lignite.values.sum() + ) + co2_add_coal = ( + coal_fraction * specific_emisisons["hard coal"] * co2_price + + lignite_fraction * specific_emisisons["lignite"] * co2_price + ) - coal_fraction = nf_coal.values.sum() / (nf_coal.values.sum() + nf_lignite.values.sum()) - lignite_fraction = nf_lignite.values.sum() / (nf_coal.values.sum() + nf_lignite.values.sum()) - co2_add_coal = \ - coal_fraction * specific_emisisons["hard coal"] * co2_price \ - + lignite_fraction * specific_emisisons["lignite"] * co2_price + var["Price|Primary Energy|Coal"] = ( + get_weighted_costs( + [coal_price, lignite_price], [nf_coal.values.sum(), nf_lignite.values.sum()] + ) + + co2_add_coal + ) / MWh2GJ - var["Price|Primary Energy|Coal"] = \ - (get_weighted_costs([coal_price, lignite_price], [nf_coal.values.sum(), nf_lignite.values.sum()]) + co2_add_coal)/ MWh2GJ - # Price|Primary Energy|Gas nodal_flows_gas = get_nodal_flows(n, "gas", region) nodal_prices_gas = n.buses_t.marginal_price[nodal_flows_gas.columns] @@ -2672,10 +2960,12 @@ def get_prices(n, region): gas_fractions = _get_gas_fractions(n) co2_add_gas = gas_fractions["Natural Gas"] * specific_emisisons["gas"] * co2_price + var["Price|Primary Energy|Gas"] = ( + nodal_flows_gas.mul(nodal_prices_gas).values.sum() + / nodal_flows_gas.values.sum() + + co2_add_gas + ) / MWh2GJ - var["Price|Primary Energy|Gas"] = \ - (nodal_flows_gas.mul(nodal_prices_gas).values.sum() / nodal_flows_gas.values.sum() + co2_add_gas) / MWh2GJ - # Price|Primary Energy|Oil # if oil bus is unravelled change "EU" into region nodal_flows_oil = get_nodal_flows(n, "oil", "EU") @@ -2685,97 +2975,125 @@ def get_prices(n, region): oil_fossil_fraction = _get_oil_fossil_fraction(n, region) co2_add_oil = oil_fossil_fraction * specific_emisisons["oil"] * co2_price - var["Price|Primary Energy|Oil"] = \ - (nodal_flows_oil.mul(nodal_prices_oil).values.sum() / nodal_flows_oil.values.sum() + co2_add_oil) /MWh2GJ + var["Price|Primary Energy|Oil"] = ( + nodal_flows_oil.mul(nodal_prices_oil).values.sum() + / nodal_flows_oil.values.sum() + + co2_add_oil + ) / MWh2GJ # Price|Secondary Energy|Electricity # electricity price at the secondary level, i.e. for large scale consumers (e.g. aluminum production). Prices should include the effect of carbon prices. nodal_flows_ac = get_nodal_flows( - n, "AC", region, - query = "not carrier.str.contains('gas')" - ) + n, "AC", region, query="not carrier.str.contains('gas')" + ) nodal_prices_ac = n.buses_t.marginal_price[nodal_flows_ac.columns] - var["Price|Secondary Energy|Electricity"] = \ - nodal_flows_ac.mul(nodal_prices_ac).values.sum() / nodal_flows_ac.values.sum() /MWh2GJ + var["Price|Secondary Energy|Electricity"] = ( + nodal_flows_ac.mul(nodal_prices_ac).values.sum() + / nodal_flows_ac.values.sum() + / MWh2GJ + ) - var["Price|Secondary Energy|Gases|Natural Gas"] = \ - costs_gen_generators(n, region ,"gas")[0] / MWh2GJ + var["Price|Secondary Energy|Gases|Natural Gas"] = ( + costs_gen_generators(n, region, "gas")[0] / MWh2GJ + ) - var["Price|Secondary Energy|Gases|Hydrogen"] = \ + var["Price|Secondary Energy|Gases|Hydrogen"] = ( costs_gen_links(n, region, "Sabatier")[0] / MWh2GJ + ) + + var["Price|Secondary Energy|Gases|Biomass"] = ( + get_weighted_costs_links(["biogas to gas", "biogas to gas CC"], n, region) + / MWh2GJ + ) - var["Price|Secondary Energy|Gases|Biomass"] = \ - get_weighted_costs_links( - ['biogas to gas', 'biogas to gas CC'], - n, region) / MWh2GJ - # Price|Secondary Energy|Gases|Efuel # Price for gaseous Efuels at the secondary level, i.e. for large scale consumers. Prices should include the effect of carbon prices. # what are gaseous Efuels? - + # Price|Secondary Energy|Hydrogen (carbon costs not yet included) - nodal_flows_h2 = get_nodal_flows( - n, "H2", region - ) + nodal_flows_h2 = get_nodal_flows(n, "H2", region) nodal_prices_h2 = n.buses_t.marginal_price[nodal_flows_h2.columns] - var["Price|Secondary Energy|Hydrogen"] = \ - (nodal_flows_h2.mul(nodal_prices_h2).values.sum() / nodal_flows_h2.values.sum()) /MWh2GJ + var["Price|Secondary Energy|Hydrogen"] = ( + nodal_flows_h2.mul(nodal_prices_h2).values.sum() / nodal_flows_h2.values.sum() + ) / MWh2GJ # From PIK plots # "Price|Final Energy|Residential and Commercial|Hydrogen" = final energy consumption by the residential sector of hydrogen # do we have residential applications for hydrogen? nf_gas_residential = get_nodal_flows( - n, "gas", region, - query = "carrier.str.contains('rural')" - "or carrier.str.contains('urban decentral')" - ) + n, + "gas", + region, + query="carrier.str.contains('rural')" + "or carrier.str.contains('urban decentral')", + ) nodal_prices_gas = n.buses_t.marginal_price[nf_gas_residential.columns] # !!! mv much higher: check carbon effect! - var["Price|Final Energy|Residential and Commercial|Gases"] = \ - nf_gas_residential.mul(nodal_prices_gas).values.sum() / nf_gas_residential.values.sum() / MWh2GJ if nf_gas_residential.values.sum() > 0 else np.nan + var["Price|Final Energy|Residential and Commercial|Gases"] = ( + nf_gas_residential.mul(nodal_prices_gas).values.sum() + / nf_gas_residential.values.sum() + / MWh2GJ + if nf_gas_residential.values.sum() > 0 + else np.nan + ) # "Price|Final Energy|Residential and Commercial|Gases|Natural Gas" ? # "Price|Final Energy|Residential and Commercial|Liquids|Biomass" x - - var["Price|Final Energy|Residential and Commercial|Liquids|Oil"] = \ + + var["Price|Final Energy|Residential and Commercial|Liquids|Oil"] = ( get_weighted_costs_links( - ['rural oil boiler', 'urban decentral oil boiler'], - n, region) / MWh2GJ + ["rural oil boiler", "urban decentral oil boiler"], n, region + ) + / MWh2GJ + ) - var["Price|Final Energy|Residential and Commercial|Liquids"] = \ - var["Price|Final Energy|Residential and Commercial|Liquids|Oil"] + var["Price|Final Energy|Residential and Commercial|Liquids"] = var[ + "Price|Final Energy|Residential and Commercial|Liquids|Oil" + ] - var["Price|Final Energy|Residential and Commercial|Solids|Biomass"] = \ + var["Price|Final Energy|Residential and Commercial|Solids|Biomass"] = ( get_weighted_costs_links( - ['rural biomass boiler', 'urban decentral biomass boiler'], - n, region) / MWh2GJ - - var["Price|Final Energy|Residential and Commercial|Solids"] = \ - var["Price|Final Energy|Residential and Commercial|Solids|Biomass"] + ["rural biomass boiler", "urban decentral biomass boiler"], n, region + ) + / MWh2GJ + ) + + var["Price|Final Energy|Residential and Commercial|Solids"] = var[ + "Price|Final Energy|Residential and Commercial|Solids|Biomass" + ] # "Price|Final Energy|Industry|Electricity"✓ - var["Price|Final Energy|Industry|Gases"] = \ - get_weighted_costs_links( - ['gas for industry','gas for industry CC'], - n, region) / MWh2GJ + var["Price|Final Energy|Industry|Gases"] = ( + get_weighted_costs_links(["gas for industry", "gas for industry CC"], n, region) + / MWh2GJ + ) # "Price|Final Energy|Industry|Heat"✓ - var["Price|Final Energy|Industry|Liquids"] = \ + var["Price|Final Energy|Industry|Liquids"] = ( price_load(n, "naphtha for industry", region)[0] / MWh2GJ - + ) + # "Price|Final Energy|Industry|Hydrogen"✓ - var["Price|Final Energy|Industry|Solids"] = \ + var["Price|Final Energy|Industry|Solids"] = ( get_weighted_costs_links( - [ 'solid biomass for industry', 'solid biomass for industry CC', 'coal for industry'], - n, region) / MWh2GJ + [ + "solid biomass for industry", + "solid biomass for industry CC", + "coal for industry", + ], + n, + region, + ) + / MWh2GJ + ) # Rest Tier 2 # x @@ -2807,13 +3125,17 @@ def get_prices(n, region): # Price|Final Energy|Transportation|Liquids|Efuel - # TODO THIS SEEMS INCORRECT - df = pd.DataFrame({c: price_load(n, c, region) for c in \ - ["kerosene for aviation", "shipping methanol", "shipping oil"]}) - - var["Price|Final Energy|Transportation|Liquids|Efuel"] = \ - (df.iloc[0]*df.iloc[1]).sum() / df.iloc[1].sum() / MWh2GJ + df = pd.DataFrame( + { + c: price_load(n, c, region) + for c in ["kerosene for aviation", "shipping methanol", "shipping oil"] + } + ) + + var["Price|Final Energy|Transportation|Liquids|Efuel"] = ( + (df.iloc[0] * df.iloc[1]).sum() / df.iloc[1].sum() / MWh2GJ + ) # Price|Final Energy|Transportation|Liquids|Efuel|Sales Margin # Price|Final Energy|Transportation|Liquids|Efuel|Transport and Distribution @@ -2831,19 +3153,22 @@ def get_prices(n, region): # Price|Final Energy|Transportation|Electricity - var["Price|Final Energy|Transportation|Electricity"] = \ - price_load(n, "land transport EV", region)[0] / (MWh2GJ) - + var["Price|Final Energy|Transportation|Electricity"] = price_load( + n, "land transport EV", region + )[0] / (MWh2GJ) + # Price|Final Energy|Transportation|Electricity|Sales Margin # Price|Final Energy|Transportation|Electricity|Transport and Distribution # Price|Final Energy|Transportation|Electricity|Other Taxes # Price|Final Energy|Residential and Commercial|Liquids|Oil - var["Price|Final Energy|Residential and Commercial|Liquids|Oil"] = \ + var["Price|Final Energy|Residential and Commercial|Liquids|Oil"] = ( get_weighted_costs_links( - ['rural oil boiler', 'urban decentral oil boiler'], - n, region) / MWh2GJ + ["rural oil boiler", "urban decentral oil boiler"], n, region + ) + / MWh2GJ + ) # Price|Final Energy|Residential and Commercial|Liquids|Oil|Sales Margin # Price|Final Energy|Residential and Commercial|Liquids|Oil|Transport and Distribution @@ -2859,32 +3184,37 @@ def get_prices(n, region): # Price|Final Energy|Residential and Commercial|Heat nf_rc_heat = get_nodal_flows( - n, ['urban central heat', 'rural heat', 'urban decentral heat'], region, - query = "not carrier.str.contains('agriculture')" - "& not carrier.str.contains('industry')" - "& not carrier.str.contains('DAC')" - ) + n, + ["urban central heat", "rural heat", "urban decentral heat"], + region, + query="not carrier.str.contains('agriculture')" + "& not carrier.str.contains('industry')" + "& not carrier.str.contains('DAC')", + ) np_rc_heat = n.buses_t.marginal_price[nf_rc_heat.columns] - var["Price|Final Energy|Residential and Commercial|Heat"] = \ + var["Price|Final Energy|Residential and Commercial|Heat"] = ( nf_rc_heat.mul(np_rc_heat).values.sum() / nf_rc_heat.values.sum() / MWh2GJ + ) # Price|Final Energy|Residential and Commercial|Heat|Sales Margin # Price|Final Energy|Residential and Commercial|Heat|Transport and Distribution # Price|Final Energy|Residential and Commercial|Heat|Other Taxes - # Price|Final Energy|Residential and Commercial|Liquids|Biomass + # Price|Final Energy|Residential and Commercial|Liquids|Biomass # Price|Final Energy|Residential and Commercial|Liquids|Biomass|Sales Margin # Price|Final Energy|Residential and Commercial|Liquids|Biomass|Transport and Distribution # Price|Final Energy|Residential and Commercial|Liquids|Biomass|Other Taxes # Price|Final Energy|Residential and Commercial|Solids|Biomass - var["Price|Final Energy|Residential and Commercial|Solids|Biomass"] = \ + var["Price|Final Energy|Residential and Commercial|Solids|Biomass"] = ( get_weighted_costs_links( - ['rural biomass boiler', 'urban decentral biomass boiler'], - n, region) / MWh2GJ - + ["rural biomass boiler", "urban decentral biomass boiler"], n, region + ) + / MWh2GJ + ) + # Price|Final Energy|Residential and Commercial|Solids|Biomass|Sales Margin # Price|Final Energy|Residential and Commercial|Solids|Biomass|Transport and Distribution # Price|Final Energy|Residential and Commercial|Solids|Biomass|Other Taxes @@ -2909,24 +3239,29 @@ def get_prices(n, region): # Price|Final Energy|Residential and Commercial|Hydrogen|Transport and Distribution # Price|Final Energy|Residential and Commercial|Hydrogen|Other Taxes - var["Price|Final Energy|Residential and Commercial|Electricity"] = \ - var["Price|Final Energy|Residential and Commercial|Electricity"] + var["Price|Final Energy|Residential and Commercial|Electricity"] = var[ + "Price|Final Energy|Residential and Commercial|Electricity" + ] # Price|Final Energy|Residential and Commercial|Electricity|Sales Margin x # Price|Final Energy|Residential and Commercial|Electricity|Transport and Distribution # Price|Final Energy|Residential and Commercial|Electricity|Other Taxes - var["Price|Final Energy|Industry|Electricity"] = \ - price_load(n, "industry electricity", region)[0] / (MWh2GJ) - - var["Price|Final Energy|Industry|Heat"] = \ - price_load(n, "low-temperature heat for industry", region)[0] / (MWh2GJ) - - var["Price|Final Energy|Industry|Hydrogen"] = \ - price_load(n, "H2 for industry", region)[0] / (MWh2GJ) - - var["Price|Final Energy|Industry|Solids|Coal"] = \ - price_load(n, "coal for industry", region)[0] / (MWh2GJ) - + var["Price|Final Energy|Industry|Electricity"] = price_load( + n, "industry electricity", region + )[0] / (MWh2GJ) + + var["Price|Final Energy|Industry|Heat"] = price_load( + n, "low-temperature heat for industry", region + )[0] / (MWh2GJ) + + var["Price|Final Energy|Industry|Hydrogen"] = price_load( + n, "H2 for industry", region + )[0] / (MWh2GJ) + + var["Price|Final Energy|Industry|Solids|Coal"] = price_load( + n, "coal for industry", region + )[0] / (MWh2GJ) + # Price|Final Energy|Industry|Solids|Coal|Sales Margin x # Price|Final Energy|Industry|Solids|Coal|Transport and Distribution # Price|Final Energy|Industry|Solids|Coal|Carbon Price Component @@ -2948,8 +3283,9 @@ def get_prices(n, region): # Price|Final Energy|Industry|Liquids|Biomass|Transport and Distribution # Price|Final Energy|Industry|Liquids|Biomass|Other Taxes - var["Price|Final Energy|Industry|Solids|Biomass"] = \ - price_load(n, "solid biomass for industry", region)[0] / (MWh2GJ) + var["Price|Final Energy|Industry|Solids|Biomass"] = price_load( + n, "solid biomass for industry", region + )[0] / (MWh2GJ) # Price|Final Energy|Industry|Solids|Biomass|Sales Margin x # Price|Final Energy|Industry|Solids|Biomass|Transport and Distribution @@ -2960,9 +3296,10 @@ def get_prices(n, region): # Price|Final Energy|Industry|Gases|Biomass|Transport and Distribution # Price|Final Energy|Industry|Gases|Biomass|Other Taxes - var["Price|Final Energy|Industry|Liquids|Efuel"] = \ - var["Price|Final Energy|Industry|Liquids"] - + var["Price|Final Energy|Industry|Liquids|Efuel"] = var[ + "Price|Final Energy|Industry|Liquids" + ] + # Price|Final Energy|Industry|Liquids|Efuel|Sales Margin x # Price|Final Energy|Industry|Liquids|Efuel|Transport and Distribution # Price|Final Energy|Industry|Liquids|Efuel|Other Taxes @@ -2982,44 +3319,57 @@ def get_prices(n, region): # Rest Tier3 nodal_flows_gas = get_nodal_flows( - n, "gas", region, - query = "not carrier.str.contains('pipeline')" - "& not carrier == 'gas'" - "& not carrier.str.contains('rural')" - "& not carrier.str.contains('urban decentral')" - ) + n, + "gas", + region, + query="not carrier.str.contains('pipeline')" + "& not carrier == 'gas'" + "& not carrier.str.contains('rural')" + "& not carrier.str.contains('urban decentral')", + ) nodal_prices_gas = n.buses_t.marginal_price[nodal_flows_gas.columns] - var["Price|Secondary Energy|Gases"] = \ - nodal_flows_gas.mul(nodal_prices_gas).values.sum() / nodal_flows_gas.values.sum() /MWh2GJ + var["Price|Secondary Energy|Gases"] = ( + nodal_flows_gas.mul(nodal_prices_gas).values.sum() + / nodal_flows_gas.values.sum() + / MWh2GJ + ) nodal_flows_oil = get_nodal_flows( - n, "oil", "EU", - query = "not carrier.str.contains('rural')" - "& not carrier.str.contains('urban decentral')" - ) + n, + "oil", + "EU", + query="not carrier.str.contains('rural')" + "& not carrier.str.contains('urban decentral')", + ) nodal_prices_oil = n.buses_t.marginal_price[nodal_flows_oil.columns] - var["Price|Secondary Energy|Liquids"] = \ - nodal_flows_oil.mul(nodal_prices_oil).values.sum() / nodal_flows_oil.values.sum() /MWh2GJ + var["Price|Secondary Energy|Liquids"] = ( + nodal_flows_oil.mul(nodal_prices_oil).values.sum() + / nodal_flows_oil.values.sum() + / MWh2GJ + ) # Price|Final Energy|Transportation|Freight|Electricity x # Price|Final Energy|Transportation|Freight|Gases # Price|Final Energy|Transportation|Freight|Hydrogen - var["Price|Final Energy|Transportation|Freight|Liquids"] = \ - var["Price|Final Energy|Transportation|Liquids|Efuel"] + var["Price|Final Energy|Transportation|Freight|Liquids"] = var[ + "Price|Final Energy|Transportation|Liquids|Efuel" + ] # Price|Final Energy|Transportation|Freight|Solids x - var["Price|Final Energy|Transportation|Passenger|Electricity"] = \ - var["Price|Final Energy|Transportation|Electricity"] - + var["Price|Final Energy|Transportation|Passenger|Electricity"] = var[ + "Price|Final Energy|Transportation|Electricity" + ] + # Price|Final Energy|Transportation|Passenger|Gases # Price|Final Energy|Transportation|Passenger|Hydrogen - var["Price|Final Energy|Transportation|Passenger|Liquids"] = \ - var["Price|Final Energy|Transportation|Liquids|Efuel"] - + var["Price|Final Energy|Transportation|Passenger|Liquids"] = var[ + "Price|Final Energy|Transportation|Liquids|Efuel" + ] + # Price|Final Energy|Transportation|Passenger|Solids x # Price|Final Energy|Residential and Commercial|Hydrogen x @@ -3033,92 +3383,108 @@ def get_prices(n, region): return var - + def get_discretized_value(value, disc_int, build_threshold=0.3): - if value == 0.0: - return value + if value == 0.0: + return value - add = value - value % disc_int - value = value % disc_int - discrete = disc_int if value > build_threshold * disc_int else 0.0 + add = value - value % disc_int + value = value % disc_int + discrete = disc_int if value > build_threshold * disc_int else 0.0 + + return add + discrete - return add + discrete def get_grid_investments(n, costs, region, dg_cost_factor=1.0, length_factor=1.0): # TODO gap between years should be read from config - # TODO Discretization units should be read from config + # TODO Discretization units should be read from config var = pd.Series() - offwind = n.generators.filter(like="offwind",axis=0).filter(like="DE", axis=0) + offwind = n.generators.filter(like="offwind", axis=0).filter(like="DE", axis=0) offwind_connection_overnight_cost = ( - (offwind.p_nom_opt - offwind.p_nom) - * offwind.connection_overnight_cost) * 1e-9 + (offwind.p_nom_opt - offwind.p_nom) * offwind.connection_overnight_cost + ) * 1e-9 offwind_connection_ac = offwind_connection_overnight_cost.filter(like="ac") offwind_connection_dc = offwind_connection_overnight_cost.filter(regex="dc|float") - var["Investment|Energy Supply|Electricity|Transmission|Offwind-AC"] = offwind_connection_ac.sum() / 5 - var["Investment|Energy Supply|Electricity|Transmission|Offwind-DC"] = offwind_connection_dc.sum() / 5 + var["Investment|Energy Supply|Electricity|Transmission|Offwind-AC"] = ( + offwind_connection_ac.sum() / 5 + ) + var["Investment|Energy Supply|Electricity|Transmission|Offwind-DC"] = ( + offwind_connection_dc.sum() / 5 + ) dc_links = n.links[ - (n.links.carrier=="DC") & - (n.links.bus0 + n.links.bus1).str.contains(region) & - ~n.links.index.str.contains("reversed") + (n.links.carrier == "DC") + & (n.links.bus0 + n.links.bus1).str.contains(region) + & ~n.links.index.str.contains("reversed") ] dc_expansion = dc_links.p_nom_opt.apply( - lambda x: get_discretized_value(x, 2000) - ) - n.links.loc[dc_links.index].p_nom_min.apply( - lambda x: get_discretized_value(x, 2000) - ) - + lambda x: get_discretized_value(x, 2000) + ) - n.links.loc[dc_links.index].p_nom_min.apply( + lambda x: get_discretized_value(x, 2000) + ) + dc_new = (dc_expansion > 0) & (n.links.loc[dc_links.index].p_nom_min > 10) - dc_investments = dc_links.length * length_factor * ( - (1 - dc_links.underwater_fraction) - * dc_expansion - * costs.at["HVDC overhead", "investment"] - + - dc_links.underwater_fraction - * dc_expansion - * costs.at["HVDC submarine", "investment"] - - ) + dc_new * costs.at["HVDC inverter pair","investment"] + dc_investments = ( + dc_links.length + * length_factor + * ( + (1 - dc_links.underwater_fraction) + * dc_expansion + * costs.at["HVDC overhead", "investment"] + + dc_links.underwater_fraction + * dc_expansion + * costs.at["HVDC submarine", "investment"] + ) + + dc_new * costs.at["HVDC inverter pair", "investment"] + ) ac_lines = n.lines[(n.lines.bus0 + n.lines.bus1).str.contains(region)] ac_expansion = ac_lines.s_nom_opt.apply( - lambda x: get_discretized_value(x, 1700) - ) - n.lines.loc[ac_lines.index].s_nom_min.apply( - lambda x: get_discretized_value(x, 1700) - ) - ac_investments = ac_lines.length * length_factor * ac_expansion * costs.at["HVAC overhead", "investment"] - var["Investment|Energy Supply|Electricity|Transmission|AC"] = \ - (ac_investments.sum() + offwind_connection_ac.sum()) / 5 - var["Investment|Energy Supply|Electricity|Transmission|DC"] = \ - (dc_investments.sum() + offwind_connection_dc.sum()) / 5 - var["Investment|Energy Supply|Electricity|Transmission"] = \ - var["Investment|Energy Supply|Electricity|Transmission|AC"] + \ - var["Investment|Energy Supply|Electricity|Transmission|DC"] - - distribution_grid = n.links[ - n.links.carrier.str.contains("distribution")].filter(like="DE",axis=0) + lambda x: get_discretized_value(x, 1700) + ) - n.lines.loc[ac_lines.index].s_nom_min.apply( + lambda x: get_discretized_value(x, 1700) + ) + ac_investments = ( + ac_lines.length + * length_factor + * ac_expansion + * costs.at["HVAC overhead", "investment"] + ) + var["Investment|Energy Supply|Electricity|Transmission|AC"] = ( + ac_investments.sum() + offwind_connection_ac.sum() + ) / 5 + var["Investment|Energy Supply|Electricity|Transmission|DC"] = ( + dc_investments.sum() + offwind_connection_dc.sum() + ) / 5 + var["Investment|Energy Supply|Electricity|Transmission"] = ( + var["Investment|Energy Supply|Electricity|Transmission|AC"] + + var["Investment|Energy Supply|Electricity|Transmission|DC"] + ) + + distribution_grid = n.links[n.links.carrier.str.contains("distribution")].filter( + like="DE", axis=0 + ) year = distribution_grid.build_year.max() year_pre = (year - 5) if year > 2020 else 2020 dg_expansion = ( - distribution_grid.p_nom_opt.sum() + distribution_grid.p_nom_opt.sum() - distribution_grid[distribution_grid.build_year <= year_pre].p_nom_opt.sum() ) dg_investment = ( - dg_expansion + dg_expansion * costs.at["electricity distribution grid", "investment"] * dg_cost_factor ) - var["Investment|Energy Supply|Electricity|Distribution"] = \ - dg_investment / 5 - - var["Investment|Energy Supply|Electricity|Transmission and Distribution"] = \ - var["Investment|Energy Supply|Electricity|Distribution"] + \ - var["Investment|Energy Supply|Electricity|Transmission"] - + var["Investment|Energy Supply|Electricity|Distribution"] = dg_investment / 5 + + var["Investment|Energy Supply|Electricity|Transmission and Distribution"] = ( + var["Investment|Energy Supply|Electricity|Distribution"] + + var["Investment|Energy Supply|Electricity|Transmission"] + ) h2_links = n.links[ n.links.carrier.str.contains("H2 pipeline") @@ -3127,22 +3493,19 @@ def get_grid_investments(n, costs, region, dg_cost_factor=1.0, length_factor=1.0 ] year = n.links.build_year.max() new_h2_links = h2_links[ - ((year - 5) < h2_links.build_year) - & ( h2_links.build_year <= year)] + ((year - 5) < h2_links.build_year) & (h2_links.build_year <= year) + ] h2_costs = ( - new_h2_links.length * new_h2_links.p_nom_opt.apply( - lambda x: get_discretized_value(x, 1500) - ) + new_h2_links.length + * new_h2_links.p_nom_opt.apply(lambda x: get_discretized_value(x, 1500)) * costs.at["H2 pipeline", "investment"] ) - var["Investment|Energy Supply|Hydrogen|Transmission"] = \ - h2_costs.sum() / 5 - + var["Investment|Energy Supply|Hydrogen|Transmission"] = h2_costs.sum() / 5 gas_links = n.links[ ( - ((n.links.carrier == "gas pipeline") & (n.links.build_year > 2020)) + ((n.links.carrier == "gas pipeline") & (n.links.build_year > 2020)) | (n.links.carrier == "gas pipeline new") ) & ~n.links.reversed @@ -3150,136 +3513,181 @@ def get_grid_investments(n, costs, region, dg_cost_factor=1.0, length_factor=1.0 ] year = n.links.build_year.max() new_gas_links = gas_links[ - ((year - 5) < gas_links.build_year) - & (gas_links.build_year <= year)] + ((year - 5) < gas_links.build_year) & (gas_links.build_year <= year) + ] gas_costs = ( - new_gas_links.length * new_gas_links.p_nom_opt.apply( - lambda x: get_discretized_value(x, 1200) - ) + new_gas_links.length + * new_gas_links.p_nom_opt.apply(lambda x: get_discretized_value(x, 1200)) * costs.at["CH4 (g) pipeline", "investment"] ) - var["Investment|Energy Supply|Gas|Transmission"] = \ - gas_costs.sum() / 5 + var["Investment|Energy Supply|Gas|Transmission"] = gas_costs.sum() / 5 - # var["Investment|Energy Supply|Electricity|Electricity Storage"] = \ - # var["Investment|Energy Supply|Hydrogen|Fossil"] = \ + # var["Investment|Energy Supply|Electricity|Electricity Storage"] = \ + # var["Investment|Energy Supply|Hydrogen|Fossil"] = \ # var["Investment|Energy Supply|Hydrogen|Biomass"] = \ - # var["Investment|Energy Supply|Hydrogen|Electrolysis"] = - # var["Investment|Energy Supply|Hydrogen|Other"] = \ - # var["Investment|Energy Supply|Liquids"] = \ - # var["Investment|Energy Supply|Liquids|Oil"] = \ + # var["Investment|Energy Supply|Hydrogen|Electrolysis"] = + # var["Investment|Energy Supply|Hydrogen|Other"] = \ + # var["Investment|Energy Supply|Liquids"] = \ + # var["Investment|Energy Supply|Liquids|Oil"] = \ # var["Investment|Energy Supply|Liquids|Coal and Gas"] = \ - # var["Investment|Energy Supply|Liquids|Biomass"] = \ - # var["Investment|Energy Supply|CO2 Transport and Storage"] = - # var["Investment|Energy Supply|Other"] = - # var["Investment|Energy Efficiency"] = \ + # var["Investment|Energy Supply|Liquids|Biomass"] = \ + # var["Investment|Energy Supply|CO2 Transport and Storage"] = + # var["Investment|Energy Supply|Other"] = + # var["Investment|Energy Efficiency"] = \ # var["Investment|Energy Supply|Heat"] = \ # var["Investment|Energy Supply|Hydrogen"] = \ - # var["Investment|RnD|Energy Supply"] = \ - # var["Investment|Energy Demand|Transportation"] = \ - # var["Investment|Energy Demand|Transportation|LDV"] = \ - # var["Investment|Energy Demand|Transportation|Bus"] = \ - # var["Investment|Energy Demand|Transportation|Rail"] = \ + # var["Investment|RnD|Energy Supply"] = \ + # var["Investment|Energy Demand|Transportation"] = \ + # var["Investment|Energy Demand|Transportation|LDV"] = \ + # var["Investment|Energy Demand|Transportation|Bus"] = \ + # var["Investment|Energy Demand|Transportation|Rail"] = \ # var["Investment|Energy Demand|Transportation|Truck"] = \ - # var["Investment|Infrastructure|Transport"] = \ - # var["Investment|Energy Demand|Residential and Commercial"] = \ - # var["Investment|Energy Demand|Residential and Commercial|Low-Efficiency Buildings"] = \ - # var["Investment|Energy Demand|Residential and Commercial|Medium-Efficiency Buildings"] = \ + # var["Investment|Infrastructure|Transport"] = \ + # var["Investment|Energy Demand|Residential and Commercial"] = \ + # var["Investment|Energy Demand|Residential and Commercial|Low-Efficiency Buildings"] = \ + # var["Investment|Energy Demand|Residential and Commercial|Medium-Efficiency Buildings"] = \ # var["Investment|Energy Demand|Residential and Commercial|High-Efficiency Buildings"] = \ - # var["Investment|Energy Demand|Residential and Commercial|Building Retrofits"] = + # var["Investment|Energy Demand|Residential and Commercial|Building Retrofits"] = # var["Investment|Energy Demand|Residential and Commercial|Space Heating"] = \ - # var["Investment|Infrastructure|Industry|Green"] = \ - # var["Investment|Infrastructure|Industry|Non-Green"] = \ - # var["Investment|Industry"] = \ + # var["Investment|Infrastructure|Industry|Green"] = \ + # var["Investment|Infrastructure|Industry|Non-Green"] = \ + # var["Investment|Industry"] = \ return var + def get_policy(n, investment_year): var = pd.Series() - + # add carbon component to fossil fuels if specified if investment_year in snakemake.params.co2_price_add_on_fossils.keys(): - co2_price_add_on = snakemake.params.co2_price_add_on_fossils[investment_year] + co2_price_add_on = snakemake.params.co2_price_add_on_fossils[investment_year] else: co2_price_add_on = 0.0 - - var["Price|Carbon"] = \ - -n.global_constraints.loc["CO2Limit", "mu"] - n.global_constraints.loc["co2_limit-DE", "mu"] + co2_price_add_on - - var["Price|Carbon|EU-wide Regulation All Sectors"] = \ + + var["Price|Carbon"] = ( + -n.global_constraints.loc["CO2Limit", "mu"] + - n.global_constraints.loc["co2_limit-DE", "mu"] + + co2_price_add_on + ) + + var["Price|Carbon|EU-wide Regulation All Sectors"] = ( -n.global_constraints.loc["CO2Limit", "mu"] + co2_price_add_on - + ) + # Price|Carbon|EU-wide Regulation Non-ETS - var["Price|Carbon|National Climate Target"] = \ - -n.global_constraints.loc["co2_limit-DE", "mu"] - + var["Price|Carbon|National Climate Target"] = -n.global_constraints.loc[ + "co2_limit-DE", "mu" + ] + # Price|Carbon|National Climate Target Non-ETS return var + def get_trade(n, region): var = pd.Series() def get_export_import_links(n, region, carriers): exporting = n.links.index[ - (n.links.carrier.isin(carriers)) & - (n.links.bus0.str[:2] == region) & - (n.links.bus1.str[:2] != region)] - + (n.links.carrier.isin(carriers)) + & (n.links.bus0.str[:2] == region) + & (n.links.bus1.str[:2] != region) + ] + importing = n.links.index[ - (n.links.carrier.isin(carriers)) & - (n.links.bus0.str[:2] != region) & - (n.links.bus1.str[:2] == region)] - - exporting_p = n.links_t.p0.loc[: , exporting].clip(lower=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() \ - - n.links_t.p0.loc[: , importing].clip(upper=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() - importing_p = n.links_t.p0.loc[: , importing].clip(lower=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() \ - - n.links_t.p0.loc[: , exporting].clip(upper=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() + (n.links.carrier.isin(carriers)) + & (n.links.bus0.str[:2] != region) + & (n.links.bus1.str[:2] == region) + ] + + exporting_p = ( + n.links_t.p0.loc[:, exporting] + .clip(lower=0) + .multiply(n.snapshot_weightings.generators, axis=0) + .values.sum() + - n.links_t.p0.loc[:, importing] + .clip(upper=0) + .multiply(n.snapshot_weightings.generators, axis=0) + .values.sum() + ) + importing_p = ( + n.links_t.p0.loc[:, importing] + .clip(lower=0) + .multiply(n.snapshot_weightings.generators, axis=0) + .values.sum() + - n.links_t.p0.loc[:, exporting] + .clip(upper=0) + .multiply(n.snapshot_weightings.generators, axis=0) + .values.sum() + ) return exporting_p, importing_p - + # Trade|Primary Energy|Biomass|Volume - # Trade|Secondary Energy|Electricity|Volume + # Trade|Secondary Energy|Electricity|Volume exporting_ac = n.lines.index[ - (n.lines.carrier == "AC") & - (n.lines.bus0.str[:2] == region) & - (n.lines.bus1.str[:2] != region)] - + (n.lines.carrier == "AC") + & (n.lines.bus0.str[:2] == region) + & (n.lines.bus1.str[:2] != region) + ] + importing_ac = n.lines.index[ - (n.lines.carrier == "AC") & - (n.lines.bus0.str[:2] != region) & - (n.lines.bus1.str[:2] == region)] - exporting_p_ac = n.lines_t.p0.loc[: , exporting_ac].clip(lower=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() \ - - n.lines_t.p0.loc[: , importing_ac].clip(upper=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() - importing_p_ac = n.lines_t.p0.loc[: , importing_ac].clip(lower=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() \ - - n.lines_t.p0.loc[: , exporting_ac].clip(upper=0).multiply(n.snapshot_weightings.generators, axis=0).values.sum() + (n.lines.carrier == "AC") + & (n.lines.bus0.str[:2] != region) + & (n.lines.bus1.str[:2] == region) + ] + exporting_p_ac = ( + n.lines_t.p0.loc[:, exporting_ac] + .clip(lower=0) + .multiply(n.snapshot_weightings.generators, axis=0) + .values.sum() + - n.lines_t.p0.loc[:, importing_ac] + .clip(upper=0) + .multiply(n.snapshot_weightings.generators, axis=0) + .values.sum() + ) + importing_p_ac = ( + n.lines_t.p0.loc[:, importing_ac] + .clip(lower=0) + .multiply(n.snapshot_weightings.generators, axis=0) + .values.sum() + - n.lines_t.p0.loc[:, exporting_ac] + .clip(upper=0) + .multiply(n.snapshot_weightings.generators, axis=0) + .values.sum() + ) exports_dc, imports_dc = get_export_import_links(n, region, ["DC"]) - var["Trade|Secondary Energy|Electricity|Volume"] = \ - ((exporting_p_ac - importing_p_ac) + (exports_dc - imports_dc)) * MWh2PJ - var["Trade|Secondary Energy|Electricity|Gross Import|Volume"] = \ - (importing_p_ac + imports_dc) * MWh2PJ + var["Trade|Secondary Energy|Electricity|Volume"] = ( + (exporting_p_ac - importing_p_ac) + (exports_dc - imports_dc) + ) * MWh2PJ + var["Trade|Secondary Energy|Electricity|Gross Import|Volume"] = ( + importing_p_ac + imports_dc + ) * MWh2PJ # var["Trade|Secondary Energy|Electricity|Volume|Exports"] = \ # (exporting_p_ac + exports_dc) * MWh2PJ # Trade|Secondary Energy|Hydrogen|Volume h2_carriers = ["H2 pipeline", "H2 pipeline (Kernnetz)", "H2 pipeline retrofitted"] exports_h2, imports_h2 = get_export_import_links(n, region, h2_carriers) - var["Trade|Secondary Energy|Hydrogen|Volume"] = \ - (exports_h2 - imports_h2) * MWh2PJ - var["Trade|Secondary Energy|Hydrogen|Gross Import|Volume"] = \ - imports_h2 * MWh2PJ + var["Trade|Secondary Energy|Hydrogen|Volume"] = (exports_h2 - imports_h2) * MWh2PJ + var["Trade|Secondary Energy|Hydrogen|Gross Import|Volume"] = imports_h2 * MWh2PJ # var["Trade|Secondary Energy|Hydrogen|Volume|Exports"] = \ # exports_h2 * MWh2PJ - + # Trade|Secondary Energy|Liquids|Hydrogen|Volume - exports_oil_renew, imports_oil_renew = get_export_import_links(n, region, ["renewable oil"]) - var["Trade|Secondary Energy|Liquids|Hydrogen|Volume"] = \ - (exports_oil_renew - imports_oil_renew) * MWh2PJ - var["Trade|Secondary Energy|Liquids|Hydrogen|Gross Import|Volume"] = \ + exports_oil_renew, imports_oil_renew = get_export_import_links( + n, region, ["renewable oil"] + ) + var["Trade|Secondary Energy|Liquids|Hydrogen|Volume"] = ( + exports_oil_renew - imports_oil_renew + ) * MWh2PJ + var["Trade|Secondary Energy|Liquids|Hydrogen|Gross Import|Volume"] = ( imports_oil_renew * MWh2PJ + ) # var["Trade|Secondary Energy|Liquids|Hydrogen|Volume|Exports"] = \ # exports_oil_renew * MWh2PJ @@ -3290,33 +3698,51 @@ def get_export_import_links(n, region, carriers): # Trade|Primary Energy|Coal|Volume # Trade|Primary Energy|Gas|Volume - gas_fractions = _get_gas_fractions(n) - exports_gas, imports_gas = get_export_import_links(n, region, ["gas pipeline", "gas pipeline new"]) - var["Trade|Primary Energy|Gas|Volume"] = \ - ((exports_gas - imports_gas) * MWh2PJ) * gas_fractions["Natural Gas"] - var["Trade|Primary Energy|Gas|Volume|Imports"] = \ + exports_gas, imports_gas = get_export_import_links( + n, region, ["gas pipeline", "gas pipeline new"] + ) + var["Trade|Primary Energy|Gas|Volume"] = ( + (exports_gas - imports_gas) * MWh2PJ + ) * gas_fractions["Natural Gas"] + var["Trade|Primary Energy|Gas|Volume|Imports"] = ( imports_gas * MWh2PJ * gas_fractions["Natural Gas"] - var["Trade|Primary Energy|Gas|Volume|Exports"] = \ + ) + var["Trade|Primary Energy|Gas|Volume|Exports"] = ( exports_gas * MWh2PJ * gas_fractions["Natural Gas"] + ) # Trade|Primary Energy|Oil|Volume return var + def get_production(region, year): var = pd.Series() # read in the industrial production data - years = [int(re.search(r'(\d{4})-modified\.csv', filename).group(1)) for filename in snakemake.input.industrial_production_per_country_tomorrow] + years = [ + int(re.search(r"(\d{4})-modified\.csv", filename).group(1)) + for filename in snakemake.input.industrial_production_per_country_tomorrow + ] index = next((idx for idx, y in enumerate(years) if y == year), None) - production = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow[index], index_col=0).div(1e3) # kton/a -> Mton/a - + production = pd.read_csv( + snakemake.input.industrial_production_per_country_tomorrow[index], index_col=0 + ).div( + 1e3 + ) # kton/a -> Mton/a + var["Production|Non-Metallic Minerals|Cement"] = production.loc[region, "Cement"] - var["Production|Steel"] = production.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]].sum() - var["Production|Steel|Primary"] = var["Production|Steel"] * config["industry"]["St_primary_fraction"][year] - var["Production|Steel|Secondary"] = var["Production|Steel"] * (1 - config["industry"]["St_primary_fraction"][year]) - + var["Production|Steel"] = production.loc[ + "DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"] + ].sum() + var["Production|Steel|Primary"] = ( + var["Production|Steel"] * config["industry"]["St_primary_fraction"][year] + ) + var["Production|Steel|Secondary"] = var["Production|Steel"] * ( + 1 - config["industry"]["St_primary_fraction"][year] + ) + # optional: # var[""Production|Pulp and Paper"] # var["Production|Chemicals|Ammonia"] @@ -3326,11 +3752,12 @@ def get_production(region, year): return var + def get_operational_and_capital_costs(year): - '''' - This function reads in the cost data from the costs.csv file and - brings it into the database format. - ''' + """ + ' This function reads in the cost data from the costs.csv file and brings + it into the database format. + """ var = pd.Series() ind = planning_horizons.index(year) costs = prepare_costs( @@ -3419,9 +3846,9 @@ def get_operational_and_capital_costs(year): VOM = "OM Cost|Variable" + "|" + sector + "|" + tech capital = "Capital Cost" + "|" + sector + "|" + tech - var[FOM] = costs.at[tech, "fixed"] / 1e3 # EUR/MW -> EUR/kW - var[VOM] = costs.at[tech, "VOM"] / MWh2GJ # EUR/MWh -> EUR/GJ - var[capital] = costs.at[tech, "investment"] / 1e3 # EUR/MW -> EUR/kW + var[FOM] = costs.at[tech, "fixed"] / 1e3 # EUR/MW -> EUR/kW + var[VOM] = costs.at[tech, "VOM"] / MWh2GJ # EUR/MWh -> EUR/GJ + var[capital] = costs.at[tech, "investment"] / 1e3 # EUR/MW -> EUR/kW if key in grid_connection: var[FOM] += costs.at["electricity grid connection", "fixed"] / 1e3 @@ -3430,41 +3857,78 @@ def get_operational_and_capital_costs(year): return var -def get_ariadne_var(n, industry_demand, energy_totals, sector_ratios, industry_production, costs, region, year): - - var = pd.concat([ - get_capacities(n, region), - #get_capacity_additions_simple(n,region), - #get_installed_capacities(n,region), - get_capacity_additions(n, region), - get_investments(n, costs, region), - #get_capacity_additions_nstat(n, region), - get_production(region, year), - get_primary_energy(n, region), - get_secondary_energy(n, region, industry_demand), - get_final_energy(n, region, industry_demand, energy_totals, sector_ratios, industry_production), - get_prices(n,region), - get_emissions(n, region, energy_totals), - get_grid_investments( - n, costs, region, - dg_cost_factor=snakemake.params.dg_cost_factor, - length_factor=snakemake.params.length_factor - ), - get_policy(n, year), - get_trade(n, region), - #get_operational_and_capital_costs(year), - ]) +def get_ariadne_var( + n, + industry_demand, + energy_totals, + sector_ratios, + industry_production, + costs, + region, + year, +): + + var = pd.concat( + [ + get_capacities(n, region), + # get_capacity_additions_simple(n,region), + # get_installed_capacities(n,region), + get_capacity_additions(n, region), + get_investments(n, costs, region), + # get_capacity_additions_nstat(n, region), + get_production(region, year), + get_primary_energy(n, region), + get_secondary_energy(n, region, industry_demand), + get_final_energy( + n, + region, + industry_demand, + energy_totals, + sector_ratios, + industry_production, + ), + get_prices(n, region), + get_emissions(n, region, energy_totals), + get_grid_investments( + n, + costs, + region, + dg_cost_factor=snakemake.params.dg_cost_factor, + length_factor=snakemake.params.length_factor, + ), + get_policy(n, year), + get_trade(n, region), + # get_operational_and_capital_costs(year), + ] + ) return var # uses the global variables model, scenario and var2unit. For now. def get_data( - n, industry_demand, energy_totals, sector_ratios, industry_production, costs, region, year, - version="0.10", scenario="test", - ): - - var = get_ariadne_var(n, industry_demand, energy_totals, sector_ratios, industry_production, costs, region, year) + n, + industry_demand, + energy_totals, + sector_ratios, + industry_production, + costs, + region, + year, + version="0.10", + scenario="test", +): + + var = get_ariadne_var( + n, + industry_demand, + energy_totals, + sector_ratios, + industry_production, + costs, + region, + year, + ) data = [] for v in var.index: @@ -3474,22 +3938,24 @@ def get_data( print("Warning: Variable '", v, "' not in Ariadne Database", sep="") unit = "NA" - data.append([ - "PyPSA-Eur " + version, - scenario, - region, - v, - unit, - var[v], - ]) + data.append( + [ + "PyPSA-Eur " + version, + scenario, + region, + v, + unit, + var[v], + ] + ) tab = pd.DataFrame( - data, - columns=["Model", "Scenario", "Region", "Variable", "Unit", year] + data, columns=["Model", "Scenario", "Region", "Variable", "Unit", year] ) return tab + if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -3506,52 +3972,56 @@ def get_data( opts="", ll="vopt", sector_opts="None", - run="KN2045_Bal_v4" + run="KN2045_Bal_v4", ) - storage_costs_dict = { - 'H2': 'hydrogen storage underground', - 'EV battery': None, # 0 i think - 'PHS': None, #'PHS', accounted already as generator?? - 'battery': 'battery storage', - 'biogas': None, # not a typical store, 0 i think - 'co2 sequestered': snakemake.params.co2_sequestration_cost, # TODO how to consider the co2_sequestration_lifetime here - 'co2 stored': 'CO2 storage tank', - 'gas': 'gas storage', - 'home battery': 'home battery storage', - 'hydro': None, # `hydro`, , accounted already as generator?? - 'oil': 0.02, - 'rural water tanks': 'decentral water tank storage', - 'solid biomass': None, # not a store, but a potential, 0 i think - 'urban central water tanks': 'central water tank storage', - 'urban decentral water tanks': 'decentral water tank storage', + "H2": "hydrogen storage underground", + "EV battery": None, # 0 i think + "PHS": None, #'PHS', accounted already as generator?? + "battery": "battery storage", + "biogas": None, # not a typical store, 0 i think + "co2 sequestered": snakemake.params.co2_sequestration_cost, # TODO how to consider the co2_sequestration_lifetime here + "co2 stored": "CO2 storage tank", + "gas": "gas storage", + "home battery": "home battery storage", + "hydro": None, # `hydro`, , accounted already as generator?? + "oil": 0.02, + "rural water tanks": "decentral water tank storage", + "solid biomass": None, # not a store, but a potential, 0 i think + "urban central water tanks": "central water tank storage", + "urban decentral water tanks": "decentral water tank storage", } config = snakemake.config planning_horizons = snakemake.params.planning_horizons - ariadne_template = pd.read_excel( - snakemake.input.template, sheet_name=None) + ariadne_template = pd.read_excel(snakemake.input.template, sheet_name=None) var2unit = ariadne_template["variable_definitions"].set_index("Variable")["Unit"] industry_demands = [ pd.read_csv( - in_dem, + in_dem, index_col="TWh/a (MtCO2/a)", - ).multiply(TWh2PJ).rename_axis("bus") + ) + .multiply(TWh2PJ) + .rename_axis("bus") for in_dem in snakemake.input.industry_demands ] - energy_totals = pd.read_csv( - snakemake.input.energy_totals, - index_col=[0,1], - ).xs( - snakemake.params.energy_totals_year, - level="year", - ).multiply(TWh2PJ) + energy_totals = ( + pd.read_csv( + snakemake.input.energy_totals, + index_col=[0, 1], + ) + .xs( + snakemake.params.energy_totals_year, + level="year", + ) + .multiply(TWh2PJ) + ) sector_ratios = [ pd.read_csv( in_sec_ratio, - header=[0,1], + header=[0, 1], index_col=0, ).rename_axis("carrier") for in_sec_ratio in snakemake.input.industry_sector_ratios @@ -3567,67 +4037,78 @@ def get_data( nhours = int(snakemake.params.hours[:-1]) nyears = nhours / 8760 - costs = list(map( - lambda _costs: prepare_costs( - _costs, - snakemake.params.costs, - nyears, - ).multiply(1e-9), # in bn € - snakemake.input.costs - )) - + costs = list( + map( + lambda _costs: prepare_costs( + _costs, + snakemake.params.costs, + nyears, + ).multiply( + 1e-9 + ), # in bn € + snakemake.input.costs, + ) + ) networks = [pypsa.Network(n) for n in snakemake.input.networks] - if "debug" == "debug":# For debugging + if "debug" == "debug": # For debugging var = pd.Series() idx = 2 n = networks[idx] c = costs[idx] _industry_demand = industry_demands[idx] _energy_totals = energy_totals.copy() - region="DE" - cap_func=n.statistics.optimal_capacity + region = "DE" + cap_func = n.statistics.optimal_capacity cap_string = "Optimal Capacity|" - dg_cost_factor=snakemake.params.dg_cost_factor + dg_cost_factor = snakemake.params.dg_cost_factor kwargs = { - 'groupby': n.statistics.groupers.get_bus_and_carrier, - 'at_port': True, - 'nice_names': False, + "groupby": n.statistics.groupers.get_bus_and_carrier, + "at_port": True, + "nice_names": False, } yearly_dfs = [] for i, year in enumerate(planning_horizons): print("Getting data for year {year}...".format(year=year)) - yearly_dfs.append(get_data( - networks[i], - industry_demands[i], - energy_totals, - sector_ratios[i], - industry_production[i], - costs[i], - "DE", - year=year, - version=config["version"], - scenario=snakemake.wildcards.run, - )) + yearly_dfs.append( + get_data( + networks[i], + industry_demands[i], + energy_totals, + sector_ratios[i], + industry_production[i], + costs[i], + "DE", + year=year, + version=config["version"], + scenario=snakemake.wildcards.run, + ) + ) df = reduce( lambda left, right: pd.merge( - left, - right, - on=["Model", "Scenario", "Region", "Variable", "Unit"]), - yearly_dfs + left, right, on=["Model", "Scenario", "Region", "Variable", "Unit"] + ), + yearly_dfs, ) print("Assigning mean investments of year and year + 5 to year.") investment_rows = df.loc[df["Variable"].str.contains("Investment")] - average_investments = investment_rows[planning_horizons].add( - investment_rows[planning_horizons].shift(-1,axis=1)).div(2).fillna(0) - average_investments[planning_horizons[0]] += investment_rows[planning_horizons[0]].div(2) - average_investments[planning_horizons[-1]] += investment_rows[planning_horizons[-1]].div(2) + average_investments = ( + investment_rows[planning_horizons] + .add(investment_rows[planning_horizons].shift(-1, axis=1)) + .div(2) + .fillna(0) + ) + average_investments[planning_horizons[0]] += investment_rows[ + planning_horizons[0] + ].div(2) + average_investments[planning_horizons[-1]] += investment_rows[ + planning_horizons[-1] + ].div(2) df.loc[investment_rows.index, planning_horizons] = average_investments - df["Region"] = df["Region"].str.replace("DE", "DEU") df["Model"] = "PyPSA-Eur v0.10" @@ -3638,17 +4119,19 @@ def get_data( print( "Dropping variables which are not in the template:", *df.loc[df["Unit"] == "NA"]["Variable"], - sep="\n" + sep="\n", ) df.drop(df.loc[df["Unit"] == "NA"].index, inplace=True) - meta = pd.Series({ - 'Model': "PyPSA-Eur v0.10", - 'Scenario': snakemake.wildcards.run, - 'Quality Assessment': "preliminary", - 'Internal usage within Kopernikus AG Szenarien': "yes", - 'Release for publication': "no", - }) + meta = pd.Series( + { + "Model": "PyPSA-Eur v0.10", + "Scenario": snakemake.wildcards.run, + "Quality Assessment": "preliminary", + "Internal usage within Kopernikus AG Szenarien": "yes", + "Release for publication": "no", + } + ) with pd.ExcelWriter(snakemake.output.exported_variables) as writer: df.to_excel(writer, sheet_name="data", index=False) diff --git a/workflow/scripts/modify_cost_data.py b/workflow/scripts/modify_cost_data.py index fcd24849e..acc14fbfe 100644 --- a/workflow/scripts/modify_cost_data.py +++ b/workflow/scripts/modify_cost_data.py @@ -1,24 +1,27 @@ +# -*- coding: utf-8 -*- -import pandas as pd -import re -import os import logging +import os +import re + import numpy as np +import pandas as pd + def carbon_component_fossils(costs, co2_price): """ - Add carbon component to fossil fuel costs + Add carbon component to fossil fuel costs. """ - carriers= ["gas", "oil", "lignite", "coal"] + carriers = ["gas", "oil", "lignite", "coal"] # specific emissions in tons CO2/MWh according to n.links[n.links.carrier =="your_carrier].efficiency2.unique().item() specific_emisisons = { - "oil" : 0.2571, - "gas" : 0.198, # OCGT - "coal" : 0.3361, - "lignite" : 0.4069, + "oil": 0.2571, + "gas": 0.198, # OCGT + "coal": 0.3361, + "lignite": 0.4069, } - + for c in carriers: carbon_add_on = specific_emisisons[c] * co2_price costs.at[(c, "fuel"), "value"] += carbon_add_on @@ -26,7 +29,9 @@ def carbon_component_fossils(costs, co2_price): if pd.isna(costs.at[(c, "fuel"), "further description"]): costs.at[(c, "fuel"), "further description"] = add_str else: - costs.at[(c, "fuel"), "further description"] = str(costs.at[(c, "fuel"), "further description"]) + add_str + costs.at[(c, "fuel"), "further description"] = ( + str(costs.at[(c, "fuel"), "further description"]) + add_str + ) return costs @@ -38,35 +43,38 @@ def carbon_component_fossils(costs, co2_price): path = "../submodules/pypsa-eur/scripts" sys.path.insert(0, os.path.abspath(path)) from _helpers import mock_snakemake + snakemake = mock_snakemake( "modify_cost_data", planning_horizons="2020", file_path="../data/costs/", file_name="costs_2020.csv", cost_horizon="mean", - run="KN2045_Bal_v4" - ) + run="KN2045_Bal_v4", + ) logger = logging.getLogger(__name__) # read in cost data from technology-data library costs = os.path.join( - snakemake.params.file_path, - snakemake.params.cost_horizon, - snakemake.params.file_name) + snakemake.params.file_path, + snakemake.params.cost_horizon, + snakemake.params.file_name, + ) # cost_horizon is a setting for technology-data and specifies either # mean, pessimist or optimist cost scenarios # the cost modifications file contains specific cost assumptions for # germany, developed in the ARIADNE project - # here pessimist and optimistic scenarios correspond to a delay or a + # here pessimist and optimistic scenarios correspond to a delay or a # speed up in cost reductions costs = pd.read_csv(costs, index_col=[0, 1]).sort_index() - matched_year = int(re.search( - r"costs_(\d{4})-modifications\.csv", - snakemake.input.modifications - ).group(1)) + matched_year = int( + re.search( + r"costs_(\d{4})-modifications\.csv", snakemake.input.modifications + ).group(1) + ) if matched_year <= 2020 or snakemake.params.cost_horizon == "mean": logger.warning(f"Mean cost scenario for {matched_year}.") @@ -81,26 +89,31 @@ def carbon_component_fossils(costs, co2_price): raise ValueError("Invalid specification of cost options.") new_filename = re.sub( - r'costs_\d{4}-modifications\.csv', - f"costs_{new_year}-modifications.csv", - snakemake.input.modifications) + r"costs_\d{4}-modifications\.csv", + f"costs_{new_year}-modifications.csv", + snakemake.input.modifications, + ) modifications = pd.read_csv(new_filename, index_col=[0, 1]).sort_index() if snakemake.params.NEP == 2021: modifications = modifications.query("source != 'NEP2023'") elif snakemake.params.NEP == 2023: modifications = modifications.query("source != 'NEP2021'") else: - logger.warning(f"NEP year {snakemake.params.NEP} is not in modifications file. Falling back to NEP2021.") + logger.warning( + f"NEP year {snakemake.params.NEP} is not in modifications file. Falling back to NEP2021." + ) modifications = modifications.query("source != 'NEP2023'") - + costs.loc[modifications.index] = modifications print(costs.loc[modifications.index]) # add carbon component to fossil fuel costs investment_year = int(snakemake.wildcards.planning_horizons[-4:]) if investment_year in snakemake.params.co2_price_add_on_fossils.keys(): - co2_price = snakemake.params.co2_price_add_on_fossils[investment_year] - logger.warning(f"Adding carbon component according to a co2 price of {co2_price} €/t to fossil fuel costs.") + co2_price = snakemake.params.co2_price_add_on_fossils[investment_year] + logger.warning( + f"Adding carbon component according to a co2 price of {co2_price} €/t to fossil fuel costs." + ) costs = carbon_component_fossils(costs, co2_price) costs.to_csv(snakemake.output[0]) diff --git a/workflow/scripts/modify_energy_totals.py b/workflow/scripts/modify_energy_totals.py index 2e4db522c..a26c8dc52 100644 --- a/workflow/scripts/modify_energy_totals.py +++ b/workflow/scripts/modify_energy_totals.py @@ -1,14 +1,13 @@ +# -*- coding: utf-8 -*- import pandas as pd - -energy_totals = pd.read_csv(snakemake.input.energy_totals, - index_col=0) +energy_totals = pd.read_csv(snakemake.input.energy_totals, index_col=0) ariadne = pd.read_csv( snakemake.input.ariadne, - index_col=["model", "scenario", "region", "variable", "unit"] + index_col=["model", "scenario", "region", "variable", "unit"], ) energy_totals.to_csv(snakemake.output.energy_totals) diff --git a/workflow/scripts/modify_existing_heating.py b/workflow/scripts/modify_existing_heating.py index 9c667a172..bf92d7ec4 100644 --- a/workflow/scripts/modify_existing_heating.py +++ b/workflow/scripts/modify_existing_heating.py @@ -1,53 +1,53 @@ +# -*- coding: utf-8 -*- import pandas as pd -leitmodell="REMod v1.0" +leitmodell = "REMod v1.0" -existing_heating = pd.read_csv(snakemake.input.existing_heating, - index_col=0) +existing_heating = pd.read_csv(snakemake.input.existing_heating, index_col=0) ariadne = pd.read_csv( snakemake.input.ariadne, - index_col=["model", "scenario", "region", "variable", "unit"] + index_col=["model", "scenario", "region", "variable", "unit"], ).loc[ leitmodell, snakemake.params.fallback_reference_scenario, - "Deutschland", + "Deutschland", :, "million", ] -print( - "Heating demand before modification:", - existing_heating.loc["Germany"], sep="\n") +print("Heating demand before modification:", existing_heating.loc["Germany"], sep="\n") mapping = { - "gas boiler" : "Gas Boiler", - "oil boiler" : "Oil Boiler", - "air heat pump" : "Heat Pump|Electrical|Air", - "ground heat pump" : "Heat Pump|Electrical|Ground", - "biomass boiler" : "Biomass Boiler", + "gas boiler": "Gas Boiler", + "oil boiler": "Oil Boiler", + "air heat pump": "Heat Pump|Electrical|Air", + "ground heat pump": "Heat Pump|Electrical|Ground", + "biomass boiler": "Biomass Boiler", } year = "2020" for tech in mapping: - stock = ariadne.at[ + stock = ariadne.at[ f"Stock|Space Heating|{mapping[tech]}", year, ] peak = ( - stock * existing_heating.loc["Germany"].sum() + stock + * existing_heating.loc["Germany"].sum() / ariadne.at[f"Stock|Space Heating", year] - ) existing_heating.at["Germany", tech] = peak - -print(f"Heating demand after modification with {leitmodell}:", - existing_heating.loc["Germany"], sep="\n") +print( + f"Heating demand after modification with {leitmodell}:", + existing_heating.loc["Germany"], + sep="\n", +) existing_heating.to_csv(snakemake.output.existing_heating) diff --git a/workflow/scripts/modify_industry_demand.py b/workflow/scripts/modify_industry_demand.py index b0a0c94fc..76b8c9e9b 100644 --- a/workflow/scripts/modify_industry_demand.py +++ b/workflow/scripts/modify_industry_demand.py @@ -3,7 +3,9 @@ # # SPDX-License-Identifier: MIT """ -This script modifies the industrial production values to match the FORECAST model +This script modifies the industrial production values to match the FORECAST +model. + This includes - Production|Non-Metallic Minerals|Cement - Production|Steel @@ -13,6 +15,7 @@ - Production|Pulp and Paper """ import logging + logger = logging.getLogger(__name__) import pandas as pd @@ -34,74 +37,117 @@ ll="vopt", sector_opts="None", run="KN2045_Bal_v4", - planning_horizons=2020 + planning_horizons=2020, ) # leitmodell for industry demand - leitmodell="FORECAST v1.0" + leitmodell = "FORECAST v1.0" - year = snakemake.input.industrial_production_per_country_tomorrow.split("_")[-1].split(".")[0] - if (snakemake.params.db_name == "ariadne2_intern" - and year == "2020"): + year = snakemake.input.industrial_production_per_country_tomorrow.split("_")[ + -1 + ].split(".")[0] + if snakemake.params.db_name == "ariadne2_intern" and year == "2020": logger.warning(f"Assuming {leitmodell} uses 2021 as base year instead of 2020.") year = "2021" - existing_industry = pd.read_csv(snakemake.input.industrial_production_per_country_tomorrow, index_col=0) + existing_industry = pd.read_csv( + snakemake.input.industrial_production_per_country_tomorrow, index_col=0 + ) # read in ariadne database - ariadne = pd.read_csv( - snakemake.input.ariadne, - index_col=["model", "scenario", "region", "variable", "unit"] - ).loc[ - leitmodell, - snakemake.config["iiasa_database"]["reference_scenario"], - "Deutschland", - :, - "Mt/yr", - ].multiply(1000) + ariadne = ( + pd.read_csv( + snakemake.input.ariadne, + index_col=["model", "scenario", "region", "variable", "unit"], + ) + .loc[ + leitmodell, + snakemake.config["iiasa_database"]["reference_scenario"], + "Deutschland", + :, + "Mt/yr", + ] + .multiply(1000) + ) print( - "German industry demand before modification", - existing_industry.loc["DE", ["Cement", - "Electric arc", - "Integrated steelworks", - "DRI + Electric arc", - "Ammonia", - "Methanol", - "Pulp production", - "Paper production", - "Ceramics & other NMM"]], sep="\n") + "German industry demand before modification", + existing_industry.loc[ + "DE", + [ + "Cement", + "Electric arc", + "Integrated steelworks", + "DRI + Electric arc", + "Ammonia", + "Methanol", + "Pulp production", + "Paper production", + "Ceramics & other NMM", + ], + ], + sep="\n", + ) # write Cement, Ammonia and Methanol directly to dataframe - existing_industry.loc["DE", "Cement"] = ariadne.loc["Production|Non-Metallic Minerals|Cement", year] - existing_industry.loc["DE", "Ammonia"] = ariadne.loc["Production|Chemicals|Ammonia", year] - existing_industry.loc["DE", "Methanol"] = ariadne.loc["Production|Chemicals|Methanol", year] + existing_industry.loc["DE", "Cement"] = ariadne.loc[ + "Production|Non-Metallic Minerals|Cement", year + ] + existing_industry.loc["DE", "Ammonia"] = ariadne.loc[ + "Production|Chemicals|Ammonia", year + ] + existing_industry.loc["DE", "Methanol"] = ariadne.loc[ + "Production|Chemicals|Methanol", year + ] # get ratio of pulp and paper production - pulp_ratio = existing_industry.loc["DE", "Pulp production"] / (existing_industry.loc["DE", "Pulp production"] + existing_industry.loc["DE", "Paper production"]) - - existing_industry.loc["DE", "Pulp production"] = ariadne.loc["Production|Pulp and Paper", year] * pulp_ratio - existing_industry.loc["DE", "Paper production"] = ariadne.loc["Production|Pulp and Paper", year] * (1-pulp_ratio) + pulp_ratio = existing_industry.loc["DE", "Pulp production"] / ( + existing_industry.loc["DE", "Pulp production"] + + existing_industry.loc["DE", "Paper production"] + ) + + existing_industry.loc["DE", "Pulp production"] = ( + ariadne.loc["Production|Pulp and Paper", year] * pulp_ratio + ) + existing_industry.loc["DE", "Paper production"] = ariadne.loc[ + "Production|Pulp and Paper", year + ] * (1 - pulp_ratio) # non-metallic minerals - existing_industry.loc["DE", "Ceramics & other NMM"] = ariadne.loc["Production|Non-Metallic Minerals", year] - ariadne.loc["Production|Non-Metallic Minerals|Cement", year] + existing_industry.loc["DE", "Ceramics & other NMM"] = ( + ariadne.loc["Production|Non-Metallic Minerals", year] + - ariadne.loc["Production|Non-Metallic Minerals|Cement", year] + ) # get steel ratios from existing_industry - steel = existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] - ratio = steel/steel.sum() + steel = existing_industry.loc[ + "DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"] + ] + ratio = steel / steel.sum() # multiply with steel production including primary and secondary steel since distinguishing is taken care of later - existing_industry.loc["DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"]] = ratio * ariadne.loc["Production|Steel", year] + existing_industry.loc[ + "DE", ["Electric arc", "Integrated steelworks", "DRI + Electric arc"] + ] = (ratio * ariadne.loc["Production|Steel", year]) print( - "German demand after modification", - existing_industry.loc["DE", ["Cement", - "Electric arc", - "Integrated steelworks", - "DRI + Electric arc", - "Ammonia", - "Methanol", - "Pulp production", - "Paper production", - "Ceramics & other NMM"]], sep="\n") - - existing_industry.to_csv(snakemake.output.industrial_production_per_country_tomorrow) + "German demand after modification", + existing_industry.loc[ + "DE", + [ + "Cement", + "Electric arc", + "Integrated steelworks", + "DRI + Electric arc", + "Ammonia", + "Methanol", + "Pulp production", + "Paper production", + "Ceramics & other NMM", + ], + ], + sep="\n", + ) + + existing_industry.to_csv( + snakemake.output.industrial_production_per_country_tomorrow + ) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index a31be2bf9..10916fceb 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -1,30 +1,25 @@ +# -*- coding: utf-8 -*- import logging +import os +import sys -import pandas as pd import numpy as np - +import pandas as pd import pypsa -import os -import sys - logger = logging.getLogger(__name__) paths = ["workflow/submodules/pypsa-eur/scripts", "../submodules/pypsa-eur/scripts"] for path in paths: sys.path.insert(0, os.path.abspath(path)) -from prepare_sector_network import ( - prepare_costs, - lossy_bidirectional_links, -) - from add_electricity import load_costs +from prepare_sector_network import lossy_bidirectional_links, prepare_costs def first_technology_occurrence(n): """ - Sets p_nom_extendable to false for carriers with configured first occurrence - if investment year is before configured year. + Sets p_nom_extendable to false for carriers with configured first + occurrence if investment year is before configured year. """ for c, carriers in snakemake.params.technology_occurrence.items(): @@ -38,38 +33,45 @@ def fix_new_boiler_profiles(n): logger.info("Forcing boiler profiles for new ones") - decentral_boilers = n.links.index[n.links.carrier.str.contains("boiler") - & ~n.links.carrier.str.contains("urban central") - & n.links.p_nom_extendable] + decentral_boilers = n.links.index[ + n.links.carrier.str.contains("boiler") + & ~n.links.carrier.str.contains("urban central") + & n.links.p_nom_extendable + ] if decentral_boilers.empty: return - boiler_loads = n.links.loc[decentral_boilers,"bus1"] + boiler_loads = n.links.loc[decentral_boilers, "bus1"] boiler_loads = boiler_loads[boiler_loads.isin(n.loads_t.p_set.columns)] decentral_boilers = boiler_loads.index - boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div(n.loads_t.p_set[boiler_loads].max(),axis=1) + boiler_profiles_pu = n.loads_t.p_set[boiler_loads].div( + n.loads_t.p_set[boiler_loads].max(), axis=1 + ) boiler_profiles_pu.columns = decentral_boilers - for attr in ["p_min_pu","p_max_pu"]: - n.links_t[attr] = pd.concat([n.links_t[attr], boiler_profiles_pu],axis=1) + for attr in ["p_min_pu", "p_max_pu"]: + n.links_t[attr] = pd.concat([n.links_t[attr], boiler_profiles_pu], axis=1) logger.info(f"new boiler profiles:\n{n.links_t[attr][decentral_boilers]}") def remove_old_boiler_profiles(n): - """Removed because this is handled in additional_functionality. - This removes p_min/max_pu constraints added in previous years - and carried over by add_brownfield. """ + Removed because this is handled in additional_functionality. - logger.info("Removing p_min/max_pu constraints on old boiler profiles") + This removes p_min/max_pu constraints added in previous years and + carried over by add_brownfield. + """ + logger.info("Removing p_min/max_pu constraints on old boiler profiles") - decentral_boilers = n.links.index[n.links.carrier.str.contains("boiler") - & ~n.links.carrier.str.contains("urban central") - & ~n.links.p_nom_extendable] + decentral_boilers = n.links.index[ + n.links.carrier.str.contains("boiler") + & ~n.links.carrier.str.contains("urban central") + & ~n.links.p_nom_extendable + ] - for attr in ["p_min_pu","p_max_pu"]: + for attr in ["p_min_pu", "p_max_pu"]: to_drop = decentral_boilers.intersection(n.links_t[attr].columns) logger.info(f"Dropping {to_drop} from n.links_t.{attr}") n.links_t[attr].drop(to_drop, axis=1, inplace=True) @@ -82,11 +84,21 @@ def new_boiler_ban(n): for ct in snakemake.params.fossil_boiler_ban: ban_year = int(snakemake.params.fossil_boiler_ban[ct]) if ban_year < year: - logger.info(f"For year {year} in {ct} implementing ban on new decentral oil & gas boilers from {ban_year}") - links = n.links.index[(n.links.index.str[:2] == ct) & (n.links.index.str.contains("gas boiler") ^ n.links.index.str.contains("oil boiler")) & n.links.p_nom_extendable & ~n.links.index.str.contains("urban central")] + logger.info( + f"For year {year} in {ct} implementing ban on new decentral oil & gas boilers from {ban_year}" + ) + links = n.links.index[ + (n.links.index.str[:2] == ct) + & ( + n.links.index.str.contains("gas boiler") + ^ n.links.index.str.contains("oil boiler") + ) + & n.links.p_nom_extendable + & ~n.links.index.str.contains("urban central") + ] logger.info(f"Dropping {links}") - n.links.drop(links, - inplace=True) + n.links.drop(links, inplace=True) + def coal_generation_ban(n): @@ -95,11 +107,16 @@ def coal_generation_ban(n): for ct in snakemake.params.coal_ban: ban_year = int(snakemake.params.coal_ban[ct]) if ban_year < year: - logger.info(f"For year {year} in {ct} implementing coal and lignite ban from {ban_year}") - links = n.links.index[(n.links.index.str[:2] == ct) & n.links.carrier.isin(["coal","lignite"])] + logger.info( + f"For year {year} in {ct} implementing coal and lignite ban from {ban_year}" + ) + links = n.links.index[ + (n.links.index.str[:2] == ct) + & n.links.carrier.isin(["coal", "lignite"]) + ] logger.info(f"Dropping {links}") - n.links.drop(links, - inplace=True) + n.links.drop(links, inplace=True) + def nuclear_generation_ban(n): @@ -108,11 +125,14 @@ def nuclear_generation_ban(n): for ct in snakemake.params.nuclear_ban: ban_year = int(snakemake.params.nuclear_ban[ct]) if ban_year < year: - logger.info(f"For year {year} in {ct} implementing nuclear ban from {ban_year}") - links = n.links.index[(n.links.index.str[:2] == ct) & n.links.carrier.isin(["nuclear"])] + logger.info( + f"For year {year} in {ct} implementing nuclear ban from {ban_year}" + ) + links = n.links.index[ + (n.links.index.str[:2] == ct) & n.links.carrier.isin(["nuclear"]) + ] logger.info(f"Dropping {links}") - n.links.drop(links, - inplace=True) + n.links.drop(links, inplace=True) def add_reversed_pipes(df): @@ -121,7 +141,14 @@ def add_reversed_pipes(df): return pd.concat([df, df_rev], sort=False) -def reduce_capacity(targets, origins, carrier, origin_attr="removed_gas_cap", target_attr="p_nom", conversion_rate=1): +def reduce_capacity( + targets, + origins, + carrier, + origin_attr="removed_gas_cap", + target_attr="p_nom", + conversion_rate=1, +): """ Reduce the capacity of pipes in a dataframe based on specified criteria. @@ -141,8 +168,8 @@ def reduce_capacity(targets, origins, carrier, origin_attr="removed_gas_cap", ta def apply_cut(row): match = targets[ - (targets.bus0 == row.bus0 + " " + carrier) & - (targets.bus1 == row.bus1 + " " + carrier) + (targets.bus0 == row.bus0 + " " + carrier) + & (targets.bus1 == row.bus1 + " " + carrier) ].sort_index() cut = row[origin_attr] * conversion_rate for idx, target_row in match.iterrows(): @@ -169,7 +196,9 @@ def add_wasserstoff_kernnetz(n, wkn, costs): previous_investment_year = int(planning_horizons[i - 1]) if i != 0 else 2015 # use only pipes added since the previous investment period - wkn_new = wkn.query("build_year > @previous_investment_year & build_year <= @investment_year") + wkn_new = wkn.query( + "build_year > @previous_investment_year & build_year <= @investment_year" + ) if not wkn_new.empty: @@ -187,7 +216,8 @@ def add_wasserstoff_kernnetz(n, wkn, costs): build_year=wkn_new.build_year.values, length=wkn_new.length.values, capital_cost=costs.at["H2 (g) pipeline", "fixed"] * wkn_new.length.values, - overnight_cost=costs.at["H2 (g) pipeline", "investment"] * wkn_new.length.values, + overnight_cost=costs.at["H2 (g) pipeline", "investment"] + * wkn_new.length.values, carrier="H2 pipeline (Kernnetz)", lifetime=costs.at["H2 (g) pipeline", "lifetime"], ) @@ -205,7 +235,9 @@ def add_wasserstoff_kernnetz(n, wkn, costs): add_reversed_pipes(wkn_new), carrier="gas", ) - n.links.loc[n.links.carrier == "gas pipeline", "p_nom"] = res_gas_pipes["p_nom"] + n.links.loc[n.links.carrier == "gas pipeline", "p_nom"] = res_gas_pipes[ + "p_nom" + ] # reduce H2 retrofitting potential from gas network for all kernnetz # pipelines which are being build in total (more conservative approach) @@ -226,7 +258,9 @@ def add_wasserstoff_kernnetz(n, wkn, costs): target_attr="p_nom_max", conversion_rate=conversion_rate, ) - n.links.loc[retrofitted_b, "p_nom_max"] = res_h2_pipes_retrofitted["p_nom_max"] + n.links.loc[retrofitted_b, "p_nom_max"] = res_h2_pipes_retrofitted[ + "p_nom_max" + ] if investment_year <= 2030: # assume that only pipelines from kernnetz are built (within Germany): @@ -240,34 +274,43 @@ def add_wasserstoff_kernnetz(n, wkn, costs): # from 2030 onwards all pipes are extendable (except from the ones the model build up before and the kernnetz lines) + def unravel_oilbus(n): """ - Unravel European oil bus to enable energy balances for import of oil products. - + Unravel European oil bus to enable energy balances for import of oil + products. """ logger.info("Unraveling oil bus") # add buses n.add("Bus", "DE", location="DE", x=10.5, y=51.2, carrier="none") n.add("Bus", "DE oil", location="DE", x=10.5, y=51.2, carrier="oil") n.add("Bus", "DE oil primary", location="DE", x=10.5, y=51.2, carrier="oil primary") - n.add("Bus", "DE renewable oil", location="DE", x=10.5, y=51.2, carrier="renewable oil") + n.add( + "Bus", + "DE renewable oil", + location="DE", + x=10.5, + y=51.2, + carrier="renewable oil", + ) n.add( "Bus", "EU renewable oil", location="EU", - x=n.buses.loc["EU","x"], - y=n.buses.loc["EU","y"], - carrier="renewable oil" + x=n.buses.loc["EU", "x"], + y=n.buses.loc["EU", "y"], + carrier="renewable oil", ) # add one generator for DE oil primary - n.add("Generator", - name="DE oil primary", - bus="DE oil primary", - carrier="oil primary", - p_nom_extendable=True, - marginal_cost=n.generators.loc["EU oil primary"].marginal_cost, - ) + n.add( + "Generator", + name="DE oil primary", + bus="DE oil primary", + carrier="oil primary", + p_nom_extendable=True, + marginal_cost=n.generators.loc["EU oil primary"].marginal_cost, + ) # add link for DE oil refining n.add( @@ -279,25 +322,47 @@ def unravel_oilbus(n): location="DE", carrier="oil refining", p_nom=1e6, - efficiency=1 - (snakemake.config["industry"]["fuel_refining"]["oil"]["emissions"] / costs.at["oil", "CO2 intensity"]), + efficiency=1 + - ( + snakemake.config["industry"]["fuel_refining"]["oil"]["emissions"] + / costs.at["oil", "CO2 intensity"] + ), efficiency2=snakemake.config["industry"]["fuel_refining"]["oil"]["emissions"], ) # change links from EU oil to DE oil - german_oil_links = n.links[(n.links.bus0=="EU oil") & (n.links.index.str.contains("DE"))].index - german_FT_links = n.links[(n.links.bus1=="EU oil") & (n.links.index.str.contains("DE")) & (n.links.index.str.contains("Fischer-Tropsch"))].index + german_oil_links = n.links[ + (n.links.bus0 == "EU oil") & (n.links.index.str.contains("DE")) + ].index + german_FT_links = n.links[ + (n.links.bus1 == "EU oil") + & (n.links.index.str.contains("DE")) + & (n.links.index.str.contains("Fischer-Tropsch")) + ].index n.links.loc[german_oil_links, "bus0"] = "DE oil" n.links.loc[german_FT_links, "bus1"] = "DE renewable oil" # change FT links in rest of Europe - europ_FT_links = n.links[(n.links.bus1=="EU oil") & (n.links.index.str.contains("Fischer-Tropsch"))].index + europ_FT_links = n.links[ + (n.links.bus1 == "EU oil") & (n.links.index.str.contains("Fischer-Tropsch")) + ].index n.links.loc[europ_FT_links, "bus1"] = "EU renewable oil" # add links between oil buses n.madd( "Link", - ["EU renewable oil -> DE oil", "EU renewable oil -> EU oil", "DE renewable oil -> DE oil", "DE renewable oil -> EU oil"], - bus0=["EU renewable oil", "EU renewable oil", "DE renewable oil", "DE renewable oil"], + [ + "EU renewable oil -> DE oil", + "EU renewable oil -> EU oil", + "DE renewable oil -> DE oil", + "DE renewable oil -> EU oil", + ], + bus0=[ + "EU renewable oil", + "EU renewable oil", + "DE renewable oil", + "DE renewable oil", + ], bus1=["DE oil", "EU oil", "DE oil", "EU oil"], carrier="renewable oil", p_nom=1e6, @@ -305,14 +370,15 @@ def unravel_oilbus(n): ) # add stores - n.add("Store", - "DE oil Store", - bus="DE oil", - carrier="oil", - e_nom_extendable=True, - e_cyclic=True, - capital_cost=0.02, - ) + n.add( + "Store", + "DE oil Store", + bus="DE oil", + carrier="oil", + e_nom_extendable=True, + e_cyclic=True, + capital_cost=0.02, + ) # unravel meoh logger.info("Unraveling methanol bus") @@ -321,15 +387,19 @@ def unravel_oilbus(n): "Bus", "DE methanol", location="DE", - x=n.buses.loc["DE","x"], - y=n.buses.loc["DE","y"], - carrier="methanol" + x=n.buses.loc["DE", "x"], + y=n.buses.loc["DE", "y"], + carrier="methanol", ) # change links from EU meoh to DE meoh - DE_meoh_out = n.links[(n.links.bus0=="EU methanol") & (n.links.index.str[:2]=="DE")].index + DE_meoh_out = n.links[ + (n.links.bus0 == "EU methanol") & (n.links.index.str[:2] == "DE") + ].index n.links.loc[DE_meoh_out, "bus0"] = "DE methanol" - DE_meoh_in = n.links[(n.links.bus1=="EU methanol") & (n.links.index.str[:2]=="DE")].index + DE_meoh_in = n.links[ + (n.links.bus1 == "EU methanol") & (n.links.index.str[:2] == "DE") + ].index n.links.loc[DE_meoh_in, "bus1"] = "DE methanol" # add links between methanol buses @@ -344,17 +414,20 @@ def unravel_oilbus(n): ) # add stores - n.add("Store", - "DE methanol Store", - bus="DE methanol", - carrier="methanol", - e_nom_extendable=True, - e_cyclic=True, - capital_cost=0.02, - ) + n.add( + "Store", + "DE methanol Store", + bus="DE methanol", + carrier="methanol", + e_nom_extendable=True, + e_cyclic=True, + capital_cost=0.02, + ) -def transmission_costs_from_modified_cost_data(n, costs, transmission, length_factor=1.0): +def transmission_costs_from_modified_cost_data( + n, costs, transmission, length_factor=1.0 +): # copying the the function update_transmission_costs from add_electricity # slight change to the function so it works in modify_prenetwork @@ -406,64 +479,98 @@ def transmission_costs_from_modified_cost_data(n, costs, transmission, length_fa n.links.loc[dc_b, "capital_cost"] = capital_cost n.links.loc[dc_b, "overnight_cost"] = overnight_cost + def must_run_biomass(n, p_min_pu, regions): """ Set p_min_pu for biomass generators to the specified value. """ - logger.info(f"Must-run condition enabled: Setting p_min_pu = {p_min_pu} for biomass generators.") - links_i = n.links[(n.links.carrier == 'solid biomass') & (n.links.bus0.str.startswith(tuple(regions)))].index + logger.info( + f"Must-run condition enabled: Setting p_min_pu = {p_min_pu} for biomass generators." + ) + links_i = n.links[ + (n.links.carrier == "solid biomass") + & (n.links.bus0.str.startswith(tuple(regions))) + ].index n.links.loc[links_i, "p_min_pu"] = p_min_pu def aladin_mobility_demand(n): - ''' + """ Change loads in Germany to use Aladin data for road demand. - ''' + """ # get aladin data aladin_demand = pd.read_csv(snakemake.input.aladin_demand, index_col=0) # oil demand oil_demand = aladin_demand.Liquids - oil_index = n.loads[(n.loads.carrier == "land transport oil") & (n.loads.index.str[:2] == "DE")].index + oil_index = n.loads[ + (n.loads.carrier == "land transport oil") & (n.loads.index.str[:2] == "DE") + ].index oil_demand.index = [f"{i} land transport oil" for i in oil_demand.index] profile = n.loads_t.p_set.loc[:, oil_index] profile /= profile.sum() - n.loads_t.p_set.loc[:, oil_index] = (oil_demand*profile).div(n.snapshot_weightings.objective, axis=0) + n.loads_t.p_set.loc[:, oil_index] = (oil_demand * profile).div( + n.snapshot_weightings.objective, axis=0 + ) # hydrogen demand h2_demand = aladin_demand.Hydrogen - h2_index = n.loads[(n.loads.carrier == "land transport fuel cell") & (n.loads.index.str[:2] == "DE")].index + h2_index = n.loads[ + (n.loads.carrier == "land transport fuel cell") + & (n.loads.index.str[:2] == "DE") + ].index h2_demand.index = [f"{i} land transport fuel cell" for i in h2_demand.index] profile = n.loads_t.p_set.loc[:, h2_index] profile /= profile.sum() - n.loads_t.p_set.loc[:, h2_index] = (h2_demand*profile).div(n.snapshot_weightings.objective, axis=0) + n.loads_t.p_set.loc[:, h2_index] = (h2_demand * profile).div( + n.snapshot_weightings.objective, axis=0 + ) # electricity demand ev_demand = aladin_demand.Electricity - ev_index = n.loads[(n.loads.carrier == "land transport EV") & (n.loads.index.str[:2] == "DE")].index + ev_index = n.loads[ + (n.loads.carrier == "land transport EV") & (n.loads.index.str[:2] == "DE") + ].index ev_demand.index = [f"{i} land transport EV" for i in ev_demand.index] profile = n.loads_t.p_set.loc[:, ev_index] profile /= profile.sum() - n.loads_t.p_set.loc[:, ev_index] = (ev_demand*profile).div(n.snapshot_weightings.objective, axis=0) + n.loads_t.p_set.loc[:, ev_index] = (ev_demand * profile).div( + n.snapshot_weightings.objective, axis=0 + ) # adjust BEV charger and V2G capacities number_cars = pd.read_csv(snakemake.input.transport_data, index_col=0)[ "number cars" ].filter(like="DE") - factor = aladin_demand.number_of_cars*1e6 / (number_cars*snakemake.config["sector"]["land_transport_electric_share"][int(snakemake.wildcards.planning_horizons)]) + factor = ( + aladin_demand.number_of_cars + * 1e6 + / ( + number_cars + * snakemake.config["sector"]["land_transport_electric_share"][ + int(snakemake.wildcards.planning_horizons) + ] + ) + ) - BEV_charger_i = n.links[(n.links.carrier == "BEV charger") & (n.links.bus0.str.startswith("DE"))].index + BEV_charger_i = n.links[ + (n.links.carrier == "BEV charger") & (n.links.bus0.str.startswith("DE")) + ].index n.links.loc[BEV_charger_i].p_nom *= pd.Series(factor.values, index=BEV_charger_i) - V2G_i = n.links[(n.links.carrier == "V2G") & (n.links.bus0.str.startswith("DE"))].index + V2G_i = n.links[ + (n.links.carrier == "V2G") & (n.links.bus0.str.startswith("DE")) + ].index if not V2G_i.empty: n.links.loc[V2G_i].p_nom *= pd.Series(factor.values, index=V2G_i) - dsm_i = n.stores[(n.stores.carrier == "EV battery") & (n.stores.bus.str.startswith("DE"))].index + dsm_i = n.stores[ + (n.stores.carrier == "EV battery") & (n.stores.bus.str.startswith("DE")) + ].index if not dsm_i.empty: n.stores.loc[dsm_i].e_nom *= pd.Series(factor.values, index=dsm_i) @@ -483,14 +590,13 @@ def aladin_mobility_demand(n): clusters=44, opts="", ll="vopt", - sector_opts= "None", + sector_opts="None", planning_horizons="2020", - run="KN2045_Bal_v4" + run="KN2045_Bal_v4", ) logger.info("Adding Ariadne-specific functionality") - n = pypsa.Network(snakemake.input.network) nhours = n.snapshot_weightings.generators.sum() nyears = nhours / 8760 @@ -532,9 +638,18 @@ def aladin_mobility_demand(n): ) # change to NEP21 costs - transmission_costs_from_modified_cost_data(n, costs_loaded, snakemake.params.transmission_costs, snakemake.params.length_factor) + transmission_costs_from_modified_cost_data( + n, + costs_loaded, + snakemake.params.transmission_costs, + snakemake.params.length_factor, + ) if snakemake.params.biomass_must_run["enable"]: - must_run_biomass(n, snakemake.params.biomass_must_run["p_min_pu"], snakemake.params.biomass_must_run["regions"]) + must_run_biomass( + n, + snakemake.params.biomass_must_run["p_min_pu"], + snakemake.params.biomass_must_run["regions"], + ) n.export_to_netcdf(snakemake.output.network) diff --git a/workflow/scripts/plot_ariadne_scenario_comparison.py b/workflow/scripts/plot_ariadne_scenario_comparison.py index 088b3d34c..ba78e3217 100644 --- a/workflow/scripts/plot_ariadne_scenario_comparison.py +++ b/workflow/scripts/plot_ariadne_scenario_comparison.py @@ -1,24 +1,22 @@ +# -*- coding: utf-8 -*- -import pandas as pd -import matplotlib.pyplot as plt import os +import matplotlib.pyplot as plt +import pandas as pd + + def scenario_plot(df, var): unit = df._get_label_or_level_values("Unit")[0] if var.startswith("Investment"): unit = "billion EUR2020/yr" df = df.droplevel("Unit") - ax = df.T.plot( - xlabel="years", - ylabel=str(unit), - title=str(var) - ) + ax = df.T.plot(xlabel="years", ylabel=str(unit), title=str(var)) plt.close() - prefix=snakemake.config["run"]["prefix"] - var=var.replace("|","-").replace("\\","-").replace(" ","-").replace("/","-") - ax.figure.savefig( - f"results/{prefix}/ariadne_comparison/{var}", - bbox_inches="tight") + prefix = snakemake.config["run"]["prefix"] + var = var.replace("|", "-").replace("\\", "-").replace(" ", "-").replace("/", "-") + ax.figure.savefig(f"results/{prefix}/ariadne_comparison/{var}", bbox_inches="tight") + if __name__ == "__main__": if "snakemake" not in globals(): @@ -41,15 +39,14 @@ def scenario_plot(df, var): dfs = [] for file in snakemake.input.exported_variables: - _df = pd.read_excel(file, - index_col=list(range(5)), - sheet_name="data").droplevel(["Model", "Region"]) + _df = pd.read_excel( + file, index_col=list(range(5)), sheet_name="data" + ).droplevel(["Model", "Region"]) dfs.append(_df) df = pd.concat(dfs, axis=0) - - prefix=snakemake.config["run"]["prefix"] + prefix = snakemake.config["run"]["prefix"] if not os.path.exists(f"results/{prefix}/ariadne_comparison/"): os.mkdir(f"results/{prefix}/ariadne_comparison/") diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index e0d7372a7..a177bd785 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -1,15 +1,14 @@ -import pandas as pd -import matplotlib.pyplot as plt +# -*- coding: utf-8 -*- import os + +import matplotlib.pyplot as plt import numpy as np +import pandas as pd -def secondary_energy_plot(ddf, name="Secondary Energy"): +def secondary_energy_plot(ddf, name="Secondary Energy"): # Get Secondary Energy data - df = ddf[ - ddf.index.get_level_values( - "Variable" - ).str.startswith(name)] + df = ddf[ddf.index.get_level_values("Variable").str.startswith(name)] # Get Unit and delete Multiindex unit = df.index.get_level_values("Unit").unique().dropna().item() df.index = df.index.droplevel("Unit") @@ -17,32 +16,34 @@ def secondary_energy_plot(ddf, name="Secondary Energy"): # Simplify variable names df.index = pd.Index( map( - lambda x: x[(x.find("|") + 1):], + lambda x: x[(x.find("|") + 1) :], df.index, ), name=df.index.names[0], ) # Get detailed data - exclude = ("Fossil", "Renewables", "Losses") # include Losses once fixed - detailed = df[ - (df.index.str.count("[|]") == 1) - & ~df.index.str.endswith(exclude)] - + exclude = ("Fossil", "Renewables", "Losses") # include Losses once fixed + detailed = df[(df.index.str.count("[|]") == 1) & ~df.index.str.endswith(exclude)] + ax = detailed.T.plot.area(ylabel=unit, title="Detailed" + name) ax.legend(bbox_to_anchor=(1, 1)) - coarse = df[ - (df.index.str.count("[|]") == 0)] - + coarse = df[(df.index.str.count("[|]") == 0)] + ax = coarse.T.plot.area(ylabel=unit, title=name) ax.legend(bbox_to_anchor=(1, 1)) def ariadne_subplot( - df, ax, title, - select_regex="", drop_regex="", stacked=True, unit=None, -): + df, + ax, + title, + select_regex="", + drop_regex="", + stacked=True, + unit=None, +): df = df.T.copy() if select_regex: @@ -53,69 +54,64 @@ def ariadne_subplot( df = df.filter( regex=drop_regex, ) - + # Check that all values have the same Unit if not unit: unit = df.columns.get_level_values("Unit").unique().dropna().item() - - df.columns = df.columns.droplevel("Unit") + df.columns = df.columns.droplevel("Unit") # Simplify variable names df.columns = pd.Index( map( - lambda x: x[(x.find("|") + 1):], + lambda x: x[(x.find("|") + 1) :], df.columns, ), name=df.columns.names[0], ) if df.empty: - # Create an empty plot if DataFrame is empty - ax.plot([], []) - ax.set_title("Ooops! Empty DataFrame") - return ax - + # Create an empty plot if DataFrame is empty + ax.plot([], []) + ax.set_title("Ooops! Empty DataFrame") + return ax return df.plot.area(ax=ax, title=title, legend=False, stacked=stacked, ylabel=unit) - - -def side_by_side_plot( - df, dfhybrid, title, savepath, - rshift=1.25, **kwargs - ): +def side_by_side_plot(df, dfhybrid, title, savepath, rshift=1.25, **kwargs): idx = df.index.union(dfhybrid.index, sort=False) - + df = df.reindex(idx) dfhybrid = dfhybrid.reindex(idx) fig, axes = plt.subplots(ncols=2, sharey=True) ax = ariadne_subplot(df, axes[0], "PyPSA-Eur", **kwargs) ax2 = ariadne_subplot(dfhybrid, axes[1], "REMIND-EU v1.1", **kwargs) - + handles, labels = ax.get_legend_handles_labels() labels2 = ax2.get_legend_handles_labels()[1] assert labels == labels2 - fig.legend( - reversed(handles), - reversed(labels), - bbox_to_anchor=(rshift,0.9) - ) + fig.legend(reversed(handles), reversed(labels), bbox_to_anchor=(rshift, 0.9)) fig.suptitle(title) title = title.replace(" ", "_") fig.savefig(savepath, bbox_inches="tight") - return fig + return fig + -def within_plot(df, df2, - title, savepath, - select_regex="", drop_regex="", - write_sum = False, - unit = "EUR_2020/GJ", **kwargs - ): +def within_plot( + df, + df2, + title, + savepath, + select_regex="", + drop_regex="", + write_sum=False, + unit="EUR_2020/GJ", + **kwargs, +): df = df.T.copy() if select_regex: @@ -126,15 +122,19 @@ def within_plot(df, df2, df = df.filter( regex=drop_regex, ) - + n = df.shape[1] if n == 0: - print(f"Warning! Apparently the variables required for this plot (({title}) are missing.") + print( + f"Warning! Apparently the variables required for this plot (({title}) are missing." + ) fig = plt.figure() - plt.title(f"Warning! Apparently the variables required for this plot ({title}) are missing.") + plt.title( + f"Warning! Apparently the variables required for this plot ({title}) are missing." + ) fig.savefig(savepath, bbox_inches="tight") return fig - rows = n // 2 + n % 2 + rows = n // 2 + n % 2 fig, axes = plt.subplots(rows, 2, figsize=(10, 5 * rows)) axes = axes.flatten() @@ -143,7 +143,7 @@ def within_plot(df, df2, axes[i].plot(df.xs(var, axis=1, level=0), label="PyPSA-Eur") if var in df2.index.get_level_values("Variable"): - axes[i].plot(df2.T.xs(var, axis=1, level=0), label="REMIND-EU") + axes[i].plot(df2.T.xs(var, axis=1, level=0), label="REMIND-EU") axes[i].set_title(var) axes[i].legend() @@ -155,10 +155,16 @@ def within_plot(df, df2, sum_df2 = np.nan # Annotate plot with the sum of variables sum_text = f"Sum: \nPyPSA-Eur = {sum_df1},\nREMIND-EU = {sum_df2}" - axes[i].annotate(sum_text, xy=(0, 1), xycoords='axes fraction', fontsize=12, - xytext=(5, -5), textcoords='offset points', ha='left', va='top') - - + axes[i].annotate( + sum_text, + xy=(0, 1), + xycoords="axes fraction", + fontsize=12, + xytext=(5, -5), + textcoords="offset points", + ha="left", + va="top", + ) # Remove the last subplot if there's an odd number of plots if n % 2 != 0: @@ -169,15 +175,74 @@ def within_plot(df, df2, plt.close() fig.savefig(savepath, bbox_inches="tight") - return fig + return fig + def elec_val_plot(df, savepath): # electricity validation for 2020 - elec_capacities = pd.DataFrame(index=["ror", "hydro", "battery", "biomass", "nuclear", "lignite", "coal", "oil", "gas", "wind_onshore", "wind_offshore", "solar"]) - elec_generation = pd.DataFrame(index=["net exports", "ror", "hydro", "battery", "biomass", "nuclear", "lignite", "coal", "oil", "gas", "wind", "solar", "sum_real-sum_pypsa"]) + elec_capacities = pd.DataFrame( + index=[ + "ror", + "hydro", + "battery", + "biomass", + "nuclear", + "lignite", + "coal", + "oil", + "gas", + "wind_onshore", + "wind_offshore", + "solar", + ] + ) + elec_generation = pd.DataFrame( + index=[ + "net exports", + "ror", + "hydro", + "battery", + "biomass", + "nuclear", + "lignite", + "coal", + "oil", + "gas", + "wind", + "solar", + "sum_real-sum_pypsa", + ] + ) - elec_capacities["real"] = [4.94, 9.69, 2.4, 8.72, 8.11, 20.86, 23.74, 4.86, 32.54, 54.25, 7.86, 54.36] # https://energy-charts.info/charts/installed_power/chart.htm?l=en&c=DE&year=2020 - elec_generation["real"] = [18.9, np.nan, 18.7, np.nan, 45, 64, 91, 43, 4.7, 95, 132, 50, np.nan] # https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Energie/Erzeugung/Tabellen/bruttostromerzeugung.html + elec_capacities["real"] = [ + 4.94, + 9.69, + 2.4, + 8.72, + 8.11, + 20.86, + 23.74, + 4.86, + 32.54, + 54.25, + 7.86, + 54.36, + ] # https://energy-charts.info/charts/installed_power/chart.htm?l=en&c=DE&year=2020 + elec_generation["real"] = [ + 18.9, + np.nan, + 18.7, + np.nan, + 45, + 64, + 91, + 43, + 4.7, + 95, + 132, + 50, + np.nan, + ] # https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Energie/Erzeugung/Tabellen/bruttostromerzeugung.html elec_capacities["pypsa"] = [ 0, df.loc[("Capacity|Electricity|Hydro", "GW"), "2020"], @@ -206,13 +271,14 @@ def elec_val_plot(df, savepath): df.loc[("Secondary Energy|Electricity|Gas", "PJ/yr"), "2020"] / 3.6, df.loc[("Secondary Energy|Electricity|Wind", "PJ/yr"), "2020"] / 3.6, df.loc[("Secondary Energy|Electricity|Solar", "PJ/yr"), "2020"] / 3.6, - np.nan + np.nan, ] - #elec_generation.loc["sum/10"] = elec_generation.sum().div(10) - elec_generation.loc["sum_real-sum_pypsa", "sum_real-sum_pypsa"] = elec_generation.sum()["real"] - elec_generation.sum()["pypsa"] - - + # elec_generation.loc["sum/10"] = elec_generation.sum().div(10) + elec_generation.loc["sum_real-sum_pypsa", "sum_real-sum_pypsa"] = ( + elec_generation.sum()["real"] - elec_generation.sum()["pypsa"] + ) + fig, axes = plt.subplots(1, 2, figsize=(10, 5)) elec_capacities.plot(kind="bar", ax=axes[0]) axes[0].set_ylabel("GW") @@ -247,25 +313,29 @@ def elec_val_plot(df, savepath): sector_opts="None", planning_horizons="2045", run="KN2045_Bal_v4", - #configfiles="config/config.public.yaml" + # configfiles="config/config.public.yaml" ) - df = pd.read_excel( - snakemake.input.exported_variables_full, - index_col=list(range(5)), - #index_col=["Model", "Scenario", "Region", "Variable", "Unit"], - sheet_name="data" - ).groupby(["Variable","Unit"], dropna=False).sum() + df = ( + pd.read_excel( + snakemake.input.exported_variables_full, + index_col=list(range(5)), + # index_col=["Model", "Scenario", "Region", "Variable", "Unit"], + sheet_name="data", + ) + .groupby(["Variable", "Unit"], dropna=False) + .sum() + ) df.columns = df.columns.astype(str) - leitmodell="REMIND-EU v1.1" + leitmodell = "REMIND-EU v1.1" dfremind = pd.read_csv( snakemake.input.ariadne_database, - index_col=["model", "scenario", "region", "variable", "unit"] - ).loc[ - leitmodell, snakemake.params.fallback_reference_scenario, "Deutschland" - ][df.columns] + index_col=["model", "scenario", "region", "variable", "unit"], + ).loc[leitmodell, snakemake.params.fallback_reference_scenario, "Deutschland"][ + df.columns + ] dfremind.index.names = df.index.names side_by_side_plot( @@ -274,7 +344,7 @@ def elec_val_plot(df, savepath): "Primary Energy in PJ_yr", savepath=snakemake.output.primary_energy, select_regex="Primary Energy\|[^|]*$", - drop_regex="^(?!.*(Fossil|Price)).+" + drop_regex="^(?!.*(Fossil|Price)).+", ) side_by_side_plot( @@ -283,7 +353,7 @@ def elec_val_plot(df, savepath): "Detailed Primary Energy in PJ_yr", savepath=snakemake.output.primary_energy_detailed, select_regex="Primary Energy\|[^|]*\|[^|]*$", - drop_regex="^(?!.*(CCS|Price|Volume)).+" + drop_regex="^(?!.*(CCS|Price|Volume)).+", ) side_by_side_plot( @@ -292,8 +362,7 @@ def elec_val_plot(df, savepath): "Secondary Energy in PJ_yr", savepath=snakemake.output.secondary_energy, select_regex="Secondary Energy\|[^|]*$", - drop_regex="^(?!.*(Price)).+" - + drop_regex="^(?!.*(Price)).+", ) side_by_side_plot( @@ -304,7 +373,7 @@ def elec_val_plot(df, savepath): # Secondary Energy|Something|Something (exactly two pipes) select_regex="Secondary Energy\|[^|]*\|[^|]*$", # Not ending in Fossil or Renewables (i.e., categories) - drop_regex= "^(?!.*(Fossil|Renewables|Losses|Price|Volume)).+" + drop_regex="^(?!.*(Fossil|Renewables|Losses|Price|Volume)).+", ) if df.loc["Final Energy|Industry excl Non-Energy Use|Hydrogen", "2020"].item() < 0: @@ -319,8 +388,8 @@ def elec_val_plot(df, savepath): "Final Energy in PJ_yr", savepath=snakemake.output.final_energy, select_regex="Final Energy\|[^|]*$", - rshift = 1.45, - drop_regex="^(?!.*(Price|Non-Energy Use)).+" + rshift=1.45, + drop_regex="^(?!.*(Price|Non-Energy Use)).+", ) side_by_side_plot( @@ -329,8 +398,8 @@ def elec_val_plot(df, savepath): "Detailed Final Energy in PJ_yr", savepath=snakemake.output.final_energy_detailed, select_regex="Final Energy\|[^|]*\|[^|]*$", - rshift = 1.7, - drop_regex="^(?!.*(Price|\|Solids\||Non-Energy Use\|)).+" + rshift=1.7, + drop_regex="^(?!.*(Price|\|Solids\||Non-Energy Use\|)).+", ) side_by_side_plot( @@ -347,7 +416,7 @@ def elec_val_plot(df, savepath): "Detailed Capacity in GW", savepath=snakemake.output.capacity_detailed, select_regex="Capacity\|[^|]*\|[^|]*$", - drop_regex="^(?!.*(Reservoir|Converter)).+" + drop_regex="^(?!.*(Reservoir|Converter)).+", ) side_by_side_plot( @@ -366,8 +435,7 @@ def elec_val_plot(df, savepath): savepath=snakemake.output.energy_supply_emissions, select_regex="Emissions\|CO2\|Energy\|Supply\|[^|]*$", stacked=False, - - drop_regex="^(?!.*(and)).+" + drop_regex="^(?!.*(and)).+", ) side_by_side_plot( @@ -377,88 +445,107 @@ def elec_val_plot(df, savepath): savepath=snakemake.output.co2_emissions, select_regex="Emissions\|CO2\|[^|]*$", stacked=False, - #drop_regex="^(?!.*(and)).+", - unit="Mt CO2-equiv/yr" + # drop_regex="^(?!.*(and)).+", + unit="Mt CO2-equiv/yr", ) within_plot( - df, - dfremind, - title = "Price|Primary Energy", + df, + dfremind, + title="Price|Primary Energy", savepath=snakemake.output.primary_energy_price, - select_regex="Price\|Primary Energy\|[^|]*$" + select_regex="Price\|Primary Energy\|[^|]*$", ) - + within_plot( - df[df.index.get_level_values("Variable").str.startswith("Price|Secondary Energy")], - dfremind, - title = "Price|Secondary Energy", + df[ + df.index.get_level_values("Variable").str.startswith( + "Price|Secondary Energy" + ) + ], + dfremind, + title="Price|Secondary Energy", savepath=snakemake.output.secondary_energy_price, ) # within_plot( - # df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Residential")], - # dfremind, - # title = "Price|Final Energy|Residential", + # df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Residential")], + # dfremind, + # title = "Price|Final Energy|Residential", # savepath=snakemake.output.final_energy_residential_price, # #select_regex="Price\|Final Energy\|Residential\|[^|]*$" # ) within_plot( - df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Industry")], - dfremind, - title = "Price|Final Energy|Industry", + df[ + df.index.get_level_values("Variable").str.startswith( + "Price|Final Energy|Industry" + ) + ], + dfremind, + title="Price|Final Energy|Industry", savepath=snakemake.output.final_energy_industry_price, - #select_regex="Price\|Final Energy\|Industry\|[^|]*$" + # select_regex="Price\|Final Energy\|Industry\|[^|]*$" ) within_plot( - df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Transportation")], - dfremind, - title = "Price|Final Energy|Transportation", + df[ + df.index.get_level_values("Variable").str.startswith( + "Price|Final Energy|Transportation" + ) + ], + dfremind, + title="Price|Final Energy|Transportation", savepath=snakemake.output.final_energy_transportation_price, - #select_regex="Price\|Final Energy\|Industry\|[^|]*$" + # select_regex="Price\|Final Energy\|Industry\|[^|]*$" ) within_plot( - df[df.index.get_level_values("Variable").str.startswith("Price|Final Energy|Residential and Commercial")], - dfremind, - title = "Price|Final Energy|Residential and Commercial", + df[ + df.index.get_level_values("Variable").str.startswith( + "Price|Final Energy|Residential and Commercial" + ) + ], + dfremind, + title="Price|Final Energy|Residential and Commercial", savepath=snakemake.output.final_energy_residential_commercial_price, - #select_regex="Price\|Final Energy\|Industry\|[^|]*$" + # select_regex="Price\|Final Energy\|Industry\|[^|]*$" ) within_plot( - df[df.index.get_level_values("Variable").str.startswith('Price')], - dfremind, - title = "All prices", + df[df.index.get_level_values("Variable").str.startswith("Price")], + dfremind, + title="All prices", savepath=snakemake.output.all_prices, ) within_plot( - df[df.index.get_level_values("Variable").str.startswith('Price|Carbon')], - dfremind, - title = "Price of carbon", + df[df.index.get_level_values("Variable").str.startswith("Price|Carbon")], + dfremind, + title="Price of carbon", savepath=snakemake.output.policy_carbon, unit="EUR/tCO2", ) within_plot( - df[df.index.get_level_values("Variable").str.startswith('Investment|Energy Supply')], - dfremind, - title = "Investment in Energy Supply", - savepath=snakemake.output.investment_energy_supply , + df[ + df.index.get_level_values("Variable").str.startswith( + "Investment|Energy Supply" + ) + ], + dfremind, + title="Investment in Energy Supply", + savepath=snakemake.output.investment_energy_supply, unit="billion EUR", - write_sum = True, + write_sum=True, ) elec_val_plot(df, savepath=snakemake.output.elec_val_2020) within_plot( - df[df.index.get_level_values("Variable").str.startswith('Trade')], - dfremind, - title = "Trade", + df[df.index.get_level_values("Variable").str.startswith("Trade")], + dfremind, + title="Trade", savepath=snakemake.output.trade, unit="PJ/yr", ) - \ No newline at end of file diff --git a/workflow/scripts/retrieve_ariadne_database.py b/workflow/scripts/retrieve_ariadne_database.py index 6ae278b24..ae780c51c 100644 --- a/workflow/scripts/retrieve_ariadne_database.py +++ b/workflow/scripts/retrieve_ariadne_database.py @@ -1,3 +1,4 @@ +# -*- coding: utf-8 -*- import pyam if __name__ == "__main__": @@ -10,12 +11,12 @@ from _helpers import mock_snakemake snakemake = mock_snakemake("retrieve_ariadne_database") - + db = pyam.read_iiasa( snakemake.params.db_name, model=snakemake.params.leitmodelle.values(), - scenario=snakemake.params.scenarios, + scenario=snakemake.params.scenarios, # Download only the most recent iterations of scenarios ) - db.timeseries().to_csv(snakemake.output.data) \ No newline at end of file + db.timeseries().to_csv(snakemake.output.data) From 63c83f959d654e4f4f5b74d36439e320f0bf3161 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 6 Aug 2024 14:09:14 +0000 Subject: [PATCH 520/669] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- CITATION.cff | 1 - 1 file changed, 1 deletion(-) diff --git a/CITATION.cff b/CITATION.cff index 6ddaf4f18..7bba351ff 100644 --- a/CITATION.cff +++ b/CITATION.cff @@ -10,4 +10,3 @@ authors: - family-names: Your surname given-names: Christoph Tries orcid: https://orcid.org/0009-0000-2425-0993 - From fc8bf800c636debe29d276044cfdff75c6aa5be7 Mon Sep 17 00:00:00 2001 From: Toni Seibold <153275395+toniseibold@users.noreply.github.com> Date: Tue, 6 Aug 2024 16:44:03 +0200 Subject: [PATCH 521/669] Using config_provider for additional functionality exclusively (#154) * using exclusively config_provider * moving bc to solving config * style changes * minor style changes * cosmetic changes * add back default values of constraints * remove unused function arguments * small fix for exporter * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: Michael Lindner Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- config/config.yaml | 212 +++-- config/scenarios.manual.yaml | 858 ++++++++++--------- workflow/Snakefile | 3 + workflow/scripts/additional_functionality.py | 94 +- workflow/scripts/build_scenarios.py | 8 +- workflow/scripts/modify_prenetwork.py | 2 +- 6 files changed, 607 insertions(+), 570 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 9e8dcb19e..7dda08475 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -177,94 +177,6 @@ co2_budget: 2045: 0.050 2050: 0.000 # climate-neutral by 2050 -limits_capacity_max: - Generator: - onwind: - DE: - 2020: 54.5 - 2025: 69 - 2030: 160 - 2035: 160 - 2040: 160 - 2045: 160 - offwind: - DE: - 2020: 7.8 - 2025: 8 - 2030: 30 - 2035: 70 - 2040: 70 - 2045: 70 - solar: - DE: - 2020: 53.7 - 2025: 110 # EEG2023; assumes for 2026: 128 GW, assuming a fair share reached by end of 2025 - 2030: 400 - 2035: 400 - 2040: 400 - 2045: 400 - -limits_capacity_min: - Generator: - onwind: - DE: - 2030: 115 # Wind-an-Land Law - 2035: 115 # Wind-an-Land Law - 2040: 115 # Wind-an-Land Law - 2045: 115 - offwind: - DE: - 2030: 30 # Wind-auf-See Law - 2035: 30 - 2040: 30 - 2045: 30 - solar: - DE: - # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, - # assuming at least 1/3 of difference reached in 2025 - 2025: 101 - 2030: 101 - 2035: 101 - 2040: 101 - 2045: 101 - - -# limits_capacity_min: -# Generator: -# onwind: -# DE: -# 2030: 115 # Wind-an-Land Law -# 2035: 157 # Wind-an-Land Law -# 2040: 160 # Wind-an-Land Law -# 2045: 160 -# offwind: -# DE: -# 2030: 30 # Wind-auf-See Law -# 2035: 40 # 40 Wind-auf-See Law -# # assuming at least 1/3 of difference reached in 2040 -# 2040: 50 -# 2045: 70 #70 Wind-auf-See Law -# solar: -# DE: -# # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, -# # assuming at least 1/3 of difference reached in 2025 -# 2025: 101 -# 2030: 215 # PV strategy -# 2035: 309 -# 2040: 400 # PV strategy -# 2045: 400 -# # What about the EEG2023 "Strommengenpfad"? - -h2_import_max: - DE: - 2020: 0 - 2025: 5 - 2030: 20 - 2035: 50 - 2040: 100 - 2045: 150 - 2050: 200 - wasserstoff_kernnetz: enable: false reload_locations: false @@ -306,7 +218,6 @@ sector: 2045: 0.8 2050: 1.0 central_heat_vent: true - co2_budget_national: true co2_spatial: true biomass_spatial: true #TBD what to include in config @@ -431,6 +342,129 @@ solving: H2 pipeline: 0.3 H2 pipeline (Kernnetz): 0.3 H2 pipeline retrofitted: 0.3 + constraints: + limits_capacity_max: + Generator: + onwind: + DE: + 2020: 54.5 + 2025: 69 + 2030: 160 + 2035: 160 + 2040: 160 + 2045: 160 + offwind: + DE: + 2020: 7.8 + 2025: 8 + 2030: 30 + 2035: 70 + 2040: 70 + 2045: 70 + solar: + DE: + 2020: 53.7 + 2025: 110 # EEG2023; assumes for 2026: 128 GW, assuming a fair share reached by end of 2025 + 2030: 400 + 2035: 400 + 2040: 400 + 2045: 400 + limits_capacity_min: + Generator: + onwind: + DE: + 2030: 115 # Wind-an-Land Law + 2035: 115 # Wind-an-Land Law + 2040: 115 # Wind-an-Land Law + 2045: 115 + offwind: + DE: + 2030: 30 # Wind-auf-See Law + 2035: 30 + 2040: 30 + 2045: 30 + solar: + DE: + # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, + # assuming at least 1/3 of difference reached in 2025 + 2025: 101 + 2030: 101 + 2035: 101 + 2040: 101 + 2045: 101 + # For reference, this are the values specified in the laws + # limits_capacity_min: + # Generator: + # onwind: + # DE: + # 2030: 115 # Wind-an-Land Law + # 2035: 157 # Wind-an-Land Law + # 2040: 160 # Wind-an-Land Law + # 2045: 160 + # offwind: + # DE: + # 2030: 30 # Wind-auf-See Law + # 2035: 40 # 40 Wind-auf-See Law + # # assuming at least 1/3 of difference reached in 2040 + # 2040: 50 + # 2045: 70 #70 Wind-auf-See Law + # solar: + # DE: + # # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, + # # assuming at least 1/3 of difference reached in 2025 + # 2025: 101 + # 2030: 215 # PV strategy + # 2035: 309 + # 2040: 400 # PV strategy + # 2045: 400 + # # What about the EEG2023 "Strommengenpfad"? + # boundary condition of maximum volumes + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: -20 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 + electrolysis: + # boundary condition lower? + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 + h2_derivate_import: + # boundary condition lower? + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 105 + 2040: 200 + 2045: 300 + h2_import: + # boundary condition lower? + DE: + 2020: 0 + 2025: 5 + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 # solver: # options: gurobi-numeric-focus # solver_options: diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 507e8a5b4..a53054300 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -30,75 +30,75 @@ CurrentPolicies: horizon: "mean" NEP: 2023 transmission: "underground" # either overhead line ("overhead") or underground cable ("underground") - - limits_capacity_min: - Generator: - onwind: - DE: - 2030: 86.5 # 75 % Wind-an-Land Law - 2035: 86.5 - 2040: 86.5 - 2045: 86.5 - offwind: - DE: - 2030: 22.5 # 75 % Wind-auf-See Law - 2035: 22.5 - 2040: 22.5 - 2045: 22.5 - solar: - DE: - 2030: 161.25 # 75 % PV strategy - 2035: 161.25 - 2040: 161.25 - 2045: 161.25 - - # boundary condition of maximum volumes - limits_volume_max: - # constrain electricity import in TWh - electricity_import: - DE: - 2020: -20 - 2025: 0 - 2030: 0 - 2035: 40 - 2040: 80 - 2045: 125 - electrolysis: - # boundary condition lower? - DE: - 2020: 0 - 2025: 5 - 2030: 45 - 2035: 130 - 2040: 215 - 2045: 300 - h2_derivate_import: - # boundary condition lower? - DE: - 2020: 0 - 2025: 0 - 2030: 10 - 2035: 105 - 2040: 200 - 2045: 300 - h2_import: - # boundary condition lower? - DE: - 2020: 0 - 2025: 5 - 2030: 15 - 2035: 115 - 2040: 220 - 2045: 325 - limits_volume_min: - electrolysis: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 0 - 2040: 0 - 2045: 0 + solving: + constraints: + limits_capacity_min: + Generator: + onwind: + DE: + 2030: 86.5 # 75 % Wind-an-Land Law + 2035: 86.5 + 2040: 86.5 + 2045: 86.5 + offwind: + DE: + 2030: 22.5 # 75 % Wind-auf-See Law + 2035: 22.5 + 2040: 22.5 + 2045: 22.5 + solar: + DE: + 2030: 161.25 # 75 % PV strategy + 2035: 161.25 + 2040: 161.25 + 2045: 161.25 + # boundary condition of maximum volumes + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: -20 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 + electrolysis: + # boundary condition lower? + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 + h2_derivate_import: + # boundary condition lower? + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 105 + 2040: 200 + 2045: 300 + h2_import: + # boundary condition lower? + DE: + 2020: 0 + 2025: 5 + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 industry: steam_biomass_fraction: 0.4 @@ -127,51 +127,52 @@ KN2045_Bal_v4: horizon: "mean" NEP: 2023 transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") - - # boundary condition of maximum volumes - limits_volume_max: - # constrain electricity import in TWh - electricity_import: - DE: - 2020: -20 - 2025: 0 - 2030: 0 - 2035: 40 - 2040: 80 - 2045: 125 - electrolysis: - DE: - 2020: 0 - 2025: 5 - 2030: 45 - 2035: 130 - 2040: 215 - 2045: 300 - h2_derivate_import: - DE: - 2020: 0 - 2025: 0 - 2030: 10 - 2035: 105 - 2040: 200 - 2045: 300 - h2_import: - DE: - 2020: 0 - 2025: 5 - 2030: 15 - 2035: 115 - 2040: 220 - 2045: 325 - limits_volume_min: - electrolysis: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 0 - 2040: 0 - 2045: 0 + solving: + constraints: + # boundary condition of maximum volumes + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: -20 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 105 + 2040: 200 + 2045: 300 + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 industry: steam_biomass_fraction: 0.4 @@ -193,50 +194,51 @@ KN2045_Elec_v4: horizon: "mean" NEP: 2023 transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") - - limits_volume_max: - # constrain electricity import in TWh - electricity_import: - DE: - 2020: -20 - 2025: 0 - 2030: 0 - 2035: 50 - 2040: 100 - 2045: 150 - electrolysis: - DE: - 2020: 0 - 2025: 5 - 2030: 45 - 2035: 95 - 2040: 145 - 2045: 200 - h2_derivate_import: - DE: - 2020: 0 - 2025: 0 - 2030: 10 - 2035: 70 - 2040: 130 - 2045: 200 - h2_import: - DE: - 2020: 0 - 2025: 5 - 2030: 10 - 2035: 90 - 2040: 170 - 2045: 250 - limits_volume_min: - electrolysis: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 0 - 2040: 0 - 2045: 0 + solving: + constraints: + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: -20 + 2025: 0 + 2030: 0 + 2035: 50 + 2040: 100 + 2045: 150 + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 95 + 2040: 145 + 2045: 200 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 70 + 2040: 130 + 2045: 200 + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 10 + 2035: 90 + 2040: 170 + 2045: 250 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 industry: steam_biomass_fraction: 0.4 @@ -258,53 +260,54 @@ KN2045_H2_v4: horizon: "mean" NEP: 2023 transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") - - limits_volume_max: - # constrain electricity import in TWh - electricity_import: - DE: - 2020: -20 - 2025: 0 - 2030: 0 - 2035: 30 - 2040: 70 - 2045: 100 # scenario guidelines - - # constrain hydrogen import in TWh - h2_import: - DE: - 2020: 0 - 2025: 5 - 2030: 45 # scenario guidelines - 2035: 155 - 2040: 265 - 2045: 400 # scenario guidelines - # import of h2 derivatives in TWh - h2_derivate_import: - DE: - 2020: 0 - 2025: 0 - 2030: 10 # scenario guidelines - 2035: 140 - 2040: 270 - 2045: 400 # scenario guidelines - electrolysis: - DE: - 2020: 0 - 2025: 5 - 2030: 45 # scenario guidelines - 2035: 160 - 2040: 275 - 2045: 400 # scenario guidelines - - limits_volume_min: - electrolysis: - DE: - 2025: 0 - 2030: 0 - 2035: 0 - 2040: 0 - 2045: 200 + solving: + constraints: + limits_volume_max: + # constrain electricity import in TWh + electricity_import: + DE: + 2020: -20 + 2025: 0 + 2030: 0 + 2035: 30 + 2040: 70 + 2045: 100 # scenario guidelines + + # constrain hydrogen import in TWh + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 45 # scenario guidelines + 2035: 155 + 2040: 265 + 2045: 400 # scenario guidelines + # import of h2 derivatives in TWh + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 # scenario guidelines + 2035: 140 + 2040: 270 + 2045: 400 # scenario guidelines + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 # scenario guidelines + 2035: 160 + 2040: 275 + 2045: 400 # scenario guidelines + + limits_volume_min: + electrolysis: + DE: + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 200 industry: steam_biomass_fraction: 0.4 @@ -326,51 +329,52 @@ KN2045plus_EasyRide: horizon: "optimist" NEP: 2023 transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") - - # boundary condition of maximum volumes - limits_volume_max: # following the Bal scenario - # constrain electricity import in TWh - electricity_import: - DE: - 2020: -20 - 2025: 0 - 2030: 0 - 2035: 40 - 2040: 80 - 2045: 125 - electrolysis: - DE: - 2020: 0 - 2025: 5 - 2030: 45 - 2035: 130 - 2040: 215 - 2045: 300 - h2_derivate_import: - DE: - 2020: 0 - 2025: 0 - 2030: 10 - 2035: 105 - 2040: 200 - 2045: 300 - h2_import: - DE: - 2020: 0 - 2025: 5 - 2030: 15 - 2035: 115 - 2040: 220 - 2045: 325 - limits_volume_min: - electrolysis: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 0 - 2040: 0 - 2045: 0 + solving: + constraints: + # boundary condition of maximum volumes + limits_volume_max: # following the Bal scenario + # constrain electricity import in TWh + electricity_import: + DE: + 2020: -20 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 105 + 2040: 200 + 2045: 300 + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 industry: steam_biomass_fraction: 0.4 @@ -390,51 +394,52 @@ KN2045plus_LowDemand: horizon: "optimist" NEP: 2023 transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") - - # boundary condition of maximum volumes - limits_volume_max: # Half of the Bal scenario - # constrain electricity import in TWh - electricity_import: - DE: - 2020: -20 - 2025: 0 - 2030: 0 - 2035: 20 - 2040: 40 - 2045: 62.5 - electrolysis: - DE: - 2020: 0 - 2025: 2.5 - 2030: 22.5 - 2035: 65 - 2040: 107.5 - 2045: 150 - h2_derivate_import: - DE: - 2020: 0 - 2025: 0 - 2030: 5 - 2035: 52.5 - 2040: 100 - 2045: 150 - h2_import: - DE: - 2020: 0 - 2025: 2.5 - 2030: 7.5 - 2035: 57.5 - 2040: 110 - 2045: 162.5 - limits_volume_min: - electrolysis: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 0 - 2040: 0 - 2045: 0 + solving: + constraints: + # boundary condition of maximum volumes + limits_volume_max: # Half of the Bal scenario + # constrain electricity import in TWh + electricity_import: + DE: + 2020: -20 + 2025: 0 + 2030: 0 + 2035: 20 + 2040: 40 + 2045: 62.5 + electrolysis: + DE: + 2020: 0 + 2025: 2.5 + 2030: 22.5 + 2035: 65 + 2040: 107.5 + 2045: 150 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 5 + 2035: 52.5 + 2040: 100 + 2045: 150 + h2_import: + DE: + 2020: 0 + 2025: 2.5 + 2030: 7.5 + 2035: 57.5 + 2040: 110 + 2045: 162.5 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 industry: steam_biomass_fraction: 0.4 @@ -466,71 +471,72 @@ KN2045minus_WorstCase: horizon: "pessimist" NEP: 2023 transmission: "underground" # either overhead line ("overhead") or underground cable ("underground") - - # boundary condition of maximum volumes - limits_volume_max: # Half of the Bal scenario - # constrain electricity import in TWh - electricity_import: - DE: - 2020: -20 - 2025: 0 - 2030: 0 - 2035: 20 - 2040: 40 - 2045: 62.5 - electrolysis: - DE: - 2020: 0 - 2025: 2.5 - 2030: 22.5 - 2035: 65 - 2040: 107.5 - 2045: 150 - h2_derivate_import: - DE: - 2020: 0 - 2025: 0 - 2030: 5 - 2035: 52.5 - 2040: 100 - 2045: 150 - h2_import: - DE: - 2020: 0 - 2025: 2.5 - 2030: 7.5 - 2035: 57.5 - 2040: 110 - 2045: 162.5 - limits_volume_min: - electrolysis: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 0 - 2040: 0 - 2045: 0 - limits_capacity_min: - Generator: - onwind: - DE: - 2030: 86.5 # 75 % Wind-an-Land Law - 2035: 86.5 - 2040: 86.5 - 2045: 86.5 - offwind: - DE: - 2030: 22.5 # 75 % Wind-auf-See Law - 2035: 22.5 - 2040: 22.5 - 2045: 22.5 - solar: - DE: - 2030: 161.25 # 75 % PV strategy - 2035: 161.25 - 2040: 161.25 - 2045: 161.25 + solving: + constraints: + # boundary condition of maximum volumes + limits_volume_max: # Half of the Bal scenario + # constrain electricity import in TWh + electricity_import: + DE: + 2020: -20 + 2025: 0 + 2030: 0 + 2035: 20 + 2040: 40 + 2045: 62.5 + electrolysis: + DE: + 2020: 0 + 2025: 2.5 + 2030: 22.5 + 2035: 65 + 2040: 107.5 + 2045: 150 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 5 + 2035: 52.5 + 2040: 100 + 2045: 150 + h2_import: + DE: + 2020: 0 + 2025: 2.5 + 2030: 7.5 + 2035: 57.5 + 2040: 110 + 2045: 162.5 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 + limits_capacity_min: + Generator: + onwind: + DE: + 2030: 86.5 # 75 % Wind-an-Land Law + 2035: 86.5 + 2040: 86.5 + 2045: 86.5 + offwind: + DE: + 2030: 22.5 # 75 % Wind-auf-See Law + 2035: 22.5 + 2040: 22.5 + 2045: 22.5 + solar: + DE: + 2030: 161.25 # 75 % PV strategy + 2035: 161.25 + 2040: 161.25 + 2045: 161.25 industry: steam_biomass_fraction: 0.4 @@ -562,71 +568,73 @@ KN2045minus_SupplyFocus: 2040: 0.450 2045: 0.450 2050: 0.450 - # boundary condition of maximum volumes - limits_volume_max: # following the Bal scenario - # constrain electricity import in TWh - electricity_import: - DE: - 2020: -20 - 2025: 0 - 2030: 0 - 2035: 40 - 2040: 80 - 2045: 125 - electrolysis: - DE: - 2020: 0 - 2025: 5 - 2030: 45 - 2035: 130 - 2040: 215 - 2045: 300 - h2_derivate_import: - DE: - 2020: 0 - 2025: 0 - 2030: 10 - 2035: 105 - 2040: 200 - 2045: 300 - h2_import: - DE: - 2020: 0 - 2025: 5 - 2030: 15 - 2035: 115 - 2040: 220 - 2045: 325 - limits_volume_min: - electrolysis: - DE: - 2020: 0 - 2025: 0 - 2030: 0 - 2035: 0 - 2040: 0 - 2045: 0 - limits_capacity_min: - Generator: - onwind: - DE: - 2030: 115 # Wind-an-Land Law - 2035: 115 # not forcing more EE - 2040: 115 - 2045: 115 - offwind: - DE: - 2030: 30 # Wind-auf-See Law - 2035: 30 # not forcing more EE - 2040: 30 - 2045: 30 - solar: - DE: - 2025: 101 - 2030: 215 # PV strategy - 2035: 215 # not forcing more EE - 2040: 215 - 2045: 215 + solving: + constraints: + # boundary condition of maximum volumes + limits_volume_max: # following the Bal scenario + # constrain electricity import in TWh + electricity_import: + DE: + 2020: -20 + 2025: 0 + 2030: 0 + 2035: 40 + 2040: 80 + 2045: 125 + electrolysis: + DE: + 2020: 0 + 2025: 5 + 2030: 45 + 2035: 130 + 2040: 215 + 2045: 300 + h2_derivate_import: + DE: + 2020: 0 + 2025: 0 + 2030: 10 + 2035: 105 + 2040: 200 + 2045: 300 + h2_import: + DE: + 2020: 0 + 2025: 5 + 2030: 15 + 2035: 115 + 2040: 220 + 2045: 325 + limits_volume_min: + electrolysis: + DE: + 2020: 0 + 2025: 0 + 2030: 0 + 2035: 0 + 2040: 0 + 2045: 0 + limits_capacity_min: + Generator: + onwind: + DE: + 2030: 115 # Wind-an-Land Law + 2035: 115 # not forcing more EE + 2040: 115 + 2045: 115 + offwind: + DE: + 2030: 30 # Wind-auf-See Law + 2035: 30 # not forcing more EE + 2040: 30 + 2045: 30 + solar: + DE: + 2025: 101 + 2030: 215 # PV strategy + 2035: 215 # not forcing more EE + 2040: 215 + 2045: 215 industry: steam_biomass_fraction: 0.4 steam_hydrogen_fraction: 0.3 diff --git a/workflow/Snakefile b/workflow/Snakefile index 05c3c1c8c..058ea19a6 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -184,6 +184,9 @@ rule modify_prenetwork: transmission_costs=config_provider("costs", "transmission"), biomass_must_run=config_provider("must_run_biomass"), clustering=config_provider("clustering", "temporal", "resolution_sector"), + land_transport_electric_share=config_provider( + "sector", "land_transport_electric_share" + ), input: network=RESULTS + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index a46817917..03fcb9c7b 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -9,26 +9,21 @@ logger = logging.getLogger(__name__) -def add_min_limits(n, investment_year, config): +def add_min_capacity_limits(n, investment_year, limits_capacity_min): - for c in n.iterate_components(config["limits_capacity_min"]): + for c in n.iterate_components(limits_capacity_min): logger.info(f"Adding minimum constraints for {c.list_name}") - for carrier in config["limits_capacity_min"][c.name]: + for carrier in limits_capacity_min[c.name]: - for ct in config["limits_capacity_min"][c.name][carrier]: + for ct in limits_capacity_min[c.name][carrier]: # check if the limit is defined for the investement year if ( investment_year - not in config["limits_capacity_min"][c.name][carrier][ct].keys() + not in limits_capacity_min[c.name][carrier][ct].keys() ): continue - limit = ( - 1e3 - * config["limits_capacity_min"][c.name][carrier][ct][ - investment_year - ] - ) + limit = 1e3 * limits_capacity_min[c.name][carrier][ct][investment_year] logger.info( f"Adding constraint on {c.name} {carrier} capacity in {ct} to be greater than {limit} MW" @@ -69,25 +64,20 @@ def add_min_limits(n, investment_year, config): ) -def add_max_limits(n, investment_year, config): +def add_max_capacity_limits(n, investment_year, limits_capacity_max): - for c in n.iterate_components(config["limits_capacity_max"]): + for c in n.iterate_components(limits_capacity_max): logger.info(f"Adding maximum constraints for {c.list_name}") - for carrier in config["limits_capacity_max"][c.name]: + for carrier in limits_capacity_max[c.name]: - for ct in config["limits_capacity_max"][c.name][carrier]: + for ct in limits_capacity_max[c.name][carrier]: if ( investment_year - not in config["limits_capacity_max"][c.name][carrier][ct].keys() + not in limits_capacity_max[c.name][carrier][ct].keys() ): continue - limit = ( - 1e3 - * config["limits_capacity_max"][c.name][carrier][ct][ - investment_year - ] - ) + limit = 1e3 * limits_capacity_max[c.name][carrier][ct][investment_year] valid_components = ( (c.df.index.str[:2] == ct) @@ -133,10 +123,10 @@ def add_max_limits(n, investment_year, config): ) -def h2_import_limits(n, snapshots, investment_year, config): +def h2_import_limits(n, investment_year, limits_volume_max): - for ct in config["limits_volume_max"]["h2_import"]: - limit = config["limits_volume_max"]["h2_import"][ct][investment_year] * 1e6 + for ct in limits_volume_max["h2_import"]: + limit = limits_volume_max["h2_import"][ct][investment_year] * 1e6 logger.info(f"limiting H2 imports in {ct} to {limit/1e6} TWh/a") @@ -175,22 +165,18 @@ def h2_import_limits(n, snapshots, investment_year, config): ) -def h2_production_limits(n, snapshots, investment_year, config): +def h2_production_limits(n, investment_year, limits_volume_min, limits_volume_max): - for ct in config["limits_volume_max"]["electrolysis"]: - if ct not in config["limits_volume_min"]["electrolysis"]: + for ct in limits_volume_max["electrolysis"]: + if ct not in limits_volume_min["electrolysis"]: logger.warning( f"no lower limit for H2 electrolysis in {ct} assuming 0 TWh/a" ) limit_lower = 0 else: - limit_lower = ( - config["limits_volume_min"]["electrolysis"][ct][investment_year] * 1e6 - ) + limit_lower = limits_volume_min["electrolysis"][ct][investment_year] * 1e6 - limit_upper = ( - config["limits_volume_max"]["electrolysis"][ct][investment_year] * 1e6 - ) + limit_upper = limits_volume_max["electrolysis"][ct][investment_year] * 1e6 logger.info( f"limiting H2 electrolysis in DE between {limit_lower/1e6} and {limit_upper/1e6} TWh/a" @@ -235,12 +221,10 @@ def h2_production_limits(n, snapshots, investment_year, config): ) -def electricity_import_limits(n, snapshots, investment_year, config): +def electricity_import_limits(n, investment_year, limits_volume_max): - for ct in config["limits_volume_max"]["electricity_import"]: - limit = ( - config["limits_volume_max"]["electricity_import"][ct][investment_year] * 1e6 - ) + for ct in limits_volume_max["electricity_import"]: + limit = limits_volume_max["electricity_import"][ct][investment_year] * 1e6 logger.info(f"limiting electricity imports in {ct} to {limit/1e6} TWh/a") @@ -511,12 +495,10 @@ def force_boiler_profiles_existing_per_boiler(n): n.links["fixed_profile_scaling_opt"] = 0.0 -def add_h2_derivate_limit(n, snapshots, investment_year, config): +def add_h2_derivate_limit(n, investment_year, limits_volume_max): - for ct in config["limits_volume_max"]["h2_derivate_import"]: - limit = ( - config["limits_volume_max"]["h2_derivate_import"][ct][investment_year] * 1e6 - ) + for ct in limits_volume_max["h2_derivate_import"]: + limit = limits_volume_max["h2_derivate_import"][ct][investment_year] * 1e6 logger.info(f"limiting H2 derivate imports in {ct} to {limit/1e6} TWh/a") @@ -556,29 +538,37 @@ def additional_functionality(n, snapshots, snakemake): logger.info("Adding Ariadne-specific functionality") investment_year = int(snakemake.wildcards.planning_horizons[-4:]) + constraints = snakemake.params.solving["constraints"] - add_min_limits(n, investment_year, snakemake.config) + add_min_capacity_limits(n, investment_year, constraints["limits_capacity_min"]) - add_max_limits(n, investment_year, snakemake.config) + add_max_capacity_limits(n, investment_year, constraints["limits_capacity_max"]) - h2_import_limits(n, snapshots, investment_year, snakemake.config) + h2_import_limits(n, investment_year, constraints["limits_volume_max"]) - electricity_import_limits(n, snapshots, investment_year, snakemake.config) + electricity_import_limits(n, investment_year, constraints["limits_volume_max"]) if investment_year >= 2025: - h2_production_limits(n, snapshots, investment_year, snakemake.config) + h2_production_limits( + n, + investment_year, + constraints["limits_volume_min"], + constraints["limits_volume_max"], + ) if not snakemake.config["run"]["debug_h2deriv_limit"]: - add_h2_derivate_limit(n, snapshots, investment_year, snakemake.config) + add_h2_derivate_limit(n, investment_year, constraints["limits_volume_max"]) # force_boiler_profiles_existing_per_load(n) force_boiler_profiles_existing_per_boiler(n) - if snakemake.config["sector"]["co2_budget_national"]: - limit_countries = snakemake.config["co2_budget_national"][investment_year] + if isinstance(constraints["co2_budget_national"], dict): + limit_countries = constraints["co2_budget_national"][investment_year] add_co2limit_country( n, limit_countries, snakemake, debug=snakemake.config["run"]["debug_co2_limit"], ) + else: + logger.warning("No national CO2 budget specified!") diff --git a/workflow/scripts/build_scenarios.py b/workflow/scripts/build_scenarios.py index c6906ea55..255c58a09 100644 --- a/workflow/scripts/build_scenarios.py +++ b/workflow/scripts/build_scenarios.py @@ -208,10 +208,12 @@ def write_to_scenario_yaml(input, output, scenarios, df): dri_fraction.loc["DRI_Steel_Share", year].item(), 4 ) - config[scenario]["co2_budget_national"] = {} + config[scenario]["solving"]["constraints"]["co2_budget_national"] = {} for year, target in co2_budget_fractions.items(): - config[scenario]["co2_budget_national"][year] = {} - config[scenario]["co2_budget_national"][year]["DE"] = target + config[scenario]["solving"]["constraints"]["co2_budget_national"][year] = {} + config[scenario]["solving"]["constraints"]["co2_budget_national"][year][ + "DE" + ] = target # write back to yaml file yaml.dump(config, Path(output)) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 10916fceb..07666bbee 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -551,7 +551,7 @@ def aladin_mobility_demand(n): * 1e6 / ( number_cars - * snakemake.config["sector"]["land_transport_electric_share"][ + * snakemake.params.land_transport_electric_share[ int(snakemake.wildcards.planning_horizons) ] ) From 032412063661825c1ea29d6822198ba83836f681 Mon Sep 17 00:00:00 2001 From: Lukas Trippe Date: Tue, 6 Aug 2024 17:25:45 +0200 Subject: [PATCH 522/669] Create .git-blame-ignore-revs (#158) --- .git-blame-ignore-revs | 2 ++ 1 file changed, 2 insertions(+) create mode 100644 .git-blame-ignore-revs diff --git a/.git-blame-ignore-revs b/.git-blame-ignore-revs new file mode 100644 index 000000000..1620ae377 --- /dev/null +++ b/.git-blame-ignore-revs @@ -0,0 +1,2 @@ +# Apply pre-commit (from #156) +ca1f43c23f1c0936cb9f9e1062854fdf0060c409 From f80783075e76ba738d8ef7c2158848f6263e9895 Mon Sep 17 00:00:00 2001 From: Julian Geis Date: Wed, 7 Aug 2024 15:31:35 +0200 Subject: [PATCH 523/669] minor changes for running single node network (#160) * minor changes for running single node network * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- workflow/scripts/additional_functionality.py | 5 +++-- .../scripts/cluster_wasserstoff_kernnetz.py | 17 ++++++++++------- workflow/scripts/export_ariadne_variables.py | 9 ++++++--- 3 files changed, 19 insertions(+), 12 deletions(-) diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 03fcb9c7b..e66706973 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -544,9 +544,10 @@ def additional_functionality(n, snapshots, snakemake): add_max_capacity_limits(n, investment_year, constraints["limits_capacity_max"]) - h2_import_limits(n, investment_year, constraints["limits_volume_max"]) + if int(snakemake.wildcards.clusters) != 1: + h2_import_limits(n, investment_year, constraints["limits_volume_max"]) - electricity_import_limits(n, investment_year, constraints["limits_volume_max"]) + electricity_import_limits(n, investment_year, constraints["limits_volume_max"]) if investment_year >= 2025: h2_production_limits( diff --git a/workflow/scripts/cluster_wasserstoff_kernnetz.py b/workflow/scripts/cluster_wasserstoff_kernnetz.py index f5f623227..7c7d04e05 100644 --- a/workflow/scripts/cluster_wasserstoff_kernnetz.py +++ b/workflow/scripts/cluster_wasserstoff_kernnetz.py @@ -174,14 +174,17 @@ def aggregate_parallel_pipes(df): wasserstoff_kernnetz = build_clustered_gas_network(df, bus_regions) - wasserstoff_kernnetz[["bus0", "bus1"]] = ( - wasserstoff_kernnetz[["bus0", "bus1"]].apply(sorted, axis=1).apply(pd.Series) - ) + if not wasserstoff_kernnetz.empty: + wasserstoff_kernnetz[["bus0", "bus1"]] = ( + wasserstoff_kernnetz[["bus0", "bus1"]] + .apply(sorted, axis=1) + .apply(pd.Series) + ) - reindex_pipes(wasserstoff_kernnetz, prefix="H2 pipeline") + reindex_pipes(wasserstoff_kernnetz, prefix="H2 pipeline") - wasserstoff_kernnetz["p_min_pu"] = 0 - wasserstoff_kernnetz["p_nom_diameter"] = 0 - wasserstoff_kernnetz = aggregate_parallel_pipes(wasserstoff_kernnetz) + wasserstoff_kernnetz["p_min_pu"] = 0 + wasserstoff_kernnetz["p_nom_diameter"] = 0 + wasserstoff_kernnetz = aggregate_parallel_pipes(wasserstoff_kernnetz) wasserstoff_kernnetz.to_csv(snakemake.output.clustered_h2_network) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 93c3ea33b..f50af2f7c 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1008,7 +1008,8 @@ def get_primary_energy(n, region): "Store", ("Link", "gas pipeline"), ("Link", "gas pipeline new"), - ] + ], + errors="ignore", ) .groupby("carrier") .sum() @@ -1154,7 +1155,8 @@ def get_primary_energy(n, region): # Assuming renewables are only generators and StorageUnits "Link", "Line", - ] + ], + errors="ignore", ) .filter(like=region) .groupby("carrier") @@ -1232,6 +1234,7 @@ def get_secondary_energy(n, region, _industry_demand): .multiply(MWh2PJ) .drop( ["AC", "DC", "electricity distribution grid"], + errors="ignore", ) ) @@ -1544,7 +1547,7 @@ def get_secondary_energy(n, region, _industry_demand): .groupby(["carrier", "component"]) .sum() .multiply(MWh2PJ) - .drop(["gas pipeline", "gas pipeline new", ("gas", "Store")]) + .drop(["gas pipeline", "gas pipeline new", ("gas", "Store")], errors="ignore") .groupby("carrier") .sum() ) From d90aca17b79a7687863992a429bcb636f76a20ef Mon Sep 17 00:00:00 2001 From: Toni Seibold <153275395+toniseibold@users.noreply.github.com> Date: Wed, 7 Aug 2024 15:32:33 +0200 Subject: [PATCH 524/669] Fix hydrogen import boundary condition (#159) * include retrofitted and Kernnetz pipelines for hydrogen import boundary condition * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * bugfixing mock_snakemake and fullfilling prerequisites for review --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- Changelog.md | 1 + config/config.yaml | 2 +- workflow/scripts/additional_functionality.py | 10 +++++++--- workflow/scripts/modify_prenetwork.py | 4 ++-- 4 files changed, 11 insertions(+), 6 deletions(-) diff --git a/Changelog.md b/Changelog.md index de2462ba3..54f672ecc 100644 --- a/Changelog.md +++ b/Changelog.md @@ -1,4 +1,5 @@ # Changelog +- fix the hydrogen import boundary condition - add primary oil bus and account for refinery emissions - added Changelog file diff --git a/config/config.yaml b/config/config.yaml index 7dda08475..0ecd1edb6 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -5,7 +5,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 240806oilrefineries + prefix: 20240807fix_hydrogen_import_constraint name: # - CurrentPolicies diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index e66706973..2ff02cbf4 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -129,14 +129,18 @@ def h2_import_limits(n, investment_year, limits_volume_max): limit = limits_volume_max["h2_import"][ct][investment_year] * 1e6 logger.info(f"limiting H2 imports in {ct} to {limit/1e6} TWh/a") - + pipeline_carrier = [ + "H2 pipeline", + "H2 pipeline (Kernnetz)", + "H2 pipeline retrofitted", + ] incoming = n.links.index[ - (n.links.carrier == "H2 pipeline") + (n.links.carrier.isin(pipeline_carrier)) & (n.links.bus0.str[:2] != ct) & (n.links.bus1.str[:2] == ct) ] outgoing = n.links.index[ - (n.links.carrier == "H2 pipeline") + (n.links.carrier.isin(pipeline_carrier)) & (n.links.bus0.str[:2] == ct) & (n.links.bus1.str[:2] != ct) ] diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 07666bbee..971d981f9 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -587,10 +587,10 @@ def aladin_mobility_demand(n): snakemake = mock_snakemake( "modify_prenetwork", simpl="", - clusters=44, + clusters=22, opts="", ll="vopt", - sector_opts="None", + sector_opts="none", planning_horizons="2020", run="KN2045_Bal_v4", ) From 0a060dc9c8d4e14ec33e09d6ea31ee4cd7c33a08 Mon Sep 17 00:00:00 2001 From: Toni Seibold <153275395+toniseibold@users.noreply.github.com> Date: Wed, 7 Aug 2024 17:44:14 +0200 Subject: [PATCH 525/669] Accounting renewable CH4 without spatially resolved CH4 network (#146) * first stab at accounting CH4 when not spatially resolving CH4 network * unravelling in prepare_sector_network * changing H2_retrofit config * fix regions without boiler profiles * stash * add option for high spatial resolution in config * config fixes * more config fixes * ... * Update scenarios.manual.yaml * ignore errors when dropping stores * Update pypsa version * adding CH4 to national CO2 target * config revert * disable additional scenarios * correctly assign renewable gas bus to * avoid cycle flows of renewable gas * fix AI hallucination * add tech_color * fix exporter * update submodule * account for carrier shares in imports and exports of renewable gases * update submodule * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: JulianGeis Co-authored-by: Julian Geis Co-authored-by: Michael Lindner Co-authored-by: Micha Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- config/config.yaml | 12 +- workflow/Snakefile | 6 + workflow/scripts/additional_functionality.py | 33 ++- workflow/scripts/export_ariadne_variables.py | 211 ++++++++++++------- workflow/scripts/modify_prenetwork.py | 107 ++++++++++ workflow/submodules/pypsa-eur | 2 +- 6 files changed, 280 insertions(+), 91 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 0ecd1edb6..cb6e905bb 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,9 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - - prefix: 20240807fix_hydrogen_import_constraint - + prefix: 20240807unravelCH4coarse name: # - CurrentPolicies - KN2045_Bal_v4 @@ -32,6 +30,7 @@ run: debug_co2_limit: false debug_h2deriv_limit: false debug_unravel_oilbus: false + debug_unravel_gasbus: false iiasa_database: db_name: ariadne2_intern @@ -205,8 +204,8 @@ costs: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: - solar_thermal: false v2g: false + solar_thermal: false district_heating: potential: 0.3 progress: @@ -226,7 +225,9 @@ sector: regional_methanol_demand: true #set to true if regional CO2 constraints needed regional_oil_demand: true #set to true if regional CO2 constraints needed regional_coal_demand: true #set to true if regional CO2 constraints needed - gas_network: true + gas_network: false + regional_gas_demand: true + H2_retrofit: true biogas_upgrading_cc: true cluster_heat_buses: true # calculated based on ariadne "Stock|Space Heating" @@ -478,6 +479,7 @@ plotting: load: "#111100" H2 pipeline (Kernnetz): '#6b3161' renewable oil: '#c9c9c9' + renewable gas: '#e05b09' countries: - all - DE diff --git a/workflow/Snakefile b/workflow/Snakefile index 058ea19a6..a6dfdbf8e 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -200,6 +200,12 @@ rule modify_prenetwork: "mobility_demand_aladin_{simpl}_{clusters}_{planning_horizons}.csv" ), transport_data=resources("transport_data_s{simpl}_{clusters}.csv"), + biomass_potentials=resources( + "biomass_potentials_s{simpl}_{clusters}_{planning_horizons}.csv" + ), + industrial_demand=resources( + "industrial_energy_demand_elec_s{simpl}_{clusters}_{planning_horizons}.csv" + ), output: network=RESULTS + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 2ff02cbf4..37afc6e9d 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -385,7 +385,26 @@ def add_co2limit_country(n, limit_countries, snakemake, debug=False): ).sum() ) - # Methane still missing, because its complicated + # Methane + incoming_CH4 = n.links.index[n.links.index == "EU renewable gas -> DE gas"] + outgoing_CH4 = n.links.index[n.links.index == "DE renewable gas -> EU gas"] + + lhs.append( + ( + -1 + * n.model["Link-p"].loc[:, incoming_CH4] + * 0.198 + * n.snapshot_weightings.generators + ).sum() + ) + + lhs.append( + ( + n.model["Link-p"].loc[:, outgoing_CH4] + * 0.198 + * n.snapshot_weightings.generators + ).sum() + ) lhs = sum(lhs) @@ -507,10 +526,18 @@ def add_h2_derivate_limit(n, investment_year, limits_volume_max): logger.info(f"limiting H2 derivate imports in {ct} to {limit/1e6} TWh/a") incoming = n.links.loc[ - ["EU renewable oil -> DE oil", "EU methanol -> DE methanol"] + [ + "EU renewable oil -> DE oil", + "EU methanol -> DE methanol", + "EU renewable gas -> DE gas", + ] ].index outgoing = n.links.loc[ - ["DE renewable oil -> EU oil", "DE methanol -> EU methanol"] + [ + "DE renewable oil -> EU oil", + "DE methanol -> EU methanol", + "DE renewable gas -> EU gas", + ] ].index incoming_p = ( diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index f50af2f7c..59f0bef17 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -75,31 +75,101 @@ def _get_oil_fossil_fraction(n, region): return oil_fossil_fraction -def _get_gas_fractions(n): +def _get_gas_fractions(n, region): kwargs = { "groupby": n.statistics.groupers.get_name_bus_and_carrier, "at_port": True, "nice_names": False, } + + renewable_gas_supply = ( + n.statistics.supply(bus_carrier="renewable gas", **kwargs) + .groupby(["bus", "carrier"]) + .sum() + ) + total_gas_supply = ( n.statistics.supply(bus_carrier="gas", **kwargs) - .drop("Store", errors="ignore") - .groupby("carrier") + .groupby(["name", "carrier"]) .sum() ) + if "DE" in region: + domestic_gas_supply = ( + total_gas_supply.reindex( + [ + ("DE gas", "gas"), + ("DE renewable gas -> DE gas", "renewable gas"), + ("EU renewable gas -> DE gas", "renewable gas"), + ] + ) + .dropna() + .groupby("carrier") + .sum() + ) # If links are not used they are dropped here + total_imported_renewable_gas = total_gas_supply.get( + ("EU renewable gas -> DE gas", "renewable gas"), 0 + ) + total_exported_renewable_gas = total_gas_supply.get( + ("DE renewable gas -> EU gas", "renewable gas"), 0 + ) + domestic_renewable_gas = renewable_gas_supply.loc["DE renewable gas"] + foreign_renewable_gas = renewable_gas_supply.loc["EU renewable gas"] + else: + domestic_gas_supply = ( + total_gas_supply.reindex( + [ + ("EU gas", "gas"), + ("DE renewable gas -> EU gas", "renewable gas"), + ("EU renewable gas -> EU gas", "renewable gas"), + ] + ) + .dropna() + .groupby("carrier") + .sum() + ) + total_imported_renewable_gas = total_gas_supply.get( + ("DE renewable gas -> EU gas", "renewable gas"), 0 + ) + total_exported_renewable_gas = total_gas_supply.get( + ("EU renewable gas -> DE gas", "renewable gas"), 0 + ) + domestic_renewable_gas = renewable_gas_supply.loc["EU renewable gas"] + foreign_renewable_gas = renewable_gas_supply.loc["DE renewable gas"] + + # Legacy code for dropping gas pipelines (now deactivated) drops = ["gas pipeline", "gas pipeline new"] for d in drops: if d in total_gas_supply.index: total_gas_supply.drop(d, inplace=True) + imported_renewable_gas = ( + foreign_renewable_gas + / foreign_renewable_gas.sum() + * total_imported_renewable_gas + ) + + exported_renewable_gas = ( + domestic_renewable_gas + / domestic_renewable_gas.sum() + * total_exported_renewable_gas + ) + renewable_gas_supply = ( + domestic_renewable_gas + imported_renewable_gas - exported_renewable_gas + ) + # Check for small differences + assert domestic_gas_supply.get("renewable gas", 0) - renewable_gas_supply.sum() < 1 + gas_fractions = pd.Series( { - "Natural Gas": total_gas_supply.get("gas", 0), - "Biomass": total_gas_supply.filter(like="biogas").sum(), - "Efuel": total_gas_supply.get("Sabatier", 0), + "Natural Gas": domestic_gas_supply.get("gas", 0), + "Biomass": renewable_gas_supply.filter(like="biogas").sum(), + "Efuel": renewable_gas_supply.get("Sabatier", 0), } - ).divide(total_gas_supply.sum()) + ).divide(domestic_gas_supply.sum()) + + assert isclose(gas_fractions.sum(), 1) + return gas_fractions @@ -840,18 +910,12 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): capacities_gas = ( cap_func( - bus_carrier="gas", + bus_carrier="renewable gas", **kwargs, ) .filter(like=region) .groupby("carrier") .sum() - .drop( - # Drop Import (Generator, gas), Storage (Store, gas), - # and Transmission capacities - ["gas", "gas pipeline", "gas pipeline new"], - errors="ignore", - ) .multiply(MW2GW) ) @@ -989,7 +1053,7 @@ def get_primary_energy(n, region): - var["Primary Energy|Oil|Heat"] ) - gas_fractions = _get_gas_fractions(n) + gas_fractions = _get_gas_fractions(n, region) # Eventhough biogas gets routed through the EU gas bus, # it should be counted separately as Primary Energy|Biomass @@ -999,16 +1063,8 @@ def get_primary_energy(n, region): **kwargs, ) .filter(like=region) - .groupby( - ["component", "carrier"], - ) - .sum() .drop( - [ - "Store", - ("Link", "gas pipeline"), - ("Link", "gas pipeline new"), - ], + "Store", errors="ignore", ) .groupby("carrier") @@ -1461,6 +1517,7 @@ def get_secondary_energy(n, region, _industry_demand): hydrogen_production = ( n.statistics.supply(bus_carrier="H2", **kwargs) .filter(like=region) + .drop("Store", errors="ignore") .groupby(["carrier"]) .sum() .multiply(MWh2PJ) @@ -1482,9 +1539,7 @@ def get_secondary_energy(n, region, _industry_demand): assert isclose( var["Secondary Energy|Hydrogen"], hydrogen_production[ - ~hydrogen_production.index.isin( - ["H2", "H2 pipeline", "H2 pipeline (Kernnetz)"] - ) + ~hydrogen_production.index.str.startswith("H2 pipeline") ].sum(), ) @@ -1541,18 +1596,6 @@ def get_secondary_energy(n, region, _industry_demand): except KeyError: var["Secondary Energy|Methanol"] = 0 - gas_production = ( - n.statistics.supply(bus_carrier="gas", **kwargs) - .filter(like=region) - .groupby(["carrier", "component"]) - .sum() - .multiply(MWh2PJ) - .drop(["gas pipeline", "gas pipeline new", ("gas", "Store")], errors="ignore") - .groupby("carrier") - .sum() - ) - total_gas_production = gas_production.sum() - gas_fuel_usage = ( n.statistics.withdrawal(bus_carrier="gas", **kwargs) .filter(like=region) @@ -1571,19 +1614,19 @@ def get_secondary_energy(n, region, _industry_demand): total_gas_fuel_usage = gas_fuel_usage.sum() + gas_fractions = _get_gas_fractions(n, region) + # Fraction supplied by Hydrogen conversion - var["Secondary Energy|Gases|Hydrogen"] = ( - total_gas_fuel_usage * gas_production.get("Sabatier", 0) / total_gas_production + var["Secondary Energy|Gases|Hydrogen"] = total_gas_fuel_usage * gas_fractions.get( + "Efuel" ) - var["Secondary Energy|Gases|Biomass"] = ( - total_gas_fuel_usage - * gas_production.filter(like="biogas to gas").sum() - / total_gas_production + var["Secondary Energy|Gases|Biomass"] = total_gas_fuel_usage * gas_fractions.get( + "Biomass" ) var["Secondary Energy|Gases|Natural Gas"] = ( - total_gas_fuel_usage * gas_production.get("gas") / total_gas_production + total_gas_fuel_usage * gas_fractions.get("Natural Gas") ) var["Secondary Energy|Gases"] = ( @@ -1592,7 +1635,7 @@ def get_secondary_energy(n, region, _industry_demand): + var["Secondary Energy|Gases|Natural Gas"] ) - assert isclose(var["Secondary Energy|Gases"], gas_fuel_usage.sum()) + assert isclose(var["Secondary Energy|Gases"], total_gas_fuel_usage) industry_demand = _industry_demand.filter( like=region, @@ -1703,7 +1746,7 @@ def get_final_energy( # write var var["Final Energy|Non-Energy Use|Gases"] = non_energy.methane + CH4_for_NH3 - gas_fractions = _get_gas_fractions(n) + gas_fractions = _get_gas_fractions(n, region) for gas_type in gas_fractions.index: var[f"Final Energy|Non-Energy Use|Gases|{gas_type}"] = ( var["Final Energy|Non-Energy Use|Gases"] * gas_fractions[gas_type] @@ -2343,7 +2386,7 @@ def get_emissions(n, region, _energy_totals): "urban central gas CHP CC", ] - gas_fractions = _get_gas_fractions(n) + gas_fractions = _get_gas_fractions(n, region) var["Emissions|CO2|Energy|Production|From Gases"] = co2_emissions.loc[ co2_emissions.index.isin(gas_techs) @@ -2960,7 +3003,7 @@ def get_prices(n, region): nodal_prices_gas = n.buses_t.marginal_price[nodal_flows_gas.columns] # co2 part - gas_fractions = _get_gas_fractions(n) + gas_fractions = _get_gas_fractions(n, region) co2_add_gas = gas_fractions["Natural Gas"] * specific_emisisons["gas"] * co2_price var["Price|Primary Energy|Gas"] = ( @@ -3331,7 +3374,7 @@ def get_prices(n, region): "& not carrier.str.contains('urban decentral')", ) nodal_prices_gas = n.buses_t.marginal_price[nodal_flows_gas.columns] - + # TODO renewable gas prices var["Price|Secondary Energy|Gases"] = ( nodal_flows_gas.mul(nodal_prices_gas).values.sum() / nodal_flows_gas.values.sum() @@ -3503,28 +3546,30 @@ def get_grid_investments(n, costs, region, dg_cost_factor=1.0, length_factor=1.0 * new_h2_links.p_nom_opt.apply(lambda x: get_discretized_value(x, 1500)) * costs.at["H2 pipeline", "investment"] ) + # TODO add retrofitted costs!! var["Investment|Energy Supply|Hydrogen|Transmission"] = h2_costs.sum() / 5 - gas_links = n.links[ - ( - ((n.links.carrier == "gas pipeline") & (n.links.build_year > 2020)) - | (n.links.carrier == "gas pipeline new") + if "gas pipeline" in n.links.carrier.unique(): + gas_links = n.links[ + ( + ((n.links.carrier == "gas pipeline") & (n.links.build_year > 2020)) + | (n.links.carrier == "gas pipeline new") + ) + & ~n.links.reversed + & (n.links.bus0 + n.links.bus1).str.contains(region) + ] + year = n.links.build_year.max() + new_gas_links = gas_links[ + ((year - 5) < gas_links.build_year) & (gas_links.build_year <= year) + ] + gas_costs = ( + new_gas_links.length + * new_gas_links.p_nom_opt.apply(lambda x: get_discretized_value(x, 1200)) + * costs.at["CH4 (g) pipeline", "investment"] ) - & ~n.links.reversed - & (n.links.bus0 + n.links.bus1).str.contains(region) - ] - year = n.links.build_year.max() - new_gas_links = gas_links[ - ((year - 5) < gas_links.build_year) & (gas_links.build_year <= year) - ] - gas_costs = ( - new_gas_links.length - * new_gas_links.p_nom_opt.apply(lambda x: get_discretized_value(x, 1200)) - * costs.at["CH4 (g) pipeline", "investment"] - ) - var["Investment|Energy Supply|Gas|Transmission"] = gas_costs.sum() / 5 + var["Investment|Energy Supply|Gas|Transmission"] = gas_costs.sum() / 5 # var["Investment|Energy Supply|Electricity|Electricity Storage"] = \ # var["Investment|Energy Supply|Hydrogen|Fossil"] = \ @@ -3701,19 +3746,21 @@ def get_export_import_links(n, region, carriers): # Trade|Primary Energy|Coal|Volume # Trade|Primary Energy|Gas|Volume - gas_fractions = _get_gas_fractions(n) - exports_gas, imports_gas = get_export_import_links( - n, region, ["gas pipeline", "gas pipeline new"] - ) - var["Trade|Primary Energy|Gas|Volume"] = ( - (exports_gas - imports_gas) * MWh2PJ - ) * gas_fractions["Natural Gas"] - var["Trade|Primary Energy|Gas|Volume|Imports"] = ( - imports_gas * MWh2PJ * gas_fractions["Natural Gas"] - ) - var["Trade|Primary Energy|Gas|Volume|Exports"] = ( - exports_gas * MWh2PJ * gas_fractions["Natural Gas"] - ) + gas_fractions = _get_gas_fractions(n, region) + + if "gas pipeline" in n.links.carrier.unique(): + exports_gas, imports_gas = get_export_import_links( + n, region, ["gas pipeline", "gas pipeline new"] + ) + var["Trade|Primary Energy|Gas|Volume"] = ( + (exports_gas - imports_gas) * MWh2PJ + ) * gas_fractions["Natural Gas"] + var["Trade|Primary Energy|Gas|Volume|Imports"] = ( + imports_gas * MWh2PJ * gas_fractions["Natural Gas"] + ) + var["Trade|Primary Energy|Gas|Volume|Exports"] = ( + exports_gas * MWh2PJ * gas_fractions["Natural Gas"] + ) # Trade|Primary Energy|Oil|Volume @@ -4103,7 +4150,7 @@ def get_data( investment_rows[planning_horizons] .add(investment_rows[planning_horizons].shift(-1, axis=1)) .div(2) - .fillna(0) + .fillna(0.0) ) average_investments[planning_horizons[0]] += investment_rows[ planning_horizons[0] diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 971d981f9..4c734be99 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -425,6 +425,110 @@ def unravel_oilbus(n): ) +def unravel_gasbus(n, costs): + """ + Unravel European gas bus to enable energy balances for import of gas + products. + """ + logger.info("Unraveling gas bus") + + ### create DE gas bus/generator/store + n.add( + "Bus", + "DE gas", + location="DE", + x=10.5, + y=51.2, + carrier="gas", + ) + n.add( + "Generator", + "DE gas", + bus="DE gas", + p_nom_extendable=True, + carrier="gas", + marginal_cost=costs.at["gas", "fuel"], + ) + n.add( + "Store", + "DE gas Store", + bus="DE gas", + carrier="gas", + e_nom_extendable=True, + e_cyclic=True, + capital_cost=costs.at["gas storage", "fixed"], + overnight_cost=costs.at["gas storage", "investment"], + ) + + ### create renewable gas buses + n.add("Carrier", "renewable gas") + + n.add( + "Bus", + "DE renewable gas", + location="DE", + carrier="renewable gas", + x=10.5, + y=51.2, + ) + n.add( + "Bus", + "EU renewable gas", + location="EU", + carrier="renewable gas", + ) + + ### biogas is counted as renewable gas + biogas_carrier = ["biogas to gas", "biogas to gas CC"] + biogas_DE = n.links[ + (n.links.carrier.isin(biogas_carrier)) & (n.links.index.str[:2] == "DE") + ] + n.links.loc[biogas_DE.index, "bus1"] = "DE renewable gas" + + biogas_EU = n.links[ + (n.links.carrier.isin(biogas_carrier)) & (n.links.index.str[:2] != "DE") + ] + n.links.loc[biogas_EU.index, "bus1"] = "EU renewable gas" + + ### Sabatier is counted as renewable gas + sabatier_carrier = ["Sabatier"] + sabatier_DE = n.links[ + (n.links.carrier.isin(sabatier_carrier)) & (n.links.index.str[:2] == "DE") + ] + n.links.loc[sabatier_DE.index, "bus1"] = "DE renewable gas" + + sabatier_EU = n.links[ + (n.links.carrier.isin(sabatier_carrier)) & (n.links.index.str[:2] != "DE") + ] + n.links.loc[sabatier_EU.index, "bus1"] = "EU renewable gas" + + ### change buses of German gas links + fossil_links = n.links[(n.links.bus0 == "EU gas") & (n.links.index.str[:2] == "DE")] + n.links.loc[fossil_links.index, "bus0"] = "DE gas" + + ### add import/export links + n.madd( + "Link", + ["EU renewable gas -> DE gas", "DE renewable gas -> EU gas"], + bus0=["EU renewable gas", "DE renewable gas"], + bus1=["DE gas", "EU gas"], + carrier="renewable gas", + p_nom=1e6, + p_min_pu=0, + ) + + ### add links between renewable and fossil gas buses + n.madd( + "Link", + ["EU renewable gas -> EU gas", "DE renewable gas -> DE gas"], + bus0=["EU renewable gas", "DE renewable gas"], + bus1=["EU gas", "DE gas"], + carrier="renewable gas", + p_nom=1e6, + p_min_pu=0, + ) + + def transmission_costs_from_modified_cost_data( n, costs, transmission, length_factor=1.0 ): @@ -624,6 +728,9 @@ def aladin_mobility_demand(n): if not snakemake.config["run"]["debug_unravel_oilbus"]: unravel_oilbus(n) + if not snakemake.config["run"]["debug_unravel_gasbus"]: + unravel_gasbus(n, costs) + if snakemake.params.enable_kernnetz: fn = snakemake.input.wkn wkn = pd.read_csv(fn, index_col=0) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index ad144ba19..0d4800522 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit ad144ba19cc658facc2359c05c923d0e7fdeb3b9 +Subproject commit 0d480052260ccc00d087b10b76fcbf3b7fb4c00c From d21a5c2e595077e791975f1fd50f4d531aa22d0a Mon Sep 17 00:00:00 2001 From: Toni Seibold <153275395+toniseibold@users.noreply.github.com> Date: Fri, 9 Aug 2024 12:08:00 +0200 Subject: [PATCH 526/669] Hydrogen Gas Turbines and Retrofitting of Gas Turbines (#151) * first stab at enabling H2 and H2 retrofit gas plants * forcing gas turbines from one year on * fixing efficiency of hydrogen gas turbines * bug fixing params * dropping gas plants after forcing them to retrofit * make unravelling of oil bus consistent with new refineries I.e. separate DE oil primary from DE oil. * update exporter * ci: add validator * select images and add repo owner path * Update PULL_REQUEST_TEMPLATE.md * Update Changelog.md * update submodule * Update .pre-commit-config.yaml * remove reuse check * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Using config_provider for additional functionality exclusively (#154) * using exclusively config_provider * moving bc to solving config * style changes * minor style changes * cosmetic changes * add back default values of constraints * remove unused function arguments * small fix for exporter * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: Michael Lindner Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Create .git-blame-ignore-revs (#158) * minor changes for running single node network (#160) * minor changes for running single node network * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Fix hydrogen import boundary condition (#159) * include retrofitted and Kernnetz pipelines for hydrogen import boundary condition * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * bugfixing mock_snakemake and fullfilling prerequisites for review --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * first stab at enabling H2 and H2 retrofit gas plants * forcing gas turbines from one year on * fix merge bugs * change exporter to report hydrogen plants * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * change name of retrofitted H2 * updating exporter * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix bus0 auf H2 plants * finish rename of h2 retrofit * default efficiency = 1 --------- Co-authored-by: Tom Brown Co-authored-by: Michael Lindner Co-authored-by: lkstrp Co-authored-by: Micha Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Julian Geis --- config/config.yaml | 14 ++- workflow/Snakefile | 1 + workflow/scripts/export_ariadne_variables.py | 51 +++++++- workflow/scripts/modify_prenetwork.py | 115 +++++++++++++++++++ 4 files changed, 174 insertions(+), 7 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index cb6e905bb..4c926a8c4 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240807unravelCH4coarse + prefix: 20240809H2_plants_retrofit name: # - CurrentPolicies - KN2045_Bal_v4 @@ -479,6 +479,12 @@ plotting: load: "#111100" H2 pipeline (Kernnetz): '#6b3161' renewable oil: '#c9c9c9' + urban central H2 retrofit CHP: '#ff0000' + H2 retrofit OCGT: '#ff0000' + H2 retrofit CCGT: '#ff0000' + H2 OCGT: '#ff0000' + H2 CCGT: '#ff0000' + urban central H2 CHP: '#ff0000' renewable gas: '#e05b09' countries: - all @@ -501,6 +507,12 @@ electricity: custom_file: resources/german_chp.csv estimate_renewable_capacities: year: 2019 + H2_plants_DE: + enable: true + start: 2030 # should be < force + force: 2035 + cost_factor: 0.15 # repurposing cost of OCGT gas to H2 in % investment cost in EUR/MW source: Christidis et al (2023) - H2-Ready-Gaskraftwerke, Table 3 https://reiner-lemoine-institut.de/wp-content/uploads/2023/11/RLI-Studie-H2-ready_DE.pdf + efficiency_loss: 0.05 pypsa_eur: Bus: diff --git a/workflow/Snakefile b/workflow/Snakefile index a6dfdbf8e..b63b9dfee 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -184,6 +184,7 @@ rule modify_prenetwork: transmission_costs=config_provider("costs", "transmission"), biomass_must_run=config_provider("must_run_biomass"), clustering=config_provider("clustering", "temporal", "resolution_sector"), + H2_plants=config_provider("electricity", "H2_plants_DE"), land_transport_electric_share=config_provider( "sector", "land_transport_electric_share" ), diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 59f0bef17..055c23ec2 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -567,7 +567,17 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): # Q: What about retrofitted gas power plants? -> Lisa var[cap_string + "Electricity|Hydrogen"] = var[ cap_string + "Electricity|Hydrogen|FC" - ] = capacities_electricity.get("H2 Fuel Cell", 0) + ] = capacities_electricity.reindex( + [ + "H2 Fuel Cell", + "H2 OCGT", + "H2 CCGT", + "urban central H2 CHP", + "H2 retrofit OCGT", + "H2 retrofit CCGT", + "urban central H2 retrofit CHP", + ] + ).sum() var[cap_string + "Electricity|Nuclear"] = capacities_electricity.get("nuclear", 0) @@ -796,6 +806,10 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): } ).sum() + var[cap_string + "Heat|Hydrogen"] = capacities_central_heat.reindex( + ["urban central H2 CHP", "urban central H2 retrofit CHP"] + ).sum() + # !!! Missing in the Ariadne database var[cap_string + "Heat|Gas"] = ( @@ -1362,9 +1376,17 @@ def get_secondary_energy(n, region, _industry_demand): + var["Secondary Energy|Electricity|Wind"] ) - var["Secondary Energy|Electricity|Hydrogen"] = electricity_supply.get( - "H2 Fuel Cell", 0 - ) + var["Secondary Energy|Electricity|Hydrogen"] = electricity_supply.reindex( + [ + "H2 Fuel Cell", + "H2 OCGT", + "H2 CCGT", + "urban central H2 CHP", + "H2 retrofit OCGT", + "H2 retrofit CCGT", + "urban central H2 retrofit CHP", + ] + ).sum() # ! Add H2 Turbines if they get implemented var["Secondary Energy|Electricity|Waste"] = electricity_supply.filter( @@ -1470,6 +1492,9 @@ def get_secondary_energy(n, region, _industry_demand): # var["Secondary Energy|Heat|Nuclear"] = \ # var["Secondary Energy|Heat|Other"] = \ # ! Not implemented + var["Secondary Energy|Heat|Hydrogen"] = heat_supply.filter( + like="urban central H2" + ).sum() var["Secondary Energy|Heat|Oil"] = heat_supply.filter( like="urban central oil" @@ -1508,6 +1533,7 @@ def get_secondary_energy(n, region, _industry_demand): + var["Secondary Energy|Heat|Other"] + var["Secondary Energy|Heat|Coal"] + var["Secondary Energy|Heat|Waste"] + + var["Secondary Energy|Heat|Hydrogen"] ) assert isclose( var["Secondary Energy|Heat"], @@ -1671,10 +1697,23 @@ def get_secondary_energy(n, region, _industry_demand): .multiply(MWh2PJ) ) - var["Secondary Energy Input|Hydrogen|Electricity"] = hydrogen_withdrawal.get( - "H2 Fuel Cell", 0 + H2_CHP_E_usage, H2_CHP_H_usage = get_CHP_E_and_H_usage(n, "H2", region) + + var["Secondary Energy Input|Hydrogen|Electricity"] = ( + hydrogen_withdrawal.reindex( + [ + "H2 Fuel Cell", + "H2 OCGT", + "H2 CCGT", + "H2 retrofit OCGT", + "H2 retrofit CCGT", + ] + ).sum() + + H2_CHP_E_usage ) + var["Secondary Energy Input|Hydrogen|Heat"] = H2_CHP_H_usage + var["Secondary Energy Input|Hydrogen|Gases"] = hydrogen_withdrawal.get( "Sabatier", 0 ) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 4c734be99..acd711dcf 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -679,6 +679,111 @@ def aladin_mobility_demand(n): n.stores.loc[dsm_i].e_nom *= pd.Series(factor.values, index=dsm_i) +def add_hydrogen_turbines(n): + """ + This adds links that instead of a gas turbine use a hydrogen turbine. + + It is assumed that the efficiency stays the same. This function is + only applied to German nodes. + """ + logger.info("Adding hydrogen turbine technologies for Germany.") + + gas_carrier = ["OCGT", "CCGT"] + for carrier in gas_carrier: + gas_plants = n.links[ + (n.links.carrier == carrier) + & (n.links.index.str[:2] == "DE") + & (n.links.p_nom_extendable) + ].index + if gas_plants.empty: + continue + h2_plants = n.links.loc[gas_plants].copy() + h2_plants.carrier = h2_plants.carrier.str.replace(carrier, "H2 " + carrier) + h2_plants.index = h2_plants.index.str.replace(carrier, "H2 " + carrier) + h2_plants.bus0 = h2_plants.bus1 + " H2" + h2_plants.bus2 = "" + h2_plants.efficiency2 = 1 + # add the new links + n.import_components_from_dataframe(h2_plants, "Link") + + # special handling of CHPs + gas_plants = n.links[ + (n.links.carrier == "urban central gas CHP") + & (n.links.index.str[:2] == "DE") + & (n.links.p_nom_extendable) + ].index + h2_plants = n.links.loc[gas_plants].copy() + h2_plants.carrier = h2_plants.carrier.str.replace("gas", "H2") + h2_plants.index = h2_plants.index.str.replace("gas", "H2") + h2_plants.bus0 = h2_plants.bus1 + " H2" + h2_plants.bus3 = "" + h2_plants.efficiency3 = 1 + n.import_components_from_dataframe(h2_plants, "Link") + + +def force_retrofit(n, params): + """ + This function forces the retrofit of gas turbines from params["force"] on. + + Extendable gas links are deleted. + """ + + logger.info("Forcing retrofit of gas turbines to hydrogen turbines.") + + gas_carrier = ["OCGT", "CCGT", "urban central gas CHP"] + # deleting extendable gas turbine plants + to_drop = n.links[ + (n.links.carrier.isin(gas_carrier)) + & (n.links.p_nom_extendable) + & (n.links.index.str[:2] == "DE") + ].index + n.links.drop(to_drop, inplace=True) + + # forcing retrofit + for carrier in ["OCGT", "CCGT"]: + gas_plants = n.links[ + (n.links.carrier == carrier) + & (n.links.index.str[:2] == "DE") + & (n.links.build_year >= params["start"]) + ].index + if gas_plants.empty: + continue + + h2_plants = n.links.loc[gas_plants].copy() + h2_plants.carrier = h2_plants.carrier.str.replace( + carrier, "H2 retrofit " + carrier + ) + h2_plants.index = h2_plants.index.str.replace(carrier, "H2 retrofit " + carrier) + h2_plants.bus0 = h2_plants.bus1 + " H2" + h2_plants.bus2 = "" + h2_plants.efficiency -= params["efficiency_loss"] + h2_plants.efficiency2 = 1 # default value + h2_plants.capital_cost *= 1 + params["cost_factor"] + # add the new links + n.import_components_from_dataframe(h2_plants, "Link") + n.links.drop(gas_plants, inplace=True) + + # special handling of CHPs + gas_plants = n.links[ + (n.links.carrier == "urban central gas CHP") + & (n.links.index.str[:2] == "DE") + & (n.links.build_year >= params["start"]) + ].index + if gas_plants.empty: + return + + h2_plants = n.links.loc[gas_plants].copy() + h2_plants.carrier = h2_plants.carrier.str.replace("gas", "H2 retrofit") + h2_plants.index = h2_plants.index.str.replace("gas", "H2 retrofit") + h2_plants.bus0 = h2_plants.bus1 + " H2" + h2_plants.bus3 = "" + h2_plants.efficiency -= params["efficiency_loss"] + h2_plants.efficiency3 = 1 # default value + h2_plants.capital_cost *= 1 + params["cost_factor"] + n.import_components_from_dataframe(h2_plants, "Link") + n.links.drop(gas_plants, inplace=True) + + if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -759,4 +864,14 @@ def aladin_mobility_demand(n): snakemake.params.biomass_must_run["regions"], ) + if snakemake.params.H2_plants["enable"]: + if snakemake.params.H2_plants["start"] <= int( + snakemake.wildcards.planning_horizons + ): + add_hydrogen_turbines(n) + if snakemake.params.H2_plants["force"] <= int( + snakemake.wildcards.planning_horizons + ): + force_retrofit(n, snakemake.params.H2_plants) + n.export_to_netcdf(snakemake.output.network) From db914f65b9e8373ee22c51253f239152b249fd52 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 9 Aug 2024 16:41:53 +0200 Subject: [PATCH 527/669] minor fixes --- .github/PULL_REQUEST_TEMPLATE.md | 2 +- Changelog.md | 2 ++ workflow/scripts/export_ariadne_variables.py | 4 ++-- 3 files changed, 5 insertions(+), 3 deletions(-) diff --git a/.github/PULL_REQUEST_TEMPLATE.md b/.github/PULL_REQUEST_TEMPLATE.md index c9b3172ca..b247bff47 100644 --- a/.github/PULL_REQUEST_TEMPLATE.md +++ b/.github/PULL_REQUEST_TEMPLATE.md @@ -5,4 +5,4 @@ Before asking for a review for this PR make sure to complete the following check - [ ] One or several figures that validate the changes in the PR have been posted as a comment - [ ] A brief description of the changes has been added to `Changelog.md` - [ ] The latest `main` has been merged into the PR -- [ ] The config has a new prefix of the format `YYYYMMDDdescriptivetitle +- [ ] The config has a new prefix of the format `YYYYMMDDdescriptive_title` diff --git a/Changelog.md b/Changelog.md index 54f672ecc..d85505ca8 100644 --- a/Changelog.md +++ b/Changelog.md @@ -1,5 +1,7 @@ # Changelog +- add retrofit of gas turbines to H2, and H2 turbines +- unravel gas bus and turn off gas network - fix the hydrogen import boundary condition - add primary oil bus and account for refinery emissions - added Changelog file diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 055c23ec2..ca5e19256 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1266,7 +1266,7 @@ def get_primary_energy(n, region): var["Primary Energy|Wind"] = renewable_electricity.filter(like="wind").sum() assert isclose( - renewable_electricity.sum() - solar_thermal_heat, + renewable_electricity.sum() + solar_thermal_heat, ( var["Primary Energy|Hydro"] + var["Primary Energy|Solar"] @@ -2367,7 +2367,7 @@ def get_emissions(n, region, _energy_totals): ) # Assert neglible numerical errors / leakage in stored CO2 - assert co2_storage.get("co2 stored", 0) < 0.1 + assert co2_storage.get("co2 stored", 0) < 1.0 co2_storage.drop("co2 stored", inplace=True, errors="ignore") CHP_emissions = ( From 4aab9c834e116a1dfcfab2a8335a5a2b75a586d1 Mon Sep 17 00:00:00 2001 From: Micha Date: Fri, 9 Aug 2024 17:31:53 +0200 Subject: [PATCH 528/669] Include spain (#163) * edit default focus weights * update high spatial weights as well * Add 'ES' to list of countries * aviod focus_weights > 1 * request more plots from validator --- .github/workflows/validate.yml | 3 ++ config/config.yaml | 70 ++++++++++++++++++---------------- 2 files changed, 41 insertions(+), 32 deletions(-) diff --git a/.github/workflows/validate.yml b/.github/workflows/validate.yml index 2430f1592..7be2fb488 100644 --- a/.github/workflows/validate.yml +++ b/.github/workflows/validate.yml @@ -59,5 +59,8 @@ jobs: KN2045_Bal_v4/ariadne/primary_energy.png KN2045_Bal_v4/ariadne/secondary_energy.png KN2045_Bal_v4/ariadne/final_energy.png + ariadne_all/Trade-Secondary-Energy-Hydrogen-Volume.png + ariadne_all/Trade-Secondary-Energy-Liquids-Hydrogen-Volume.png + ariadne_all/Capacity-Electricity-Solar.png " repo_private_key: ${{ secrets.REPO_PLOTS_PRIVATE_KEY }} diff --git a/config/config.yaml b/config/config.yaml index 4c926a8c4..2b6577dc9 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240809H2_plants_retrofit + prefix: 20240809withSpain name: # - CurrentPolicies - KN2045_Bal_v4 @@ -82,7 +82,7 @@ existing_capacities: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" -countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'PL', 'SE'] +countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'PL', 'SE', 'ES'] # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#snapshots snapshots: @@ -132,37 +132,43 @@ enable: clustering: # simplify_network: # to_substations: true + # Code snippet for editing focus_weights + # fw = pd.Series(snakemake.config["clustering"]["focus_weights"]) + # fw = fw.div(fw.min()).round() + # fw["ES"] = 1 + # print(fw.div(fw.sum()).subtract(5e-5).round(4).to_dict().__repr__().replace(",","\n")) focus_weights: - # 22 nodes: 8 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" - 'DE': 0.3636 # 8/22 - 'AT': 0.0455 # 1/22 - 'BE': 0.0455 - 'CH': 0.0455 - 'CZ': 0.0455 - 'DK': 0.0909 # 2/22 - 'FR': 0.0454 - 'GB': 0.0909 # 2/22 - 'LU': 0.0454 - 'NL': 0.0454 - 'NO': 0.0454 - 'PL': 0.0454 - 'SE': 0.0454 -# # high spatial resolution: change clusters to 44 -# focus_weights: -# # 44 nodes: 30 for Germany, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" (high spatial) -# 'DE': 0.6818 # 30/44 -# 'AT': 0.0227 # 1/44 -# 'BE': 0.0227 -# 'CH': 0.0227 -# 'CZ': 0.0227 -# 'DK': 0.0455 # 2/44 -# 'FR': 0.0227 -# 'GB': 0.0455 -# 'LU': 0.0227 -# 'NL': 0.0227 -# 'NO': 0.0227 -# 'PL': 0.0227 -# 'SE': 0.0227 + # 23 nodes: 8 for Germany, 1 for Spain, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" + 'DE': 0.3478 + 'AT': 0.0434 + 'BE': 0.0434 + 'CH': 0.0434 + 'CZ': 0.0434 + 'DK': 0.0869 + 'FR': 0.0434 + 'GB': 0.0869 + 'LU': 0.0434 + 'NL': 0.0434 + 'NO': 0.0434 + 'PL': 0.0434 + 'SE': 0.0434 + 'ES': 0.0434 + # high spatial resolution: change clusters to 45 + # 45 nodes: 30 for Germany, 1 for Spain, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" + # 'DE': 0.6666 + # 'AT': 0.0222 + # 'BE': 0.0222 + # 'CH': 0.0222 + # 'CZ': 0.0222 + # 'DK': 0.0444 + # 'FR': 0.0222 + # 'GB': 0.0444 + # 'LU': 0.0222 + # 'NL': 0.0222 + # 'NO': 0.0222 + # 'PL': 0.0222 + # 'SE': 0.0222 + # 'ES': 0.0222 temporal: resolution_sector: 365H From 1fef55b89d6bd3f3f1350eff2d38c93a7f74aa84 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 13 Aug 2024 13:16:51 +0200 Subject: [PATCH 529/669] [pre-commit.ci] pre-commit autoupdate (#165) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit updates: - [github.com/psf/black-pre-commit-mirror: 24.4.2 → 24.8.0](https://github.com/psf/black-pre-commit-mirror/compare/24.4.2...24.8.0) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- .pre-commit-config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index b0b0eb946..dbadbd6d0 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -48,7 +48,7 @@ repos: # Formatting with "black" coding style - repo: https://github.com/psf/black-pre-commit-mirror - rev: 24.4.2 + rev: 24.8.0 hooks: # Format Python files - id: black From 8dd49cbf6c7538544cadc35eae4365b2c0233a7b Mon Sep 17 00:00:00 2001 From: Micha Date: Tue, 13 Aug 2024 16:04:58 +0200 Subject: [PATCH 530/669] Update post-discretization size for H2 (#167) --- config/config.yaml | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 2b6577dc9..b59b6e536 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -339,16 +339,16 @@ solving: DC: 2000 gas pipeline: 1500 gas pipeline new: 1500 - H2 pipeline: 1200 - H2 pipeline (Kernnetz): 1200 - H2 pipeline retrofitted: 1200 + H2 pipeline: 13000 + H2 pipeline (Kernnetz): 13000 + H2 pipeline retrofitted: 13000 link_threshold: DC: 0.3 gas pipeline: 0.3 gas pipeline new: 0.3 - H2 pipeline: 0.3 - H2 pipeline (Kernnetz): 0.3 - H2 pipeline retrofitted: 0.3 + H2 pipeline: 0.05 + H2 pipeline (Kernnetz): 0.05 + H2 pipeline retrofitted: 0.05 constraints: limits_capacity_max: Generator: From 004f4bc32a05de709357419b4060e04c1085417a Mon Sep 17 00:00:00 2001 From: Lukas Trippe Date: Wed, 14 Aug 2024 11:35:42 +0200 Subject: [PATCH 531/669] ci: adjust ci to new validator (#164) * validator dev * chore: remove `.gitkeep` * fix: use correct plots path * fix * fix: ignore prs from forks * remove dev mode --- .github/workflows/.gitkeep | 0 .github/workflows/validate.yml | 51 ++++++++++++++++++++++------------ 2 files changed, 34 insertions(+), 17 deletions(-) delete mode 100644 .github/workflows/.gitkeep diff --git a/.github/workflows/.gitkeep b/.github/workflows/.gitkeep deleted file mode 100644 index e69de29bb..000000000 diff --git a/.github/workflows/validate.yml b/.github/workflows/validate.yml index 7be2fb488..241fba266 100644 --- a/.github/workflows/validate.yml +++ b/.github/workflows/validate.yml @@ -13,41 +13,58 @@ concurrency: jobs: run-validation: name: Run validation + if: github.event.pull_request.head.repo.full_name == github.repository runs-on: self-hosted steps: - - uses: lkstrp/pypsa-validator@main + - uses: lkstrp/pypsa-validator@v0.1.2 with: step: run-self-hosted-validation env_file: environment.yaml snakemake_config: config/config.yaml - pre_command: "-call build_scenarios -f" + pre_command: "build_scenarios -f" + main_command: "ariadne_all" + env: + GITHUB_TOKEN: ${{ github.token }} upload-artifacts: name: Upload artifacts + if: github.event.pull_request.head.repo.full_name == github.repository needs: run-validation runs-on: self-hosted - strategy: - matrix: - include: - - {artifact_name: "results (feature branch)", path: "~/${{ github.repository }}/feature/results"} - - {artifact_name: "results (base branch)", path: "~/${{ github.repository }}/main/results"} - - {artifact_name: "validator-metadata", path: "~/${{ github.repository }}/validator-metadata.yml"} steps: - - name: Upload artifacts - ${{ matrix.artifact_name }} - uses: actions/upload-artifact@v4 + - uses: actions/upload-artifact@v4 with: - name: ${{ matrix.artifact_name }} + name: logs path: | - ${{ matrix.path }} + ~/${{ github.repository }}/validator-metadata.yml + ~/${{ github.repository }}/main/logs/ + ~/${{ github.repository }}/main/.snakemake/ + ~/${{ github.repository }}/feature/logs/ + ~/${{ github.repository }}/feature/.snakemake/ + if-no-files-found: error + retention-days: 90 + - uses: actions/upload-artifact@v4 + with: + name: results (main branch) + path: | + ~/${{ github.repository }}/main/results + if-no-files-found: error + retention-days: 90 + - uses: actions/upload-artifact@v4 + with: + name: results (feature branch) + path: | + ~/${{ github.repository }}/feature/results if-no-files-found: error retention-days: 90 comment-on-pr: name: Comment on pull request + if: github.event.pull_request.head.repo.full_name == github.repository needs: upload-artifacts runs-on: ubuntu-latest steps: - - uses: lkstrp/pypsa-validator@main + - uses: lkstrp/pypsa-validator@v0.1.2 with: step: create-comment snakemake_config: config/config.yaml @@ -59,8 +76,8 @@ jobs: KN2045_Bal_v4/ariadne/primary_energy.png KN2045_Bal_v4/ariadne/secondary_energy.png KN2045_Bal_v4/ariadne/final_energy.png - ariadne_all/Trade-Secondary-Energy-Hydrogen-Volume.png - ariadne_all/Trade-Secondary-Energy-Liquids-Hydrogen-Volume.png - ariadne_all/Capacity-Electricity-Solar.png + ariadne_comparison/Trade-Secondary-Energy-Hydrogen-Volume.png + ariadne_comparison/Trade-Secondary-Energy-Liquids-Hydrogen-Volume.png + ariadne_comparison/Capacity-Electricity-Solar.png " - repo_private_key: ${{ secrets.REPO_PLOTS_PRIVATE_KEY }} + validator_key: ${{ secrets.VALIDATOR_KEY }} From 0bd52461de1d694ae9689ffb9b78f449fe4846ee Mon Sep 17 00:00:00 2001 From: cpschau <124347782+cpschau@users.noreply.github.com> Date: Wed, 14 Aug 2024 17:27:36 +0200 Subject: [PATCH 532/669] Modify dh systems (#113) * added new script for DH modifications * function for update of urban heat loads * Preserve aggregate DH demand * remove subnodes * extra rule for egon data retrieval * Merge main * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add dh progress * adjusted demand preservation for grid losses, improved comments * change script structure; modify dh shares in csv before prepare_sector_network * added docstring for script; changed logger config; excluded snakemake input from function; renamed inputs * change snakemake input file name in Snakefile * use technology mapping from metadata * changed spelling of eGo^n and adapted reference of data set in docstring * extended docstrings; added translation of 'Fernwaerme'; load snakemake input outside function * extended changelog; added config prefix * changed date format of prefix --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Micha --- Changelog.md | 2 +- config/config.yaml | 4 +- workflow/Snakefile | 77 +++++++++-- workflow/scripts/build_egon_data.py | 85 ++++++++++++ .../scripts/modify_district_heat_share.py | 130 ++++++++++++++++++ 5 files changed, 285 insertions(+), 13 deletions(-) create mode 100644 workflow/scripts/build_egon_data.py create mode 100644 workflow/scripts/modify_district_heat_share.py diff --git a/Changelog.md b/Changelog.md index d85505ca8..f645c60eb 100644 --- a/Changelog.md +++ b/Changelog.md @@ -1,5 +1,5 @@ # Changelog - +- adapted spatial distribution of district heating demand in Germany according to data from eGo^N project - add retrofit of gas turbines to H2, and H2 turbines - unravel gas bus and turn off gas network - fix the hydrogen import boundary condition diff --git a/config/config.yaml b/config/config.yaml index b59b6e536..0c4592e66 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,9 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240809withSpain + + prefix: 20240814_districtheatingshares + name: # - CurrentPolicies - KN2045_Bal_v4 diff --git a/workflow/Snakefile b/workflow/Snakefile index b63b9dfee..5b9a791ac 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -87,6 +87,17 @@ rule clean: print("Data downloaded to data/ has not been cleaned.") +rule retrieve_egon_data: + output: + spatial="data/egon/demandregio_spatial_2018.json", + mapping="data/egon/mapping_technologies.json", + shell: + """ + wget -O {output.spatial} "https://api.opendata.ffe.de/demandregio/demandregio_spatial?id_spatial=5&year=2018" + wget -O {output.mapping} "https://api.opendata.ffe.de/demandregio/demandregio_spatial_description?id_spatial=5" + """ + + rule retrieve_ariadne_database: params: db_name=config_provider("iiasa_database", "db_name"), @@ -102,18 +113,25 @@ rule retrieve_ariadne_database: "scripts/retrieve_ariadne_database.py" -# def input_profile_offwind(w): -# return { -# f"profile_{tech}": resources(f"profile_{tech}.nc") -# for tech in ["offwind-ac", "offwind-dc"] -# if (tech in config["electricity"]["renewable_carriers"]) -# } +def input_profile_offwind(w): + return { + f"profile_{tech}": resources(f"profile_{tech}.nc") + for tech in ["offwind-ac", "offwind-dc", "offwind-float"] + if (tech in config["electricity"]["renewable_carriers"]) + } -# use rule prepare_sector_network from pypsaeur with: -# input: -# unpack(input_profile_offwind), -# # **{k: v for k, v in rules.prepare_sector_network.input.items() if k != "costs"}, -# # costs=resources("modified-costs_{planning_horizons}.csv"), + +use rule prepare_sector_network from pypsaeur with: + input: + unpack(input_profile_offwind), + **{ + k: v + for k, v in rules.prepare_sector_network.input.items() + if k != "district_heat_share" + }, + district_heat_share=resources( + "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}-modified.csv" + ), rule modify_cost_data: @@ -163,6 +181,43 @@ rule build_mobility_demand: "scripts/build_mobility_demand.py" +rule build_egon_data: + input: + demandregio_spatial="data/egon/demandregio_spatial_2018.json", + mapping_38_to_4=storage( + "https://ffeopendatastorage.blob.core.windows.net/opendata/mapping_from_4_to_38.json", + keep_local=True, + ), + mapping_technologies="data/egon/mapping_technologies.json", + nuts3=resources("nuts3_shapes.geojson"), + output: + heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), + script: + "scripts/build_egon_data.py" + + +ruleorder: modify_district_heat_share > build_district_heat_share + + +rule modify_district_heat_share: + params: + district_heating=config_provider("sector", "district_heating"), + input: + heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), + regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"), + district_heat_share=resources( + "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}.csv" + ), + output: + district_heat_share=resources( + "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}-modified.csv" + ), + resources: + mem_mb=1000, + script: + "scripts/modify_district_heat_share.py" + + rule modify_prenetwork: params: enable_kernnetz=config_provider("wasserstoff_kernnetz", "enable"), diff --git a/workflow/scripts/build_egon_data.py b/workflow/scripts/build_egon_data.py new file mode 100644 index 000000000..f51edd99c --- /dev/null +++ b/workflow/scripts/build_egon_data.py @@ -0,0 +1,85 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2024- The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT +""" +Load and prepares the data of the eGo^N DemandRegio project +about district heating in Germany on NUTS3 level. + +Inputs: + - resources/nuts3.geojson: Path to the GeoJSON file containing NUTS3 regions data. + - resources/mapping_technologies.json: Path to the JSON file containing the mapping of technologies. + - resources/demandregio_spatial.json: Path to the JSON file containing spatially resolved heating structure data from the DemandRegio project. + - resources/mapping_38_to_4.json: Path to the JSON file containing the mapping of regions. + +Outputs: + - resources/heating_technologies_nuts3.geojson: Path to the GeoJSON file where the processed heating technologies data will be saved. +""" + +import logging + +logger = logging.getLogger(__name__) +import json +import re + +import geopandas as gpd +import pandas as pd + +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + os.chdir(os.path.dirname(os.path.abspath(__file__))) + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_egon_data", + run="KN2045_Bal_v4", + ) + +logger.info("Retrieving and cleaning egon data") + +nuts3 = gpd.read_file(snakemake.input.nuts3)[ + ["index", "pop", "geometry"] +] # Keep only necessary columns + +# Parse dictionary from string +description = pd.read_json(snakemake.input.mapping_technologies).loc["resources"][ + "oep_metadata" +][0]["schema"]["fields"][5]["description"] +# Extract the part after the colon +key_value_part = description.split(":", 1)[1].strip() + +# Split into individual key-value pairs +pairs = re.split(r";\s*", key_value_part) + +# Initialize dictionary +internal_id = {} + +# Process each pair +for pair in pairs: + key, value = pair.split(":", 1) + internal_id[int(key.strip())] = value.strip() + +with open(snakemake.input.demandregio_spatial) as datafile: + data = json.load(datafile)["data"] +df = pd.DataFrame(data) + +id_region = pd.read_json(snakemake.input.mapping_38_to_4) + +df["internal_id"] = df["internal_id"].apply(lambda x: x[0]) + +df["nuts3"] = df.id_region.map(id_region.set_index(id_region.id_region_from).kuerzel_to) + +heat_tech_per_region = df.groupby([df.nuts3, df.internal_id]).sum().value.unstack() +heat_tech_per_region.rename(columns=internal_id, inplace=True) + +egon_df = heat_tech_per_region.merge(nuts3, left_on="nuts3", right_on="index") +egon_gdf = gpd.GeoDataFrame(egon_df) # Convert merged DataFrame to GeoDataFrame +egon_gdf = egon_gdf.to_crs("EPSG:4326") + +egon_gdf.to_file(snakemake.output.heating_technologies_nuts3) diff --git a/workflow/scripts/modify_district_heat_share.py b/workflow/scripts/modify_district_heat_share.py new file mode 100644 index 000000000..565bbf1a6 --- /dev/null +++ b/workflow/scripts/modify_district_heat_share.py @@ -0,0 +1,130 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2024- The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT +""" +This script modifies district heating shares based on eGo^N data for NUTS3 +regions in Germany. + +Inputs: + - resources/heating_technologies_nuts3.geojson: Path to the GeoJSON file containing heating technologies data for NUTS3 regions. + - resources/regions_onshore.geojson: Path to the GeoJSON file containing onshore regions data. + - resources/district_heat_share.csv: Path to the CSV file containing district heating shares. + +Outputs: + - resources/updated_district_heat_share.csv: Path to the CSV file where the updated district heating shares will be saved. + +Parameters: + - sector.district_heating["potential"]: Maximum potential district heating share. + - sector.district_heating["progress"]: Progress of district heating share over planning horizons. + - wildcards.planning_horizons: Planning horizon year. +""" + +import logging + +logger = logging.getLogger(__name__) +import geopandas as gpd +import pandas as pd +from shapely.geometry import Point + + +def cluster_egon(heat_techs, regions_onshore): + """ + Map NUTS3 regions of egon data to corresponding clusters according to + maximum overlap. + + Inputs: + - heat_techs (GeoDataFrame): GeoDataFrame containing heating technologies data for NUTS3 regions. + - regions_onshore (GeoDataFrame): GeoDataFrame containing onshore regions data of network clusters. + + Outputs: + - GeoDataFrame: Updated GeoDataFrame with NUTS3 regions aggregated according to cluster structure. + """ + + regions_onshore.set_index("name", inplace=True) + + # Map NUTS3 regions of egon data to corresponding clusters according to maximum overlap + + heat_techs["cluster"] = heat_techs.apply( + lambda x: regions_onshore.geometry.intersection(x.geometry).area.idxmax(), + axis=1, + ) + + # Group and aggregate by cluster + heat_techs_clustered = heat_techs.groupby("cluster").sum(numeric_only=True) + + return heat_techs_clustered + + +def update_district_heat_share(heat_techs_clustered, dh_shares): + """ + Update district heating demands of clusters according to shares in eGo^N + data on NUTS3 level for Germany taking into account expansion of systems. + + Inputs: + - heat_techs_clustered (GeoDataFrame): GeoDataFrame containing clustered heating technologies data. + - dh_shares (DataFrame): DataFrame containing district heating shares and urban fractions to be updated. + + Outputs: + - DataFrame: Updated DataFrame with adjusted district heating shares and urban fractions. + """ + + nodal_dh_shares = heat_techs_clustered[ + "Fernwaerme" + ] / heat_techs_clustered.drop( # Fernwaerme is the German term for district heating + "pop", axis=1 + ).sum( + axis=1 + ) + + urban_fraction = dh_shares["urban fraction"] + max_dh_share = snakemake.params.district_heating["potential"] + progress = snakemake.params.district_heating["progress"][ + int(snakemake.wildcards.planning_horizons) + ] + + diff = ((urban_fraction * max_dh_share) - nodal_dh_shares).clip(lower=0).dropna() + nodal_dh_shares += diff * progress + nodal_dh_shares = nodal_dh_shares.filter(regex="DE") + dh_shares.loc[nodal_dh_shares.index, "district fraction of node"] = nodal_dh_shares + dh_shares.loc[nodal_dh_shares.index, "urban fraction"] = pd.concat( + [urban_fraction.loc[nodal_dh_shares.index], nodal_dh_shares], axis=1 + ).max(axis=1) + + return dh_shares + + +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + os.chdir(os.path.dirname(os.path.abspath(__file__))) + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "modify_district_heat_share", + simpl="", + clusters=44, + opts="", + ll="vopt", + sector_opts="none", + planning_horizons="2020", + run="KN2045_Bal_v4", + ) + + logging.basicConfig(level=snakemake.config["logging"]["level"]) + logger.info("Updating district heating shares with egon data") + + heat_techs = gpd.read_file(snakemake.input.heating_technologies_nuts3) + regions_onshore = gpd.read_file(snakemake.input.regions_onshore) + dh_shares = pd.read_csv(snakemake.input.district_heat_share, index_col=0) + + heat_techs_clustered = cluster_egon(heat_techs, regions_onshore) + + dh_shares = update_district_heat_share(heat_techs_clustered, dh_shares) + + dh_shares.to_csv(snakemake.output.district_heat_share) From d87f4af0ee5196e7f7d0aa3bfa422c839532e947 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Thu, 15 Aug 2024 10:09:42 +0200 Subject: [PATCH 533/669] Limit German CO2 sequestration in each investment year (#170) * add_func: use same function for add_max/min_capacity_limits to avoid boilerplate code repetition * add_func: stores in add_{min/max}_limits; limit DE co2 sequestration Extend the functions add_{min/max}_limits in additional_functionality.py to allow stores. Add limits to DE CO2 sequestration based on feasibility constraints. E.g. since EU target for 2030 is 50 MtCO2/a sequestration in Net Zero Industry Act, limit DE to 10 MtCO2/a, then relax with subsequent years. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * check if constraint exists inside loop --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Michael Lindner Co-authored-by: Micha --- config/config.yaml | 13 +- workflow/scripts/additional_functionality.py | 136 +++++++------------ 2 files changed, 60 insertions(+), 89 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 0c4592e66..619f308ad 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,9 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - - prefix: 20240814_districtheatingshares - + prefix: 20240814limitseq name: # - CurrentPolicies - KN2045_Bal_v4 @@ -378,6 +376,15 @@ solving: 2035: 400 2040: 400 2045: 400 + Store: + co2 sequestered: + DE: + 2020: 0 + 2025: 0 + 2030: 10000 + 2035: 20000 + 2040: 50000 + 2045: 80000 limits_capacity_min: Generator: onwind: diff --git a/workflow/scripts/additional_functionality.py b/workflow/scripts/additional_functionality.py index 37afc6e9d..3d8ddc105 100644 --- a/workflow/scripts/additional_functionality.py +++ b/workflow/scripts/additional_functionality.py @@ -9,24 +9,24 @@ logger = logging.getLogger(__name__) -def add_min_capacity_limits(n, investment_year, limits_capacity_min): +def add_capacity_limits(n, investment_year, limits_capacity, sense="maximum"): - for c in n.iterate_components(limits_capacity_min): - logger.info(f"Adding minimum constraints for {c.list_name}") + for c in n.iterate_components(limits_capacity): + logger.info(f"Adding {sense} constraints for {c.list_name}") - for carrier in limits_capacity_min[c.name]: + attr = "e" if c.name == "Store" else "p" + units = "MWh or tCO2" if c.name == "Store" else "MW" - for ct in limits_capacity_min[c.name][carrier]: - # check if the limit is defined for the investement year - if ( - investment_year - not in limits_capacity_min[c.name][carrier][ct].keys() - ): + for carrier in limits_capacity[c.name]: + + for ct in limits_capacity[c.name][carrier]: + if investment_year not in limits_capacity[c.name][carrier][ct].keys(): continue - limit = 1e3 * limits_capacity_min[c.name][carrier][ct][investment_year] + + limit = 1e3 * limits_capacity[c.name][carrier][ct][investment_year] logger.info( - f"Adding constraint on {c.name} {carrier} capacity in {ct} to be greater than {limit} MW" + f"Adding constraint on {c.name} {carrier} capacity in {ct} to be {sense} {limit} {units}" ) valid_components = ( @@ -35,92 +35,52 @@ def add_min_capacity_limits(n, investment_year, limits_capacity_min): & ~c.df.carrier.str.contains("thermal") ) # exclude solar thermal - existing_index = c.df.index[valid_components & ~c.df.p_nom_extendable] - extendable_index = c.df.index[valid_components & c.df.p_nom_extendable] + existing_index = c.df.index[ + valid_components & ~c.df[attr + "_nom_extendable"] + ] + extendable_index = c.df.index[ + valid_components & c.df[attr + "_nom_extendable"] + ] - existing_capacity = c.df.loc[existing_index, "p_nom"].sum() + existing_capacity = c.df.loc[existing_index, attr + "_nom"].sum() logger.info( - f"Existing {c.name} {carrier} capacity in {ct}: {existing_capacity} MW" + f"Existing {c.name} {carrier} capacity in {ct}: {existing_capacity} {units}" ) - p_nom = n.model[c.name + "-p_nom"].loc[extendable_index] + nom = n.model[c.name + "-" + attr + "_nom"].loc[extendable_index] - lhs = p_nom.sum() + lhs = nom.sum() - cname = f"capacity_minimum-{ct}-{c.name}-{carrier.replace(' ','-')}" + cname = f"capacity_{sense}-{ct}-{c.name}-{carrier.replace(' ','-')}" - n.model.add_constraints( - lhs >= limit - existing_capacity, name=f"GlobalConstraint-{cname}" - ) - if cname not in n.global_constraints.index: - n.add( - "GlobalConstraint", - cname, - constant=limit, - sense=">=", - type="", - carrier_attribute="", + if cname in n.global_constraints.index: + logger.warning( + f"Global constraint {cname} already exists. Skipping." ) - - -def add_max_capacity_limits(n, investment_year, limits_capacity_max): - - for c in n.iterate_components(limits_capacity_max): - logger.info(f"Adding maximum constraints for {c.list_name}") - - for carrier in limits_capacity_max[c.name]: - - for ct in limits_capacity_max[c.name][carrier]: - if ( - investment_year - not in limits_capacity_max[c.name][carrier][ct].keys() - ): continue - limit = 1e3 * limits_capacity_max[c.name][carrier][ct][investment_year] - - valid_components = ( - (c.df.index.str[:2] == ct) - & (c.df.carrier.str[: len(carrier)] == carrier) - & ~c.df.carrier.str.contains("thermal") - ) # exclude solar thermal - - existing_index = c.df.index[valid_components & ~c.df.p_nom_extendable] - extendable_index = c.df.index[valid_components & c.df.p_nom_extendable] - existing_capacity = c.df.loc[existing_index, "p_nom"].sum() - - logger.info( - f"Existing {c.name} {carrier} capacity in {ct}: {existing_capacity} MW" - ) - logger.info( - f"Adding constraint on {c.name} {carrier} capacity in {ct} to be smaller than {limit} MW" - ) - - p_nom = n.model[c.name + "-p_nom"].loc[extendable_index] - - lhs = p_nom.sum() - - cname = f"capacity_maximum-{ct}-{c.name}-{carrier.replace(' ','-')}" - if limit - existing_capacity <= 0: - n.model.add_constraints(lhs <= 0, name=f"GlobalConstraint-{cname}") - logger.warning( - f"Existing capacity in {ct} for carrier {carrier} already exceeds the limit of {limit} MW. Limiting capacity expansion for this investment period to 0." - ) - else: + if sense == "maximum": + if limit - existing_capacity <= 0: + n.model.add_constraints( + lhs <= 0, name=f"GlobalConstraint-{cname}" + ) + logger.warning( + f"Existing capacity in {ct} for carrier {carrier} already exceeds the limit of {limit} MW. Limiting capacity expansion for this investment period to 0." + ) + else: + n.model.add_constraints( + lhs <= limit - existing_capacity, + name=f"GlobalConstraint-{cname}", + ) + elif sense == "minimum": n.model.add_constraints( - lhs <= limit - existing_capacity, + lhs >= limit - existing_capacity, name=f"GlobalConstraint-{cname}", ) - if cname not in n.global_constraints.index: - n.add( - "GlobalConstraint", - cname, - constant=limit, - sense="<=", - type="", - carrier_attribute="", - ) + else: + logger.error("sense {sense} not recognised") + sys.exit() def h2_import_limits(n, investment_year, limits_volume_max): @@ -571,9 +531,13 @@ def additional_functionality(n, snapshots, snakemake): investment_year = int(snakemake.wildcards.planning_horizons[-4:]) constraints = snakemake.params.solving["constraints"] - add_min_capacity_limits(n, investment_year, constraints["limits_capacity_min"]) + add_capacity_limits( + n, investment_year, constraints["limits_capacity_min"], "minimum" + ) - add_max_capacity_limits(n, investment_year, constraints["limits_capacity_max"]) + add_capacity_limits( + n, investment_year, constraints["limits_capacity_max"], "maximum" + ) if int(snakemake.wildcards.clusters) != 1: h2_import_limits(n, investment_year, constraints["limits_volume_max"]) From 2e10863c1cf41e97992431fff10111921ee1c73e Mon Sep 17 00:00:00 2001 From: Lukas Trippe Date: Thu, 15 Aug 2024 13:09:16 +0200 Subject: [PATCH 534/669] fix (#169) --- .github/workflows/validate.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/validate.yml b/.github/workflows/validate.yml index 241fba266..fcec4afed 100644 --- a/.github/workflows/validate.yml +++ b/.github/workflows/validate.yml @@ -24,7 +24,7 @@ jobs: pre_command: "build_scenarios -f" main_command: "ariadne_all" env: - GITHUB_TOKEN: ${{ github.token }} + GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} upload-artifacts: name: Upload artifacts From 33916de6c71285421a1c2a1ef0cbbe024d0f2a39 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Thu, 15 Aug 2024 17:26:02 +0200 Subject: [PATCH 535/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 0d4800522..ae2271703 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 0d480052260ccc00d087b10b76fcbf3b7fb4c00c +Subproject commit ae227170394439d5305b19fc7564155717c6c863 From 0e5379956979b82689b82c9de97718d296f0b80c Mon Sep 17 00:00:00 2001 From: Lukas Trippe Date: Fri, 16 Aug 2024 19:59:29 +0200 Subject: [PATCH 536/669] ci: add dependabot (#172) --- .github/dependabot.yml | 14 ++++++++++++++ 1 file changed, 14 insertions(+) create mode 100644 .github/dependabot.yml diff --git a/.github/dependabot.yml b/.github/dependabot.yml new file mode 100644 index 000000000..f8f779b59 --- /dev/null +++ b/.github/dependabot.yml @@ -0,0 +1,14 @@ +# dependabot +# Ref: https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuration-options-for-the-dependabot.yml-file +# ------------------------------------------------------------------------------ +version: 2 +updates: +- package-ecosystem: github-actions + directory: / + schedule: + interval: monthly + groups: + # open a single pull-request for all GitHub actions updates + github-actions: + patterns: + - '*' From 77f0bddc38054718b8b09bc4e7de03aff3e3e5af Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Mon, 19 Aug 2024 08:52:08 +0000 Subject: [PATCH 537/669] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- workflow/scripts/modify_dh_systems.py | 27 +++++++++++++++++---------- 1 file changed, 17 insertions(+), 10 deletions(-) diff --git a/workflow/scripts/modify_dh_systems.py b/workflow/scripts/modify_dh_systems.py index 7585a799c..dc3792551 100644 --- a/workflow/scripts/modify_dh_systems.py +++ b/workflow/scripts/modify_dh_systems.py @@ -1,18 +1,21 @@ +# -*- coding: utf-8 -*- import logging logger = logging.getLogger(__name__) -import pandas as pd -import numpy as np -import matplotlib.pyplot as plt -import geopandas as gpd -from shapely.geometry import Point import json + +import geopandas as gpd +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd import pypsa +from shapely.geometry import Point def load_egon(): """ - Load and prepares the egon data about district heating in Germany on NUTS3 level. + Load and prepares the egon data about district heating in Germany on NUTS3 + level. Returns: GeoDataFrame: A GeoDataFrame containing the processed egon data. @@ -57,8 +60,11 @@ def load_egon(): def update_urban_loads(n_pre, egon_gdf): """ - Update district heating demands of clusters according to shares in egon data on NUTS3 level for Germany. - Other heat loads are adjusted accordingly to ensure consistency of the nodal heat demand. + Update district heating demands of clusters according to shares in egon + data on NUTS3 level for Germany. + + Other heat loads are adjusted accordingly to ensure consistency of + the nodal heat demand. """ n = n_pre.copy() @@ -141,7 +147,8 @@ def update_urban_loads(n_pre, egon_gdf): def prepare_subnodes(egon_gdf, head=40): """ - Prepare subnodes for the network based on the Triebs data and the egon data. + Prepare subnodes for the network based on the Triebs data and the egon + data. """ # TODO: Embed I&O in snakemake rule, add potentials, match CHP capacities @@ -280,7 +287,7 @@ def add_subnodes(n, subnodes, head=40): def modify_chps(chps): """ - Modify the CHP dataframe to include the subnodes + Modify the CHP dataframe to include the subnodes. """ chps["subnode"] = chps.apply( From 1eef9c6a9dba28a9bd286a01661089c28ab134e5 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Mon, 19 Aug 2024 13:25:58 +0200 Subject: [PATCH 538/669] Bump lkstrp/pypsa-validator in the github-actions group (#173) Bumps the github-actions group with 1 update: [lkstrp/pypsa-validator](https://github.com/lkstrp/pypsa-validator). Updates `lkstrp/pypsa-validator` from 0.1.2 to 0.1.3 - [Release notes](https://github.com/lkstrp/pypsa-validator/releases) - [Commits](https://github.com/lkstrp/pypsa-validator/compare/v0.1.2...v0.1.3) --- updated-dependencies: - dependency-name: lkstrp/pypsa-validator dependency-type: direct:production update-type: version-update:semver-patch dependency-group: github-actions ... Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- .github/workflows/validate.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/validate.yml b/.github/workflows/validate.yml index fcec4afed..fb48776cf 100644 --- a/.github/workflows/validate.yml +++ b/.github/workflows/validate.yml @@ -16,7 +16,7 @@ jobs: if: github.event.pull_request.head.repo.full_name == github.repository runs-on: self-hosted steps: - - uses: lkstrp/pypsa-validator@v0.1.2 + - uses: lkstrp/pypsa-validator@v0.1.3 with: step: run-self-hosted-validation env_file: environment.yaml @@ -64,7 +64,7 @@ jobs: needs: upload-artifacts runs-on: ubuntu-latest steps: - - uses: lkstrp/pypsa-validator@v0.1.2 + - uses: lkstrp/pypsa-validator@v0.1.3 with: step: create-comment snakemake_config: config/config.yaml From 7bc57492e980846913b7884d7dacb1cc31cd98e1 Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 20 Aug 2024 16:59:01 +0200 Subject: [PATCH 539/669] =?UTF-8?q?changed=20data=20source=20to=20Fernw?= =?UTF-8?q?=C3=A4rmeatlas;=20changed=20script=20structure;=20included=20CH?= =?UTF-8?q?Ps?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- config/config.yaml | 3 +- workflow/Snakefile | 66 ++-- .../scripts/add_district_heating_subnodes.py | 194 ++++++++++ workflow/scripts/build_existing_chp_de.py | 48 ++- workflow/scripts/modify_dh_systems.py | 336 ------------------ 5 files changed, 286 insertions(+), 361 deletions(-) create mode 100644 workflow/scripts/add_district_heating_subnodes.py delete mode 100644 workflow/scripts/modify_dh_systems.py diff --git a/config/config.yaml b/config/config.yaml index 619f308ad..1d895fe83 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240814limitseq + prefix: 20242008_dh_subnodes_off name: # - CurrentPolicies - KN2045_Bal_v4 @@ -222,6 +222,7 @@ sector: 2040: 0.6 2045: 0.8 2050: 1.0 + add_subnodes: false central_heat_vent: true co2_spatial: true biomass_spatial: true diff --git a/workflow/Snakefile b/workflow/Snakefile index 4a0b45309..e0f63abd2 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -181,26 +181,6 @@ rule build_mobility_demand: "scripts/build_mobility_demand.py" -rule modify_dh_systems: - params: - enable_subnodes_de=config_provider("district_heating", "enable_subnodes_de"), - input: - network=RESULTS - + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", - fn="data/demandregio_spatial.json", - fn_map="data/mapping_from_4_to_38.json", - nuts3=resources("nuts3_shapes.geojson"), - regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"), - triebs="data/Gesamtdaten_Triebs.xlsx", - output: - network=RESULTS - + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc", - resources: - mem_mb=1000, - script: - "scripts/modify_prenetwork.py" - - rule build_egon_data: input: demandregio_spatial="data/egon/demandregio_spatial_2018.json", @@ -216,6 +196,28 @@ rule build_egon_data: "scripts/build_egon_data.py" +rule add_district_heating_subnodes: + params: + district_heating=config_provider("sector", "district_heating"), + input: + network=RESULTS + + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), + nuts3=resources("nuts3_shapes.geojson"), + regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"), + fernwaermeatlas="data/fernwaermeatlas/Fernwärmeatlas_öffentlich.xlsx", + output: + network=RESULTS + + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc", + district_heating_subnodes=resources( + "district_heating_subnodes_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" + ), + resources: + mem_mb=1000, + script: + "scripts/add_district_heating_subnodes.py" + + ruleorder: modify_district_heat_share > build_district_heat_share @@ -348,6 +350,10 @@ rule retrieve_mastr: rule build_existing_chp_de: + params: + add_district_heating_subnodes=config_provider( + "sector", "district_heating", "add_subnodes" + ), input: mastr_biomass="data/mastr/bnetza_open_mastr_2023-08-08_B_biomass.csv", mastr_combustion="data/mastr/bnetza_open_mastr_2023-08-08_B_combustion.csv", @@ -356,16 +362,30 @@ rule build_existing_chp_de: keep_local=True, ), busmap=resources("networks/base.nc"), + district_heating_subnodes=resources( + "district_heating_subnodes_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" + ), output: - german_chp=resources("german_chp.csv"), + german_chp=resources( + "german_chp_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" + ), script: "scripts/build_existing_chp_de.py" use rule add_existing_baseyear from pypsaeur with: + params: + **{k: v for k, v in rules.add_existing_baseyear.params.items()}, + add_district_heating_subnodes=config_provider( + "sector", "district_heating", "add_subnodes" + ), input: - **rules.add_existing_baseyear.input, - custom_powerplants=resources("german_chp.csv"), + **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "network"}, + network=RESULTS + + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc", + custom_powerplants=resources( + "german_chp_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" + ), use rule build_existing_heating_distribution from pypsaeur with: diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py new file mode 100644 index 000000000..505632874 --- /dev/null +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -0,0 +1,194 @@ +# -*- coding: utf-8 -*- +import logging + +logger = logging.getLogger(__name__) +from random import randint +from time import sleep + +import geopandas as gpd +import numpy as np +import pandas as pd +import pypsa +from geopy.geocoders import Nominatim + + +# Function to encode city names in UTF-8 +def encode_utf8(city_name): + return city_name.encode("utf-8") + + +def prepare_subnodes(subnodes, regions_onshore, heat_techs, head=40): + # TODO: Embed I&O in snakemake rule, add potentials, match CHP capacities + + # Keep only n largest district heating networks according to head parameter + subnodes = subnodes.sort_values( + by="Wärmeeinspeisung in GWh/a", ascending=False + ).head(head) + + # Create a Nominatim object + nominatim = Nominatim(user_agent="cityEncoder") + + subnodes["lat"] = np.nan + subnodes["lon"] = np.nan + subnodes["Stadt"] = subnodes["Stadt"].str.split("_").str[0] + + # Drop duplicates if Gelsenkirchen, Kiel, or Flensburg is included and keep the one with higher Wärmeeinspeisung in GWh/a + subnodes = subnodes.drop_duplicates(subset="Stadt", keep="first") + + # Get the location of all cities in the dataset (Stadt column) and write them to column "location" do it as try ecxept to avoid errors + for i, row in subnodes.iterrows(): + try: + location = nominatim.geocode(encode_utf8(row["Stadt"]), country_codes="DE") + # Extract the latitude and longitude from the location column + subnodes.at[i, "lat"] = location.latitude + subnodes.at[i, "lon"] = location.longitude + sleep_sec = 1 + sleep(randint(1 * 100, sleep_sec * 100) / 100) + except: + logger.info(f"Location not found for {row['Stadt']}") + pass + + # Make a shapely point object from the lat and lon columns + subnodes["geometry"] = gpd.points_from_xy(subnodes["lon"], subnodes["lat"]) + # Drop rows with missing geometry + logger.info("Cities without locations are dropped.") + subnodes = subnodes.dropna(subset=["geometry"]) + # Convert the DataFrame to a GeoDataFrame + subnodes = gpd.GeoDataFrame(subnodes, crs="EPSG:4326") + + # Assign cluster to subnodes according to onshore regions + subnodes["cluster"] = subnodes.apply( + lambda x: regions_onshore.geometry.contains(x.geometry).idxmax(), axis=1 + ) + subnodes["nuts3"] = subnodes.apply( + lambda x: heat_techs.geometry.contains(x.geometry).idxmax(), + axis=1, + ) + subnodes["nuts3_shape"] = subnodes.apply( + lambda x: heat_techs.loc[ + heat_techs.geometry.contains(x.geometry).idxmax(), "geometry" + ].wkt, + axis=1, + ) + + return subnodes + + +def add_subnodes(n, subnodes): + """ + Add subnodes to the network and adjust loads and capacities accordingly. + """ + + # Add subnodes to network + for idx, row in subnodes.iterrows(): + name = f'{row["cluster"]} {row["Stadt"]} urban central heat' + + # Add buses + n.madd( + "Bus", + [name], + y=row.geometry.y, + x=row.geometry.x, + country="DE", + location=row["cluster"], + carrier="urban central heat", + unit="MWh_th", + ) + + # Add heat loads + scalar = min( + 1, + ( + row["Wärmeeinspeisung in GWh/a"] + * 1e3 + / n.loads_t.p_set.filter(regex=f"{row['cluster']} urban central heat") + .sum(axis=1) + .mul(n.snapshot_weightings.generators) + .sum() + ), + ) + lost_load = ( + row["Wärmeeinspeisung in GWh/a"] * 1e3 + - n.loads_t.p_set.filter(regex=f"{row['cluster']} urban central heat") + .sum(axis=1) + .mul(n.snapshot_weightings.generators) + .sum() + ) + if scalar == 1: + logger.info( + f"District heating load of {row['Stadt']} exceeds load of its assigned cluster {row['cluster']}. {lost_load} MWh/a are disregarded." + ) + heat_load = scalar * n.loads_t.p_set.filter( + regex=f"{row['cluster']} urban central heat" + ).rename( + { + f"{row['cluster']} urban central heat": f"{row['cluster']} {row['Stadt']} urban central heat" + }, + axis=1, + ) + n.madd( + "Load", + [name], + bus=name, + p_set=heat_load, + carrier="urban central heat", + location=row["cluster"], + profile=row["cluster"], + ) + + # Adjust loads of cluster buses + n.loads_t.p_set.loc[:, f'{row["cluster"]} urban central heat'] *= 1 - scalar + + return + + +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + os.chdir(os.path.dirname(os.path.abspath(__file__))) + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "add_district_heating_subnodes", + simpl="", + clusters=44, + opts="", + ll="vopt", + sector_opts="none", + planning_horizons="2020", + run="KN2045_Bal_v4", + ) + + logger.info("Adding SysGF-specific functionality") + + n = pypsa.Network(snakemake.input.network) + heat_techs = gpd.read_file(snakemake.input.heating_technologies_nuts3).set_index( + "index" + ) + fernwaermeatlas = pd.read_excel( + snakemake.input.fernwaermeatlas, + sheet_name="Fernwärmeatlas_öffentlich", + ) + regions_onshore = gpd.read_file(snakemake.input.regions_onshore).set_index("name") + # Assign onshore region to heat techs based on geometry + heat_techs["cluster"] = heat_techs.apply( + lambda x: regions_onshore.geometry.contains(x.geometry).idxmax(), + axis=1, + ) + + subnodes = prepare_subnodes( + fernwaermeatlas, + regions_onshore, + heat_techs, + head=snakemake.params.district_heating["add_subnodes"], + ) + subnodes.to_file(snakemake.output.district_heating_subnodes, driver="GeoJSON") + + add_subnodes(n, subnodes) + + n.export_to_netcdf(snakemake.output.network) diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py index 5c0274ada..c48d3caff 100644 --- a/workflow/scripts/build_existing_chp_de.py +++ b/workflow/scripts/build_existing_chp_de.py @@ -15,6 +15,7 @@ import os import sys +import geopandas as gpd import pandas as pd import pypsa from powerplantmatching.export import map_country_bus @@ -203,13 +204,51 @@ def BP(cap, year): return CHP_de +def assign_subnode(CHP_de, subnodes): + """ + Assign subnodes to the CHP plants based on their location. + """ + + # Make a geodataframe from CHP_de using the lat and lon columns + CHP_de = gpd.GeoDataFrame( + CHP_de, geometry=gpd.points_from_xy(CHP_de.lon, CHP_de.lat) + ) + CHP_de.crs = subnodes.crs + # Set nuts_3 shape wkt column as geometry + subnodes["geometry"] = gpd.GeoSeries.from_wkt(subnodes["nuts3_shape"]) + subnodes.drop("nuts3_shape", axis=1, inplace=True) + subnodes.index.rename("city", inplace=True) + + # Assign subnode to CHP plants based on the nuts3 region + CHP_de = CHP_de.sjoin(subnodes, how="left", predicate="within") + CHP_de["subnode"] = CHP_de["cluster"] + " " + CHP_de["city"] + CHP_de.drop(["city", "cluster"], axis=1, inplace=True) + + return CHP_de + + if __name__ == "__main__": if "snakemake" not in globals(): + import os + + # Change directory to current script + os.chdir(os.path.dirname(os.path.abspath(__file__))) + path = "../submodules/pypsa-eur/scripts" sys.path.insert(0, os.path.abspath(path)) from _helpers import mock_snakemake - snakemake = mock_snakemake("build_existing_chp_de") + snakemake = mock_snakemake( + "build_existing_chp_de", + simpl="", + clusters=44, + opts="", + ll="vopt", + sector_opts="none", + planning_horizons="2020", + run="KN2045_Bal_v4", + ) + # snakemake = mock_snakemake("build_existing_chp_de") logging.basicConfig(level=snakemake.config["logging"]["level"]) @@ -233,4 +272,11 @@ def BP(cap, year): substations = bn.buses.query("substation_lv") CHP_de = map_country_bus(CHP_de, substations) + if snakemake.params.add_district_heating_subnodes: + subnodes = gpd.read_file( + snakemake.input.district_heating_subnodes, + columns=["Stadt", "cluster", "nuts3_shape"], + ).set_index("Stadt") + CHP_de = assign_subnode(CHP_de, subnodes) + CHP_de.to_csv(snakemake.output.german_chp, index=False) diff --git a/workflow/scripts/modify_dh_systems.py b/workflow/scripts/modify_dh_systems.py deleted file mode 100644 index dc3792551..000000000 --- a/workflow/scripts/modify_dh_systems.py +++ /dev/null @@ -1,336 +0,0 @@ -# -*- coding: utf-8 -*- -import logging - -logger = logging.getLogger(__name__) -import json - -import geopandas as gpd -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -import pypsa -from shapely.geometry import Point - - -def load_egon(): - """ - Load and prepares the egon data about district heating in Germany on NUTS3 - level. - - Returns: - GeoDataFrame: A GeoDataFrame containing the processed egon data. - """ - - nuts3 = gpd.read_file(snakemake.input.nuts3)[ - ["index", "pop", "geometry"] - ] # Keep only necessary columns - - internal_id = { - 9: "Hard coal", - 10: "Brown coal", - 11: "Natural gas", - 34: "Heating oil", - 35: "Biomass (solid)", - 68: "Ambient heating", - 69: "Solar heat", - 71: "District heating", - 72: "Electrical energy", - 218: "Biomass (excluding wood, biogas)", - } - - df = pd.read_json(snakemake.input.fn) - id_region = pd.read_json(snakemake.input.fn_map) - - df["internal_id"] = df["internal_id"].apply(lambda x: x[0]) - # df = df[df["internal_id"] == 71] # Keep only rows with district heating - - df["nuts3"] = df.id_region.map( - id_region.set_index(id_region.id_region_from).kuerzel_to - ) - - heat_tech_per_region = df.groupby([df.nuts3, df.internal_id]).sum().value.unstack() - heat_tech_per_region.rename(columns=internal_id, inplace=True) - - egon_df = heat_tech_per_region.merge(nuts3, left_on="nuts3", right_on="index") - egon_gdf = gpd.GeoDataFrame(egon_df) # Convert merged DataFrame to GeoDataFrame - egon_gdf = egon_gdf.to_crs("EPSG:4326") - - return egon_gdf - - -def update_urban_loads(n_pre, egon_gdf): - """ - Update district heating demands of clusters according to shares in egon - data on NUTS3 level for Germany. - - Other heat loads are adjusted accordingly to ensure consistency of - the nodal heat demand. - """ - - n = n_pre.copy() - regions_onshore = gpd.read_file( - snakemake.input.regions_onshore - ) # shared resources true - regions_onshore.set_index("name", inplace=True) - # Map NUTS3 regions of egon data to corresponding clusters according to maximum overlap - - egon_gdf["cluster"] = egon_gdf.apply( - lambda x: regions_onshore.geometry.intersection(x.geometry).area.idxmax(), - axis=1, - ) - - # Calculate nodal DH shares according to households and modify index - egon_gdf_clustered = egon_gdf.groupby("cluster").sum(numeric_only=True) - nodal_dh_shares = egon_gdf_clustered["District heating"] / egon_gdf_clustered.drop( - "pop", axis=1 - ).sum(axis=1) - - nodal_dh_shares.index += " urban central heat" - - # District heating demands by cluster in German nodes before heat distribution - nodal_uc_demand = ( - n.loads_t.p_set.filter(regex="DE.*urban central heat") - .apply(lambda c: c * n.snapshot_weightings.generators) - .sum() - .div( - 1 + snakemake.config["sector"]["district_heating"]["district_heating_loss"] - ) - ) - - nodal_uc_losses = ( - nodal_uc_demand - - n.loads_t.p_set.filter(regex="DE.*urban central heat") - .apply(lambda c: c * n.snapshot_weightings.generators) - .sum() - ) - - # Sum of rural and urban heat demand - nodal_heat_demand = ( - n.loads_t.p_set.filter(regex="DE.*heat$") - .apply(lambda c: c * n.snapshot_weightings.generators) - .sum() - .sub(nodal_uc_losses, fill_value=0) - ) - - # Modify index of nodal_heat demand to align with urban central loads and aggregate loads - nodal_heat_demand.index = nodal_heat_demand.index.str.replace( - "decentral", "central" - ).str.replace("rural", "urban central") - - nodal_heat_demand = nodal_heat_demand.groupby(nodal_heat_demand.index).sum() - - # Old district heating share - nodal_uc_shares = nodal_uc_demand / nodal_heat_demand - - # Scaling factor for update of urban central heat loads - - scaling_factor = nodal_dh_shares / nodal_uc_shares - scaling_factor.dropna( - inplace=True - ) # To deal with shape anomaly described in https://github.com/PyPSA/pypsa-eur/issues/1100 - - # Update urban heat loads changing distribution and restoring old scale - old_uc_loads = n.loads_t.p_set.filter(regex="DE.*urban central heat") - new_uc_loads = ( - n.loads_t.p_set.filter(regex="DE.*urban central heat") * scaling_factor - ) - restore_scalar = new_uc_loads.sum().sum() / old_uc_loads.sum().sum() - new_uc_loads = new_uc_loads / restore_scalar - diff_update = new_uc_loads - old_uc_loads - diff_update.columns = diff_update.columns.str.replace("central", "decentral") - - n_pre.loads_t.p_set[new_uc_loads.columns] = new_uc_loads - n_pre.loads_t.p_set[diff_update.columns] -= diff_update - - return - - -def prepare_subnodes(egon_gdf, head=40): - """ - Prepare subnodes for the network based on the Triebs data and the egon - data. - """ - # TODO: Embed I&O in snakemake rule, add potentials, match CHP capacities - - # Load and prepare Triebs data - dh_areas_triebs = pd.read_excel( - snakemake.input.triebs, - sheet_name="Staedte", - ) - # convert dataframe dh_areas_triebs to geopandas dataframe using the Latirude and Longitude columns for geometry column as point coordinates - dh_areas_triebs["geometry"] = gpd.points_from_xy( - dh_areas_triebs["Longitude"], dh_areas_triebs["Latitude"] - ) - dh_areas_triebs = gpd.GeoDataFrame(dh_areas_triebs, geometry="geometry") - - # Keep only n largest district heating networks according to head parameter - to_keep = ["Stadtname", "NUTS3", "Einwohnerzahl [-]", "geometry"] - - dh_areas_triebs = dh_areas_triebs.sort_values( - by="Einwohnerzahl [-]", ascending=False - ).head(head)[to_keep] - - # Merge merged_gdf with dh_areas_triebs using the nuts3 id - merged_gdf = dh_areas_triebs.merge( - egon_gdf, left_on="NUTS3", right_on="index", how="left" - ) - # DH systems without matching NUTS3 id the surrounding region is assigned using the geometries - merged_gdf.loc[merged_gdf.geometry_y.isna(), "geometry_y"] = merged_gdf.loc[ - merged_gdf.geometry_y.isna() - ].apply( - lambda x: egon_gdf.loc[ - egon_gdf.geometry.contains(x.geometry_x), "geometry" - ].item(), - axis=1, - ) - merged_gdf.loc[merged_gdf["index"].isna(), "index"] = merged_gdf.loc[ - merged_gdf["index"].isna() - ].apply( - lambda x: egon_gdf.loc[ - egon_gdf.geometry.contains(x.geometry_x), "index" - ].item(), - axis=1, - ) - merged_gdf.loc[merged_gdf["cluster"].isna(), "cluster"] = merged_gdf.loc[ - merged_gdf["cluster"].isna() - ].apply( - lambda x: egon_gdf.loc[ - egon_gdf.geometry.contains(x.geometry_x), "cluster" - ].item(), - axis=1, - ) - merged_gdf.loc[ - merged_gdf["District heating"].isna(), "District heating" - ] = merged_gdf.loc[merged_gdf["District heating"].isna()].apply( - lambda x: egon_gdf.loc[ - egon_gdf.geometry.contains(x.geometry_x), "District heating" - ].item(), - axis=1, - ) - - # Intraregional distribution key according to population for NUTS3 regions with multiple DH systems - merged_gdf["intrareg_dist_key"] = merged_gdf.apply( - lambda reg: reg["Einwohnerzahl [-]"] - / merged_gdf.loc[ - merged_gdf["index"] == reg["index"], "Einwohnerzahl [-]" - ].sum(), - axis=1, - ).sort_values() - # Multiply column District heating with distribution key - merged_gdf["dh_hh_subnode"] = ( - merged_gdf["District heating"] * merged_gdf["intrareg_dist_key"] - ) - - # Convert district heating counts to percentage of cluster demand - - merged_gdf["demand_share_subnode"] = merged_gdf.apply( - lambda x: x["dh_hh_subnode"] - / egon_gdf.loc[egon_gdf.cluster == x.cluster, "District heating"].sum(), - axis=1, - ) - - return merged_gdf - - -def add_subnodes(n, subnodes, head=40): - """ - Add subnodes to the network and adjust loads and capacities accordingly. - """ - - n_sub = n.copy() - - # Add subnodes to network - for idx, row in subnodes.iterrows(): - name = f'{row["cluster"]} {row["Stadtname"]} urban central heat' - - # Add buses - n.madd( - "Bus", - [name], - y=row.geometry_x.y, - x=row.geometry_x.x, - country="DE", - location=row["cluster"], - carrier="urban central heat", - unit="MWh_th", - ) - - # Add heat loads - heat_load = row["demand_share_subnode"] * n.loads_t.p_set.filter( - regex=f"{row['cluster']} urban central heat" - ).rename( - { - f"{row['cluster']} urban central heat": f"{row['cluster']} {row['Stadtname']} urban central heat" - }, - axis=1, - ) - n.madd( - "Load", - [name], - bus=name, - p_set=heat_load, - carrier="urban central heat", - location=row["cluster"], - profile=row["cluster"], - ) - - # Adjust loads of cluster buses - for idx, row in ( - subnodes.groupby("cluster", as_index=False).sum(numeric_only=True).iterrows() - ): - n.loads_t.p_set.loc[:, f'{row["cluster"]} urban central heat'] *= ( - 1 - row["demand_share_subnode"] - ) - - return - - -def modify_chps(chps): - """ - Modify the CHP dataframe to include the subnodes. - """ - - chps["subnode"] = chps.apply( - lambda x: f'{x["cluster"]} {x["Stadtname"]} urban central heat', axis=1 - ) - - chps["capacity"] = chps["capacity"] * chps["demand_share_subnode"] - - return chps - - -if __name__ == "__main__": - if "snakemake" not in globals(): - import os - import sys - - os.chdir(os.path.dirname(os.path.abspath(__file__))) - - path = "../submodules/pypsa-eur/scripts" - sys.path.insert(0, os.path.abspath(path)) - from _helpers import mock_snakemake - - snakemake = mock_snakemake( - "modify_dh_systems", - simpl="", - clusters=22, - opts="", - ll="vopt", - sector_opts="none", - planning_horizons="2020", - run="KN2045_Bal_v4", - ) - logger.info("Adding SysGF-specific functionality") - - n = pypsa.Network(snakemake.input.network) - egon_gdf = load_egon() - update_urban_loads(n, egon_gdf) - chps = pd.read_csv(snakemake.input.german_chp) - - if snakemake.params.add_subnodes_de: - subnodes = prepare_subnodes(egon_gdf, snakemake.params.add_subnodes_de) - add_subnodes(n, subnodes) - modify_chps(chps, subnodes) - - n.export_to_netcdf(snakemake.output.network) - chps.to_csv(snakemake.output.german_chp, index=False) From 99448783cdf0ce0f8a228f695b8b548bbf00bb41 Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 21 Aug 2024 10:18:31 +0200 Subject: [PATCH 540/669] fixed nodal EB with gas boiler; fixed snakemake issues --- workflow/Snakefile | 63 ++++++++++++------- .../scripts/add_district_heating_subnodes.py | 16 ++++- 2 files changed, 54 insertions(+), 25 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index e0f63abd2..25596e16a 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -196,26 +196,32 @@ rule build_egon_data: "scripts/build_egon_data.py" -rule add_district_heating_subnodes: - params: - district_heating=config_provider("sector", "district_heating"), - input: - network=RESULTS - + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", - heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), - nuts3=resources("nuts3_shapes.geojson"), - regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"), - fernwaermeatlas="data/fernwaermeatlas/Fernwärmeatlas_öffentlich.xlsx", - output: - network=RESULTS - + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc", - district_heating_subnodes=resources( - "district_heating_subnodes_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" - ), - resources: - mem_mb=1000, - script: - "scripts/add_district_heating_subnodes.py" +if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ + "district_heating" +].get("add_subnodes", True): + + rule add_district_heating_subnodes: + params: + district_heating=config_provider("sector", "district_heating"), + input: + network=RESULTS + + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), + nuts3=resources("nuts3_shapes.geojson"), + regions_onshore=resources( + "regions_onshore_elec_s{simpl}_{clusters}.geojson" + ), + fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", + output: + network=RESULTS + + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc", + district_heating_subnodes=resources( + "district_heating_subnodes_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" + ), + resources: + mem_mb=1000, + script: + "scripts/add_district_heating_subnodes.py" ruleorder: modify_district_heat_share > build_district_heat_share @@ -362,8 +368,12 @@ rule build_existing_chp_de: keep_local=True, ), busmap=resources("networks/base.nc"), - district_heating_subnodes=resources( - "district_heating_subnodes_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" + district_heating_subnodes=( + resources( + "district_heating_subnodes_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" + ) + if config["sector"]["district_heating"].get("add_subnodes", True) + else [] ), output: german_chp=resources( @@ -381,8 +391,13 @@ use rule add_existing_baseyear from pypsaeur with: ), input: **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "network"}, - network=RESULTS - + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc", + network=( + RESULTS + + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc" + if config["sector"]["district_heating"].get("add_subnodes", True) + else RESULTS + + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" + ), custom_powerplants=resources( "german_chp_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" ), diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index 505632874..b1aa068dd 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -19,7 +19,9 @@ def encode_utf8(city_name): def prepare_subnodes(subnodes, regions_onshore, heat_techs, head=40): # TODO: Embed I&O in snakemake rule, add potentials, match CHP capacities - + # If head is boolean set it to 40 for default behavior + if isinstance(head, bool): + head = 40 # Keep only n largest district heating networks according to head parameter subnodes = subnodes.sort_values( by="Wärmeeinspeisung in GWh/a", ascending=False @@ -136,6 +138,18 @@ def add_subnodes(n, subnodes): profile=row["cluster"], ) + n.madd( + "Generator", + [f"{name} gas boiler"], + bus=name, + carrier="gas", + p_nom_extendable=True, + p_nom_max=1e6, + capital_cost=10000, + marginal_cost=25, + efficiency=1, + ) + # Adjust loads of cluster buses n.loads_t.p_set.loc[:, f'{row["cluster"]} urban central heat'] *= 1 - scalar From c7ec368c660ff4b9d8393a2e38e46a34afdf3c42 Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 21 Aug 2024 11:41:30 +0200 Subject: [PATCH 541/669] changed input for add_brownfield --- workflow/Snakefile | 12 ++++++++++++ 1 file changed, 12 insertions(+) diff --git a/workflow/Snakefile b/workflow/Snakefile index 25596e16a..abce09e92 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -403,6 +403,18 @@ use rule add_existing_baseyear from pypsaeur with: ), +use rule add_brownfield from pypsaeur with: + input: + **{k: v for k, v in rules.add_brownfield.input.items() if k != "network"}, + network=( + RESULTS + + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc" + if config["sector"]["district_heating"].get("add_subnodes", True) + else RESULTS + + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" + ), + + use rule build_existing_heating_distribution from pypsaeur with: input: **{ From 1fbecbcae9ddeb229484395834303bb9cc89d37a Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 21 Aug 2024 16:41:05 +0200 Subject: [PATCH 542/669] geolocations from file instead of geocoding --- workflow/Snakefile | 1 + .../scripts/add_district_heating_subnodes.py | 41 ++++++------------- 2 files changed, 14 insertions(+), 28 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index abce09e92..f88b24e0a 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -212,6 +212,7 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ "regions_onshore_elec_s{simpl}_{clusters}.geojson" ), fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", + cities="data/fernwaermeatlas/cities_geolocations.geojson", output: network=RESULTS + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc", diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index b1aa068dd..c69086912 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -17,43 +17,26 @@ def encode_utf8(city_name): return city_name.encode("utf-8") -def prepare_subnodes(subnodes, regions_onshore, heat_techs, head=40): +def prepare_subnodes(subnodes, cities, regions_onshore, heat_techs, head=40): # TODO: Embed I&O in snakemake rule, add potentials, match CHP capacities # If head is boolean set it to 40 for default behavior if isinstance(head, bool): head = 40 - # Keep only n largest district heating networks according to head parameter - subnodes = subnodes.sort_values( - by="Wärmeeinspeisung in GWh/a", ascending=False - ).head(head) - - # Create a Nominatim object - nominatim = Nominatim(user_agent="cityEncoder") - subnodes["lat"] = np.nan - subnodes["lon"] = np.nan subnodes["Stadt"] = subnodes["Stadt"].str.split("_").str[0] # Drop duplicates if Gelsenkirchen, Kiel, or Flensburg is included and keep the one with higher Wärmeeinspeisung in GWh/a subnodes = subnodes.drop_duplicates(subset="Stadt", keep="first") - # Get the location of all cities in the dataset (Stadt column) and write them to column "location" do it as try ecxept to avoid errors - for i, row in subnodes.iterrows(): - try: - location = nominatim.geocode(encode_utf8(row["Stadt"]), country_codes="DE") - # Extract the latitude and longitude from the location column - subnodes.at[i, "lat"] = location.latitude - subnodes.at[i, "lon"] = location.longitude - sleep_sec = 1 - sleep(randint(1 * 100, sleep_sec * 100) / 100) - except: - logger.info(f"Location not found for {row['Stadt']}") - pass - - # Make a shapely point object from the lat and lon columns - subnodes["geometry"] = gpd.points_from_xy(subnodes["lon"], subnodes["lat"]) - # Drop rows with missing geometry - logger.info("Cities without locations are dropped.") + # Keep only n largest district heating networks according to head parameter + subnodes = subnodes.sort_values( + by="Wärmeeinspeisung in GWh/a", ascending=False + ).head(head) + + subnodes["geometry"] = subnodes["Stadt"].apply( + lambda s: cities.loc[cities["Stadt"] == s, "geometry"].values[0] + ) + subnodes = subnodes.dropna(subset=["geometry"]) # Convert the DataFrame to a GeoDataFrame subnodes = gpd.GeoDataFrame(subnodes, crs="EPSG:4326") @@ -170,7 +153,7 @@ def add_subnodes(n, subnodes): snakemake = mock_snakemake( "add_district_heating_subnodes", simpl="", - clusters=44, + clusters=22, opts="", ll="vopt", sector_opts="none", @@ -188,6 +171,7 @@ def add_subnodes(n, subnodes): snakemake.input.fernwaermeatlas, sheet_name="Fernwärmeatlas_öffentlich", ) + cities = gpd.read_file(snakemake.input.cities) regions_onshore = gpd.read_file(snakemake.input.regions_onshore).set_index("name") # Assign onshore region to heat techs based on geometry heat_techs["cluster"] = heat_techs.apply( @@ -197,6 +181,7 @@ def add_subnodes(n, subnodes): subnodes = prepare_subnodes( fernwaermeatlas, + cities, regions_onshore, heat_techs, head=snakemake.params.district_heating["add_subnodes"], From c97e56e7f888353dbe8accab5b869b3bbcd53e15 Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 23 Aug 2024 15:05:07 +0200 Subject: [PATCH 543/669] added links and stores except from heat pumps; adapted snakemake inputs for add_brownfield --- workflow/Snakefile | 9 ++++ .../scripts/add_district_heating_subnodes.py | 50 ++++++++++++++++--- 2 files changed, 53 insertions(+), 6 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index f88b24e0a..81b138bb5 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -404,8 +404,17 @@ use rule add_existing_baseyear from pypsaeur with: ), +def input_profile_tech_brownfield(w): + return { + f"profile_{tech}": resources(f"profile_{tech}.nc") + for tech in config_provider("electricity", "renewable_carriers")(w) + if tech != "hydro" + } + + use rule add_brownfield from pypsaeur with: input: + unpack(input_profile_tech_brownfield), **{k: v for k, v in rules.add_brownfield.input.items() if k != "network"}, network=( RESULTS diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index c69086912..04bc00c9d 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -118,24 +118,62 @@ def add_subnodes(n, subnodes): p_set=heat_load, carrier="urban central heat", location=row["cluster"], - profile=row["cluster"], ) + # Adjust loads of cluster buses + n.loads_t.p_set.loc[:, f'{row["cluster"]} urban central heat'] *= 1 - scalar + + # Replicate district heating stores and links of mother node for subnodes + # TODO: Add heat pump links + + n.madd( + "Bus", + [f"{row['cluster']} {row['Stadt']} urban central water tanks"], + location=row["cluster"], + carrier="urban central water tanks", + unit="MWh_th", + ) + + stores = ( + n.stores.filter(like=f"{row['cluster']} urban central", axis=0) + .reset_index() + .replace( + { + f"{row['cluster']} urban central": f"{row['cluster']} {row['Stadt']} urban central" + }, + regex=True, + ) + .set_index("Store") + ) + n.madd("Store", stores.index, **stores) + + links = ( + n.links.loc[~n.links.carrier.str.contains("heat pump")] + .filter(like=f"{row['cluster']} urban central", axis=0) + .reset_index() + .replace( + { + f"{row['cluster']} urban central": f"{row['cluster']} {row['Stadt']} urban central" + }, + regex=True, + ) + .set_index("Link") + ) + n.madd("Link", links.index, **links) + + # Add artificial gas boiler to subnode n.madd( "Generator", - [f"{name} gas boiler"], + [f"{name} load shedding"], bus=name, carrier="gas", p_nom_extendable=True, p_nom_max=1e6, capital_cost=10000, - marginal_cost=25, + marginal_cost=200, efficiency=1, ) - # Adjust loads of cluster buses - n.loads_t.p_set.loc[:, f'{row["cluster"]} urban central heat'] *= 1 - scalar - return From fe47933db568852d7135570680b5729ed3292f43 Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 27 Aug 2024 10:11:02 +0200 Subject: [PATCH 544/669] add ASHP --- workflow/Snakefile | 15 +++++- .../scripts/add_district_heating_subnodes.py | 51 +++++++++++++++++++ 2 files changed, 65 insertions(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 81b138bb5..d60f2d29e 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -213,12 +213,16 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ ), fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", cities="data/fernwaermeatlas/cities_geolocations.geojson", + cop_air_total=resources("cop_air_total_elec_s{simpl}_{clusters}.nc"), output: network=RESULTS + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc", district_heating_subnodes=resources( "district_heating_subnodes_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" ), + cop_air_total_extended=resources( + "cop_air_total_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" + ), resources: mem_mb=1000, script: @@ -391,7 +395,11 @@ use rule add_existing_baseyear from pypsaeur with: "sector", "district_heating", "add_subnodes" ), input: - **{k: v for k, v in rules.add_existing_baseyear.input.items() if k != "network"}, + **{ + k: v + for k, v in rules.add_existing_baseyear.input.items() + if k != "network" and k != "cop_air_total" + }, network=( RESULTS + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc" @@ -399,6 +407,11 @@ use rule add_existing_baseyear from pypsaeur with: else RESULTS + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" ), + cop_air_total=( + resources("cop_air_total_elec_s{simpl}_{clusters}-extended.nc") + if config["sector"]["district_heating"].get("add_subnodes", True) + else resources("cop_air_total_elec_s{simpl}_{clusters}.nc") + ), custom_powerplants=resources( "german_chp_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" ), diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index 04bc00c9d..2e6642dbf 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -9,6 +9,7 @@ import numpy as np import pandas as pd import pypsa +import xarray as xr from geopy.geocoders import Nominatim @@ -161,6 +162,28 @@ def add_subnodes(n, subnodes): ) n.madd("Link", links.index, **links) + # Add heat pumps to subnode + heat_pumps = ( + n.links.loc[n.links.carrier.str.contains("heat pump")] + .reset_index() + .replace( + { + f"{row['cluster']} urban central": f"{row['cluster']} {row['Stadt']} urban central" + }, + regex=True, + ) + .set_index("Link") + ).drop("efficiency", axis=1) + heat_pumps_t = n.links_t.efficiency.filter( + regex=f"{row['cluster']} urban central.*heat pump" + ).rename( + { + f"{row['cluster']} urban central": f"{row['cluster']} {row['Stadt']} urban central" + }, + axis=1, + ) + n.madd("Link", heat_pumps.index, efficiency=heat_pumps_t, **heat_pumps) + # Add artificial gas boiler to subnode n.madd( "Generator", @@ -177,6 +200,30 @@ def add_subnodes(n, subnodes): return +def extend_cops(cops, subnodes): + """ + Extend COPs by subnodes mirroring the timeseries of the corresponding + mother node. + """ + cops_extended = cops.copy() + + # Iterate over the DataFrame rows + for _, row in subnodes.iterrows(): + cluster_name = row["cluster"] + city_name = row["city"] + + # Select the xarray entry where name matches the cluster + selected_entry = cops.sel(name=cluster_name) + + # Rename the selected entry + renamed_entry = selected_entry.assign_coords(name=f"{cluster_name}_{city_name}") + + # Combine the renamed entry with the extended dataset + cops_extended = xr.concat([cops_extended, renamed_entry], dim="name") + + return cops_extended + + if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -228,4 +275,8 @@ def add_subnodes(n, subnodes): add_subnodes(n, subnodes) + if snakemake.config["foresight"] == "myopic": + cops = xr.open_dataarray(snakemake.input.cop_air_total) + cops_extended = extend_cops(cops, subnodes) + cops_extended.to_netcdf(snakemake.output.cop_air_total_extended) n.export_to_netcdf(snakemake.output.network) From c081ff4099b767a76b276cfb0c31207a1b053ef0 Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 27 Aug 2024 11:06:08 +0200 Subject: [PATCH 545/669] fix bugs for heat pump integration --- workflow/Snakefile | 4 +++- workflow/scripts/add_district_heating_subnodes.py | 15 +++++++-------- 2 files changed, 10 insertions(+), 9 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index d60f2d29e..7ab12ed78 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -408,7 +408,9 @@ use rule add_existing_baseyear from pypsaeur with: + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" ), cop_air_total=( - resources("cop_air_total_elec_s{simpl}_{clusters}-extended.nc") + resources( + "cop_air_total_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" + ) if config["sector"]["district_heating"].get("add_subnodes", True) else resources("cop_air_total_elec_s{simpl}_{clusters}.nc") ), diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index 2e6642dbf..49d66b61b 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -164,7 +164,7 @@ def add_subnodes(n, subnodes): # Add heat pumps to subnode heat_pumps = ( - n.links.loc[n.links.carrier.str.contains("heat pump")] + n.links.filter(regex=f"{row['cluster']} urban central.*heat pump", axis=0) .reset_index() .replace( { @@ -176,11 +176,10 @@ def add_subnodes(n, subnodes): ).drop("efficiency", axis=1) heat_pumps_t = n.links_t.efficiency.filter( regex=f"{row['cluster']} urban central.*heat pump" - ).rename( - { - f"{row['cluster']} urban central": f"{row['cluster']} {row['Stadt']} urban central" - }, - axis=1, + ) + heat_pumps_t.columns = heat_pumps_t.columns.str.replace( + f"{row['cluster']} urban central", + f"{row['cluster']} {row['Stadt']} urban central", ) n.madd("Link", heat_pumps.index, efficiency=heat_pumps_t, **heat_pumps) @@ -210,13 +209,13 @@ def extend_cops(cops, subnodes): # Iterate over the DataFrame rows for _, row in subnodes.iterrows(): cluster_name = row["cluster"] - city_name = row["city"] + city_name = row["Stadt"] # Select the xarray entry where name matches the cluster selected_entry = cops.sel(name=cluster_name) # Rename the selected entry - renamed_entry = selected_entry.assign_coords(name=f"{cluster_name}_{city_name}") + renamed_entry = selected_entry.assign_coords(name=f"{cluster_name} {city_name}") # Combine the renamed entry with the extended dataset cops_extended = xr.concat([cops_extended, renamed_entry], dim="name") From 039aaad7ef097f05848497f7b71895f6d386926e Mon Sep 17 00:00:00 2001 From: Lukas Trippe Date: Mon, 2 Sep 2024 16:41:12 +0200 Subject: [PATCH 546/669] Bump lkstrp/pypsa-validator to `v0.1.4` (#178) * Update validate.yml * Update validate.yml --- .github/workflows/validate.yml | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/.github/workflows/validate.yml b/.github/workflows/validate.yml index fb48776cf..25a7d5e57 100644 --- a/.github/workflows/validate.yml +++ b/.github/workflows/validate.yml @@ -16,7 +16,7 @@ jobs: if: github.event.pull_request.head.repo.full_name == github.repository runs-on: self-hosted steps: - - uses: lkstrp/pypsa-validator@v0.1.3 + - uses: lkstrp/pypsa-validator@v0.1.4 with: step: run-self-hosted-validation env_file: environment.yaml @@ -43,6 +43,7 @@ jobs: ~/${{ github.repository }}/feature/.snakemake/ if-no-files-found: error retention-days: 90 + include-hidden-files: true - uses: actions/upload-artifact@v4 with: name: results (main branch) @@ -50,6 +51,7 @@ jobs: ~/${{ github.repository }}/main/results if-no-files-found: error retention-days: 90 + include-hidden-files: true - uses: actions/upload-artifact@v4 with: name: results (feature branch) @@ -57,6 +59,7 @@ jobs: ~/${{ github.repository }}/feature/results if-no-files-found: error retention-days: 90 + include-hidden-files: true comment-on-pr: name: Comment on pull request @@ -64,7 +67,7 @@ jobs: needs: upload-artifacts runs-on: ubuntu-latest steps: - - uses: lkstrp/pypsa-validator@v0.1.3 + - uses: lkstrp/pypsa-validator@v0.1.4 with: step: create-comment snakemake_config: config/config.yaml From 0f6e5289e558a99ab299c8a03f43529f33150957 Mon Sep 17 00:00:00 2001 From: Micha Date: Tue, 3 Sep 2024 16:43:28 +0200 Subject: [PATCH 547/669] Merging master into Ariadne 2 (#177) * updating cost data for Bal scenario to technology-data 0.9.1 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update submodule * additional path for new imports in scripts/definitions * temporarily allow biomass transport to fix CH bug * make computation more robust * even more robustness for gas_frcations calculations * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * switch off biomass_transport again, but temporarily disable must_run for biogas * fix index error * switch back to rule get_data workflow * adapt to upstream config rename * account hydrogen production by industrial processes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update submodule * update submodule --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- ariadne-data/costs/mean/costs_2020.csv | 151 ++- ariadne-data/costs/mean/costs_2025.csv | 153 ++- ariadne-data/costs/mean/costs_2030.csv | 151 ++- ariadne-data/costs/mean/costs_2035.csv | 151 ++- ariadne-data/costs/mean/costs_2040.csv | 151 ++- ariadne-data/costs/mean/costs_2045.csv | 151 ++- ariadne-data/costs/mean/costs_2050.csv | 151 ++- ariadne-data/costs/optimist/costs_2020.csv | 920 ------------------- ariadne-data/costs/optimist/costs_2025.csv | 920 ------------------- ariadne-data/costs/optimist/costs_2030.csv | 920 ------------------- ariadne-data/costs/optimist/costs_2035.csv | 920 ------------------- ariadne-data/costs/optimist/costs_2040.csv | 920 ------------------- ariadne-data/costs/optimist/costs_2045.csv | 920 ------------------- ariadne-data/costs/optimist/costs_2050.csv | 920 ------------------- ariadne-data/costs/pessimist/costs_2020.csv | 920 ------------------- ariadne-data/costs/pessimist/costs_2025.csv | 920 ------------------- ariadne-data/costs/pessimist/costs_2030.csv | 920 ------------------- ariadne-data/costs/pessimist/costs_2035.csv | 920 ------------------- ariadne-data/costs/pessimist/costs_2040.csv | 920 ------------------- ariadne-data/costs/pessimist/costs_2045.csv | 920 ------------------- ariadne-data/costs/pessimist/costs_2050.csv | 920 ------------------- config/config.yaml | 6 +- workflow/scripts/export_ariadne_variables.py | 56 +- workflow/scripts/modify_prenetwork.py | 4 +- workflow/submodules/pypsa-eur | 2 +- 25 files changed, 1046 insertions(+), 12961 deletions(-) delete mode 100644 ariadne-data/costs/optimist/costs_2020.csv delete mode 100644 ariadne-data/costs/optimist/costs_2025.csv delete mode 100644 ariadne-data/costs/optimist/costs_2030.csv delete mode 100644 ariadne-data/costs/optimist/costs_2035.csv delete mode 100644 ariadne-data/costs/optimist/costs_2040.csv delete mode 100644 ariadne-data/costs/optimist/costs_2045.csv delete mode 100644 ariadne-data/costs/optimist/costs_2050.csv delete mode 100644 ariadne-data/costs/pessimist/costs_2020.csv delete mode 100644 ariadne-data/costs/pessimist/costs_2025.csv delete mode 100644 ariadne-data/costs/pessimist/costs_2030.csv delete mode 100644 ariadne-data/costs/pessimist/costs_2035.csv delete mode 100644 ariadne-data/costs/pessimist/costs_2040.csv delete mode 100644 ariadne-data/costs/pessimist/costs_2045.csv delete mode 100644 ariadne-data/costs/pessimist/costs_2050.csv diff --git a/ariadne-data/costs/mean/costs_2020.csv b/ariadne-data/costs/mean/costs_2020.csv index c4748aa8a..db63b7679 100644 --- a/ariadne-data/costs/mean/costs_2020.csv +++ b/ariadne-data/costs/mean/costs_2020.csv @@ -4,6 +4,36 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,300.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.97,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,409373.5872,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.9613,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,489913.3908,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,400.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.5362,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,325191.1729,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,330.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.9603,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,338623.152,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,490.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.6988,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,360694.2014,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 @@ -103,6 +133,84 @@ Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'car Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Concrete-store,investment,29432.5788,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,41959454.4301,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,38462833.2276,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,143583536.7421,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,131618242.0136,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,2.4356,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,2.5466,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.5523,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,220.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,2.4961,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,3.625,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,364.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.7805,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,382675.3098,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,364.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.7747,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,889942.5809,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,475.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.7537,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,348679.5032,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.8629,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,293681.0517,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,3.0727,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,315752.1011,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 @@ -194,6 +302,9 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., @@ -385,6 +496,15 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,38642243.6445,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,42155174.885,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 Vanadium-Redox-Flow-bicharger,investment,149950.2088,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -417,12 +537,18 @@ air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewa air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", air separation unit,investment,1003392.2397,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 battery inverter,investment,285.7198,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,245.5074,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,96.2077,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,62.1519,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, @@ -436,6 +562,7 @@ biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2 biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.7575,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 @@ -722,6 +849,7 @@ fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_ fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 fuel cell,investment,1375.6881,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,15.9997,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 @@ -734,12 +862,11 @@ gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Stor gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 @@ -797,7 +924,11 @@ methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydr methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,307000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 @@ -839,8 +970,8 @@ offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020 offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 @@ -852,6 +983,10 @@ onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xl onwind,VOM,1.5873,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 onwind,investment,1183.9119,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 diff --git a/ariadne-data/costs/mean/costs_2025.csv b/ariadne-data/costs/mean/costs_2025.csv index b9a014f0a..eb8fe67e8 100644 --- a/ariadne-data/costs/mean/costs_2025.csv +++ b/ariadne-data/costs/mean/costs_2025.csv @@ -4,6 +4,36 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,320.6897,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.9204,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,326312.2797,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,298.2759,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.9094,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,406852.0832,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,468.9655,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.4729,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,247867.9385,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,353.4483,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.9226,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,313643.3844,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,587.931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.6303,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,274929.1357,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 @@ -103,6 +133,84 @@ Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'car Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Concrete-store,investment,26738.4056,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,41959454.4301,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,38462833.2276,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,143583536.7421,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,31.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,131618242.0136,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,31.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,2.2786,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,2.393,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.4385,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,235.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,2.3586,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,3.4819,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,375.8621,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.6958,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,356178.0895,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,375.8621,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.6864,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,653008.177,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,492.2414,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.6623,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,255848.6038,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,363.7931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.7934,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,276930.7366,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,363.7931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.9676,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,299001.7859,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 @@ -194,6 +302,9 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., @@ -385,6 +496,15 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,38642243.6445,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,42155174.885,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 Vanadium-Redox-Flow-bicharger,investment,139486.6307,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -417,12 +537,18 @@ air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewa air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", air separation unit,investment,912034.4091,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 battery inverter,investment,227.5176,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,197.8874,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,116.9293,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,72.2943,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, @@ -436,6 +562,7 @@ biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2 biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.8126,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 @@ -715,13 +842,14 @@ electrobiofuels,investment,512440.2631,EUR/kW_th,combination of BtL and electrof electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.5874,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,investment,1800.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 fuel cell,investment,1269.866,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,15.261,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 @@ -734,12 +862,11 @@ gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Stor gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 @@ -797,7 +924,11 @@ methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydr methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,288000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 @@ -839,8 +970,8 @@ offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020 offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 @@ -852,6 +983,10 @@ onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xl onwind,VOM,1.508,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 onwind,investment,1139.8826,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 diff --git a/ariadne-data/costs/mean/costs_2030.csv b/ariadne-data/costs/mean/costs_2030.csv index 283d11713..a31d7393c 100644 --- a/ariadne-data/costs/mean/costs_2030.csv +++ b/ariadne-data/costs/mean/costs_2030.csv @@ -4,6 +4,36 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,346.5517,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.8585,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,222485.6452,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,358.6207,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.8446,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,303025.4488,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,555.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.3936,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,151213.8954,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,382.7586,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.8755,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,282418.6749,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,710.3448,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.5446,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,167722.8037,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 @@ -103,6 +133,84 @@ Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'car Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,38462833.2276,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,36802136.8043,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,131618242.0136,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,31.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,32.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,125635594.6493,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,32.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,2.0824,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,2.2009,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.2963,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,254.1379,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,2.1867,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,3.3031,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,390.6897,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.5899,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,323056.5642,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,390.6897,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.5761,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,356840.1722,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,513.7931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.548,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,139809.9795,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,381.0345,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.7064,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,255992.8427,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,381.0345,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.8363,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,278063.892,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 @@ -194,6 +302,9 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., @@ -385,6 +496,15 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,36885778.0243,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,38642243.6445,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -417,12 +537,18 @@ air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewa air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", air separation unit,investment,820676.5784,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 battery inverter,investment,169.3155,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,150.2675,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,137.6508,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,82.4367,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, @@ -436,6 +562,7 @@ biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2 biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.8676,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 @@ -722,6 +849,7 @@ fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_ fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 fuel cell,investment,1164.0438,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,14.5224,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 @@ -734,12 +862,11 @@ gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Stor gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 @@ -797,7 +924,11 @@ methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydr methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,269000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 @@ -839,8 +970,8 @@ offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020 offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 @@ -852,6 +983,10 @@ onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xl onwind,VOM,1.4286,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 onwind,investment,1095.8533,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 diff --git a/ariadne-data/costs/mean/costs_2035.csv b/ariadne-data/costs/mean/costs_2035.csv index a1b9b62e7..dee4047e2 100644 --- a/ariadne-data/costs/mean/costs_2035.csv +++ b/ariadne-data/costs/mean/costs_2035.csv @@ -4,6 +4,36 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,982536.4099,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,372.4138,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.7965,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,214506.8497,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,418.9655,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.7797,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,295046.6532,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,641.3793,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.3144,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,151213.8954,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,412.069,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.8284,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,251193.9654,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,832.7586,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.4589,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,167722.8037,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 @@ -103,6 +133,84 @@ Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'car Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,36714522.6264,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,35884174.4147,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,125635594.6493,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,31.5,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,32.5,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,122644270.9672,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,32.5,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,1.8862,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,2.0089,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.1541,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,273.1034,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,2.0148,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,3.1242,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,405.5172,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.484,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,289935.0389,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,405.5172,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.4658,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,356840.1722,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,535.3448,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.4337,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,139809.9795,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,398.2759,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.6195,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,235054.9487,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,398.2759,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.7049,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,257125.9981,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 @@ -194,6 +302,9 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., @@ -385,6 +496,15 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,36007545.2142,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,36885778.0243,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -417,12 +537,18 @@ air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewa air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", air separation unit,investment,745954.8206,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 battery inverter,investment,137.5688,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,124.8702,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,137.5968,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,84.2795,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, @@ -436,6 +562,7 @@ biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2 biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.8729,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 @@ -722,6 +849,7 @@ fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_ fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 fuel cell,investment,1084.6772,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,13.8577,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 @@ -734,12 +862,11 @@ gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Stor gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 @@ -797,7 +924,11 @@ methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydr methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,251750.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 @@ -839,8 +970,8 @@ offwind-float,FOM,1.185,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,202 offwind-float,investment,2155.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 @@ -852,6 +983,10 @@ onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xl onwind,VOM,1.3715,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 onwind,investment,1065.167,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 diff --git a/ariadne-data/costs/mean/costs_2040.csv b/ariadne-data/costs/mean/costs_2040.csv index 3502220ca..e7f9ffbf0 100644 --- a/ariadne-data/costs/mean/costs_2040.csv +++ b/ariadne-data/costs/mean/costs_2040.csv @@ -4,6 +4,36 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,841127.4391,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,398.2759,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.7346,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,206528.0541,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,479.3103,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.7149,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,287067.8577,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,727.5862,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.2352,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,151213.8954,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,441.3793,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.7813,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,219969.2559,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,955.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.3732,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,167722.8037,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 @@ -103,6 +133,84 @@ Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'car Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,32.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,1.6899,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,1.8169,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.0119,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,292.069,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,1.8429,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,2.9453,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,420.3448,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.3781,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,256813.5136,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,420.3448,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.3554,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,356840.1722,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,556.8966,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.3194,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,139809.9795,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,415.5172,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.5325,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,214117.0548,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,415.5172,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.5736,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,236188.1042,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 @@ -194,6 +302,9 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., @@ -385,6 +496,15 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -417,12 +537,18 @@ air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewa air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", air separation unit,investment,671233.0629,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 battery inverter,investment,105.8222,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,99.4728,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,137.5427,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,86.1222,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, @@ -436,6 +562,7 @@ biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2 biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.8782,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 @@ -722,6 +849,7 @@ fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_ fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 fuel cell,investment,1005.3105,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,13.193,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 @@ -734,12 +862,11 @@ gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Stor gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 @@ -797,7 +924,11 @@ methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydr methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,234500.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 @@ -839,8 +970,8 @@ offwind-float,FOM,1.22,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020 offwind-float,investment,1960.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 @@ -852,6 +983,10 @@ onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xl onwind,VOM,1.3143,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 onwind,investment,1034.4807,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 diff --git a/ariadne-data/costs/mean/costs_2045.csv b/ariadne-data/costs/mean/costs_2045.csv index 5abd74fbe..0828e2143 100644 --- a/ariadne-data/costs/mean/costs_2045.csv +++ b/ariadne-data/costs/mean/costs_2045.csv @@ -4,6 +4,36 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,699718.4683,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,424.1379,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.6726,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,198549.2586,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,539.6552,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.65,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,279089.0621,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,813.7931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.156,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,151213.8954,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,470.6897,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.7343,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,188744.5463,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,1077.5862,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.2875,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,167722.8037,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 @@ -103,6 +133,84 @@ Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'car Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,32.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,1.4937,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,1.6249,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,2.8697,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,311.0345,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,1.671,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,2.7665,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,435.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.2722,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,223691.9883,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,435.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.2451,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,356840.1722,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,578.4483,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.2051,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,139809.9795,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,432.7586,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.4456,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,193179.1609,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,432.7586,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.4422,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,215250.2103,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 @@ -194,6 +302,9 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., @@ -385,6 +496,15 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -417,12 +537,18 @@ air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewa air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", air separation unit,investment,592917.0978,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 battery inverter,investment,84.6577,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,89.4197,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,134.6872,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,87.9862,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, @@ -436,6 +562,7 @@ biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2 biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.9144,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 @@ -722,6 +849,7 @@ fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_ fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 fuel cell,investment,925.9439,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,12.5949,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 @@ -734,12 +862,11 @@ gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Stor gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 @@ -797,7 +924,11 @@ methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydr methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,217250.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 @@ -839,8 +970,8 @@ offwind-float,FOM,1.305,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,202 offwind-float,investment,1770.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 @@ -852,6 +983,10 @@ onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xl onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 onwind,investment,1026.8091,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 diff --git a/ariadne-data/costs/mean/costs_2050.csv b/ariadne-data/costs/mean/costs_2050.csv index 78a47240a..0bf0ad9b2 100644 --- a/ariadne-data/costs/mean/costs_2050.csv +++ b/ariadne-data/costs/mean/costs_2050.csv @@ -4,6 +4,36 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,558309.4975,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,450.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.6107,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,190570.463,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,600.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.5852,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,271110.2666,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,900.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.0768,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,151213.8954,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,500.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.6872,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,157519.8368,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,1200.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.2019,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,167722.8037,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 Battery electric (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 @@ -103,6 +133,84 @@ Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'car Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,32.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,1.2975,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,1.4329,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,2.7275,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,330.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,1.4992,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,2.5876,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,450.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.1664,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,190570.463,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,450.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.1348,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,356840.1722,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,600.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.0908,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,139809.9795,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,450.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.3586,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,172241.267,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,450.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.3109,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,194312.3164,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 @@ -194,6 +302,9 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., @@ -385,6 +496,15 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -417,12 +537,18 @@ air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewa air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", air separation unit,investment,514601.1327,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 battery inverter,investment,63.4933,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,79.3666,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,131.8317,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,89.8502,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, @@ -436,6 +562,7 @@ biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2 biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.9506,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 @@ -722,6 +849,7 @@ fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_ fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 fuel cell,investment,846.5773,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,11.9967,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 @@ -734,12 +862,11 @@ gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Stor gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 @@ -797,7 +924,11 @@ methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydr methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,200000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 @@ -839,8 +970,8 @@ offwind-float,FOM,1.39,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020 offwind-float,investment,1580.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 @@ -852,6 +983,10 @@ onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xl onwind,VOM,1.2857,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 onwind,investment,1019.1375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 diff --git a/ariadne-data/costs/optimist/costs_2020.csv b/ariadne-data/costs/optimist/costs_2020.csv deleted file mode 100644 index c4748aa8a..000000000 --- a/ariadne-data/costs/optimist/costs_2020.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,3638.1722,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,931.235,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,188018.4103,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,752073.6414,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,29432.5788,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,819108.478,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,187325.7928,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,144713.4654,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,113887.5264,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1785.0713,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,187899.5061,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,751598.0242,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,112560.0095,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,1304350.411,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,1265835.3275,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,149731.2267,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,365289.854,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,503663.7386,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,353636.242,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,186749.107,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,325690.7596,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,372111.988,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,149374.5139,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,597498.0554,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,69421.8279,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,344828.4062,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,480.3903,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,807189.2511,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,566749.8997,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.0615,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,31293.8274,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,152624.5646,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,610498.2585,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,8014.7441,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,149950.2088,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,317614.1853,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,194899.0057,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,134297.449,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,476623.9107,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,276873.6097,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,1003392.2397,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,285.7198,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,245.5074,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.2361,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,926.3933,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,722.4205,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,3.0688,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,2010.6211,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.164,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.0392,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,596.837,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1375.6881,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,0.9524,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,74.0755,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,5767.0987,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.6133,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,159.96,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.0,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,21.43,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.0,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,1120.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,994.7283,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,330.2494,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,206.4059,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1587.3324,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8711,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,80.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,5.153,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation,, -electrobiofuels,investment,559887.2932,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1375.6881,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.1077,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,54.9273,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,398.9496,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,342.3682,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,60.3186,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,3.1747,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,1052.7581,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,877.2984,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,777.5294,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,819108.478,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,10630.1681,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1992.6105,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.5873,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1183.9119,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,42561.4413,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,809.8118,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,1057.1237,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,872.3118,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,1241.9355,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,562.5,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,650.3522,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2025.csv b/ariadne-data/costs/optimist/costs_2025.csv deleted file mode 100644 index da98d2072..000000000 --- a/ariadne-data/costs/optimist/costs_2025.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3285,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6715,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2462,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.5763,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.5876,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.6083,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2463.5433,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,5.6686,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.0745,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,3378.3027,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.2647,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.4093,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,1.75,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,899.4884,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,166105.3393,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,664421.3572,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,26738.4056,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,4.8562,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,761417.4621,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,172353.7601,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,133234.2464,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,104935.0238,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0128,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0206,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1594.4641,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,166045.8871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,664183.5486,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,103333.7792,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.5473,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,825760.6159,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,822421.3869,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,139292.4203,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,342960.6179,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,489692.4838,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,343826.6375,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,172876.939,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,281086.7853,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,320844.4187,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,146783.3911,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,587133.5642,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,63731.5141,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,306333.1401,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.8671,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.5856,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,451.1707,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,784485.9619,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,550809.2924,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.1071,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,21420.3118,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,148408.4164,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,593633.6658,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,7357.7979,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,139486.6307,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,287843.5219,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,184643.5101,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,107925.4668,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,444465.2527,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,258047.096,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,820033.6604,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.1981,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.9517,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,280.4287,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,232.8088,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,20.8333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,1070.8152,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,19.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,1070.8152,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,19.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,21.4742,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,3.9878,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,892.5471,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,4.3159,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,200.1388,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,19.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5787,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.1086,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4527,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3178,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7127,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3395.6572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.9033,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.095,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.1533,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.0278,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.7858,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.7858,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,3016666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5787,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.1086,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4527,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3178,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7127,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3395.6572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7342,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.367,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0336,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,882.1322,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.9938,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.8425,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,659.2667,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,4.4005,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,18.2411,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.15,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.3167,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,4801.2803,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.9033,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.095,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.1533,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.0233,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.7858,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.5917,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2733333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2028,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.4667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,956.4376,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,27.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,3.0376,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.4933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1990.14,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.4093,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,0.9333,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.4033,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.4093,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,0.9333,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.4033,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.209,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0759,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,59.084,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.3416,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.1129,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.725,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,567.9123,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.2143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.505,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1234.5919,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.6892,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,0.8819,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,65.257,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8711,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.5848,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.346,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2874,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8296,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3556.7223,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8711,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.5848,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.346,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2874,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8296,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,5343.1023,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8711,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.5848,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.346,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2874,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8296,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3556.7223,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5477,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5797,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,21.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,134.165,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.05,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,17.975,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.05,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,939.87,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,2.9777,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,1019.7408,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.9783,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,348.3277,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,206.8821,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8567,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.8667,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1635.4334,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.1583,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,6333333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2841,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2841,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3288,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3288,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.334,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8568,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,78.8817,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,5.6686,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,4.4918,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation,, -electrobiofuels,investment,512440.2631,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.5728,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2815,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,24.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.2143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.505,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1234.5919,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.6771,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.0909,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.9267,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,53.4015,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.1981,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.9517,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,395.99,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,329.6326,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,20.8333,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.0784,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,53.9693,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,25.8333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.963,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0918,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2593,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.0458,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,1018.2784,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1102,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2593,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.6483,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,848.5653,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,728.6739,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,761417.4621,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.5385,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.3575,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.6007,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,9570.0517,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.3857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1919.4478,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.6713,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,5.7497,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,343.9573,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2375,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.4942,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1126.909,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,29.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,39056.5182,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.6234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,733.4362,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,35.8333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.1887,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,955.9019,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,35.8333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.265,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,786.5854,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.1124,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,1125.2184,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.0582,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,510.9705,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,1.9358,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,590.62,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.5744,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.5744,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.391,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,27.4128,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.278,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2101,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7796,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,8475.6104,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.391,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,27.4128,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.278,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2101,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7796,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,8475.6104,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8466,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8466,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2030.csv b/ariadne-data/costs/optimist/costs_2030.csv deleted file mode 100644 index 9bd626d75..000000000 --- a/ariadne-data/costs/optimist/costs_2030.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.333,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.667,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2446,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.5391,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.304,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.6167,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2268.5867,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,10.1806,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.0191,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,3118.4333,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.1951,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.1623,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,1.7,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,867.7417,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,4.0764,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,703726.4462,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.029,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0188,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1403.857,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.9694,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.4093,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,421.9511,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,636675.0811,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.1962,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.9533,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,275.1376,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,220.1101,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,21.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,1109.1727,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,18.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,1109.1727,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,18.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,42.0228,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,3.3816,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,820.3777,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,4.4705,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,207.3079,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,18.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,1.988,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.451,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3362,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7162,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3213.1795,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.9067,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.09,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.1467,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.0257,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.7387,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.7387,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2733333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,1.988,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.451,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3362,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7162,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3213.1795,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.6582,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.498,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0349,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,837.871,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,8.7899,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.8651,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,591.6019,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,21.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.4874,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.5126,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.188,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,8.9859,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.7843,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.72,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.28,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.4133,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,4011.1683,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.9067,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.09,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.1467,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.0217,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.7387,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.5333,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2466666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.1946,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.5333,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,3.0063,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5017,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1969.6589,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.7255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.1623,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,0.9067,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.4067,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,539.693,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.7255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.1623,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,0.9067,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.4067,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,539.693,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.1613,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,0.9877,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,54.6748,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.3272,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.1866,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,538.9875,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.4839,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.51,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1093.4957,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.9,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,0.8113,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,56.4385,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.855,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.3001,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3431,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.3059,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8337,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3373.0059,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.855,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.3001,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3431,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.3059,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8337,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,4941.6445,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.855,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.3001,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3431,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.3059,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8337,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3373.0059,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5814,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.546,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,23.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,108.37,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.1,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,14.52,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.1,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,759.17,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.0003,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,1049.7559,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.2912,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.9867,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,370.0217,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,21.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,207.4536,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8602,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.9333,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1693.1546,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,21.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.0667,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,5666666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2836,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2836,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3304,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,77.2033,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,10.1806,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,3.8477,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation,, -electrobiofuels,investment,466206.9921,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.5684,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2869,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,1500.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,23.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.4839,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.51,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1093.4957,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.6882,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.0741,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.9333,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,51.8758,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.1962,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.9533,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,392.1738,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,314.5134,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,21.6667,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.1111,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,47.62,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,26.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.7514,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0908,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2358,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.1417,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,983.7987,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1089,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2358,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.7467,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,819.8323,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,679.8185,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,703726.4462,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.3793,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.364,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.6023,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,8515.802,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.2523,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1846.2851,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,29.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.7894,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,5.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,324.9446,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2222,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.4011,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1069.9062,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,31.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,34796.4978,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.6794,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,657.0605,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,36.6667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.2402,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,854.6802,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,36.6667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.3269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,700.859,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.1535,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,1008.5014,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.1185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,459.4409,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.028,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,530.8877,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.7031,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.7031,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3787,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,25.9608,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2733,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2181,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7957,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,7874.1134,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3787,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,25.9608,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2733,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2181,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7957,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,7874.1134,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8563,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8563,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2035.csv b/ariadne-data/costs/optimist/costs_2035.csv deleted file mode 100644 index 80f93d3d5..000000000 --- a/ariadne-data/costs/optimist/costs_2035.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,982536.4099,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3375,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6625,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2429,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.4949,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.0205,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.625,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2073.63,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,16.8123,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,0.9637,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,2858.5639,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.1203,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,3.9154,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,1.65,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,835.9951,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,3.2965,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,657729.5552,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,124.592,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,800.9483,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0503,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0169,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1213.2498,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,2.087,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,392.7314,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,453316.5018,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.1941,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,269.8465,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,207.4114,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,1147.5302,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,17.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,1147.5302,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,17.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,66.5355,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,2.7755,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,748.2082,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,4.6251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,214.4771,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,17.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5091,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,1.8675,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4494,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3547,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7196,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3030.7019,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.91,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.0235,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.6915,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.6915,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2450000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5091,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,1.8675,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4494,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3547,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7196,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3030.7019,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.5737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.629,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0362,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,793.6099,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,9.8761,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.8876,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,518.9249,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,22.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.5348,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.4652,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.1706,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,15.8207,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,11.3275,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.79,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.41,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.51,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,3221.0562,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.91,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.6915,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.475,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.1855,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,855.76,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,32.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9751,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.51,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1949.1778,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.9894,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,3.9154,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,0.88,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,497.3642,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.9894,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,3.9154,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,0.88,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,497.3642,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.1053,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,0.8995,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.045,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,50.2655,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.3112,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.2603,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.755,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,510.0628,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,27.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.8333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.515,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,952.3995,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,2.1889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,0.7408,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,47.62,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8369,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.0155,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3402,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.3245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8378,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3189.2895,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8369,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.0155,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3402,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.3245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8378,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,4560.1967,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8369,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.0155,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3402,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.3245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8378,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3189.2895,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.6196,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5124,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,104.17,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.2,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,13.955,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.2,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,729.755,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.0262,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,1086.4409,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,19.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.1422,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.995,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,396.5365,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,22.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,208.152,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8641,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,4.0,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1763.7027,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,22.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,0.975,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.1212,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2832,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1212,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2832,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3314,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3314,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3267,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8283,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,16.8123,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,3.2207,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation,, -electrobiofuels,investment,428759.8057,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.5639,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2922,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,1350.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,22.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.8333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.515,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,952.3995,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,27.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.1941,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,387.2797,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,298.2561,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.1538,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,41.2706,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.5397,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0896,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2123,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.2375,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,949.319,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1076,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2123,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.845,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,791.0992,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,639.7986,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,657729.5552,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.3705,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,7467.3704,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.1079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1773.1224,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,31.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.185,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,2155.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.9222,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,305.9319,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2052,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.308,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1012.9033,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,33.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,31312.5066,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.75,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,580.6849,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.3058,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,753.4584,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.4062,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,615.1325,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.2054,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,891.7843,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.1941,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,407.9114,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.1437,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,471.1554,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.8378,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8332,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.905,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.8378,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8332,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.905,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3645,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,24.5088,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2686,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2261,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.8117,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,7272.6164,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3645,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,24.5088,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2686,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2261,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.8117,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,7272.6164,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.866,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.866,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2040.csv b/ariadne-data/costs/optimist/costs_2040.csv deleted file mode 100644 index 213fabcfd..000000000 --- a/ariadne-data/costs/optimist/costs_2040.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,841127.4391,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.342,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.658,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2413,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.4415,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.7369,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.6333,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1878.6733,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,27.5158,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,0.9083,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,2598.6944,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.0395,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,3.6685,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,1.6,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,804.2484,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,2.5167,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,611732.6641,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,102.3434,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,711.9541,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0795,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.015,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1022.6427,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,2.2234,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.0565,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,363.5118,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,269957.9224,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.192,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.9567,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,264.5554,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,194.7128,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,23.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,1185.8878,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,16.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,1185.8878,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,16.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,96.2819,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,2.1693,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,676.0388,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,4.7797,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,221.6462,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,16.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.4677,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,1.747,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4477,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3731,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7231,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,2848.2242,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.9133,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.1333,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.0213,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.6443,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.6443,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2166666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.4677,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,1.747,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4477,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3731,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7231,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,2848.2242,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.4793,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.7599,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0374,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,749.3488,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,11.4465,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.9101,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,440.6574,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,23.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.5821,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.4179,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.1532,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,27.0985,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,7.8707,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.86,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.54,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.6067,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,2430.9441,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.9133,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.1333,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.0183,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.6443,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.4167,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,1933333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.1752,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.6667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,805.4212,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9438,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5183,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1928.6967,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,4.3023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,3.6685,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,0.8533,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.4133,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,455.0353,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,4.3023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,3.6685,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,0.8533,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.4133,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,455.0353,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.0385,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,0.8113,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.05,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,45.8563,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.2933,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.3341,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.77,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,481.1381,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,6.3043,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,811.3032,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,2.6091,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,0.6702,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,38.8015,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,3.7309,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3373,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.343,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8418,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3005.5731,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,3.7309,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3373,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.343,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8418,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,4196.7488,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,3.7309,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3373,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.343,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8418,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3005.5731,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.6631,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.4788,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,26.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,99.97,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.3,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,13.39,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.3,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,700.34,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.0562,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,1132.2971,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,19.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,5.9818,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,1.0033,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,429.6801,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,23.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,209.0251,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8687,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,4.0667,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1851.8878,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,23.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,0.8833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,4333333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.814,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,73.8467,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,27.5158,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,2.6107,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation,, -electrobiofuels,investment,392280.346,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.5595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2976,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,1200.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,21.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,6.3043,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,811.3032,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.7125,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.0406,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.9467,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,48.8242,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.192,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.9567,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,382.4551,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,282.0544,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,23.3333,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,34.9213,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,28.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.3281,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0884,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.1888,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.3333,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,914.8394,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1061,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.1888,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.9433,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,762.3661,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,599.7787,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,611732.6641,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,5.9091,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.377,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.6057,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,6424.709,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,1.951,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1699.9596,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,32.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.22,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,1960.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,3.0725,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,3.9507,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,286.9192,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1862,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.2148,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,955.9004,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,35.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,27828.5154,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.8418,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,504.3093,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,38.3333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.3921,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,652.2367,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,38.3333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.5111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,529.4061,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.273,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,775.0673,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.2915,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,356.3818,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.2929,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,411.4232,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.979,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.91,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.979,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.91,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3477,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,23.0567,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2639,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.234,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.8278,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,6671.1194,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3477,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,23.0567,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2639,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.234,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.8278,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,6671.1194,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8756,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8756,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2045.csv b/ariadne-data/costs/optimist/costs_2045.csv deleted file mode 100644 index 5993a8d04..000000000 --- a/ariadne-data/costs/optimist/costs_2045.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,699718.4683,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3465,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6535,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2396,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.3758,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.4533,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.6417,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1683.7167,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,47.7026,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,0.8529,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,2338.825,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,2.9521,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,3.4216,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,1.55,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.61,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,772.5018,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,1.7369,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,565735.7731,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,80.0948,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,622.9598,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.1222,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0131,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,832.0355,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,2.3837,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,3.8801,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,334.2922,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,86599.3431,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.1898,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.9583,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,259.2643,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,182.0141,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,24.1667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,1224.2453,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,15.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,1224.2453,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,15.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,133.1383,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,1.5632,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,603.8694,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,4.9343,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,228.8154,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,15.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.4206,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,1.6265,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.446,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3916,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7265,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,2665.7465,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.9167,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.1267,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.0192,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.5972,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.5972,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,1883333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.4206,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,1.6265,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.446,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3916,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7265,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,2665.7465,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.373,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.8909,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0387,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,705.0877,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,13.9179,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.9326,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,356.1284,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,24.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.6295,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.3705,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.1358,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,49.2375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,4.4139,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.93,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.67,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.7033,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,1640.8321,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.9167,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.1267,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.0167,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.5972,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.3583,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,1666666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.1635,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.7333,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,755.0823,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9125,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5267,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1908.2156,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,4.6795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,3.4216,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,0.8267,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.4167,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,412.7064,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,4.6795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,3.4216,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,0.8267,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.4167,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,412.7064,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,2.9574,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,0.7231,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.055,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,41.447,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.273,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.4078,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.785,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,452.2134,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,29.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,6.9737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.525,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,670.207,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,3.2765,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,0.5997,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,29.9829,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.7938,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,3.4463,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3344,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.3615,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8459,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,2821.8567,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.7938,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,3.4463,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3344,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.3615,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8459,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,3849.677,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.7938,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,3.4463,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3344,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.3615,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8459,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,2821.8567,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.7132,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.4452,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,28.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,99.675,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.35,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,13.355,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.35,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,698.27,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.0915,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,1191.2552,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,19.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,5.8087,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,1.0117,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,472.2933,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,24.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,210.1476,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8739,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,4.1333,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1965.2687,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,24.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,0.7917,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,3666666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.0606,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2824,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.0606,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2824,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3186,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.7997,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,72.1683,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,47.7026,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,2.0177,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation,, -electrobiofuels,investment,356768.6132,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.555,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.303,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,1100.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,20.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,6.9737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.525,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,670.207,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.7258,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.0238,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.9533,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,47.2985,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,29.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.1898,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.9583,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,375.6008,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,264.2187,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,24.1667,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.2963,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,28.572,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,29.1667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.1164,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0871,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.1653,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.4292,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,880.3597,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1045,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.1653,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,3.0417,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,733.6331,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,559.7588,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,565735.7731,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,5.5405,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.3835,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.6073,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,5387.7702,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,1.7801,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1626.7969,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,33.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.305,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,1770.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,3.2442,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,3.351,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,267.9064,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1647,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.1217,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,898.8975,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,37.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,25039.1517,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.9662,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,427.9336,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,39.1667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.5106,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,551.015,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,39.1667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.6566,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,443.6797,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.3645,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,658.3503,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.4219,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,304.8523,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.4927,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,351.6909,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.1273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.915,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.1273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.915,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3275,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,21.6047,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2592,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.242,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.8439,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,6069.6224,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3275,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,21.6047,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2592,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.242,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.8439,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,6069.6224,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8851,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8851,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2050.csv b/ariadne-data/costs/optimist/costs_2050.csv deleted file mode 100644 index 8b2104f89..000000000 --- a/ariadne-data/costs/optimist/costs_2050.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,558309.4975,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.351,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.649,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.238,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.2929,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.1697,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1488.76,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,100.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,0.7976,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,2078.9555,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,2.8571,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,3.1747,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,1.5,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.62,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,740.7551,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,0.9571,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,519738.882,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,57.8463,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,533.9655,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.1902,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0113,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,641.4283,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,12.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,125710.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,15.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,116401.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,2.5747,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,3.7038,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,305.0726,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,-96759.2362,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.1875,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,253.9732,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,169.3155,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,1262.6028,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,1262.6028,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,180.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,0.9571,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,531.7,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,5.0889,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,235.9845,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.3665,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,1.506,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4444,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,2483.2689,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.92,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.07,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.12,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.017,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.55,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.55,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,1600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.3665,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,1.506,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4444,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,2483.2689,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.2525,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.0218,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,660.8265,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,18.3775,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.9552,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,264.5554,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,25.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.6769,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.3231,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.1185,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,112.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,0.9571,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,1.0,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.8,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.8,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,850.72,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.92,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.07,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.12,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.015,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.55,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.3,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,1400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.1502,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,704.7435,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.8813,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1887.7345,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,5.1429,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,3.1747,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,0.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,370.3776,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,5.1429,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,3.1747,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,0.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,370.3776,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,2.8571,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,0.6349,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.06,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,37.0378,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.4815,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.8,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,423.2887,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,8.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,529.1108,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,4.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,0.5291,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,21.1644,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.7678,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,3.1617,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3315,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.38,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.85,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,2638.1403,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.7678,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,3.1617,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3315,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.38,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.85,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,3517.6502,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.7678,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,3.1617,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3315,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.38,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.85,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,2638.1403,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.7714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.4115,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,99.38,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.4,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,13.32,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.4,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,696.2,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.1333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,4.0,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,1269.866,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,5.6212,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,1.02,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,529.1108,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,25.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,211.6443,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.88,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,4.2,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,2116.4433,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,0.7,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,100.0,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,1.4418,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation,, -electrobiofuels,investment,322224.6071,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.5505,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.3083,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,1000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,8.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,529.1108,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.1875,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,370.0752,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,245.1552,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.4286,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,22.2227,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.9048,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.525,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,845.88,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,3.14,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,704.9,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,519.7389,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,519738.882,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,5.0,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.39,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,4356.5071,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,1.593,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1553.6342,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.39,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,1580.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,3.4422,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,2.7514,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,248.8937,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1403,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.0286,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,841.8947,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,22249.7881,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,2.1445,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,351.558,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.6836,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,449.7932,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.8718,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,357.9532,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.4955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,541.6332,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.6054,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,253.3228,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.7744,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,291.9586,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.303,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,20.1527,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2545,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.25,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.86,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,5468.1254,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.303,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,20.1527,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2545,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.25,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.86,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,5468.1254,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8944,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8944,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2020.csv b/ariadne-data/costs/pessimist/costs_2020.csv deleted file mode 100644 index c4748aa8a..000000000 --- a/ariadne-data/costs/pessimist/costs_2020.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,3638.1722,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,931.235,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,188018.4103,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,752073.6414,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,29432.5788,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,819108.478,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,187325.7928,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,144713.4654,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,113887.5264,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1785.0713,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,187899.5061,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,751598.0242,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,112560.0095,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,1304350.411,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,1265835.3275,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,149731.2267,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,365289.854,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,503663.7386,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,353636.242,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,186749.107,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,325690.7596,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,372111.988,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,149374.5139,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,597498.0554,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,69421.8279,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,344828.4062,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,480.3903,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,807189.2511,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,566749.8997,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.0615,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,31293.8274,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,152624.5646,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,610498.2585,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,8014.7441,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,149950.2088,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,317614.1853,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,194899.0057,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,134297.449,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,476623.9107,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,276873.6097,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,1003392.2397,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,285.7198,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,245.5074,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.2361,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,926.3933,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,722.4205,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,3.0688,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,2010.6211,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.164,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.0392,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,596.837,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1375.6881,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,0.9524,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,74.0755,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,5767.0987,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.6133,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,159.96,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.0,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,21.43,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.0,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,1120.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,994.7283,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,330.2494,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,206.4059,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1587.3324,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8711,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,80.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,5.153,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation,, -electrobiofuels,investment,559887.2932,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1375.6881,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.1077,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,54.9273,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,398.9496,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,342.3682,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,60.3186,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,3.1747,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,1052.7581,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,877.2984,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,777.5294,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,819108.478,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,10630.1681,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1992.6105,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.5873,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1183.9119,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,42561.4413,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,809.8118,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,1057.1237,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,872.3118,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,1241.9355,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,562.5,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,650.3522,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2025.csv b/ariadne-data/costs/pessimist/costs_2025.csv deleted file mode 100644 index 0b4ee8663..000000000 --- a/ariadne-data/costs/pessimist/costs_2025.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3375,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6625,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2429,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.5311,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.7648,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.625,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2676.2233,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,7.5267,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1543,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,3378.3027,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.2091,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,5.1147,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.5583,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,970.0365,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,166105.3393,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,664421.3572,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,26738.4056,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,4.8916,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,761417.4621,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,172353.7601,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,133234.2464,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,104935.0238,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0203,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0263,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1665.734,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,166045.8871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,664183.5486,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,103333.7792,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.5473,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,825760.6159,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,822421.3869,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,139292.4203,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,342960.6179,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,489692.4838,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,343826.6375,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,172876.939,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,281086.7853,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,320844.4187,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,146783.3911,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,587133.5642,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,63731.5141,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,306333.1401,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7026,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.8502,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,494.7525,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,784485.9619,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,550809.2924,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.1071,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,21420.3118,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,148408.4164,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,593633.6658,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,7357.7979,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,139486.6307,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,287843.5219,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,184643.5101,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,107925.4668,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,444465.2527,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,258047.096,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,836160.1998,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.1742,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,328.0487,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,250.2694,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,19.1667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,988.4715,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,988.4715,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,21.23,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,4.0232,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,1069.7804,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,4.0135,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,186.1165,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5554,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.3126,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4805,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.2945,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.6694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3685.7401,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.915,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.0983,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.1583,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.0292,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.8142,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.8142,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,3216666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5554,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.3126,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4805,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.2945,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.6694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3685.7401,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.6652,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.5408,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0069,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,964.1616,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,6.9112,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.8175,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,778.3874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,19.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.4772,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.5228,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.1917,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,5.064,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,18.2766,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.705,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.225,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.3917,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,4872.1737,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.915,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.0983,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.1583,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.0243,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.8142,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.6333,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2900000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.3833,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,1090.6745,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,3.0376,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.4933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1990.14,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,3.0395,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.3967,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,670.207,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.0395,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.3967,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,670.207,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,2.2273,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.3581,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.015,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,97.0036,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.3591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,0.9189,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,638.4604,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,4.9324,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.4933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1305.14,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.2212,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,0.97,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,91.7125,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8537,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,5.0563,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3721,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2641,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.7679,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3881.3327,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8537,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,5.0563,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3721,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2641,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.7679,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,5906.3721,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8537,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,5.0563,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3721,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2641,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.7679,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3881.3327,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5229,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.6071,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,134.165,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.05,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,17.975,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.05,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,939.87,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,2.8562,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,960.5396,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,17.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.3309,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.9717,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,244.063,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,19.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,158.7642,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8518,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.7667,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1481.5103,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,19.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.2083,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2841,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,14.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2841,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,14.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3288,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,14.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3288,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,14.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.334,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8568,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.9883,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,78.8817,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,7.5267,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,4.5994,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation,, -electrobiofuels,investment,512440.2631,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6003,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2485,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,4.9324,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.4933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1305.14,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.6771,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.0909,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.915,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,53.4015,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.1742,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,463.2336,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,354.3551,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,19.1667,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.0773,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,56.4826,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,25.8333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.8219,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0918,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2593,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,2.9667,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,1018.2784,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1102,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2593,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,848.5653,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,728.6739,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,761417.4621,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.7606,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.3442,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.6007,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,10453.4411,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.6209,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1904.5962,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.421,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.7903,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,379.5135,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2318,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.5799,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1197.0669,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,39056.5182,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.5875,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,767.9507,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,35.8333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.1642,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,1000.4459,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,35.8333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.2386,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,824.87,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.0898,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,1176.0218,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.0107,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,535.4556,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,1.8904,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,620.6719,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.5744,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.5744,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3839,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,29.7245,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2919,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.1968,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7529,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,9114.7824,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3839,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,29.7245,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2919,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.1968,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7529,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,9114.7824,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8266,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8266,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2030.csv b/ariadne-data/costs/pessimist/costs_2030.csv deleted file mode 100644 index 78268af52..000000000 --- a/ariadne-data/costs/pessimist/costs_2030.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.351,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.649,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.238,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.4553,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.6585,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2693.9467,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,14.2807,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1787,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,3118.4333,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.0979,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,5.5733,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.5567,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,1008.838,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,4.1473,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,703726.4462,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0438,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.03,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1546.3966,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.6323,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.9384,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,509.1147,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,668928.1598,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.1543,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,370.3776,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,255.0314,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,18.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,944.4854,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,21.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,944.4854,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,21.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,35.3782,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,3.4525,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,1174.8443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.8657,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,179.2634,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,21.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5057,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.3961,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.5065,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.2896,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.6295,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3793.3454,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.93,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.0967,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.1567,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.0283,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.7953,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.7953,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,3133333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5057,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.3961,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.5065,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.2896,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.6295,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3793.3454,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.5379,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.8456,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.9816,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,1001.9299,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,6.5006,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.8149,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,834.3542,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,18.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.5618,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.4382,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.1607,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,10.3861,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.8552,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.83,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.43,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.5633,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,4152.9549,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.93,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.0967,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.1567,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.0237,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.7953,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.6167,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2703,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.3667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,1174.5725,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,3.0063,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5017,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1969.6589,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,2.8079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.8678,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.04,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.3933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,716.0633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,2.8079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.8678,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.04,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.3933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,716.0633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,1.7297,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.5521,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,130.514,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.3631,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,0.7986,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.7067,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,680.0838,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,4.8571,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.4867,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1234.5919,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.0129,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,0.9877,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,109.3496,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8239,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,5.2433,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3952,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2593,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.7104,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,4022.2266,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8239,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,5.2433,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3952,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2593,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.7104,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,6043.4896,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8239,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,5.2433,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3952,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2593,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.7104,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,4022.2266,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5283,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.6009,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,108.37,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.1,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,14.52,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.1,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,759.17,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,2.7632,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.3,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,931.235,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,17.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.1218,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.9733,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,197.0523,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,18.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,132.7779,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8501,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.7333,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1390.8056,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,18.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.1667,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2836,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,13.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2836,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,13.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,13.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,13.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3304,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.9867,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,77.2033,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,14.2807,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,4.062,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation,, -electrobiofuels,investment,466206.9921,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6234,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2207,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,1500.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,26.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,4.8571,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.4867,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1234.5919,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.6882,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.0741,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.91,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,51.8758,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.1543,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,527.9262,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,364.4121,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,18.3333,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.1055,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,52.6465,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,26.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.4692,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0908,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2358,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,2.9833,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,983.7987,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1089,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2358,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,819.8323,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,679.8185,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,703726.4462,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.8571,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.3373,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.6023,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,10277.6921,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.7432,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1816.5819,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,26.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.2886,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,7.2312,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,396.0571,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2127,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.5725,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1210.2219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,26.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,34796.4978,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.5981,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,726.0896,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,36.6667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.1834,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,943.7682,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,36.6667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.2649,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,777.4281,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,1110.1082,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.0128,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,508.4111,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,1.9233,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,590.9915,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.7031,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.7031,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3664,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,30.5842,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.3012,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.1914,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7423,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,9152.4573,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3664,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,30.5842,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.3012,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.1914,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7423,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,9152.4573,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8165,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8165,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2035.csv b/ariadne-data/costs/pessimist/costs_2035.csv deleted file mode 100644 index 3ba6f6b66..000000000 --- a/ariadne-data/costs/pessimist/costs_2035.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,982536.4099,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3645,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6355,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.233,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.3804,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.5522,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.675,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2711.67,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,23.5828,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.203,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,2858.5639,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,2.9949,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,6.0319,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.555,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,1047.6394,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,657729.5552,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,124.592,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,800.9483,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.0712,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0338,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1427.0593,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.5657,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,5.0266,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,523.4768,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,501696.1199,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.1385,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,412.7064,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,259.7934,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,17.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,900.4993,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,22.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,900.4993,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,22.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,47.2037,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,2.8818,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,1279.9082,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.718,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,172.4103,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,22.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.4587,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.4796,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.5326,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.2847,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.5896,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3900.9507,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.945,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.095,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.155,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.0275,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.7765,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.7765,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,3050000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.4587,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.4796,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.5326,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.2847,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.5896,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3900.9507,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.4199,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.1504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.9562,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,1039.6982,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,6.1416,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.8124,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,890.3211,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,17.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.6464,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.3536,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.1296,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,17.9377,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,11.4338,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.955,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.635,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.735,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,3433.7362,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.945,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.095,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.155,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.7765,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.6,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2943,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,1258.4706,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9751,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.51,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1949.1778,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,2.6042,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.9736,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.08,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.39,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,761.9196,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,2.6042,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.9736,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.08,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.39,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,761.9196,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,1.4355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.7461,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,164.0244,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.3666,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,0.6783,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.705,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,721.7071,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,4.7727,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1164.0438,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,0.8625,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0053,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,126.9866,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.7961,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,5.4303,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.4184,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2545,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.6528,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,4163.1206,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.7961,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,5.4303,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.4184,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2545,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.6528,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,6178.4528,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.7961,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,5.4303,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.4184,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2545,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.6528,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,4163.1206,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5947,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,104.17,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.2,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,13.955,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.2,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,729.755,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,2.6777,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.25,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,905.8377,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,16.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,5.93,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,167.4529,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,17.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,116.4161,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8485,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1312.1948,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,17.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.125,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.1212,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2832,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,12.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1212,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2832,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,12.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3314,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,12.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3314,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,12.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3267,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8283,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.985,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,23.5828,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,3.541,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation,, -electrobiofuels,investment,428759.8057,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6465,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.193,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,1350.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,27.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,4.7727,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1164.0438,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.905,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.1385,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,592.3102,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,373.581,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,17.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.1382,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,48.8105,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.1164,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0896,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2123,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,949.319,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1076,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2123,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,791.0992,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,639.7986,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,657729.5552,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.9565,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.3305,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,10102.913,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.8781,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1728.5676,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,26.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.185,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,2155.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.1667,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,7.6721,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,412.6006,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.194,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.5651,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1223.3769,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,26.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,31312.5066,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.6101,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,684.2285,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.2051,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,887.0904,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.2945,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,729.9862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.1157,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,1044.1946,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.0151,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,481.3667,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,1.9597,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,561.3112,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.8378,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8332,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.8378,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8332,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.349,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,31.4438,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.3104,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.1861,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7317,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,9190.1323,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.349,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,31.4438,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.3104,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.1861,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7317,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,9190.1323,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8062,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8062,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2040.csv b/ariadne-data/costs/pessimist/costs_2040.csv deleted file mode 100644 index 66fe5d4bf..000000000 --- a/ariadne-data/costs/pessimist/costs_2040.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,841127.4391,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.3065,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.4458,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2729.3933,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,37.2105,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.2274,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,2598.6944,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,2.8994,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,6.4904,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.5533,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,1086.4409,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,2.6585,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,611732.6641,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,102.3434,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,711.9541,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.1037,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0375,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1307.7219,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.5028,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,5.1147,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,537.839,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,334464.0799,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.1256,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,455.0353,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,264.5554,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,16.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,856.5131,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,23.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,856.5131,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,23.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,57.2351,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,2.3111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,1384.9722,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.5702,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,165.5572,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,23.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.4143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.5631,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.5587,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.2798,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.5498,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,4008.5559,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.96,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.0933,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.1533,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.0267,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.7577,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.7577,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2966666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.4143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.5631,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.5587,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.2798,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.5498,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,4008.5559,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.3101,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.4552,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.9308,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,1077.4665,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,5.8251,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.8099,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,946.2879,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,16.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.7311,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.2689,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.0986,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,29.4909,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,8.0125,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,1.08,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.84,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.9067,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,2714.5175,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.96,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.0933,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.1533,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.0223,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.7577,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.5833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.3153,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.3333,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,1342.3686,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9438,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5183,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1928.6967,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,2.4236,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,5.0795,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.12,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.3867,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,807.7758,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,2.4236,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,5.0795,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.12,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.3867,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,807.7758,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,1.2411,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.9401,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,197.5347,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.3697,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,0.558,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.7033,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,763.3305,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,4.6774,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.4733,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1093.4957,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,0.7488,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0229,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,144.6236,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.7701,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,5.6172,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.4416,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2496,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.5952,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,4304.0146,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.7701,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,5.6172,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.4416,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2496,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.5952,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,6311.2636,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.7701,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,5.6172,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.4416,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2496,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.5952,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,4304.0146,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5394,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5885,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,99.97,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.3,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,13.39,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.3,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,700.34,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,2.5989,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.2,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,883.6151,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,16.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,5.7533,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.9767,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,147.1033,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,16.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,105.1674,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8469,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.6667,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1243.4104,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,16.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.0833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,11.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,11.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,11.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,11.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.814,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.9833,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,73.8467,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,37.2105,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,3.0362,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation,, -electrobiofuels,investment,392280.346,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6695,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.1653,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,1200.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,28.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,4.6774,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.4733,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1093.4957,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.7125,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.0406,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,48.8242,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.1256,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,657.8228,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,383.2261,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,16.6667,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.1765,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,44.9744,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,28.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.7637,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0884,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.1888,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.0167,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,914.8394,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1061,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.1888,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,762.3661,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,599.7787,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,611732.6641,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,7.0588,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.3237,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.6057,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,9929.0958,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,3.0274,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1640.5534,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,25.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.22,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,1960.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.0542,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,8.113,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,429.1441,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1758,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.5577,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1236.532,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,25.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,27828.5154,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.6237,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,642.3674,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,38.3333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.2298,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,830.4127,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,38.3333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.3284,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,682.5444,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.1312,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,978.2809,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.0177,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,454.3222,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.0001,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,531.6308,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.979,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.979,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3318,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,32.3035,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.3197,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.1807,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7212,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,9227.8073,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3318,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,32.3035,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.3197,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.1807,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7212,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,9227.8073,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.7958,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.7958,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2045.csv b/ariadne-data/costs/pessimist/costs_2045.csv deleted file mode 100644 index 5e363767c..000000000 --- a/ariadne-data/costs/pessimist/costs_2045.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,699718.4683,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.3915,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.6085,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2231,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.2335,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.725,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2747.1167,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,59.0947,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.2517,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,2338.825,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,2.8103,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,6.949,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.3,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.5517,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,1125.2423,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,1.9141,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,565735.7731,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,80.0948,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,622.9598,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.1426,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0413,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1188.3846,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.4431,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,5.2029,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,552.2012,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,167232.04,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.1149,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,497.3642,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,269.3174,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,15.8333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,812.527,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,24.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,812.527,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,24.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,65.8517,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,1.7404,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,1490.0361,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.4224,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,158.704,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,24.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.3722,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.6466,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.5848,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.2749,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.5099,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,4116.1612,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.975,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.0917,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.1517,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.0258,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.7388,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.7388,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2883333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.3722,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.6466,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.5848,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.2749,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.5099,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,4116.1612,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.2078,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.7599,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.9054,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,1115.2349,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,5.5439,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.8074,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,1002.2548,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,15.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.8157,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.1843,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.0676,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,49.3729,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,4.5911,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,1.205,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,1.045,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,1.0783,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,1995.2987,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.975,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.0917,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.1517,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.0217,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.7388,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.5667,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.3339,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.3167,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,1426.2667,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9125,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5267,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1908.2156,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,2.2624,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,5.1853,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.16,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.3833,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,853.6321,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,2.2624,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,5.1853,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.16,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.3833,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,853.6321,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,1.1031,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,2.1341,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,231.0451,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.3725,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,0.4378,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.7017,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,804.9539,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,4.569,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.4667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1022.9476,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,0.6598,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0406,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,162.2606,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.7458,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,5.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.4648,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2448,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.5376,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,4444.9085,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.7458,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,5.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.4648,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2448,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.5376,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,6441.924,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.7458,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,5.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.4648,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2448,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.5376,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,4444.9085,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5452,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5823,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,99.675,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.35,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,13.355,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.35,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,698.27,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,2.526,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.15,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,864.0068,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,15.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,5.59,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.9783,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,132.2537,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,15.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,96.9588,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8453,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.6333,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1182.7183,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,15.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.0417,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.0606,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2824,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,10.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.0606,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2824,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,10.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,10.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,10.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3186,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.7997,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.9817,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,72.1683,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,59.0947,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,2.5477,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation,, -electrobiofuels,investment,356768.6132,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6926,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.1376,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,1100.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,29.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,4.569,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.4667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1022.9476,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.7258,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.0238,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,47.2985,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.1149,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,720.5404,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,390.9515,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,15.8333,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.2219,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,41.1384,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,29.1667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.411,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0871,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.1653,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.0333,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,880.3597,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1045,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.1653,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,733.6331,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,559.7588,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,565735.7731,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,7.1642,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.3168,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.6073,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,9756.2326,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,3.1937,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1552.5391,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,25.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.305,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,1770.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,1.9501,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,8.554,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,445.6877,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1578,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.5503,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1249.687,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,25.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,25039.1517,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.6393,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,600.5063,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,39.1667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.2581,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,773.7349,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,39.1667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.3672,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,635.1025,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.149,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,912.3673,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.0205,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,427.2778,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.0454,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,501.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.1273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.1273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,33.1632,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.3289,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.1754,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7106,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,9265.4823,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,33.1632,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.3289,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.1754,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7106,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,9265.4823,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.7853,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.7853,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2050.csv b/ariadne-data/costs/pessimist/costs_2050.csv deleted file mode 100644 index d48004a36..000000000 --- a/ariadne-data/costs/pessimist/costs_2050.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description,currency_year -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., -Ammonia cracker,investment,558309.4975,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 -BioSNG,C in fuel,0.405,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,C stored,0.595,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,CO2 stored,0.2182,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.1615,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.2331,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.75,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2764.84,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,100.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.2761,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 -BtL,investment,2078.9555,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,2.7273,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,7.4076,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.4,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.55,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,1164.0438,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 -CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 -CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., -CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 -CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 -Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -Fischer-Tropsch,VOM,1.1697,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,519738.882,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 -Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 -Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 -H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 -H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 -H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (g) submarine pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 -H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 evaporation,investment,57.8463,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, -H2 liquefaction,investment,533.9655,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 -Haber-Bosch,FOM,3.1902,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.045,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1069.0472,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 -Hydrogen fuel cell (trucks),FOM,12.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),investment,125710.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 -LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., -LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 -Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 -Liquid fuels ICE (trucks),FOM,15.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),investment,116401.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 -Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 -Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 -NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 -Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.3864,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,5.2911,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,566.5634,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 -Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 -Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 -Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 -Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 -Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 -Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 -Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 -Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 -Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 -Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,0.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,0.0,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 -battery inverter,FOM,0.1059,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,539.693,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,274.0794,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,15.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,768.5408,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,768.5408,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 -biogas plus hydrogen,FOM,73.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,1.1697,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,1595.1,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.2746,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,151.8509,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 -biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.3322,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.73,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.6108,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.47,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,4223.7665,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.99,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.09,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.3322,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.73,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.6108,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.47,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,4223.7665,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.1121,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,4.0647,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.88,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,1153.0032,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,5.2925,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.8048,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,1058.2216,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,15.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 -biomass-to-methanol,C in fuel,0.9003,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,C stored,0.0997,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,CO2 stored,0.0366,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,91.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,1.1697,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,1.33,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,1.25,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,1.25,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,1276.08,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.99,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.09,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.55,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 -central air-sourced heat pump,investment,1510.1647,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.8813,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1887.7345,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central gas CHP,FOM,2.1176,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,5.2911,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.38,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,899.4884,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,2.1176,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,5.2911,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.38,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,899.4884,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,1.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,2.3281,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,264.5554,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central ground-sourced heat pump,FOM,0.375,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,0.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,846.5773,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,4.4444,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.46,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,952.3995,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,0.5882,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,179.8977,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.723,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,5.9911,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.488,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.24,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,4585.8025,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.723,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,5.9911,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.488,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.24,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP CC,investment,6570.4362,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.723,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,5.9911,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.488,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.24,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,4585.8025,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5761,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 -coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 -coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 -coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 -csp-tower,investment,99.38,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.4,%/year,see solar-tower.,-,1.0 -csp-tower TES,investment,13.32,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.4,%/year,see solar-tower.,-,1.0 -csp-tower power block,investment,696.2,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 -csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,2.4583,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.1,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,846.5773,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,15.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,5.4388,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,120.9396,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,15.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,90.7047,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8438,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1128.7697,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,15.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -digestible biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 -direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 -dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 -electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.98,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., -electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -electric steam cracker,lifetime,30.0,years,Guesstimate,, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 -electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 -electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,100.0,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,2.0754,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation,, -electrobiofuels,investment,322224.6071,EUR/kW_th,combination of BtL and electrofuels,,2017.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.7157,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.1099,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 -electrolysis,investment,1000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -fuel cell,FOM,4.4444,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.46,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,952.3995,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, -gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 -gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 -gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity, -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details", -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%", -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions", -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",, -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 -helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.1059,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,786.4098,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,396.845,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,15.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1 including compressor,FOM,1.2766,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,37.3023,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.0582,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,845.88,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,704.9,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 -lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., -methanation,investment,519.7389,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 -methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 -methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , -methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,519738.882,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,7.2727,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.31,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,9584.3155,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 -nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 -nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,3.3799,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 -offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1464.5248,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 -offwind,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 -offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 -offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 -offwind-float,FOM,1.39,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,investment,1580.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 -offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 -offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017; average + 13% learning reduction,,2017.0 -offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction,,2017.0 -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,1.8535,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,8.9949,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 -oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,462.2312,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1403,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.5429,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1262.842,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, -seawater desalination,investment,22249.7881,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 -solar,FOM,1.6574,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -solar,investment,558.6452,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 -solar-rooftop,FOM,1.291,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 -solar-rooftop,investment,717.0572,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.4124,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,587.6607,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.1696,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,846.4537,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.0238,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,400.2333,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.0963,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,472.2701,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, -solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, -solid biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.2977,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,34.0229,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.3382,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.17,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,9303.1573,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.2977,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,34.0229,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.3382,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.17,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,9303.1573,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.7746,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.7746,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/config/config.yaml b/config/config.yaml index 619f308ad..ce454f24b 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240814limitseq + prefix: 20240829mergemaster name: # - CurrentPolicies - KN2045_Bal_v4 @@ -127,7 +127,7 @@ lines: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#enable enable: - retrieve: false # set to false once initial data is retrieved + retrieve: true # set to false once initial data is retrieved retrieve_cutout: false # set to false once initial data is retrieved clustering: # simplify_network: @@ -553,6 +553,6 @@ co2_price_add_on_fossils: 2025: 60 must_run_biomass: - enable: true + enable: false p_min_pu: 0.7 regions: ['DE'] diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index ca5e19256..afef23baf 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -10,7 +10,11 @@ import pypsa from numpy import isclose -paths = ["workflow/submodules/pypsa-eur/scripts", "../submodules/pypsa-eur/scripts"] +paths = [ + "workflow/submodules/pypsa-eur/scripts", + "../submodules/pypsa-eur/scripts", + "../submodules/pypsa-eur/", +] for path in paths: sys.path.insert(0, os.path.abspath(path)) @@ -113,8 +117,8 @@ def _get_gas_fractions(n, region): total_exported_renewable_gas = total_gas_supply.get( ("DE renewable gas -> EU gas", "renewable gas"), 0 ) - domestic_renewable_gas = renewable_gas_supply.loc["DE renewable gas"] - foreign_renewable_gas = renewable_gas_supply.loc["EU renewable gas"] + domestic_renewable_gas = renewable_gas_supply.get("DE renewable gas") + foreign_renewable_gas = renewable_gas_supply.get("EU renewable gas") else: domestic_gas_supply = ( total_gas_supply.reindex( @@ -134,8 +138,8 @@ def _get_gas_fractions(n, region): total_exported_renewable_gas = total_gas_supply.get( ("EU renewable gas -> DE gas", "renewable gas"), 0 ) - domestic_renewable_gas = renewable_gas_supply.loc["EU renewable gas"] - foreign_renewable_gas = renewable_gas_supply.loc["DE renewable gas"] + domestic_renewable_gas = renewable_gas_supply.get("EU renewable gas", 0) + foreign_renewable_gas = renewable_gas_supply.get("DE renewable gas", 0) # Legacy code for dropping gas pipelines (now deactivated) drops = ["gas pipeline", "gas pipeline new"] @@ -143,20 +147,31 @@ def _get_gas_fractions(n, region): if d in total_gas_supply.index: total_gas_supply.drop(d, inplace=True) - imported_renewable_gas = ( - foreign_renewable_gas - / foreign_renewable_gas.sum() - * total_imported_renewable_gas - ) + if total_imported_renewable_gas == 0: + imported_renewable_gas = pd.Series( + 0, index=renewable_gas_supply.index.get_level_values("carrier").unique() + ) + else: + imported_renewable_gas = ( + foreign_renewable_gas + / foreign_renewable_gas.sum() + * total_imported_renewable_gas + ) - exported_renewable_gas = ( - domestic_renewable_gas - / domestic_renewable_gas.sum() - * total_exported_renewable_gas - ) - renewable_gas_supply = ( - domestic_renewable_gas + imported_renewable_gas - exported_renewable_gas - ) + if total_exported_renewable_gas == 0: + exported_renewable_gas = pd.Series( + 0, index=renewable_gas_supply.index.get_level_values("carrier").unique() + ) + else: + exported_renewable_gas = ( + domestic_renewable_gas + / domestic_renewable_gas.sum() + * total_exported_renewable_gas + ) + + renewable_gas_supply = imported_renewable_gas.add( + domestic_renewable_gas, fill_value=0 + ).subtract(exported_renewable_gas, fill_value=0) # Check for small differences assert domestic_gas_supply.get("renewable gas", 0) - renewable_gas_supply.sum() < 1 @@ -1557,9 +1572,14 @@ def get_secondary_energy(n, region, _industry_demand): ["SMR", "SMR CC"] ).sum() + var["Secondary Energy|Hydrogen|Other"] = hydrogen_production.get( + "H2 for industry", 0 + ) + var["Secondary Energy|Hydrogen"] = ( var["Secondary Energy|Hydrogen|Electricity"] + var["Secondary Energy|Hydrogen|Gas"] + + var["Secondary Energy|Hydrogen|Other"] ) assert isclose( diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index acd711dcf..196e9f333 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -324,10 +324,10 @@ def unravel_oilbus(n): p_nom=1e6, efficiency=1 - ( - snakemake.config["industry"]["fuel_refining"]["oil"]["emissions"] + snakemake.config["industry"]["oil_refining_emissions"] / costs.at["oil", "CO2 intensity"] ), - efficiency2=snakemake.config["industry"]["fuel_refining"]["oil"]["emissions"], + efficiency2=snakemake.config["industry"]["oil_refining_emissions"], ) # change links from EU oil to DE oil diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index ae2271703..d1c5fc65a 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit ae227170394439d5305b19fc7564155717c6c863 +Subproject commit d1c5fc65a1b2e80e468aa23d620f85f391a7bb0c From 1dcc6ea909dbfc3994c38958e14f8c775ce5d367 Mon Sep 17 00:00:00 2001 From: Micha Date: Fri, 6 Sep 2024 11:21:38 +0200 Subject: [PATCH 548/669] Biogas (#184) * changes to incorporate biogas plants * explicitly report electricity from biogas * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- config/config.yaml | 8 ++-- workflow/Snakefile | 2 +- workflow/scripts/export_ariadne_variables.py | 47 ++++++++++---------- workflow/scripts/modify_prenetwork.py | 17 ++++--- workflow/submodules/pypsa-eur | 2 +- 5 files changed, 38 insertions(+), 38 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index ce454f24b..e4fdde086 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240829mergemaster + prefix: 20240904_biogas_baseload name: # - CurrentPolicies - KN2045_Bal_v4 @@ -62,7 +62,7 @@ scenario: ll: - vopt clusters: - - 22 #current options: 22, 44 + - 23 #current options: 22, 44 opts: - '' sector_opts: @@ -552,7 +552,7 @@ co2_price_add_on_fossils: 2020: 25 2025: 60 -must_run_biomass: +must_run_biogas: enable: false - p_min_pu: 0.7 + p_min_pu: 0.6 regions: ['DE'] diff --git a/workflow/Snakefile b/workflow/Snakefile index 5b9a791ac..2274f7ba5 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -237,7 +237,7 @@ rule modify_prenetwork: "sector", "H2_retrofit_capacity_per_CH4" ), transmission_costs=config_provider("costs", "transmission"), - biomass_must_run=config_provider("must_run_biomass"), + biogas_must_run=config_provider("must_run_biogas"), clustering=config_provider("clustering", "temporal", "resolution_sector"), H2_plants=config_provider("electricity", "H2_plants_DE"), land_transport_electric_share=config_provider( diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index afef23baf..84b57265e 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -481,31 +481,26 @@ def _get_capacities(n, region, cap_func, cap_string="Capacity|", costs=None): # capacities_electricity = \ # capacities_electricity.multiply(MW2GW) - capacities_biomass = capacities_electricity.filter(like="biomass") + var[cap_string + "Electricity|Biomass|w/ CCS"] = capacities_electricity.get( + "urban central solid biomass CHP CC ", 0 + ) - var[cap_string + "Electricity|Biomass|w/ CCS"] = capacities_biomass.filter( - like="CC" + var[cap_string + "Electricity|Biomass|w/o CCS"] = capacities_electricity.reindex( + ["urban central solid biomass CHP", "solid biomass", "biogas"] ).sum() - var[cap_string + "Electricity|Biomass|w/o CCS"] = capacities_biomass.reindex( - ["urban central solid biomass CHP", "solid biomass"] + var[cap_string + "Electricity|Biomass|Solids"] = capacities_electricity.filter( + like="solid biomass" ).sum() - var[cap_string + "Electricity|Biomass|Solids"] = var[ - [ - cap_string + "Electricity|Biomass|w/ CCS", - cap_string + "Electricity|Biomass|w/o CCS", - ] - ].sum() - - # Ariadne does no checks, so we implement our own? - assert isclose( - var[cap_string + "Electricity|Biomass|Solids"], capacities_biomass.sum() + var[cap_string + "Electricity|Biomass|Gases and Liquids"] = ( + capacities_electricity.get("biogas", 0) ) - var[cap_string + "Electricity|Biomass"] = var[ - cap_string + "Electricity|Biomass|Solids" - ] + var[cap_string + "Electricity|Biomass"] = ( + var[cap_string + "Electricity|Biomass|Solids"] + + var[cap_string + "Electricity|Biomass|Gases and Liquids"] + ) var[cap_string + "Electricity|Non-Renewable Waste"] = capacities_electricity.filter( like="waste CHP" @@ -1208,8 +1203,8 @@ def get_primary_energy(n, region): ~biomass_usage.index.str.contains("CC") ].sum() - var["Primary Energy|Biomass|Electricity"] = biomass_CHP_E_usage + biomass_usage.get( - "solid biomass", 0 + var["Primary Energy|Biomass|Electricity"] = ( + biomass_CHP_E_usage + biomass_usage.reindex(["solid biomass", "biogas"]).sum() ) var["Primary Energy|Biomass|Heat"] = biomass_CHP_H_usage + biomass_usage.get( "urban central solid biomass boiler", 0 @@ -1355,12 +1350,18 @@ def get_secondary_energy(n, region, _industry_demand): + var["Secondary Energy|Electricity|Coal"] ) - var["Secondary Energy|Electricity|Biomass|w/o CCS"] = electricity_supply.get( - "urban central solid biomass CHP", 0 - ) + electricity_supply.get("solid biomass", 0) + var["Secondary Energy|Electricity|Biomass|w/o CCS"] = electricity_supply.reindex( + ["urban central solid biomass CHP", "solid biomass", "biogas"] + ).sum() var["Secondary Energy|Electricity|Biomass|w/ CCS"] = electricity_supply.get( "urban central solid biomass CHP CC", 0 ) + var["Secondary Energy|Electricity|Biomass|Solid"] = electricity_supply.filter( + like="solid biomass" + ).sum() + var["Secondary Energy|Electricity|Biomass|Gaseous and Liquid"] = ( + electricity_supply.get("biogas") + ) var["Secondary Energy|Electricity|Biomass"] = ( var["Secondary Energy|Electricity|Biomass|w/o CCS"] + var["Secondary Energy|Electricity|Biomass|w/ CCS"] diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 196e9f333..478581a73 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -584,16 +584,15 @@ def transmission_costs_from_modified_cost_data( n.links.loc[dc_b, "overnight_cost"] = overnight_cost -def must_run_biomass(n, p_min_pu, regions): +def must_run_biogas(n, p_min_pu, regions): """ - Set p_min_pu for biomass generators to the specified value. + Set p_min_pu for biogas generators to the specified value. """ logger.info( - f"Must-run condition enabled: Setting p_min_pu = {p_min_pu} for biomass generators." + f"Must-run condition enabled: Setting p_min_pu = {p_min_pu} for biogas generators." ) links_i = n.links[ - (n.links.carrier == "solid biomass") - & (n.links.bus0.str.startswith(tuple(regions))) + (n.links.carrier == "biogas") & (n.links.bus0.str.startswith(tuple(regions))) ].index n.links.loc[links_i, "p_min_pu"] = p_min_pu @@ -857,11 +856,11 @@ def force_retrofit(n, params): snakemake.params.length_factor, ) - if snakemake.params.biomass_must_run["enable"]: - must_run_biomass( + if snakemake.params.biogas_must_run["enable"]: + must_run_biogas( n, - snakemake.params.biomass_must_run["p_min_pu"], - snakemake.params.biomass_must_run["regions"], + snakemake.params.biogas_must_run["p_min_pu"], + snakemake.params.biogas_must_run["regions"], ) if snakemake.params.H2_plants["enable"]: diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index d1c5fc65a..4f5155275 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit d1c5fc65a1b2e80e468aa23d620f85f391a7bb0c +Subproject commit 4f51552755c1bee518f7cee2a2f5c48ca819fca6 From cb041ab669729a9d32d7817d06f8bf413ec2709f Mon Sep 17 00:00:00 2001 From: Toni Seibold <153275395+toniseibold@users.noreply.github.com> Date: Fri, 6 Sep 2024 11:43:53 +0200 Subject: [PATCH 549/669] Adding Italy (#183) * config for 27 nodes adding Italy * document changes in log --------- Co-authored-by: Michael Lindner --- Changelog.md | 1 + config/config.yaml | 70 ++++++++++++++++++++++++---------------------- 2 files changed, 37 insertions(+), 34 deletions(-) diff --git a/Changelog.md b/Changelog.md index f645c60eb..c53437540 100644 --- a/Changelog.md +++ b/Changelog.md @@ -1,4 +1,5 @@ # Changelog +- added Italy with 3 additional nodes - adapted spatial distribution of district heating demand in Germany according to data from eGo^N project - add retrofit of gas turbines to H2, and H2 turbines - unravel gas bus and turn off gas network diff --git a/config/config.yaml b/config/config.yaml index e4fdde086..8a8f16b11 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240904_biogas_baseload + prefix: 20240905additaly name: # - CurrentPolicies - KN2045_Bal_v4 @@ -62,7 +62,7 @@ scenario: ll: - vopt clusters: - - 23 #current options: 22, 44 + - 27 #current options: 27, 49 opts: - '' sector_opts: @@ -82,7 +82,7 @@ existing_capacities: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#countries # Germany plus 12 "Stromnachbarn" -countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'PL', 'SE', 'ES'] +countries: ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK', 'FR', 'GB', 'LU', 'NL', 'NO', 'PL', 'SE', 'ES', 'IT'] # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#snapshots snapshots: @@ -138,37 +138,39 @@ clustering: # fw["ES"] = 1 # print(fw.div(fw.sum()).subtract(5e-5).round(4).to_dict().__repr__().replace(",","\n")) focus_weights: - # 23 nodes: 8 for Germany, 1 for Spain, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" - 'DE': 0.3478 - 'AT': 0.0434 - 'BE': 0.0434 - 'CH': 0.0434 - 'CZ': 0.0434 - 'DK': 0.0869 - 'FR': 0.0434 - 'GB': 0.0869 - 'LU': 0.0434 - 'NL': 0.0434 - 'NO': 0.0434 - 'PL': 0.0434 - 'SE': 0.0434 - 'ES': 0.0434 - # high spatial resolution: change clusters to 45 - # 45 nodes: 30 for Germany, 1 for Spain, 2 each for Denmark and UK, 1 per each of other 10 "Stromnachbarn" - # 'DE': 0.6666 - # 'AT': 0.0222 - # 'BE': 0.0222 - # 'CH': 0.0222 - # 'CZ': 0.0222 - # 'DK': 0.0444 - # 'FR': 0.0222 - # 'GB': 0.0444 - # 'LU': 0.0222 - # 'NL': 0.0222 - # 'NO': 0.0222 - # 'PL': 0.0222 - # 'SE': 0.0222 - # 'ES': 0.0222 + # 27 nodes: 8 for Germany, 3 for Italy, 2 each for Denmark, UK and Spain, 1 per each of other 10 "Stromnachbarn" + 'DE': 0.2966 + 'AT': 0.0370 + 'BE': 0.0370 + 'CH': 0.0370 + 'CZ': 0.0370 + 'DK': 0.0741 + 'FR': 0.0370 + 'GB': 0.0741 + 'LU': 0.0370 + 'NL': 0.0370 + 'NO': 0.0370 + 'PL': 0.0370 + 'SE': 0.0370 + 'ES': 0.0741 + 'IT': 0.1111 + # high spatial resolution: change clusters to 46 + # 49 nodes: 30 for Germany, 3 for Italy, 2 each for Denmark, UK and Spain, 1 per each of other 10 "Stromnachbarn" + # 'DE': 0.6124 + # 'AT': 0.0204 + # 'BE': 0.0204 + # 'CH': 0.0204 + # 'CZ': 0.0204 + # 'DK': 0.0408 + # 'FR': 0.0204 + # 'GB': 0.0408 + # 'LU': 0.0204 + # 'NL': 0.0204 + # 'NO': 0.0204 + # 'PL': 0.0204 + # 'SE': 0.0204 + # 'ES': 0.0408 + # 'IT': 0.0612 temporal: resolution_sector: 365H From d79ae3defc49abd5e142968af6aa110b634db8b2 Mon Sep 17 00:00:00 2001 From: Toni Seibold <153275395+toniseibold@users.noreply.github.com> Date: Fri, 6 Sep 2024 11:46:12 +0200 Subject: [PATCH 550/669] Updating cost horizon data (#182) * updating cost horizon data * fullfilling PR checklist --------- Co-authored-by: Michael Lindner --- ariadne-data/costs/optimist/costs_2020.csv | 1055 +++++++++++++++++++ ariadne-data/costs/optimist/costs_2025.csv | 1055 +++++++++++++++++++ ariadne-data/costs/optimist/costs_2030.csv | 1055 +++++++++++++++++++ ariadne-data/costs/optimist/costs_2035.csv | 1055 +++++++++++++++++++ ariadne-data/costs/optimist/costs_2040.csv | 1055 +++++++++++++++++++ ariadne-data/costs/optimist/costs_2045.csv | 1055 +++++++++++++++++++ ariadne-data/costs/pessimist/costs_2020.csv | 1055 +++++++++++++++++++ ariadne-data/costs/pessimist/costs_2025.csv | 1055 +++++++++++++++++++ ariadne-data/costs/pessimist/costs_2030.csv | 1055 +++++++++++++++++++ ariadne-data/costs/pessimist/costs_2035.csv | 1055 +++++++++++++++++++ ariadne-data/costs/pessimist/costs_2040.csv | 1055 +++++++++++++++++++ ariadne-data/costs/pessimist/costs_2045.csv | 1055 +++++++++++++++++++ 12 files changed, 12660 insertions(+) create mode 100644 ariadne-data/costs/optimist/costs_2020.csv create mode 100644 ariadne-data/costs/optimist/costs_2025.csv create mode 100644 ariadne-data/costs/optimist/costs_2030.csv create mode 100644 ariadne-data/costs/optimist/costs_2035.csv create mode 100644 ariadne-data/costs/optimist/costs_2040.csv create mode 100644 ariadne-data/costs/optimist/costs_2045.csv create mode 100644 ariadne-data/costs/pessimist/costs_2020.csv create mode 100644 ariadne-data/costs/pessimist/costs_2025.csv create mode 100644 ariadne-data/costs/pessimist/costs_2030.csv create mode 100644 ariadne-data/costs/pessimist/costs_2035.csv create mode 100644 ariadne-data/costs/pessimist/costs_2040.csv create mode 100644 ariadne-data/costs/pessimist/costs_2045.csv diff --git a/ariadne-data/costs/optimist/costs_2020.csv b/ariadne-data/costs/optimist/costs_2020.csv new file mode 100644 index 000000000..ce9a55573 --- /dev/null +++ b/ariadne-data/costs/optimist/costs_2020.csv @@ -0,0 +1,1055 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,300.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.97,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,409373.5872,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.9613,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,489913.3908,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,400.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.5362,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,325191.1729,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,330.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.9603,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,338623.152,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,490.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.6988,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,360694.2014,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3638.1722,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,931.235,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,188018.4103,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,752073.6414,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,29432.5788,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,41959454.4301,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,38462833.2276,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,143583536.7421,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,131618242.0136,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,2.4356,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,2.5466,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.5523,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,220.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,2.4961,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,3.625,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,364.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.7805,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,382675.3098,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,364.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.7747,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,889942.5809,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,475.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.7537,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,348679.5032,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.8629,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,293681.0517,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,3.0727,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,315752.1011,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,819108.478,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,187325.7928,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,144713.4654,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,113887.5264,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1785.0713,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,187899.5061,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,751598.0242,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,112560.0095,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,1304350.411,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,1265835.3275,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,149731.2267,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,365289.854,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,503663.7386,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,353636.242,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,186749.107,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,325690.7596,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,372111.988,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,149374.5139,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,597498.0554,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,69421.8279,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,344828.4062,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,480.3903,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,807189.2511,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,566749.8997,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.0615,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,31293.8274,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,152624.5646,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,610498.2585,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,8014.7441,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,38642243.6445,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,42155174.885,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,149950.2088,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,317614.1853,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,194899.0057,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,134297.449,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,476623.9107,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,276873.6097,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,1003392.2397,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,285.7198,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,245.5074,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,96.2077,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,62.1519,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.7575,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.2361,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,926.3933,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,722.4205,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0688,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,2010.6211,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.164,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.0392,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,596.837,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1375.6881,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.9524,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,74.0755,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5767.0987,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.6133,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,159.96,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.0,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,21.43,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.0,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,1120.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,994.7283,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,330.2494,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,206.4059,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1587.3324,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8711,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,80.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,5.153,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation,, +electrobiofuels,investment,559887.2932,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1375.6881,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,15.9997,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.1077,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,54.9273,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,398.9496,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,342.3682,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,60.3186,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,3.1747,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,1052.7581,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,877.2984,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,777.5294,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,307000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,819108.478,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,10630.1681,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1992.6105,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5873,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1183.9119,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,42561.4413,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,809.8118,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,1057.1237,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,872.3118,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1241.9355,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,562.5,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,650.3522,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2025.csv b/ariadne-data/costs/optimist/costs_2025.csv new file mode 100644 index 000000000..f2e66f5bb --- /dev/null +++ b/ariadne-data/costs/optimist/costs_2025.csv @@ -0,0 +1,1055 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,320.6897,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.9204,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,326312.2797,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,298.2759,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.9094,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,406852.0832,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,468.9655,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.4729,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,247867.9385,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,353.4483,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.9226,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,313643.3844,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,587.931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.6303,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,274929.1357,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3285,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6715,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2462,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.5763,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.5876,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6083,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2463.5433,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,5.6686,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.0745,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3378.3027,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.2647,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.4093,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.75,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,899.4884,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,166105.3393,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,664421.3572,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,26738.4056,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,41959454.4301,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,38462833.2276,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,143583536.7421,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,31.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,131618242.0136,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,31.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,2.2786,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,2.393,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.4385,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,235.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,2.3586,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,3.4819,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,375.8621,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.6958,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,356178.0895,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,375.8621,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.6864,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,653008.177,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,492.2414,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.6623,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,255848.6038,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,363.7931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.7934,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,276930.7366,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,363.7931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.9676,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,299001.7859,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,4.8562,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,761417.4621,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,172353.7601,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,133234.2464,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,104935.0238,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +Haber-Bosch,FOM,3.0128,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0206,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1594.4641,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,166045.8871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,664183.5486,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,103333.7792,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.5473,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,825760.6159,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,822421.3869,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,139292.4203,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,342960.6179,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,489692.4838,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,343826.6375,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,172876.939,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,281086.7853,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,320844.4187,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,146783.3911,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,587133.5642,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,63731.5141,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,306333.1401,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.8671,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.5856,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,451.1707,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,784485.9619,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,550809.2924,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1071,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,21420.3118,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,148408.4164,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,593633.6658,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,7357.7979,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,38642243.6445,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,42155174.885,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,139486.6307,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,287843.5219,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,184643.5101,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,107925.4668,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,444465.2527,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,258047.096,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,820033.6604,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +battery inverter,FOM,0.1981,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.9517,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,280.4287,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,232.8088,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,20.8333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,116.9293,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,72.2943,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,1070.8152,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,19.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,1070.8152,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,19.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.8126,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 +biogas plus hydrogen,FOM,21.4742,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.9878,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,892.5471,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.3159,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,200.1388,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,19.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5787,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.1086,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4527,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3178,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7127,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3395.6572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9033,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.095,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1533,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0278,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.7858,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.7858,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3016666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5787,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.1086,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4527,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3178,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7127,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3395.6572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7342,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.367,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0336,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,882.1322,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.9938,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8425,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,659.2667,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,4.4005,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,18.2411,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.15,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.3167,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,4801.2803,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9033,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.095,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1533,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0233,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.7858,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.5917,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2733333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2028,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.1667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,956.4376,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,27.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0376,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.4933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1990.14,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.4093,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.9333,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.4033,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.4093,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.9333,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4033,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.209,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0759,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,59.084,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3416,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.1129,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.725,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,567.9123,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.2143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.505,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1234.5919,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.6892,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.8819,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,65.257,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8711,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.5848,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.346,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2874,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8296,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3556.7223,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8711,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.5848,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.346,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2874,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8296,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5343.1023,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8711,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.5848,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.346,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2874,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8296,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3556.7223,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5477,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5797,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,21.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,134.165,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.05,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,17.975,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.05,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,939.87,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.9777,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,1019.7408,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.9783,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,348.3277,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,206.8821,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8567,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.8667,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1635.4334,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.1583,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,6333333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2841,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2841,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3288,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3288,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.334,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8568,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,78.8817,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,5.6686,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,4.4918,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation,, +electrobiofuels,investment,512440.2631,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5728,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2815,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1800.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,24.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.2143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.505,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1234.5919,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,15.261,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.6771,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0909,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.9267,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,53.4015,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.1981,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.9517,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,395.99,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,329.6326,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,20.8333,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.0784,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,53.9693,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,25.8333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.963,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0918,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2593,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.0458,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,1018.2784,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1102,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2593,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.6483,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,848.5653,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,728.6739,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,288000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,761417.4621,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.5385,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3575,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6007,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,9570.0517,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.3857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1919.4478,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.6713,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,5.7497,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,343.9573,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2375,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.4942,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1126.909,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,29.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,39056.5182,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.6234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,733.4362,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,35.8333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.1887,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,955.9019,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,35.8333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.265,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,786.5854,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.1124,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1125.2184,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0582,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,510.9705,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.9358,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,590.62,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.5744,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.5744,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.391,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.4128,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.278,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2101,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7796,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8475.6104,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.391,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.4128,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.278,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2101,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7796,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8475.6104,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8466,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8466,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2030.csv b/ariadne-data/costs/optimist/costs_2030.csv new file mode 100644 index 000000000..1497d1841 --- /dev/null +++ b/ariadne-data/costs/optimist/costs_2030.csv @@ -0,0 +1,1055 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,346.5517,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.8585,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,222485.6452,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,358.6207,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.8446,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,303025.4488,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,555.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.3936,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,151213.8954,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,382.7586,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.8755,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,282418.6749,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,710.3448,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.5446,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,167722.8037,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.333,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.667,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2446,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.5391,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.304,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6167,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2268.5867,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,10.1806,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.0191,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3118.4333,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.1951,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.1623,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.7,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,867.7417,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,38462833.2276,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,36802136.8043,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,131618242.0136,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,31.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,32.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,125635594.6493,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,32.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,2.0824,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,2.2009,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.2963,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,254.1379,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,2.1867,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,3.3031,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,390.6897,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.5899,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,323056.5642,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,390.6897,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.5761,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,356840.1722,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,513.7931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.548,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,139809.9795,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,381.0345,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.7064,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,255992.8427,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,381.0345,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.8363,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,278063.892,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,4.0764,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,703726.4462,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +Haber-Bosch,FOM,3.029,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0188,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1403.857,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.9694,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.4093,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,421.9511,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,36885778.0243,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,38642243.6445,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,636675.0811,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +battery inverter,FOM,0.1962,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.9533,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,275.1376,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,220.1101,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,21.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,137.6508,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,82.4367,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,1109.1727,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,18.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,1109.1727,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,18.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.8676,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 +biogas plus hydrogen,FOM,42.0228,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.3816,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,820.3777,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.4705,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,207.3079,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,18.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,1.988,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.451,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3362,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7162,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3213.1795,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9067,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.09,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1467,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0257,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.7387,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.7387,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2733333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,1.988,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.451,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3362,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7162,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3213.1795,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.6582,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.498,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0349,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,837.871,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,8.7899,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8651,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,591.6019,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,21.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4874,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5126,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.188,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,8.9859,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.7843,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.72,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.28,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.4133,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,4011.1683,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9067,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.09,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1467,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0217,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.7387,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.5333,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2466666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.1946,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.2333,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0063,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5017,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1969.6589,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.7255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.1623,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.9067,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.4067,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,539.693,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.7255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.1623,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.9067,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4067,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,539.693,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.1613,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,0.9877,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,54.6748,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3272,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.1866,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,538.9875,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.4839,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.51,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1093.4957,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.9,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.8113,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,56.4385,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.855,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.3001,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3431,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.3059,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8337,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3373.0059,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.855,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.3001,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3431,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.3059,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8337,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4941.6445,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.855,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.3001,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3431,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.3059,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8337,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3373.0059,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5814,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.546,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,23.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,108.37,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.1,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,14.52,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.1,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,759.17,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.0003,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,1049.7559,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.2912,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.9867,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,370.0217,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,21.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,207.4536,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8602,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.9333,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1693.1546,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,21.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.0667,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,5666666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2836,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2836,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3304,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,77.2033,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,10.1806,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.8477,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation,, +electrobiofuels,investment,466206.9921,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5684,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2869,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1500.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,23.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.4839,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.51,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1093.4957,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,14.5224,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.6882,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0741,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.9333,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,51.8758,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.1962,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.9533,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,392.1738,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,314.5134,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,21.6667,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.1111,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,47.62,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,26.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.7514,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0908,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2358,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.1417,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,983.7987,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1089,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2358,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.7467,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,819.8323,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,679.8185,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,269000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,703726.4462,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.3793,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.364,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6023,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,8515.802,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.2523,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1846.2851,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,29.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.7894,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,5.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,324.9446,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2222,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.4011,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1069.9062,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,31.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,34796.4978,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.6794,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,657.0605,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,36.6667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.2402,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,854.6802,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,36.6667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.3269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,700.859,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.1535,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1008.5014,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.1185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,459.4409,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.028,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,530.8877,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.7031,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.7031,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3787,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,25.9608,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2733,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2181,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7957,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,7874.1134,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3787,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,25.9608,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2733,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2181,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7957,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,7874.1134,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8563,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8563,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2035.csv b/ariadne-data/costs/optimist/costs_2035.csv new file mode 100644 index 000000000..99e2c83f2 --- /dev/null +++ b/ariadne-data/costs/optimist/costs_2035.csv @@ -0,0 +1,1055 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,982536.4099,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,372.4138,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.7965,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,214506.8497,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,418.9655,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.7797,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,295046.6532,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,641.3793,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.3144,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,151213.8954,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,412.069,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.8284,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,251193.9654,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,832.7586,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.4589,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,167722.8037,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3375,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6625,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2429,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.4949,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.0205,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.625,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2073.63,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,16.8123,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,0.9637,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2858.5639,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.1203,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,3.9154,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.65,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,835.9951,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,36714522.6264,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,35884174.4147,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,125635594.6493,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,31.5,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,32.5,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,122644270.9672,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,32.5,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,1.8862,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,2.0089,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.1541,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,273.1034,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,2.0148,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,3.1242,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,405.5172,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.484,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,289935.0389,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,405.5172,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.4658,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,356840.1722,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,535.3448,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.4337,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,139809.9795,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,398.2759,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.6195,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,235054.9487,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,398.2759,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.7049,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,257125.9981,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,3.2965,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,657729.5552,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,124.592,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,800.9483,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +Haber-Bosch,FOM,3.0503,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0169,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1213.2498,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,2.087,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,392.7314,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,36007545.2142,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,36885778.0243,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,453316.5018,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +battery inverter,FOM,0.1941,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,269.8465,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,207.4114,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,137.5968,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,84.2795,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,1147.5302,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,17.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,1147.5302,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,17.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.8729,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 +biogas plus hydrogen,FOM,66.5355,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.7755,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,748.2082,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.6251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,214.4771,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,17.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5091,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,1.8675,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4494,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3547,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7196,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3030.7019,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.91,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0235,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.6915,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.6915,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2450000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5091,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,1.8675,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4494,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3547,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7196,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3030.7019,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.5737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.629,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0362,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,793.6099,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,9.8761,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8876,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,518.9249,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,22.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.5348,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.4652,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.1706,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,15.8207,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,11.3275,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.79,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.41,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.51,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,3221.0562,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.91,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.6915,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.475,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.1855,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,855.76,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,32.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9751,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.51,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1949.1778,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.9894,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,3.9154,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.88,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,497.3642,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.9894,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,3.9154,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.88,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,497.3642,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.1053,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,0.8995,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.045,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,50.2655,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3112,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.2603,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.755,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,510.0628,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,27.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.8333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.515,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,952.3995,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,2.1889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.7408,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,47.62,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8369,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.0155,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3402,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.3245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8378,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3189.2895,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8369,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.0155,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3402,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.3245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8378,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4560.1967,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8369,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.0155,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3402,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.3245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8378,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3189.2895,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.6196,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5124,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,104.17,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.2,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.955,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.2,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,729.755,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.0262,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,1086.4409,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,19.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.1422,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.995,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,396.5365,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,22.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,208.152,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8641,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,4.0,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1763.7027,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,22.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.975,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1212,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2832,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1212,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2832,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3314,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3314,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3267,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8283,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,16.8123,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.2207,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation,, +electrobiofuels,investment,428759.8057,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5639,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2922,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1350.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,22.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.8333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.515,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,952.3995,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,13.8577,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,27.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.1941,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,387.2797,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,298.2561,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.1538,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,41.2706,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.5397,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0896,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2123,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.2375,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,949.319,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1076,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2123,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.845,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,791.0992,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,639.7986,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,251750.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,657729.5552,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3705,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,7467.3704,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.1079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1773.1224,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,31.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.185,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2155.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.9222,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,305.9319,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2052,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.308,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1012.9033,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,33.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,31312.5066,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.75,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,580.6849,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.3058,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,753.4584,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.4062,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,615.1325,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.2054,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,891.7843,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.1941,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,407.9114,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.1437,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,471.1554,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.8378,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8332,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.905,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.8378,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8332,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.905,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3645,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,24.5088,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2686,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2261,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.8117,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,7272.6164,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3645,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,24.5088,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2686,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2261,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.8117,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,7272.6164,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.866,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.866,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2040.csv b/ariadne-data/costs/optimist/costs_2040.csv new file mode 100644 index 000000000..6d2ab9587 --- /dev/null +++ b/ariadne-data/costs/optimist/costs_2040.csv @@ -0,0 +1,1055 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,841127.4391,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,398.2759,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.7346,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,206528.0541,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,479.3103,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.7149,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,287067.8577,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,727.5862,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.2352,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,151213.8954,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,441.3793,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.7813,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,219969.2559,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,955.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.3732,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,167722.8037,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.342,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.658,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2413,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.4415,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7369,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6333,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1878.6733,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,27.5158,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,0.9083,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2598.6944,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.0395,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,3.6685,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.6,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,804.2484,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,32.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,1.6899,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,1.8169,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.0119,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,292.069,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,1.8429,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,2.9453,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,420.3448,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.3781,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,256813.5136,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,420.3448,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.3554,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,356840.1722,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,556.8966,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.3194,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,139809.9795,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,415.5172,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.5325,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,214117.0548,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,415.5172,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.5736,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,236188.1042,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,2.5167,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,611732.6641,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,102.3434,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,711.9541,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +Haber-Bosch,FOM,3.0795,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.015,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1022.6427,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,2.2234,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.0565,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,363.5118,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,269957.9224,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +battery inverter,FOM,0.192,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.9567,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,264.5554,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,194.7128,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,23.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,137.5427,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,86.1222,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,1185.8878,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,16.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,1185.8878,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,16.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.8782,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 +biogas plus hydrogen,FOM,96.2819,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.1693,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,676.0388,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.7797,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,221.6462,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,16.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.4677,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,1.747,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4477,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3731,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7231,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,2848.2242,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9133,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1333,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0213,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.6443,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.6443,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2166666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.4677,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,1.747,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4477,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3731,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7231,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,2848.2242,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.4793,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.7599,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0374,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,749.3488,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,11.4465,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.9101,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,440.6574,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,23.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.5821,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.4179,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.1532,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,27.0985,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,7.8707,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.86,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.54,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.6067,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,2430.9441,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9133,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1333,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0183,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.6443,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.4167,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,1933333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.1752,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.3667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,805.4212,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9438,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5183,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1928.6967,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,4.3023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,3.6685,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.8533,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.4133,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,455.0353,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,4.3023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,3.6685,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.8533,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4133,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,455.0353,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.0385,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,0.8113,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.05,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,45.8563,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.2933,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.3341,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.77,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,481.1381,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,6.3043,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,811.3032,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,2.6091,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.6702,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,38.8015,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,3.7309,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3373,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.343,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8418,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3005.5731,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,3.7309,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3373,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.343,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8418,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,4196.7488,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,3.7309,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3373,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.343,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8418,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3005.5731,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.6631,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.4788,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,26.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,99.97,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.3,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.39,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.3,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,700.34,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.0562,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,1132.2971,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,19.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,5.9818,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,1.0033,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,429.6801,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,23.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,209.0251,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8687,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,4.0667,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1851.8878,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,23.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.8833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,4333333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.814,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,73.8467,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,27.5158,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,2.6107,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation,, +electrobiofuels,investment,392280.346,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2976,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1200.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,21.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,6.3043,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,811.3032,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,13.193,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.7125,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0406,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.9467,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,48.8242,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.192,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.9567,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,382.4551,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,282.0544,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,23.3333,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,34.9213,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,28.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.3281,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0884,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1888,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.3333,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,914.8394,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1061,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1888,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.9433,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,762.3661,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,599.7787,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,234500.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,611732.6641,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,5.9091,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.377,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6057,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6424.709,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,1.951,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1699.9596,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,32.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.22,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,1960.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,3.0725,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,3.9507,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,286.9192,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1862,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.2148,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,955.9004,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,35.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,27828.5154,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.8418,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,504.3093,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,38.3333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.3921,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,652.2367,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,38.3333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.5111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,529.4061,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.273,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,775.0673,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.2915,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,356.3818,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.2929,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,411.4232,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.979,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.91,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.979,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.91,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3477,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,23.0567,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2639,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.234,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.8278,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,6671.1194,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3477,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,23.0567,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2639,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.234,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.8278,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,6671.1194,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,31.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8756,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8756,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/optimist/costs_2045.csv b/ariadne-data/costs/optimist/costs_2045.csv new file mode 100644 index 000000000..1ee57fc2e --- /dev/null +++ b/ariadne-data/costs/optimist/costs_2045.csv @@ -0,0 +1,1055 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,699718.4683,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,424.1379,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.6726,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,198549.2586,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,539.6552,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.65,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,279089.0621,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,813.7931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.156,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,151213.8954,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,470.6897,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.7343,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,188744.5463,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,1077.5862,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.2875,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,167722.8037,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3465,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6535,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2396,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.3758,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.4533,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6417,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1683.7167,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,47.7026,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,0.8529,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2338.825,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,2.9521,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,3.4216,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.55,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.61,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,772.5018,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,32.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,1.4937,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,1.6249,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,2.8697,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,311.0345,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,1.671,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,2.7665,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,435.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.2722,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,223691.9883,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,435.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.2451,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,356840.1722,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,578.4483,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.2051,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,139809.9795,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,432.7586,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.4456,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,193179.1609,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,432.7586,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.4422,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,215250.2103,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,1.7369,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,565735.7731,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,80.0948,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,622.9598,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +Haber-Bosch,FOM,3.1222,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0131,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,832.0355,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,2.3837,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,3.8801,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,334.2922,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,86599.3431,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +battery inverter,FOM,0.1898,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.9583,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,259.2643,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,182.0141,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,24.1667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,134.6872,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,87.9862,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,1224.2453,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,15.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,1224.2453,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,15.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.9144,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 +biogas plus hydrogen,FOM,133.1383,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,1.5632,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,603.8694,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.9343,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,228.8154,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,15.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.4206,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,1.6265,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.446,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3916,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7265,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,2665.7465,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9167,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1267,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0192,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.5972,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.5972,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,1883333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.4206,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,1.6265,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.446,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3916,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7265,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,2665.7465,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.373,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.8909,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0387,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,705.0877,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,13.9179,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.9326,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,356.1284,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,24.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.6295,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.3705,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.1358,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,49.2375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,4.4139,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.93,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.67,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.7033,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,1640.8321,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9167,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1267,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0167,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.5972,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.3583,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,1666666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.1635,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.4333,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,755.0823,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9125,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5267,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1908.2156,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,4.6795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,3.4216,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.8267,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.4167,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,412.7064,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,4.6795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,3.4216,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.8267,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4167,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,412.7064,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,2.9574,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,0.7231,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.055,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,41.447,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.273,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.4078,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.785,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,452.2134,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,29.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,6.9737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.525,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,670.207,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,3.2765,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.5997,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,29.9829,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.7938,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,3.4463,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3344,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.3615,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8459,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,2821.8567,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.7938,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,3.4463,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3344,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.3615,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8459,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,3849.677,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.7938,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,3.4463,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3344,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.3615,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8459,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,2821.8567,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.7132,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.4452,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,28.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,99.675,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.35,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.355,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.35,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,698.27,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,3.0915,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,1191.2552,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,19.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,5.8087,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,1.0117,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,472.2933,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,24.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,210.1476,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8739,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,4.1333,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1965.2687,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,24.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.7917,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,3666666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.0606,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2824,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0606,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2824,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3186,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7997,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,72.1683,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,47.7026,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,2.0177,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation,, +electrobiofuels,investment,356768.6132,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.555,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.303,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1100.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,20.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,6.9737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.525,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,670.207,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,12.5949,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.7258,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0238,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.9533,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,47.2985,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,29.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.1898,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.9583,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,375.6008,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,264.2187,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,24.1667,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.2963,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,28.572,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,29.1667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.1164,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0871,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1653,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.4292,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,880.3597,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1045,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1653,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,3.0417,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,733.6331,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,28.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,559.7588,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,217250.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,565735.7731,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,5.5405,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3835,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6073,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,5387.7702,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,1.7801,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1626.7969,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,33.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.305,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,1770.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,3.2442,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,3.351,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,267.9064,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1647,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.1217,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,898.8975,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,37.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,25039.1517,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.9662,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,427.9336,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,39.1667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.5106,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,551.015,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,39.1667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.6566,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,443.6797,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3645,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,658.3503,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.4219,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,304.8523,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.4927,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,351.6909,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.1273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.915,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.1273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.915,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3275,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,21.6047,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2592,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.242,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.8439,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,6069.6224,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3275,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,21.6047,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2592,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.242,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.8439,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,6069.6224,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,33.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8851,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8851,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2020.csv b/ariadne-data/costs/pessimist/costs_2020.csv new file mode 100644 index 000000000..ce9a55573 --- /dev/null +++ b/ariadne-data/costs/pessimist/costs_2020.csv @@ -0,0 +1,1055 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,300.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.97,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,409373.5872,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.9613,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,489913.3908,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,400.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.5362,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,325191.1729,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,330.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.9603,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,338623.152,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,490.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.6988,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,360694.2014,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3638.1722,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,931.235,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,188018.4103,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,752073.6414,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,29432.5788,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,41959454.4301,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,38462833.2276,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,143583536.7421,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,131618242.0136,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,2.4356,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,2.5466,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.5523,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,220.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,2.4961,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,3.625,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,364.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.7805,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,382675.3098,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,364.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.7747,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,889942.5809,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,475.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.7537,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,348679.5032,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.8629,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,293681.0517,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,3.0727,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,315752.1011,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,819108.478,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,187325.7928,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,144713.4654,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,113887.5264,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1785.0713,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,187899.5061,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,751598.0242,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,112560.0095,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,1304350.411,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,1265835.3275,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,149731.2267,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,365289.854,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,503663.7386,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,353636.242,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,186749.107,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,325690.7596,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,372111.988,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,149374.5139,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,597498.0554,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,69421.8279,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,344828.4062,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,480.3903,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,807189.2511,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,566749.8997,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.0615,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,31293.8274,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,152624.5646,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,610498.2585,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,8014.7441,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,38642243.6445,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,42155174.885,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,149950.2088,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,317614.1853,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,194899.0057,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,134297.449,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,476623.9107,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,276873.6097,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,1003392.2397,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,285.7198,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,245.5074,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,96.2077,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,62.1519,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.7575,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.2361,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,926.3933,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,722.4205,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0688,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,2010.6211,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.164,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.0392,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,596.837,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1375.6881,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.9524,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,74.0755,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5767.0987,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.6133,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,159.96,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.0,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,21.43,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.0,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,1120.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,994.7283,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,330.2494,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,206.4059,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1587.3324,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8711,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,80.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,5.153,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation,, +electrobiofuels,investment,559887.2932,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1375.6881,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,15.9997,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.1077,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,54.9273,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,398.9496,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,342.3682,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,60.3186,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,3.1747,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,1052.7581,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,877.2984,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,777.5294,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,307000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,819108.478,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,10630.1681,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1992.6105,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5873,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1183.9119,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,42561.4413,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,809.8118,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,1057.1237,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,872.3118,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1241.9355,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,562.5,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,650.3522,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2025.csv b/ariadne-data/costs/pessimist/costs_2025.csv new file mode 100644 index 000000000..f06a0bb5f --- /dev/null +++ b/ariadne-data/costs/pessimist/costs_2025.csv @@ -0,0 +1,1055 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,320.6897,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.9204,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,326312.2797,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,298.2759,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.9094,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,406852.0832,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,468.9655,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.4729,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,247867.9385,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,353.4483,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.9226,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,313643.3844,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,587.931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.6303,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,274929.1357,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3375,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6625,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2429,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.5311,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.7648,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.625,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2676.2233,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,7.5267,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1543,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3378.3027,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.2091,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,5.1147,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.5583,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,970.0365,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,166105.3393,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,664421.3572,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,26738.4056,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,41959454.4301,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,38462833.2276,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,143583536.7421,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,31.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,131618242.0136,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,31.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,2.2786,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,2.393,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.4385,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,235.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,2.3586,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,3.4819,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,375.8621,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.6958,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,356178.0895,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0001,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,375.8621,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.6864,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,653008.177,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,492.2414,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.6623,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,255848.6038,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,363.7931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.7934,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,276930.7366,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,363.7931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.9676,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,299001.7859,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,4.8916,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,761417.4621,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,172353.7601,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,133234.2464,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,104935.0238,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +Haber-Bosch,FOM,3.0203,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0263,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1665.734,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,166045.8871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,664183.5486,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,103333.7792,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.5473,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,825760.6159,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,822421.3869,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,139292.4203,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,342960.6179,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,489692.4838,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,343826.6375,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,172876.939,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,281086.7853,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,320844.4187,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,146783.3911,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,587133.5642,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,63731.5141,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,306333.1401,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.7026,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.8502,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,494.7525,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,784485.9619,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,550809.2924,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1071,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,21420.3118,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,148408.4164,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,593633.6658,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,7357.7979,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,38642243.6445,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,42155174.885,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,139486.6307,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,287843.5219,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,184643.5101,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,107925.4668,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,444465.2527,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,258047.096,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,836160.1998,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +battery inverter,FOM,0.1742,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,328.0487,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,250.2694,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,19.1667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,116.9293,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,72.2943,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,988.4715,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,988.4715,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.8126,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 +biogas plus hydrogen,FOM,21.23,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,4.0232,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,1069.7804,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.0135,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,186.1165,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5554,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.3126,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4805,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2945,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.6694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3685.7401,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.915,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.0983,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1583,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0292,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.8142,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.8142,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3216666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5554,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.3126,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4805,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2945,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.6694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3685.7401,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.6652,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.5408,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0069,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,964.1616,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,6.9112,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8175,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,778.3874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,19.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.4772,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.5228,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.1917,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,5.064,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,18.2766,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.705,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.225,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.3917,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,4872.1737,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.915,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.0983,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1583,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0243,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.8142,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.6333,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2900000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.0833,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,1090.6745,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0376,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.4933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1990.14,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,3.0395,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.3967,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,670.207,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,3.0395,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.3967,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,670.207,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,2.2273,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.3581,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.015,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,97.0036,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,0.9189,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,638.4604,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,4.9324,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.4933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1305.14,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.2212,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.97,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,91.7125,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8537,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,5.0563,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3721,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2641,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.7679,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3881.3327,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8537,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,5.0563,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3721,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2641,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.7679,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,5906.3721,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8537,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,5.0563,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3721,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2641,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.7679,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3881.3327,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5229,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.6071,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,134.165,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.05,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,17.975,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.05,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,939.87,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.8562,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,960.5396,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,17.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.3309,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.9717,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,244.063,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,19.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,158.7642,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8518,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.7667,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1481.5103,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,19.1667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.2083,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2841,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,14.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2841,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,14.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3288,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,14.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3288,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,14.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.334,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8568,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.9883,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,78.8817,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,7.5267,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,4.5994,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation,, +electrobiofuels,investment,512440.2631,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6003,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2485,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1800.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,25.8333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,4.9324,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.4933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1305.14,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,15.261,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.6771,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0909,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.915,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,53.4015,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.1742,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,463.2336,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,354.3551,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,19.1667,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.0773,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,56.4826,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,25.8333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.8219,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0918,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2593,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,2.9667,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,1018.2784,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1102,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2593,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,848.5653,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,19.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,728.6739,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,288000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,761417.4621,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.7606,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3442,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6007,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,10453.4411,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.6209,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1904.5962,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.421,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.7903,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,379.5135,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2318,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5799,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1197.0669,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,26.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,39056.5182,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.5875,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,767.9507,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,35.8333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.1642,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,1000.4459,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,35.8333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.2386,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,824.87,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.0898,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1176.0218,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0107,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,535.4556,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.8904,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,620.6719,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,35.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.5744,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.5744,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3839,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,29.7245,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2919,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.1968,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7529,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9114.7824,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3839,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,29.7245,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2919,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.1968,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7529,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9114.7824,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,24.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8266,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8266,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2030.csv b/ariadne-data/costs/pessimist/costs_2030.csv new file mode 100644 index 000000000..56ca9c7b7 --- /dev/null +++ b/ariadne-data/costs/pessimist/costs_2030.csv @@ -0,0 +1,1055 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,346.5517,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.8585,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,222485.6452,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,358.6207,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.8446,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,303025.4488,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,555.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.3936,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,151213.8954,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,382.7586,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.8755,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,282418.6749,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,710.3448,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.5446,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,167722.8037,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.351,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.649,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.238,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.4553,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.6585,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2693.9467,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,14.2807,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1787,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,3118.4333,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.0979,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,5.5733,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.5567,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,1008.838,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,38462833.2276,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,36802136.8043,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,131618242.0136,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,31.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,32.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,125635594.6493,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,32.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,2.0824,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,2.2009,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.2963,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,254.1379,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,2.1867,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,3.3031,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,390.6897,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.5899,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,323056.5642,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,390.6897,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.5761,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,356840.1722,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,513.7931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.548,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,139809.9795,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,381.0345,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.7064,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,255992.8427,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,381.0345,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.8363,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,278063.892,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,4.1473,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,703726.4462,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,146.8405,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,889.9426,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +Haber-Bosch,FOM,3.0438,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.03,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1546.3966,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.6323,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.9384,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,509.1147,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,36885778.0243,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,38642243.6445,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,668928.1598,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +battery inverter,FOM,0.1543,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,370.3776,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,255.0314,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,18.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,137.6508,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,82.4367,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,944.4854,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,21.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,944.4854,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,21.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.8676,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 +biogas plus hydrogen,FOM,35.3782,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.4525,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,1174.8443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.8657,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,179.2634,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,21.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.5057,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.3961,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.5065,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2896,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.6295,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3793.3454,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.93,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.0967,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1567,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0283,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.7953,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.7953,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3133333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5057,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.3961,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.5065,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2896,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.6295,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3793.3454,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.5379,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.8456,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.9816,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,1001.9299,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,6.5006,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8149,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,834.3542,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,18.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.5618,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.4382,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.1607,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,10.3861,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.8552,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.83,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.43,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.5633,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,4152.9549,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.93,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.0967,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1567,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0237,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.7953,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.6167,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2703,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.0667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,1174.5725,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0063,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5017,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1969.6589,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,2.8079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.8678,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.04,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.3933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,716.0633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,2.8079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.8678,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.04,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.3933,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,716.0633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,1.7297,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.5521,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,130.514,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3631,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,0.7986,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.7067,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,680.0838,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,4.8571,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.4867,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1234.5919,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.0129,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.9877,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,109.3496,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.8239,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,5.2433,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3952,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2593,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.7104,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,4022.2266,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.8239,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,5.2433,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3952,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2593,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.7104,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,6043.4896,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8239,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,5.2433,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3952,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2593,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.7104,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,4022.2266,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5283,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.6009,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,108.37,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.1,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,14.52,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.1,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,759.17,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.7632,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.3,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,931.235,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,17.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.1218,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.9733,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,197.0523,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,18.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,132.7779,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8501,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.7333,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1390.8056,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,18.3333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.1667,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2836,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,13.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2836,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,13.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,13.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,13.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3304,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.9867,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,77.2033,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,14.2807,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,4.062,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation,, +electrobiofuels,investment,466206.9921,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6234,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2207,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1500.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,26.6667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,4.8571,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.4867,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1234.5919,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,14.5224,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.6882,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0741,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.91,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,51.8758,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.1543,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,527.9262,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,364.4121,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,18.3333,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.1055,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,52.6465,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,26.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.4692,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0908,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2358,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,2.9833,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,983.7987,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1089,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2358,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,819.8323,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,679.8185,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,269000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,703726.4462,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.8571,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3373,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6023,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,10277.6921,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.7432,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1816.5819,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,26.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2350.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.2886,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,7.2312,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,396.0571,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2127,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5725,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1210.2219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,26.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,34796.4978,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.5981,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,726.0896,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,36.6667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.1834,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,943.7682,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,36.6667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.2649,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,777.4281,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1110.1082,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0128,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,508.4111,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.9233,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,590.9915,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,36.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.7031,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.7031,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3664,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,30.5842,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3012,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.1914,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7423,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9152.4573,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3664,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,30.5842,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3012,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.1914,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7423,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9152.4573,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,23.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8165,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8165,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2035.csv b/ariadne-data/costs/pessimist/costs_2035.csv new file mode 100644 index 000000000..172ff1dd8 --- /dev/null +++ b/ariadne-data/costs/pessimist/costs_2035.csv @@ -0,0 +1,1055 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,982536.4099,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,372.4138,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.7965,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,214506.8497,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,418.9655,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.7797,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,295046.6532,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,641.3793,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.3144,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,151213.8954,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,412.069,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.8284,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,251193.9654,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,832.7586,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.4589,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,167722.8037,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3645,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6355,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.233,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.3804,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.5522,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.675,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2711.67,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,23.5828,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.203,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2858.5639,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,2.9949,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,6.0319,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.555,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,1047.6394,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,36714522.6264,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,35884174.4147,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,125635594.6493,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,31.5,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,32.5,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,122644270.9672,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,32.5,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,1.8862,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,2.0089,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.1541,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,273.1034,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,2.0148,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,3.1242,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,405.5172,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.484,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,289935.0389,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,405.5172,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.4658,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,356840.1722,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,535.3448,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.4337,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,139809.9795,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,398.2759,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.6195,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,235054.9487,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,398.2759,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.7049,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,257125.9981,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,657729.5552,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,124.592,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,800.9483,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +Haber-Bosch,FOM,3.0712,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0338,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1427.0593,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.5657,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,5.0266,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,523.4768,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,36007545.2142,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,36885778.0243,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,501696.1199,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +battery inverter,FOM,0.1385,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,412.7064,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,259.7934,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,17.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,137.5968,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,84.2795,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,900.4993,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,22.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,900.4993,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,22.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.8729,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 +biogas plus hydrogen,FOM,47.2037,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.8818,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,1279.9082,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.718,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,172.4103,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,22.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.4587,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.4796,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.5326,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2847,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.5896,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3900.9507,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.945,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.095,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.155,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0275,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.7765,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.7765,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3050000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.4587,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.4796,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.5326,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2847,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.5896,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3900.9507,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.4199,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.1504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.9562,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,1039.6982,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,6.1416,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8124,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,890.3211,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,17.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.6464,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.3536,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.1296,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,17.9377,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,11.4338,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,0.955,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.635,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.735,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,3433.7362,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.945,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.095,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.155,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.7765,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.6,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2943,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,1258.4706,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9751,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.51,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1949.1778,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,2.6042,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.9736,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.08,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.39,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,761.9196,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,2.6042,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.9736,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.08,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.39,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,761.9196,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,1.4355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.7461,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,164.0244,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3666,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,0.6783,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.705,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,721.7071,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,4.7727,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1164.0438,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,0.8625,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0053,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,126.9866,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.7961,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,5.4303,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.4184,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2545,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.6528,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,4163.1206,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.7961,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,5.4303,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.4184,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2545,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.6528,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,6178.4528,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.7961,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,5.4303,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.4184,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2545,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.6528,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,4163.1206,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5947,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,104.17,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.2,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.955,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.2,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,729.755,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.6777,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.25,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,905.8377,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,16.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,5.93,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,167.4529,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,17.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,116.4161,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8485,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1312.1948,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,17.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.125,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1212,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2832,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,12.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1212,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2832,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,12.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3314,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,12.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3314,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,12.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3267,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8283,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.985,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,23.5828,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.541,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation,, +electrobiofuels,investment,428759.8057,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6465,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.193,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1350.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,27.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,4.7727,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1164.0438,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,13.8577,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.905,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.1385,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,592.3102,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,373.581,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,17.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.1382,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,48.8105,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.1164,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0896,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2123,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,949.319,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1076,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2123,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,791.0992,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,17.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,639.7986,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,251750.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,657729.5552,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,6.9565,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3305,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,10102.913,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,2.8781,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1728.5676,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,26.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.185,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,2155.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.1667,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,7.6721,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,412.6006,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.194,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5651,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1223.3769,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,26.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,31312.5066,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.6101,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,684.2285,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.2051,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,887.0904,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.2945,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,729.9862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.1157,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1044.1946,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0151,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,481.3667,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.9597,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,561.3112,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.8378,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8332,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.8378,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8332,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.349,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,31.4438,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3104,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.1861,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7317,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9190.1323,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.349,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,31.4438,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3104,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.1861,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7317,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9190.1323,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,22.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.8062,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.8062,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2040.csv b/ariadne-data/costs/pessimist/costs_2040.csv new file mode 100644 index 000000000..ced69c881 --- /dev/null +++ b/ariadne-data/costs/pessimist/costs_2040.csv @@ -0,0 +1,1055 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,841127.4391,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,398.2759,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.7346,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,206528.0541,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,479.3103,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.7149,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,287067.8577,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,727.5862,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.2352,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,151213.8954,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,441.3793,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.7813,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,219969.2559,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,955.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.3732,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,167722.8037,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.3065,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.4458,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2729.3933,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,37.2105,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.2274,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2598.6944,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,2.8994,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,6.4904,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.5533,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,1086.4409,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,32.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,1.6899,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,1.8169,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,3.0119,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,292.069,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,1.8429,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,2.9453,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,420.3448,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.3781,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,256813.5136,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,420.3448,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.3554,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,356840.1722,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,556.8966,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.3194,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,139809.9795,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,415.5172,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.5325,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,214117.0548,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,415.5172,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.5736,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,236188.1042,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,2.6585,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,611732.6641,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,102.3434,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,711.9541,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +Haber-Bosch,FOM,3.1037,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0375,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1307.7219,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.5028,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,5.1147,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,537.839,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,334464.0799,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +battery inverter,FOM,0.1256,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,455.0353,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,264.5554,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,16.6667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,137.5427,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,86.1222,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,856.5131,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,23.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,856.5131,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,23.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.8782,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 +biogas plus hydrogen,FOM,57.2351,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.3111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,1384.9722,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.5702,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,165.5572,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,23.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.4143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.5631,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.5587,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2798,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.5498,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,4008.5559,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.96,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.0933,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1533,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0267,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.7577,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.7577,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2966666.6667,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.4143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.5631,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.5587,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2798,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.5498,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,4008.5559,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.3101,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.4552,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.9308,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,1077.4665,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,5.8251,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8099,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,946.2879,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,16.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.7311,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.2689,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.0986,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,29.4909,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,8.0125,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,1.08,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.84,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.9067,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,2714.5175,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.96,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.0933,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1533,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0223,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.7577,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.5833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.3153,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.0333,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,1342.3686,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9438,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5183,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1928.6967,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,2.4236,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,5.0795,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.12,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.3867,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,807.7758,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,2.4236,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,5.0795,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.12,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.3867,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,807.7758,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,1.2411,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.9401,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,197.5347,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3697,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,0.558,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.7033,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,763.3305,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,18.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,4.6774,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.4733,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1093.4957,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,0.7488,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0229,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,144.6236,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.7701,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,5.6172,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.4416,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2496,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.5952,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,4304.0146,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.7701,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,5.6172,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.4416,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2496,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.5952,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,6311.2636,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.7701,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,5.6172,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.4416,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2496,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.5952,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,4304.0146,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5394,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5885,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,99.97,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.3,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.39,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.3,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,700.34,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.5989,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.2,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,883.6151,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,16.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,5.7533,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.9767,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,147.1033,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,16.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,105.1674,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8469,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.6667,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1243.4104,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,16.6667,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.0833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,11.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,11.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,11.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,11.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.814,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.9833,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,73.8467,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,37.2105,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,3.0362,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation,, +electrobiofuels,investment,392280.346,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6695,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1653,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1200.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,28.3333,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,4.6774,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.4733,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1093.4957,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,13.193,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.7125,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0406,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,48.8242,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.1256,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,657.8228,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,383.2261,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,16.6667,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.1765,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,44.9744,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,28.3333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.7637,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0884,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1888,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.0167,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,914.8394,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1061,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1888,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,762.3661,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,599.7787,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,234500.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,611732.6641,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,7.0588,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3237,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6057,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,9929.0958,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,3.0274,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1640.5534,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,25.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.22,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,1960.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,2.0542,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,8.113,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,429.1441,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1758,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5577,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1236.532,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,25.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,27828.5154,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.6237,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,642.3674,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,38.3333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.2298,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,830.4127,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,38.3333,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.3284,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,682.5444,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.1312,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,978.2809,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0177,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,454.3222,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.0001,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,531.6308,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,38.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,5.979,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.979,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3318,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,32.3035,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3197,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.1807,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7212,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9227.8073,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3318,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,32.3035,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3197,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.1807,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7212,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9227.8073,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,21.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.7958,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.7958,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 diff --git a/ariadne-data/costs/pessimist/costs_2045.csv b/ariadne-data/costs/pessimist/costs_2045.csv new file mode 100644 index 000000000..0f144e16b --- /dev/null +++ b/ariadne-data/costs/pessimist/costs_2045.csv @@ -0,0 +1,1055 @@ +technology,parameter,value,unit,source,further description,currency_year +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., +Ammonia cracker,investment,699718.4683,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.",2015.0 +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.",,2015.0 +BEV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,Motor size,424.1379,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,efficiency,0.6726,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,investment,198549.2586,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B1,2022.0 +BEV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,Motor size,539.6552,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,efficiency,0.65,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,investment,279089.0621,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV B2,2022.0 +BEV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,Motor size,813.7931,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,efficiency,1.156,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,investment,151213.8954,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L3,2022.0 +BEV Truck Solo max 26 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,Motor size,470.6897,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,efficiency,0.7343,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,investment,188744.5463,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L1,2022.0 +BEV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,Motor size,1077.5862,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,efficiency,1.2875,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,investment,167722.8037,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +BEV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",BEV L2,2022.0 +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars),2020.0 +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks),2020.0 +BioSNG,C in fuel,0.3915,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,C stored,0.6085,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,CO2 stored,0.2231,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BioSNG,FOM,1.2335,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BioSNG,efficiency,0.725,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2747.1167,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +BtL,FOM,59.0947,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.2517,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 +BtL,investment,2338.825,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,2.8103,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,6.949,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.3,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.5517,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,1125.2423,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) pipeline,investment,87.22,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost.",2020.0 +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions.",2020.0 +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression.",2015.0 +CH4 (g) submarine pipeline,investment,119.3173,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1).",2014.0 +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",-,2015.0 +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 .,2015.0 +CH4 (l) transport ship,investment,159791465.6831,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2015.0 +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 evaporation,investment,91.1101,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CH4 liquefaction,investment,241.443,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR.",2005.0 +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",,2005.0 +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2.", +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,,2004.0 +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process.", +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,, +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes., +CO2 liquefaction,investment,16.7226,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction.",2004.0 +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.",,2004.0 +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 pipeline,investment,2116.4433,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline.,2015.0 +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,investment,2584.3462,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary.",2013.0 +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",,2015.0 +CO2 submarine pipeline,investment,4232.8865,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline.,2015.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars,2020.0 +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 +Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Compressed-Air-Adiabatic-store,investment,5448.7894,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}",2020.0 +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Concrete-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Concrete-store,investment,24044.2324,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +"Container feeder, ammonia",efficiency,0.7754,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, ammonia",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, ammonia",2023.0 +"Container feeder, diesel",efficiency,0.7718,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, diesel",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, diesel",2023.0 +"Container feeder, methanol",efficiency,0.7711,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",investment,34966212.0251,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container feeder, methanol",lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container feeder, methanol",2023.0 +"Container, ammonia",efficiency,1.7094,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, ammonia",lifetime,32.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, ammonia",2023.0 +"Container, diesel",efficiency,1.6399,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, diesel",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, diesel",2023.0 +"Container, methanol",efficiency,1.7001,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",investment,119652947.2851,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +"Container, methanol",lifetime,33.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Container, methanol",2023.0 +Diesel Bus city,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,Motor size,250.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,efficiency,1.4937,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,investment,150756.2732,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B1,2022.0 +Diesel Coach,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,Motor size,350.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,efficiency,1.6249,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,investment,231296.0768,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel B2,2022.0 +Diesel Truck Semi-Trailer max 50 tons,FOM,0.0005,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,Motor size,380.0,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,efficiency,2.8697,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,investment,142012.114,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L3,2022.0 +Diesel Truck Solo max 26 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,Motor size,311.0345,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,efficiency,1.671,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,investment,155444.0931,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L1,2022.0 +Diesel Truck Trailer max 56 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,Motor size,382.3529,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,VOM,0.1068,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,efficiency,2.7665,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,investment,177515.1425,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +Diesel Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",Diesel L2,2022.0 +FCV Bus city,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,Motor size,435.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,VOM,0.0979,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,efficiency,1.2722,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,investment,223691.9883,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Bus city,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B1,2022.0 +FCV Coach,FOM,0.0002,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,Motor size,435.1724,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,efficiency,1.2451,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,investment,356840.1722,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Coach,lifetime,12.0,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV B2,2022.0 +FCV Truck Semi-Trailer max 50 tons,FOM,0.0004,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,Motor size,578.4483,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,efficiency,2.2051,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,investment,139809.9795,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Semi-Trailer max 50 tons,lifetime,10.5,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L3,2022.0 +FCV Truck Solo max 26 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,Motor size,432.7586,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,efficiency,1.4456,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,investment,193179.1609,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Solo max 26 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L1,2022.0 +FCV Truck Trailer max 56 tons,FOM,0.0003,%/year,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,Motor size,432.7586,kW,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,VOM,0.0952,EUR/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,efficiency,2.4422,kWh/km,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,investment,215250.2103,EUR/vehicle,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FCV Truck Trailer max 56 tons,lifetime,13.8,years,"Danish Energy Agency, inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",FCV L2,2022.0 +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,1.9141,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,565735.7731,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 +Gravity-Brick-bicharger,investment,415570.5177,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Brick-store,investment,157381.7274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Aboveground-bicharger,investment,365630.713,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Aboveground-store,investment,121755.0274,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}",2020.0 +Gravity-Water-Underground-bicharger,investment,905158.9602,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}",2020.0 +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Gravity-Water-Underground-store,investment,95982.5211,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}",2020.0 +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks.",2020.0 +H2 (g) fill compressor station,investment,4738.7164,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2.",2015.0 +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).",,2015.0 +H2 (g) pipeline,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline,investment,303.6845,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413.",2015.0 +H2 (g) pipeline repurposed,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) pipeline repurposed,investment,129.4682,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline.,2015.0 +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline,investment,456.1165,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (g) submarine pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression.",2015.0 +H2 (g) submarine pipeline repurposed,investment,160.1562,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)",2023.0 +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,-,2015.0 +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) storage tank,investment,793.7456,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16.",2015.0 +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg).,2015.0 +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,investment,393737000.0,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.",,2019.0 +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 evaporation,investment,80.0948,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 .",2022.0 +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant.,2015.0 +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .",,2020.0 +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t", +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction, +H2 liquefaction,investment,622.9598,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report).",2022.0 +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2022.0 +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +H2 pipeline,investment,282.5452,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions,2015.0 +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,investment,165803.0398,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,investment,442.1414,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .",,2011.0 +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC submarine,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1,2017.0 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables.",2018.0 +HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 +HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 +Haber-Bosch,FOM,3.1426,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0413,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", +Haber-Bosch,investment,1188.3846,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +HighT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +HighT-Molten-Salt-store,investment,94107.5489,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars),2020.0 +Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks),2020.0 +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,investment,347170.8209,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}",2020.0 +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,investment,379007.4464,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}",2020.0 +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Hydrogen-store,investment,4779.9527,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}",2020.0 +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,investment,666.634,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date.,2019.0 +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date.,2019.0 +LOHC chemical,investment,2500.0,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation,investment,53681.4988,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC dehydrogenation (small scale),investment,839000.0,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity.,2020.0 +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC .", +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2., +LOHC hydrogenation,investment,54243.958,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6.,2015.0 +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",,2015.0 +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%.", +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC loaded DBT storage,investment,151.5383,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3.",2012.0 +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,investment,35000000.0,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514",,2020.0 +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +LOHC unloaded DBT storage,investment,134.2745,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3.",2012.0 +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared.",2012.0 +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}",2020.0 +Lead-Acid-bicharger,investment,128853.6139,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lead-Acid-store,investment,320631.3818,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars),2020.0 +Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks),2020.0 +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-charger,investment,475721.2289,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}",2020.0 +Liquid-Air-discharger,investment,334017.033,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Liquid-Air-store,investment,159004.771,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}",2020.0 +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-LFP-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-LFP-store,investment,236482.8109,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}",2020.0 +Lithium-Ion-NMC-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Lithium-Ion-NMC-store,investment,269576.8493,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +LowT-Molten-Salt-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +LowT-Molten-Salt-store,investment,58041.2003,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 +NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t.",2010.0 +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290",,2010.0 +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 +Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +OCGT,FOM,1.4431,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,5.2029,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,552.2012,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}",2020.0 +Pumped-Heat-charger,investment,761782.6727,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}",2020.0 +Pumped-Heat-discharger,investment,534868.6851,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Pumped-Heat-store,investment,11546.7963,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}",2020.0 +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}",2020.0 +Pumped-Storage-Hydro-bicharger,investment,1397128.4612,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 +Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}",2020.0 +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 +Sand-discharger,investment,576769.073,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}",2020.0 +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 +Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption.", +"Tank&bulk, diesel",efficiency,0.462,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, diesel",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, diesel",2023.0 +"Tank&bulk, methanol",efficiency,0.4695,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tank&bulk, methanol",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tank&bulk, methanol",2023.0 +"Tankbulk, ammonia",efficiency,0.471,MWh/km,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",investment,35129312.4041,EUR,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +"Tankbulk, ammonia",lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx","Tankbulk, ammonia",2023.0 +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}",2020.0 +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}",2020.0 +Vanadium-Redox-Flow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}",2020.0 +Vanadium-Redox-Flow-store,investment,258072.8586,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Air-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Air-store,investment,174388.0144,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Flow-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Flow-store,investment,412306.5947,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}",2020.0 +Zn-Br-Nonflow-bicharger,investment,129023.0526,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 +Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", +air separation unit,investment,167232.04,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 +battery inverter,FOM,0.1149,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,497.3642,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,269.3174,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,15.8333,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biodiesel crops,fuel,134.6872,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 +bioethanol crops,fuel,87.9862,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 +biogas,investment,812.527,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,24.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, +biogas CC,investment,812.527,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,24.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas manure,fuel,19.9144,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 +biogas plus hydrogen,FOM,65.8517,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,1.7404,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,1490.0361,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.4224,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,158.704,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,24.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 +biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +biomass CHP,FOM,3.3722,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.6466,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.5848,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2749,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.5099,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,4116.1612,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.975,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.0917,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.1517,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0258,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.7388,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.7388,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2883333.3333,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.3722,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.6466,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.5848,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2749,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.5099,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,4116.1612,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.2078,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.7599,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.9054,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,1115.2349,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,5.5439,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.8074,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,1002.2548,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,15.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 +biomass-to-methanol,C in fuel,0.8157,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,C stored,0.1843,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,CO2 stored,0.0676,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, +biomass-to-methanol,FOM,49.3729,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,4.5911,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +biomass-to-methanol,efficiency,1.205,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,1.045,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,1.0783,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,1995.2987,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.975,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.0917,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.1517,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.0217,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.7388,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.5667,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.3339,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.0167,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,1426.2667,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9125,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5267,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1908.2156,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central gas CHP,FOM,2.2624,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,5.1853,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.16,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 +central gas CHP,efficiency,0.3833,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,853.6321,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central gas CHP CC,FOM,2.2624,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,5.1853,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.16,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.3833,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,853.6321,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,1.1031,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,2.1341,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,231.0451,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central ground-sourced heat pump,FOM,0.3725,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,0.4378,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.7017,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,804.9539,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,16.6667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,4.569,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.4667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1022.9476,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,0.6598,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0406,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,162.2606,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +central solid biomass CHP,FOM,2.7458,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,5.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.4648,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2448,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.5376,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,4444.9085,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 +central solid biomass CHP CC,FOM,2.7458,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,5.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.4648,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2448,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.5376,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,investment,6441.924,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 +central solid biomass CHP CC,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.7458,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,5.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.4648,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2448,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.5376,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,4444.9085,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water tank storage,FOM,0.5452,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water tank storage,investment,0.5823,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 +coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 +coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,investment,99.675,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 +csp-tower TES,FOM,1.35,%/year,see solar-tower.,-,1.0 +csp-tower TES,investment,13.355,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 +csp-tower power block,FOM,1.35,%/year,see solar-tower.,-,1.0 +csp-tower power block,investment,698.27,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 +csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,FOM,2.526,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral air-sourced heat pump,efficiency,3.15,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,864.0068,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,15.5,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,5.59,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral gas boiler,efficiency,0.9783,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,132.2537,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,15.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,96.9588,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8453,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral ground-sourced heat pump,efficiency,3.6333,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1182.7183,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,15.8333,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,investment,105.8222,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 +decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.0417,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.0606,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2824,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,10.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0606,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2824,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,10.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,10.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,10.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 +direct iron reduction furnace,investment,4277858.0,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost.",2020.0 +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’.,2020.0 +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost.",2020.0 +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs.",2020.0 +dry bulk carrier Capesize,investment,40000000.0,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR.",2020.0 +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime.,2020.0 +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion.",2020.0 +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. ,2020.0 +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 +electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 +electric boiler steam,FOM,1.3186,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7997,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.9817,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,72.1683,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,, +electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., +electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +electric steam cracker,lifetime,30.0,years,Guesstimate,, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",, +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,investment,529.1108,EUR/kW,TODO, from old pypsa cost assumptions,2015.0 +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions,2015.0 +electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 +electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation,, +electrobiofuels,FOM,59.0947,%/year,combination of BtL and electrofuels,, +electrobiofuels,VOM,2.5477,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation,, +electrobiofuels,investment,356768.6132,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6926,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1376,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrolysis,investment,1100.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 +electrolysis,lifetime,29.1667,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +fuel cell,FOM,4.569,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.4667,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1022.9476,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +fuelwood,fuel,12.5949,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, +gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +gas boiler steam,FOM,3.7258,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0238,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,47.2985,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 +gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +gas storage discharger,investment,5.0579,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity; Result of fluid circulation through rock formations,2020.0 +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",See Supplemental Material of source for details,2020.0 +geothermal,district heat surcharge,25.0,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%. Costs incurred by piping.",2020.0 +geothermal,district heat-input,0.8,MWh_thdh/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, District Heat-output. This is an assessment of typical heat losses when heat is transmitted from the EGS plant to the DH network, This is a rough estimate, depends on local conditions",2020.0 +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 +helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 +home battery inverter,FOM,0.1149,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,720.5404,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,390.9515,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,15.8333,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.2219,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,41.1384,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,29.1667,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.411,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0871,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1653,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.0333,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,880.3597,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1045,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1653,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,733.6331,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,15.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +lignite,fuel,3.2985,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t.",2010.0 +lignite,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf .",2023.0 +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1",,2017.0 +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion)., +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions,2015.0 +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon)., +methanation,investment,559.7588,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.",,2017.0 +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants.",2017.0 +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA).,2014.0 +methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks.",2014.0 +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 +methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, +methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-kerosene,investment,217250.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , +methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, +methanolisation,investment,565735.7731,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +micro CHP,FOM,7.1642,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.3168,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.6073,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,9756.2326,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 +nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 +nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 +offwind,FOM,3.1937,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +offwind,investment,1552.5391,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,lifetime,25.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-submarine,investment,2116.4433,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions,2015.0 +offwind-dc-connection-underground,investment,1058.2216,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-dc-station,investment,423.2887,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions,2015.0 +offwind-float,FOM,1.305,%/year,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,investment,1770.0,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067,,2020.0 +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms,,2020.0 +offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf,,2014.0 +offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 +offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, +oil,FOM,1.9501,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,8.554,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 +oil,investment,445.6877,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1578,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5503,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1249.687,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,25.3333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 +organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 +organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 +organic rankine cycle,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",,2020.0 +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 +ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, +seawater desalination,investment,25039.1517,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition.,2020.0 +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2).,2020.0 +solar,FOM,1.6393,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,VOM,0.0106,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 +solar,investment,600.5063,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar,lifetime,39.1667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility',2020.0 +solar-rooftop,FOM,1.2581,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 +solar-rooftop,investment,773.7349,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop,lifetime,39.1667,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 +solar-rooftop commercial,FOM,1.3672,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,635.1025,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.149,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,912.3673,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0205,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,427.2778,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.0454,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,501.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,39.1667,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, +solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 +solid biomass boiler steam,FOM,6.1273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.1273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 +uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 +waste CHP,FOM,2.3147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,33.1632,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3289,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.1754,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7106,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9265.4823,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,33.1632,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3289,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.1754,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7106,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9265.4823,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,20.8333,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +water tank charger,efficiency,0.7853,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank discharger,efficiency,0.7853,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 From 6293d3baba420f2928853fdf6dce7b35253b9f78 Mon Sep 17 00:00:00 2001 From: Toni Seibold <153275395+toniseibold@users.noreply.github.com> Date: Fri, 6 Sep 2024 11:48:00 +0200 Subject: [PATCH 551/669] Adding overnight costs in `modify_prenetwork` (#181) * robustely adding parameters for DE meoh and oil stores * adjust overnight costs for retrofitted gas plants * satisfy checklist and rename prefix * adding overnight costs to chps as well --------- Co-authored-by: Michael Lindner --- workflow/scripts/modify_prenetwork.py | 18 ++++++++++++------ 1 file changed, 12 insertions(+), 6 deletions(-) diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index 478581a73..bf287858d 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -370,14 +370,16 @@ def unravel_oilbus(n): ) # add stores + EU_oil_store = n.stores.loc["EU oil Store"].copy() n.add( "Store", "DE oil Store", bus="DE oil", carrier="oil", - e_nom_extendable=True, - e_cyclic=True, - capital_cost=0.02, + e_nom_extendable=EU_oil_store.e_nom_extendable, + e_cyclic=EU_oil_store.e_cyclic, + capital_cost=EU_oil_store.capital_cost, + overnight_cost=EU_oil_store.overnight_cost, ) # unravel meoh @@ -414,14 +416,16 @@ def unravel_oilbus(n): ) # add stores + EU_meoh_store = n.stores.loc["EU methanol Store"].copy() n.add( "Store", "DE methanol Store", bus="DE methanol", carrier="methanol", - e_nom_extendable=True, - e_cyclic=True, - capital_cost=0.02, + e_nom_extendable=EU_meoh_store.e_nom_extendable, + e_cyclic=EU_meoh_store.e_cyclic, + capital_cost=EU_meoh_store.capital_cost, + overnight_cost=EU_meoh_store.overnight_cost, ) @@ -758,6 +762,7 @@ def force_retrofit(n, params): h2_plants.efficiency -= params["efficiency_loss"] h2_plants.efficiency2 = 1 # default value h2_plants.capital_cost *= 1 + params["cost_factor"] + h2_plants.overnight_cost *= 1 + params["cost_factor"] # add the new links n.import_components_from_dataframe(h2_plants, "Link") n.links.drop(gas_plants, inplace=True) @@ -779,6 +784,7 @@ def force_retrofit(n, params): h2_plants.efficiency -= params["efficiency_loss"] h2_plants.efficiency3 = 1 # default value h2_plants.capital_cost *= 1 + params["cost_factor"] + h2_plants.overnight_cost *= 1 + params["cost_factor"] n.import_components_from_dataframe(h2_plants, "Link") n.links.drop(gas_plants, inplace=True) From 055aca6a06ed520ada3fe0adcc1f75a19757105b Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 6 Sep 2024 13:26:58 +0200 Subject: [PATCH 552/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 4f5155275..3c43aaa36 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 4f51552755c1bee518f7cee2a2f5c48ca819fca6 +Subproject commit 3c43aaa36bcdeacfe8a69a8f60a12ba1a960cf71 From bcd73c167f9f18e91b4f1d4f552fe2b2f6a128ce Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 6 Sep 2024 15:03:39 +0200 Subject: [PATCH 553/669] bump prefix --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 8a8f16b11..dae4e312e 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240905additaly + prefix: 20240906ariadne2update name: # - CurrentPolicies - KN2045_Bal_v4 From a4c3104c2148d425528d721d40a25691065645e4 Mon Sep 17 00:00:00 2001 From: Tom Brown Date: Fri, 6 Sep 2024 16:01:40 +0200 Subject: [PATCH 554/669] Implement rising hub heights for wind; profile smoothing for offshore wind (#171) * enable wind profile smoothing; raise hub heights in 2030 and 2040 Smoothing by Gaussian kernel enabled following Gorm Andresen atlas implementation. Hub heights raised by 10m every 10 years versus PyPSA-Eur reference turbines (Vestas 3 MW for onwind, NREL 5 MW for offwind). * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * turn off onwind smoothing until GWA correction to wind speeds In this version two errors (lack of smoothing and lack of GWA correction) cancel out. Both should be fixed in medium-term. * disable offwind-float --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Lukas Trippe Co-authored-by: Michael Lindner --- config/config.yaml | 64 ++++++++++++++++++++++++++++++++++++++++++---- 1 file changed, 59 insertions(+), 5 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index dae4e312e..ea33f60a3 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20240906ariadne2update + prefix: 202406windcf name: # - CurrentPolicies - KN2045_Bal_v4 @@ -105,13 +105,70 @@ atlite: renewable: onwind: cutout: europe-2019-sarah3-era5 + resource: + smooth: false #this is false until correction to onshore wind speeds from GWA implemented + #based on Vestas_V112_3MW, but changing hub_height from 80m with time + turbine: + 2020: + V: [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 25, 25] + POW: [0., 0., 0.005, 0.15, 0.3, 0.525, 0.905, 1.375, 1.95, 2.58, 2.96, 3.05, 3.06, 3.06, 0.] + hub_height: 80. + P: 3.06 + 2030: + V: [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 25, 25] + POW: [0., 0., 0.005, 0.15, 0.3, 0.525, 0.905, 1.375, 1.95, 2.58, 2.96, 3.05, 3.06, 3.06, 0.] + hub_height: 90. + P: 3.06 + 2040: + V: [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 25, 25] + POW: [0., 0., 0.005, 0.15, 0.3, 0.525, 0.905, 1.375, 1.95, 2.58, 2.96, 3.05, 3.06, 3.06, 0.] + hub_height: 100. + P: 3.06 offwind-ac: capacity_per_sqkm: 6 cutout: europe-2019-sarah3-era5 + resource: + smooth: true + #based on NREL_ReferenceTurbine_2020ATB_5.5MW, but changing hub_height from 80m with time + turbine: + 2020: + V: [3.0, 3.2, 3.5, 3.8, 4.0, 4.2, 4.5, 4.8, 5.0, 5.2, 5.5, 5.8, 6.0, 6.2, 6.5, 6.8, 7.0, 7.2, 7.5, 7.8, 8.0, 8.2, 8.5, 8.8, 9.0, 9.2, 9.5, 9.8, 10.0, 10.2, 10.5, 10.8, 11.0, 11.2, 11.5, 11.8, 12.0, 12.2, 12.5, 12.8, 13.0, 13.2, 13.5, 13.8, 14.0, 14.2, 14.5, 14.8, 15.0, 15.2, 15.5, 15.8, 16.0, 16.2, 16.5, 16.8, 17.0, 17.2, 17.5, 17.8, 18.0, 18.2, 18.5, 18.8, 19.0, 19.2, 19.5, 19.8, 20.0, 20.2, 20.5, 20.8, 21.0, 21.2, 21.5, 21.8, 22.0, 22.2, 22.5, 22.8, 23.0, 23.2, 23.5, 23.8, 24.0, 24.2, 24.5, 24.8, 25.0] + POW: [0.0, 0.127, 0.178, 0.237, 0.305, 0.381, 0.468, 0.564, 0.671, 0.789, 0.919, 1.061, 1.216, 1.385, 1.567, 1.765, 1.977, 2.205, 2.45, 2.711, 2.99, 3.287, 3.602, 3.937, 4.291, 4.665, 5.06, 5.477, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 0.0] + hub_height: 120. + P: 5.5 + 2030: + V: [3.0, 3.2, 3.5, 3.8, 4.0, 4.2, 4.5, 4.8, 5.0, 5.2, 5.5, 5.8, 6.0, 6.2, 6.5, 6.8, 7.0, 7.2, 7.5, 7.8, 8.0, 8.2, 8.5, 8.8, 9.0, 9.2, 9.5, 9.8, 10.0, 10.2, 10.5, 10.8, 11.0, 11.2, 11.5, 11.8, 12.0, 12.2, 12.5, 12.8, 13.0, 13.2, 13.5, 13.8, 14.0, 14.2, 14.5, 14.8, 15.0, 15.2, 15.5, 15.8, 16.0, 16.2, 16.5, 16.8, 17.0, 17.2, 17.5, 17.8, 18.0, 18.2, 18.5, 18.8, 19.0, 19.2, 19.5, 19.8, 20.0, 20.2, 20.5, 20.8, 21.0, 21.2, 21.5, 21.8, 22.0, 22.2, 22.5, 22.8, 23.0, 23.2, 23.5, 23.8, 24.0, 24.2, 24.5, 24.8, 25.0] + POW: [0.0, 0.127, 0.178, 0.237, 0.305, 0.381, 0.468, 0.564, 0.671, 0.789, 0.919, 1.061, 1.216, 1.385, 1.567, 1.765, 1.977, 2.205, 2.45, 2.711, 2.99, 3.287, 3.602, 3.937, 4.291, 4.665, 5.06, 5.477, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 0.0] + hub_height: 130. + P: 5.5 + 2040: + V: [3.0, 3.2, 3.5, 3.8, 4.0, 4.2, 4.5, 4.8, 5.0, 5.2, 5.5, 5.8, 6.0, 6.2, 6.5, 6.8, 7.0, 7.2, 7.5, 7.8, 8.0, 8.2, 8.5, 8.8, 9.0, 9.2, 9.5, 9.8, 10.0, 10.2, 10.5, 10.8, 11.0, 11.2, 11.5, 11.8, 12.0, 12.2, 12.5, 12.8, 13.0, 13.2, 13.5, 13.8, 14.0, 14.2, 14.5, 14.8, 15.0, 15.2, 15.5, 15.8, 16.0, 16.2, 16.5, 16.8, 17.0, 17.2, 17.5, 17.8, 18.0, 18.2, 18.5, 18.8, 19.0, 19.2, 19.5, 19.8, 20.0, 20.2, 20.5, 20.8, 21.0, 21.2, 21.5, 21.8, 22.0, 22.2, 22.5, 22.8, 23.0, 23.2, 23.5, 23.8, 24.0, 24.2, 24.5, 24.8, 25.0] + POW: [0.0, 0.127, 0.178, 0.237, 0.305, 0.381, 0.468, 0.564, 0.671, 0.789, 0.919, 1.061, 1.216, 1.385, 1.567, 1.765, 1.977, 2.205, 2.45, 2.711, 2.99, 3.287, 3.602, 3.937, 4.291, 4.665, 5.06, 5.477, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 0.0] + hub_height: 140. + P: 5.5 offwind-dc: capacity_per_sqkm: 6 cutout: europe-2019-sarah3-era5 - offwind-float: + resource: + smooth: true + #based on NREL_ReferenceTurbine_2020ATB_5.5MW, but changing hub_height from 80m with time + turbine: + 2020: + V: [3.0, 3.2, 3.5, 3.8, 4.0, 4.2, 4.5, 4.8, 5.0, 5.2, 5.5, 5.8, 6.0, 6.2, 6.5, 6.8, 7.0, 7.2, 7.5, 7.8, 8.0, 8.2, 8.5, 8.8, 9.0, 9.2, 9.5, 9.8, 10.0, 10.2, 10.5, 10.8, 11.0, 11.2, 11.5, 11.8, 12.0, 12.2, 12.5, 12.8, 13.0, 13.2, 13.5, 13.8, 14.0, 14.2, 14.5, 14.8, 15.0, 15.2, 15.5, 15.8, 16.0, 16.2, 16.5, 16.8, 17.0, 17.2, 17.5, 17.8, 18.0, 18.2, 18.5, 18.8, 19.0, 19.2, 19.5, 19.8, 20.0, 20.2, 20.5, 20.8, 21.0, 21.2, 21.5, 21.8, 22.0, 22.2, 22.5, 22.8, 23.0, 23.2, 23.5, 23.8, 24.0, 24.2, 24.5, 24.8, 25.0] + POW: [0.0, 0.127, 0.178, 0.237, 0.305, 0.381, 0.468, 0.564, 0.671, 0.789, 0.919, 1.061, 1.216, 1.385, 1.567, 1.765, 1.977, 2.205, 2.45, 2.711, 2.99, 3.287, 3.602, 3.937, 4.291, 4.665, 5.06, 5.477, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 0.0] + hub_height: 120. + P: 5.5 + 2030: + V: [3.0, 3.2, 3.5, 3.8, 4.0, 4.2, 4.5, 4.8, 5.0, 5.2, 5.5, 5.8, 6.0, 6.2, 6.5, 6.8, 7.0, 7.2, 7.5, 7.8, 8.0, 8.2, 8.5, 8.8, 9.0, 9.2, 9.5, 9.8, 10.0, 10.2, 10.5, 10.8, 11.0, 11.2, 11.5, 11.8, 12.0, 12.2, 12.5, 12.8, 13.0, 13.2, 13.5, 13.8, 14.0, 14.2, 14.5, 14.8, 15.0, 15.2, 15.5, 15.8, 16.0, 16.2, 16.5, 16.8, 17.0, 17.2, 17.5, 17.8, 18.0, 18.2, 18.5, 18.8, 19.0, 19.2, 19.5, 19.8, 20.0, 20.2, 20.5, 20.8, 21.0, 21.2, 21.5, 21.8, 22.0, 22.2, 22.5, 22.8, 23.0, 23.2, 23.5, 23.8, 24.0, 24.2, 24.5, 24.8, 25.0] + POW: [0.0, 0.127, 0.178, 0.237, 0.305, 0.381, 0.468, 0.564, 0.671, 0.789, 0.919, 1.061, 1.216, 1.385, 1.567, 1.765, 1.977, 2.205, 2.45, 2.711, 2.99, 3.287, 3.602, 3.937, 4.291, 4.665, 5.06, 5.477, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 0.0] + hub_height: 130. + P: 5.5 + 2040: + V: [3.0, 3.2, 3.5, 3.8, 4.0, 4.2, 4.5, 4.8, 5.0, 5.2, 5.5, 5.8, 6.0, 6.2, 6.5, 6.8, 7.0, 7.2, 7.5, 7.8, 8.0, 8.2, 8.5, 8.8, 9.0, 9.2, 9.5, 9.8, 10.0, 10.2, 10.5, 10.8, 11.0, 11.2, 11.5, 11.8, 12.0, 12.2, 12.5, 12.8, 13.0, 13.2, 13.5, 13.8, 14.0, 14.2, 14.5, 14.8, 15.0, 15.2, 15.5, 15.8, 16.0, 16.2, 16.5, 16.8, 17.0, 17.2, 17.5, 17.8, 18.0, 18.2, 18.5, 18.8, 19.0, 19.2, 19.5, 19.8, 20.0, 20.2, 20.5, 20.8, 21.0, 21.2, 21.5, 21.8, 22.0, 22.2, 22.5, 22.8, 23.0, 23.2, 23.5, 23.8, 24.0, 24.2, 24.5, 24.8, 25.0] + POW: [0.0, 0.127, 0.178, 0.237, 0.305, 0.381, 0.468, 0.564, 0.671, 0.789, 0.919, 1.061, 1.216, 1.385, 1.567, 1.765, 1.977, 2.205, 2.45, 2.711, 2.99, 3.287, 3.602, 3.937, 4.291, 4.665, 5.06, 5.477, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 0.0] + hub_height: 140. + P: 5.5 + offwind-float: # disabled at the moment capacity_per_sqkm: 6 cutout: europe-2019-sarah3-era5 solar: @@ -205,8 +262,6 @@ first_technology_occurrence: H2 Electrolysis: 2025 H2 pipeline retrofitted: 2025 - - costs: horizon: "mean" # "optimist", "pessimist" or "mean" @@ -540,7 +595,6 @@ pypsa_eur: - onwind - offwind-ac - offwind-dc - - offwind-float - solar-hsat - solar - ror From 70d9739fd35f2f0d1bae5aab8dbd1d68af102317 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 9 Sep 2024 14:25:34 +0200 Subject: [PATCH 555/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 3c43aaa36..deb693b4f 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 3c43aaa36bcdeacfe8a69a8f60a12ba1a960cf71 +Subproject commit deb693b4f47babb884c8251690638c40fd57e08c From c69e83b067314fa68e32975f867edec81a795b7a Mon Sep 17 00:00:00 2001 From: Lukas Trippe Date: Tue, 10 Sep 2024 12:23:19 +0200 Subject: [PATCH 556/669] Bump lkstrp/pypsa-validator to v0.2.0 (#185) * Bump lkstrp/pypsa-validator to v0.2.0 * Update dependabot.yml * Update validate.yml --- .github/dependabot.yml | 2 +- .github/workflows/validate.yml | 51 ++++++---------------------------- 2 files changed, 10 insertions(+), 43 deletions(-) diff --git a/.github/dependabot.yml b/.github/dependabot.yml index f8f779b59..f89e903c7 100644 --- a/.github/dependabot.yml +++ b/.github/dependabot.yml @@ -6,7 +6,7 @@ updates: - package-ecosystem: github-actions directory: / schedule: - interval: monthly + interval: daily groups: # open a single pull-request for all GitHub actions updates github-actions: diff --git a/.github/workflows/validate.yml b/.github/workflows/validate.yml index 25a7d5e57..4dce543e8 100644 --- a/.github/workflows/validate.yml +++ b/.github/workflows/validate.yml @@ -16,64 +16,30 @@ jobs: if: github.event.pull_request.head.repo.full_name == github.repository runs-on: self-hosted steps: - - uses: lkstrp/pypsa-validator@v0.1.4 + - uses: lkstrp/pypsa-validator@v0.2.0 with: step: run-self-hosted-validation env_file: environment.yaml snakemake_config: config/config.yaml pre_command: "build_scenarios -f" main_command: "ariadne_all" + dev: true env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} - upload-artifacts: - name: Upload artifacts + create-report: + name: Create report if: github.event.pull_request.head.repo.full_name == github.repository needs: run-validation - runs-on: self-hosted - steps: - - uses: actions/upload-artifact@v4 - with: - name: logs - path: | - ~/${{ github.repository }}/validator-metadata.yml - ~/${{ github.repository }}/main/logs/ - ~/${{ github.repository }}/main/.snakemake/ - ~/${{ github.repository }}/feature/logs/ - ~/${{ github.repository }}/feature/.snakemake/ - if-no-files-found: error - retention-days: 90 - include-hidden-files: true - - uses: actions/upload-artifact@v4 - with: - name: results (main branch) - path: | - ~/${{ github.repository }}/main/results - if-no-files-found: error - retention-days: 90 - include-hidden-files: true - - uses: actions/upload-artifact@v4 - with: - name: results (feature branch) - path: | - ~/${{ github.repository }}/feature/results - if-no-files-found: error - retention-days: 90 - include-hidden-files: true - - comment-on-pr: - name: Comment on pull request - if: github.event.pull_request.head.repo.full_name == github.repository - needs: upload-artifacts runs-on: ubuntu-latest steps: - - uses: lkstrp/pypsa-validator@v0.1.4 + - uses: lkstrp/pypsa-validator@v0.2.0 with: step: create-comment snakemake_config: config/config.yaml - # The path starting from prefix in config - # For plot results///.png pass - # /.png + # The path starting from prefix in config + # For plot results///.png pass + # /.png plots: > " KN2045_Bal_v4/ariadne/primary_energy.png @@ -84,3 +50,4 @@ jobs: ariadne_comparison/Capacity-Electricity-Solar.png " validator_key: ${{ secrets.VALIDATOR_KEY }} + dev: true From 8b67210a014563c4dc6c0ce2ca89836c785117d6 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 10 Sep 2024 14:26:57 +0200 Subject: [PATCH 557/669] improve exporter stability --- workflow/scripts/export_ariadne_variables.py | 22 ++++++++++++++------ 1 file changed, 16 insertions(+), 6 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 84b57265e..bf9b04bf0 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -169,17 +169,27 @@ def _get_gas_fractions(n, region): * total_exported_renewable_gas ) - renewable_gas_supply = imported_renewable_gas.add( + renewable_gas_balance = imported_renewable_gas.add( domestic_renewable_gas, fill_value=0 ).subtract(exported_renewable_gas, fill_value=0) - # Check for small differences - assert domestic_gas_supply.get("renewable gas", 0) - renewable_gas_supply.sum() < 1 + # These numbers may deviate because the input data from n.statistics + # can deviate. I don't know why exactly, but at least we can check that + # the difference stays roughly the same after the calculation. + assert isclose( + domestic_gas_supply.get("renewable gas", 0) + - renewable_gas_balance.sum(), + total_gas_supply.get([ + "DE renewable gas -> DE gas", + "DE renewable gas -> EU gas" + ]).sum() + - renewable_gas_supply.get("DE renewable gas").sum() + ) gas_fractions = pd.Series( { "Natural Gas": domestic_gas_supply.get("gas", 0), - "Biomass": renewable_gas_supply.filter(like="biogas").sum(), - "Efuel": renewable_gas_supply.get("Sabatier", 0), + "Biomass": renewable_gas_balance.filter(like="biogas").sum(), + "Efuel": renewable_gas_balance.get("Sabatier", 0), } ).divide(domestic_gas_supply.sum()) @@ -2501,7 +2511,7 @@ def get_emissions(n, region, _energy_totals): print("WARNING! Not all CO2 capture from fossil sources is captured!!!") print("total_ccs - fossil_cc: ", total_ccs - fossil_cc.sum()) # TODO what to do with fossil_cc_emissions??? - if n.links.build_year.max() == 2045: + if (n.links.build_year.max() == 2045) and (total_ccs - fossil_cc.sum() > 1): # > 1 for numerical errors raise Exception("Not enough CCS in 2045!") if not co2_atmosphere_withdrawal.get("urban central solid biomass CHP CC"): From f6013f0574f0e6829d9ae844de25ab8e530e86a4 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 10 Sep 2024 14:38:50 +0200 Subject: [PATCH 558/669] importve numerical stability of exporter --- workflow/scripts/export_ariadne_variables.py | 1 + 1 file changed, 1 insertion(+) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index bf9b04bf0..f3b4e5357 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -1598,6 +1598,7 @@ def get_secondary_energy(n, region, _industry_demand): hydrogen_production[ ~hydrogen_production.index.str.startswith("H2 pipeline") ].sum(), + rtol = 0.01 ) oil_fossil_fraction = _get_oil_fossil_fraction(n, region) From 68318ae0c9476867ee0cf56fd5da47a470232e7d Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 10 Sep 2024 17:05:32 +0200 Subject: [PATCH 559/669] update snakemake --- environment.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/environment.yaml b/environment.yaml index 5ab9a6ccf..0c4859921 100644 --- a/environment.yaml +++ b/environment.yaml @@ -17,7 +17,7 @@ dependencies: - openpyxl!=3.1.1 - pycountry - seaborn -- snakemake-minimal>=8.11 +- snakemake-minimal>=8.19.1 - memory_profiler - yaml - pytables From b7acb594e0061a56e652101686e37c46896310a1 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 10 Sep 2024 17:14:21 +0200 Subject: [PATCH 560/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index deb693b4f..42f52ee0d 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit deb693b4f47babb884c8251690638c40fd57e08c +Subproject commit 42f52ee0d013683843f15a3fa2c1c629f3f8d3cc From 9595f7c7bf932b2707bbc946b5e8e0d3e79ab90d Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 10 Sep 2024 17:20:49 +0200 Subject: [PATCH 561/669] update submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 42f52ee0d..a9370ef58 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 42f52ee0d013683843f15a3fa2c1c629f3f8d3cc +Subproject commit a9370ef582abf950029dbeda707e4180bb756db3 From ddeeae18aebd1e5aa7b806bd49e75f1a400fa912 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 11 Sep 2024 10:06:30 +0200 Subject: [PATCH 562/669] downgrade submodule --- workflow/submodules/pypsa-eur | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index a9370ef58..42f52ee0d 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit a9370ef582abf950029dbeda707e4180bb756db3 +Subproject commit 42f52ee0d013683843f15a3fa2c1c629f3f8d3cc From e5f56deb8c9528f61bcde42888d431f4d1747365 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 11 Sep 2024 10:54:04 +0200 Subject: [PATCH 563/669] update pypsa and submodule --- environment.yaml | 2 +- workflow/submodules/pypsa-eur | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/environment.yaml b/environment.yaml index 0c4859921..470cc094b 100644 --- a/environment.yaml +++ b/environment.yaml @@ -8,7 +8,6 @@ dependencies: - pip - atlite>=0.2.9 -- pypsa>=0.29.0 - linopy - dask @@ -60,6 +59,7 @@ dependencies: - rasterio!=1.2.10 - pip: + - pypsa>=0.30.2 - tsam>=2.3.1 - snakemake-storage-plugin-http - snakemake-executor-plugin-slurm diff --git a/workflow/submodules/pypsa-eur b/workflow/submodules/pypsa-eur index 42f52ee0d..29daa8393 160000 --- a/workflow/submodules/pypsa-eur +++ b/workflow/submodules/pypsa-eur @@ -1 +1 @@ -Subproject commit 42f52ee0d013683843f15a3fa2c1c629f3f8d3cc +Subproject commit 29daa839325b1f9ba328a572868cbb64228bf23f From 7e36af1aa1e67cc641e7fdf9d99fb36c12006614 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Fri, 13 Sep 2024 09:50:46 +0200 Subject: [PATCH 564/669] Bump lkstrp/pypsa-validator from 0.2.0 to 0.2.1 in the github-actions group (#192) * Bump lkstrp/pypsa-validator in the github-actions group Bumps the github-actions group with 1 update: [lkstrp/pypsa-validator](https://github.com/lkstrp/pypsa-validator). Updates `lkstrp/pypsa-validator` from 0.2.0 to 0.2.1 - [Release notes](https://github.com/lkstrp/pypsa-validator/releases) - [Commits](https://github.com/lkstrp/pypsa-validator/compare/v0.2.0...v0.2.1) --- updated-dependencies: - dependency-name: lkstrp/pypsa-validator dependency-type: direct:production update-type: version-update:semver-patch dependency-group: github-actions ... Signed-off-by: dependabot[bot] * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update validate.yml --------- Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Lukas Trippe --- .github/workflows/validate.yml | 6 ++---- workflow/scripts/export_ariadne_variables.py | 20 ++++++++++---------- 2 files changed, 12 insertions(+), 14 deletions(-) diff --git a/.github/workflows/validate.yml b/.github/workflows/validate.yml index 4dce543e8..2d12f7383 100644 --- a/.github/workflows/validate.yml +++ b/.github/workflows/validate.yml @@ -16,14 +16,13 @@ jobs: if: github.event.pull_request.head.repo.full_name == github.repository runs-on: self-hosted steps: - - uses: lkstrp/pypsa-validator@v0.2.0 + - uses: lkstrp/pypsa-validator@v0.2.1 with: step: run-self-hosted-validation env_file: environment.yaml snakemake_config: config/config.yaml pre_command: "build_scenarios -f" main_command: "ariadne_all" - dev: true env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} @@ -33,7 +32,7 @@ jobs: needs: run-validation runs-on: ubuntu-latest steps: - - uses: lkstrp/pypsa-validator@v0.2.0 + - uses: lkstrp/pypsa-validator@v0.2.1 with: step: create-comment snakemake_config: config/config.yaml @@ -50,4 +49,3 @@ jobs: ariadne_comparison/Capacity-Electricity-Solar.png " validator_key: ${{ secrets.VALIDATOR_KEY }} - dev: true diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index f3b4e5357..83c904751 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -176,14 +176,12 @@ def _get_gas_fractions(n, region): # can deviate. I don't know why exactly, but at least we can check that # the difference stays roughly the same after the calculation. assert isclose( - domestic_gas_supply.get("renewable gas", 0) - - renewable_gas_balance.sum(), - total_gas_supply.get([ - "DE renewable gas -> DE gas", - "DE renewable gas -> EU gas" - ]).sum() - - renewable_gas_supply.get("DE renewable gas").sum() - ) + domestic_gas_supply.get("renewable gas", 0) - renewable_gas_balance.sum(), + total_gas_supply.get( + ["DE renewable gas -> DE gas", "DE renewable gas -> EU gas"] + ).sum() + - renewable_gas_supply.get("DE renewable gas").sum(), + ) gas_fractions = pd.Series( { @@ -1598,7 +1596,7 @@ def get_secondary_energy(n, region, _industry_demand): hydrogen_production[ ~hydrogen_production.index.str.startswith("H2 pipeline") ].sum(), - rtol = 0.01 + rtol=0.01, ) oil_fossil_fraction = _get_oil_fossil_fraction(n, region) @@ -2512,7 +2510,9 @@ def get_emissions(n, region, _energy_totals): print("WARNING! Not all CO2 capture from fossil sources is captured!!!") print("total_ccs - fossil_cc: ", total_ccs - fossil_cc.sum()) # TODO what to do with fossil_cc_emissions??? - if (n.links.build_year.max() == 2045) and (total_ccs - fossil_cc.sum() > 1): # > 1 for numerical errors + if (n.links.build_year.max() == 2045) and ( + total_ccs - fossil_cc.sum() > 1 + ): # > 1 for numerical errors raise Exception("Not enough CCS in 2045!") if not co2_atmosphere_withdrawal.get("urban central solid biomass CHP CC"): From a5ce9338a229e4aaf93b15c98a8d23613615438c Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 13 Sep 2024 15:27:14 +0200 Subject: [PATCH 565/669] make exporter more robust --- workflow/scripts/export_ariadne_variables.py | 23 +++++++++++++------- 1 file changed, 15 insertions(+), 8 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 83c904751..9f15b426a 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -178,9 +178,10 @@ def _get_gas_fractions(n, region): assert isclose( domestic_gas_supply.get("renewable gas", 0) - renewable_gas_balance.sum(), total_gas_supply.get( - ["DE renewable gas -> DE gas", "DE renewable gas -> EU gas"] + ["DE renewable gas -> DE gas", "DE renewable gas -> EU gas"], + pd.Series(0) ).sum() - - renewable_gas_supply.get("DE renewable gas").sum(), + - renewable_gas_supply.get("DE renewable gas", pd.Series(0)).sum(), ) gas_fractions = pd.Series( @@ -2990,11 +2991,16 @@ def get_prices(n, region): "groupby": n.statistics.groupers.get_name_bus_and_carrier, "nice_names": False, } + try: + co2_limit_de = n.global_constraints.loc["co2_limit-DE", "mu"] + except KeyError: + co2_limit_de = 0 + # co2 additions co2_price = ( -n.global_constraints.loc["CO2Limit", "mu"] - - n.global_constraints.loc["co2_limit-DE", "mu"] + - co2_limit_de ) # specific emissions in tons CO2/MWh according to n.links[n.links.carrier =="your_carrier].efficiency2.unique().item() specific_emisisons = { @@ -3683,10 +3689,13 @@ def get_policy(n, investment_year): co2_price_add_on = snakemake.params.co2_price_add_on_fossils[investment_year] else: co2_price_add_on = 0.0 - + try: + co2_limit_de = n.global_constraints.loc["co2_limit-DE", "mu"] + except KeyError: + co2_limit_de = 0 var["Price|Carbon"] = ( -n.global_constraints.loc["CO2Limit", "mu"] - - n.global_constraints.loc["co2_limit-DE", "mu"] + - co2_limit_de + co2_price_add_on ) @@ -3696,9 +3705,7 @@ def get_policy(n, investment_year): # Price|Carbon|EU-wide Regulation Non-ETS - var["Price|Carbon|National Climate Target"] = -n.global_constraints.loc[ - "co2_limit-DE", "mu" - ] + var["Price|Carbon|National Climate Target"] = -co2_limit_de # Price|Carbon|National Climate Target Non-ETS From 07c1eddd76cad5cfb34672189edcf9aa96eebf32 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Fri, 13 Sep 2024 16:05:38 +0200 Subject: [PATCH 566/669] add gas trade to exporter --- workflow/scripts/export_ariadne_variables.py | 41 ++++++++++++++++++++ 1 file changed, 41 insertions(+) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 9f15b426a..01c1201f9 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -3819,6 +3819,47 @@ def get_export_import_links(n, region, carriers): # Trade|Secondary Energy|Gases|Hydrogen|Volume + renewable_gas_supply = ( + n.statistics.supply(bus_carrier="renewable gas", **kwargs) + .groupby(["bus", "carrier"]) + .sum() + ) + + DE_renewable_gas = renewable_gas_supply.get("DE renewable gas", pd.Series(0)) + EU_renewable_gas = renewable_gas_supply.get("EU renewable gas", pd.Series(0)) + + if DE_renewable_gas.sum() == 0: + DE_bio_fraction = 0 + else: + DE_bio_fraction = DE_renewable_gas.filter(like="biogas to gas").sum() / DE_renewable_gas.sum() + + if EU_renewable_gas.sum() == 0: + EU_bio_fraction = 0 + else: + EU_bio_fraction = EU_renewable_gas.filter(like="biogas to gas").sum() / EU_renewable_gas.sum() + + assert region == "DE" # only DE is implemented at the moment + + exports_gas_renew, imports_gas_renew = get_export_import_links( + n, region, ["renewable gas"] + ) + var["Trade|Secondary Energy|Gases|Hydrogen|Volume"] = ( + exports_gas_renew * (1 - DE_bio_fraction) + - imports_gas_renew * (1 - EU_bio_fraction) + ) * MWh2PJ + var["Trade|Secondary Energy|Gases|Hydrogen|Gross Import|Volume"] = ( + imports_gas_renew * (1 - EU_bio_fraction) * MWh2PJ + ) + + var["Trade|Secondary Energy|Gases|Biomass|Volume"] = ( + exports_gas_renew * DE_bio_fraction + - imports_gas_renew * EU_bio_fraction + ) * MWh2PJ + var["Trade|Secondary Energy|Gases|Biomass|Gross Import|Volume"] = ( + imports_gas_renew * EU_bio_fraction * MWh2PJ + ) + + # TODO add methanol trade, renewable gas trade # Trade|Primary Energy|Coal|Volume From 01871cca83b04079ff1f1fdd241bffd934a7e18e Mon Sep 17 00:00:00 2001 From: Micha Date: Mon, 16 Sep 2024 13:19:39 +0200 Subject: [PATCH 567/669] Update Germany specific costs (NEP, onwind, pellets) (#193) * for offwind use cost of 1 see 1 land inverter, instead of 2 land inverters * update NEP and offwind costs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * modify pelletizing costs and onwind investments * rename * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --- ariadne-data/costs_2019-modifications.csv | 30 ++++++++++++++--------- ariadne-data/costs_2020-modifications.csv | 30 ++++++++++++++--------- ariadne-data/costs_2025-modifications.csv | 30 ++++++++++++++--------- ariadne-data/costs_2030-modifications.csv | 30 ++++++++++++++--------- ariadne-data/costs_2035-modifications.csv | 30 ++++++++++++++--------- ariadne-data/costs_2040-modifications.csv | 30 ++++++++++++++--------- ariadne-data/costs_2045-modifications.csv | 30 ++++++++++++++--------- ariadne-data/costs_2050-modifications.csv | 30 ++++++++++++++--------- config/config.yaml | 2 +- workflow/scripts/modify_cost_data.py | 11 +++++++++ 10 files changed, 156 insertions(+), 97 deletions(-) diff --git a/ariadne-data/costs_2019-modifications.csv b/ariadne-data/costs_2019-modifications.csv index de5c7ad8f..abd884ec5 100644 --- a/ariadne-data/costs_2019-modifications.csv +++ b/ariadne-data/costs_2019-modifications.csv @@ -6,17 +6,23 @@ electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 M decentral air-sourced heat pump,investment,1685,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf decentral ground-sourced heat pump,investment,2774,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion -HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021, +HVAC overhead,investment,1196,EUR2020/MW/km,NEP2023, +offwind-ac-connection-submarine,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-submarine,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-connection-underground,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-underground,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-station,investment,697,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-ac-station,investment,722,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 -HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 -HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" -offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" -offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" -offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +HVDC underground,investment,3234,EUR2020/MW/km,NEP2021, +HVDC underground,investment,2978,EUR2020/MW/km,NEP2023, +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021,"set equal to HVDC underground" +HVDC submarine,investment,2978,EUR2020/MW/km,NEP2023,"set equal to HVDC underground" +offwind-dc-connection-submarine,investment,1990,EUR2020/MW/km,NEP2021,"DC 525kv seeseitig" +offwind-dc-connection-submarine,investment,2708,EUR2020/MW/km,NEP2023,"DC 525kv seeseitig" +offwind-dc-connection-underground,investment,3234,EUR2020/MW/km,NEP2021,"DC 525kv landseitig" +offwind-dc-connection-underground,investment,3430,EUR2020/MW/km,NEP2023,"DC 525kv landseitig" +offwind-dc-station,investment,746,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-dc-station,investment,903,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" diff --git a/ariadne-data/costs_2020-modifications.csv b/ariadne-data/costs_2020-modifications.csv index 8688e1960..6f55098c6 100644 --- a/ariadne-data/costs_2020-modifications.csv +++ b/ariadne-data/costs_2020-modifications.csv @@ -6,17 +6,23 @@ electrolysis,investment,1450,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 M decentral air-sourced heat pump,investment,1685,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf decentral ground-sourced heat pump,investment,2774,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion -HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021, +HVAC overhead,investment,1196,EUR2020/MW/km,NEP2023, +offwind-ac-connection-submarine,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-submarine,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-connection-underground,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-underground,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-station,investment,697,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-ac-station,investment,722,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 -HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 -HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" -offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" -offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" -offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +HVDC underground,investment,3234,EUR2020/MW/km,NEP2021, +HVDC underground,investment,2978,EUR2020/MW/km,NEP2023, +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021,"set equal to HVDC underground" +HVDC submarine,investment,2978,EUR2020/MW/km,NEP2023,"set equal to HVDC underground" +offwind-dc-connection-submarine,investment,1990,EUR2020/MW/km,NEP2021,"DC 525kv seeseitig" +offwind-dc-connection-submarine,investment,2708,EUR2020/MW/km,NEP2023,"DC 525kv seeseitig" +offwind-dc-connection-underground,investment,3234,EUR2020/MW/km,NEP2021,"DC 525kv landseitig" +offwind-dc-connection-underground,investment,3430,EUR2020/MW/km,NEP2023,"DC 525kv landseitig" +offwind-dc-station,investment,746,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-dc-station,investment,903,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" diff --git a/ariadne-data/costs_2025-modifications.csv b/ariadne-data/costs_2025-modifications.csv index c9a17eec6..c1867dd60 100644 --- a/ariadne-data/costs_2025-modifications.csv +++ b/ariadne-data/costs_2025-modifications.csv @@ -6,17 +6,23 @@ electrolysis,investment,1267,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 M decentral air-sourced heat pump,investment,1604,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2682,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion -HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021, +HVAC overhead,investment,1196,EUR2020/MW/km,NEP2023, +offwind-ac-connection-submarine,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-submarine,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-connection-underground,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-underground,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-station,investment,697,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-ac-station,investment,722,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 -HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 -HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" -offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" -offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" -offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +HVDC underground,investment,3234,EUR2020/MW/km,NEP2021, +HVDC underground,investment,2978,EUR2020/MW/km,NEP2023, +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021,"set equal to HVDC underground" +HVDC submarine,investment,2978,EUR2020/MW/km,NEP2023,"set equal to HVDC underground" +offwind-dc-connection-submarine,investment,1990,EUR2020/MW/km,NEP2021,"DC 525kv seeseitig" +offwind-dc-connection-submarine,investment,2708,EUR2020/MW/km,NEP2023,"DC 525kv seeseitig" +offwind-dc-connection-underground,investment,3234,EUR2020/MW/km,NEP2021,"DC 525kv landseitig" +offwind-dc-connection-underground,investment,3430,EUR2020/MW/km,NEP2023,"DC 525kv landseitig" +offwind-dc-station,investment,746,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-dc-station,investment,903,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" diff --git a/ariadne-data/costs_2030-modifications.csv b/ariadne-data/costs_2030-modifications.csv index 0ed5781e5..ee8248fd2 100644 --- a/ariadne-data/costs_2030-modifications.csv +++ b/ariadne-data/costs_2030-modifications.csv @@ -6,17 +6,23 @@ electrolysis,investment,1083,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 M decentral air-sourced heat pump,investment,1523,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2589,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion -HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021, +HVAC overhead,investment,1196,EUR2020/MW/km,NEP2023, +offwind-ac-connection-submarine,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-submarine,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-connection-underground,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-underground,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-station,investment,697,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-ac-station,investment,722,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 -HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 -HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" -offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" -offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" -offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +HVDC underground,investment,3234,EUR2020/MW/km,NEP2021, +HVDC underground,investment,2978,EUR2020/MW/km,NEP2023, +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021,"set equal to HVDC underground" +HVDC submarine,investment,2978,EUR2020/MW/km,NEP2023,"set equal to HVDC underground" +offwind-dc-connection-submarine,investment,1990,EUR2020/MW/km,NEP2021,"DC 525kv seeseitig" +offwind-dc-connection-submarine,investment,2708,EUR2020/MW/km,NEP2023,"DC 525kv seeseitig" +offwind-dc-connection-underground,investment,3234,EUR2020/MW/km,NEP2021,"DC 525kv landseitig" +offwind-dc-connection-underground,investment,3430,EUR2020/MW/km,NEP2023,"DC 525kv landseitig" +offwind-dc-station,investment,746,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-dc-station,investment,903,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" diff --git a/ariadne-data/costs_2035-modifications.csv b/ariadne-data/costs_2035-modifications.csv index 14cee9988..1772a0ad5 100644 --- a/ariadne-data/costs_2035-modifications.csv +++ b/ariadne-data/costs_2035-modifications.csv @@ -6,17 +6,23 @@ electrolysis,investment,900,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW decentral air-sourced heat pump,investment,1483,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2497,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion -HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021, +HVAC overhead,investment,1196,EUR2020/MW/km,NEP2023, +offwind-ac-connection-submarine,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-submarine,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-connection-underground,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-underground,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-station,investment,697,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-ac-station,investment,722,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 -HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 -HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" -offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" -offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" -offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +HVDC underground,investment,3234,EUR2020/MW/km,NEP2021, +HVDC underground,investment,2978,EUR2020/MW/km,NEP2023, +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021,"set equal to HVDC underground" +HVDC submarine,investment,2978,EUR2020/MW/km,NEP2023,"set equal to HVDC underground" +offwind-dc-connection-submarine,investment,1990,EUR2020/MW/km,NEP2021,"DC 525kv seeseitig" +offwind-dc-connection-submarine,investment,2708,EUR2020/MW/km,NEP2023,"DC 525kv seeseitig" +offwind-dc-connection-underground,investment,3234,EUR2020/MW/km,NEP2021,"DC 525kv landseitig" +offwind-dc-connection-underground,investment,3430,EUR2020/MW/km,NEP2023,"DC 525kv landseitig" +offwind-dc-station,investment,746,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-dc-station,investment,903,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" diff --git a/ariadne-data/costs_2040-modifications.csv b/ariadne-data/costs_2040-modifications.csv index 79aee4026..af6d7773d 100644 --- a/ariadne-data/costs_2040-modifications.csv +++ b/ariadne-data/costs_2040-modifications.csv @@ -6,17 +6,23 @@ electrolysis,investment,717,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW decentral air-sourced heat pump,investment,1442,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2404,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion -HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021, +HVAC overhead,investment,1196,EUR2020/MW/km,NEP2023, +offwind-ac-connection-submarine,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-submarine,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-connection-underground,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-underground,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-station,investment,697,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-ac-station,investment,722,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 -HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 -HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" -offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" -offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" -offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +HVDC underground,investment,3234,EUR2020/MW/km,NEP2021, +HVDC underground,investment,2978,EUR2020/MW/km,NEP2023, +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021,"set equal to HVDC underground" +HVDC submarine,investment,2978,EUR2020/MW/km,NEP2023,"set equal to HVDC underground" +offwind-dc-connection-submarine,investment,1990,EUR2020/MW/km,NEP2021,"DC 525kv seeseitig" +offwind-dc-connection-submarine,investment,2708,EUR2020/MW/km,NEP2023,"DC 525kv seeseitig" +offwind-dc-connection-underground,investment,3234,EUR2020/MW/km,NEP2021,"DC 525kv landseitig" +offwind-dc-connection-underground,investment,3430,EUR2020/MW/km,NEP2023,"DC 525kv landseitig" +offwind-dc-station,investment,746,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-dc-station,investment,903,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" diff --git a/ariadne-data/costs_2045-modifications.csv b/ariadne-data/costs_2045-modifications.csv index 98b3dee78..553821ff4 100644 --- a/ariadne-data/costs_2045-modifications.csv +++ b/ariadne-data/costs_2045-modifications.csv @@ -6,17 +6,23 @@ electrolysis,investment,533,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW decentral air-sourced heat pump,investment,1402,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2312,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion -HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021, +HVAC overhead,investment,1196,EUR2020/MW/km,NEP2023, +offwind-ac-connection-submarine,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-submarine,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-connection-underground,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-underground,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-station,investment,697,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-ac-station,investment,722,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 -HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 -HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" -offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" -offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" -offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +HVDC underground,investment,3234,EUR2020/MW/km,NEP2021, +HVDC underground,investment,2978,EUR2020/MW/km,NEP2023, +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021,"set equal to HVDC underground" +HVDC submarine,investment,2978,EUR2020/MW/km,NEP2023,"set equal to HVDC underground" +offwind-dc-connection-submarine,investment,1990,EUR2020/MW/km,NEP2021,"DC 525kv seeseitig" +offwind-dc-connection-submarine,investment,2708,EUR2020/MW/km,NEP2023,"DC 525kv seeseitig" +offwind-dc-connection-underground,investment,3234,EUR2020/MW/km,NEP2021,"DC 525kv landseitig" +offwind-dc-connection-underground,investment,3430,EUR2020/MW/km,NEP2023,"DC 525kv landseitig" +offwind-dc-station,investment,746,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-dc-station,investment,903,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" diff --git a/ariadne-data/costs_2050-modifications.csv b/ariadne-data/costs_2050-modifications.csv index 3e36eaad2..7e547e981 100644 --- a/ariadne-data/costs_2050-modifications.csv +++ b/ariadne-data/costs_2050-modifications.csv @@ -6,17 +6,23 @@ electrolysis,investment,350,EUR2020/kW_e,DEA,"linear interpolation of AEC 100 MW decentral air-sourced heat pump,investment,1362,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA decentral ground-sourced heat pump,investment,2219,EUR2020/kW_th,https://ariadneprojekt.de/media/2024/01/Ariadne-Analyse_HeizkostenEmissionenGebaeude_Januar2024.pdf https://www.enpal.de/waermepumpe/kosten/ https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf and cost reduction from DEA electricity distribution grid,investment,1500,EUR2020/kW,Tom's expert opinion -HVAC overhead,investment,732,EUR2020/MW/km,NEP2021 +HVAC overhead,investment,732,EUR2020/MW/km,NEP2021, +HVAC overhead,investment,1196,EUR2020/MW/km,NEP2023, +offwind-ac-connection-submarine,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-submarine,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-connection-underground,investment,850,EUR2020/MW/km,NEP2021, +offwind-ac-connection-underground,investment,558,EUR2020/MW/km,NEP2023, +offwind-ac-station,investment,697,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-ac-station,investment,722,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" HVDC inverter pair,investment,597015,EUR2020/MW,NEP2021+NEP2023 HVDC overhead,investment,995,EUR2020/MW/km,NEP2021+NEP2023 -HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021 -HVAC overhead,investment,1215,EUR2020/MW/km,NEP2023 -HVDC submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-float-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-submarine,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-dc-connection-underground,investment,3183,EUR2020/MW/km,NEP2023,"equal to HVDC underground" -offwind-ac-connection-submarine,investment,4225,EUR2020/MW/km,NEP2023,"equal to AC underground" -offwind-ac-connection-underground,investment,1215,EUR2020/MW/km,NEP2023,"equal to AC overhead" -offwind-float-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" -offwind-dc-station,investment,700,EUR2020/kW,NEP2023,"cost of two stations" +HVDC underground,investment,3234,EUR2020/MW/km,NEP2021, +HVDC underground,investment,2978,EUR2020/MW/km,NEP2023, +HVDC submarine,investment,3234,EUR2020/MW/km,NEP2021,"set equal to HVDC underground" +HVDC submarine,investment,2978,EUR2020/MW/km,NEP2023,"set equal to HVDC underground" +offwind-dc-connection-submarine,investment,1990,EUR2020/MW/km,NEP2021,"DC 525kv seeseitig" +offwind-dc-connection-submarine,investment,2708,EUR2020/MW/km,NEP2023,"DC 525kv seeseitig" +offwind-dc-connection-underground,investment,3234,EUR2020/MW/km,NEP2021,"DC 525kv landseitig" +offwind-dc-connection-underground,investment,3430,EUR2020/MW/km,NEP2023,"DC 525kv landseitig" +offwind-dc-station,investment,746,EUR2020/kW,NEP2021,"cost of two stations, landseitig and seeseitig" +offwind-dc-station,investment,903,EUR2020/kW,NEP2023,"cost of two stations, landseitig and seeseitig" diff --git a/config/config.yaml b/config/config.yaml index ea33f60a3..2ee9a5786 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 202406windcf + prefix: 202413costupdate name: # - CurrentPolicies - KN2045_Bal_v4 diff --git a/workflow/scripts/modify_cost_data.py b/workflow/scripts/modify_cost_data.py index acc14fbfe..23ea8217f 100644 --- a/workflow/scripts/modify_cost_data.py +++ b/workflow/scripts/modify_cost_data.py @@ -116,4 +116,15 @@ def carbon_component_fossils(costs, co2_price): ) costs = carbon_component_fossils(costs, co2_price) + logger.warning("Scaling onwind costs towards Fh-ISE for Germany.") + # https://github.com/PyPSA/pypsa-ariadne/issues/179 + # https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien/studie-stromgestehungskosten-erneuerbare-energien.html + costs.at[("onwind", "investment"), "value"] *= 1.12 + print(costs.loc["onwind", "investment"]) + + logger.warning("Adding transport costs of 8.8 EUR/MWh to pelletizing costs.") + # Assumption based on doi:10.1016/j.rser.2019.109506 + costs.at[("biomass boiler", "pelletizing cost"), "value"] += 8.8 + print(costs.loc["biomass boiler", "pelletizing cost"]) + costs.to_csv(snakemake.output[0]) From e7ec95e2be13b6e601d47e645fcf30c596403026 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 17 Sep 2024 10:25:55 +0200 Subject: [PATCH 568/669] add marginal_cost for international trade links --- workflow/scripts/export_ariadne_variables.py | 6 ++++- workflow/scripts/modify_prenetwork.py | 26 +++++++++++++++++--- workflow/scripts/plot_ariadne_variables.py | 2 +- 3 files changed, 28 insertions(+), 6 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index 01c1201f9..d6674efe7 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -178,10 +178,14 @@ def _get_gas_fractions(n, region): assert isclose( domestic_gas_supply.get("renewable gas", 0) - renewable_gas_balance.sum(), total_gas_supply.get( - ["DE renewable gas -> DE gas", "DE renewable gas -> EU gas"], + ["DE renewable gas -> DE gas"], + pd.Series(0)).sum() + + total_gas_supply.get( + ["DE renewable gas -> EU gas"], pd.Series(0) ).sum() - renewable_gas_supply.get("DE renewable gas", pd.Series(0)).sum(), + rtol=1e-3, ) gas_fractions = pd.Series( diff --git a/workflow/scripts/modify_prenetwork.py b/workflow/scripts/modify_prenetwork.py index bf287858d..08fcb1ea7 100644 --- a/workflow/scripts/modify_prenetwork.py +++ b/workflow/scripts/modify_prenetwork.py @@ -353,17 +353,31 @@ def unravel_oilbus(n): "Link", [ "EU renewable oil -> DE oil", - "EU renewable oil -> EU oil", - "DE renewable oil -> DE oil", "DE renewable oil -> EU oil", ], bus0=[ - "EU renewable oil", "EU renewable oil", "DE renewable oil", + ], + bus1=["DE oil", "EU oil"], + carrier="renewable oil", + p_nom=1e6, + p_min_pu=0, + marginal_cost=0.01 +, + ) + + n.madd( + "Link", + [ + "EU renewable oil -> EU oil", + "DE renewable oil -> DE oil", + ], + bus0=[ + "EU renewable oil", "DE renewable oil", ], - bus1=["DE oil", "EU oil", "DE oil", "EU oil"], + bus1=["EU oil", "DE oil"], carrier="renewable oil", p_nom=1e6, p_min_pu=0, @@ -413,6 +427,8 @@ def unravel_oilbus(n): carrier="methanol", p_nom=1e6, p_min_pu=0, + marginal_cost=0.01 +, ) # add stores @@ -519,6 +535,8 @@ def unravel_gasbus(n, costs): carrier="renewable gas", p_nom=1e6, p_min_pu=0, + marginal_cost=0.01 +, ) ### add links between renewable and fossil gas buses diff --git a/workflow/scripts/plot_ariadne_variables.py b/workflow/scripts/plot_ariadne_variables.py index a177bd785..18afff242 100644 --- a/workflow/scripts/plot_ariadne_variables.py +++ b/workflow/scripts/plot_ariadne_variables.py @@ -325,7 +325,7 @@ def elec_val_plot(df, savepath): ) .groupby(["Variable", "Unit"], dropna=False) .sum() - ) + ).round(5) df.columns = df.columns.astype(str) leitmodell = "REMIND-EU v1.1" From ebdddd0fb47f1793816718f21a682565cfcd72d7 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 17 Sep 2024 10:28:17 +0200 Subject: [PATCH 569/669] round exported data to 5 significant decimals --- workflow/scripts/export_ariadne_variables.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/export_ariadne_variables.py b/workflow/scripts/export_ariadne_variables.py index d6674efe7..ff079556e 100644 --- a/workflow/scripts/export_ariadne_variables.py +++ b/workflow/scripts/export_ariadne_variables.py @@ -4287,7 +4287,7 @@ def get_data( df["Model"] = "PyPSA-Eur v0.10" with pd.ExcelWriter(snakemake.output.exported_variables_full) as writer: - df.to_excel(writer, sheet_name="data", index=False) + df.round(5).to_excel(writer, sheet_name="data", index=False) print( "Dropping variables which are not in the template:", @@ -4307,5 +4307,5 @@ def get_data( ) with pd.ExcelWriter(snakemake.output.exported_variables) as writer: - df.to_excel(writer, sheet_name="data", index=False) + df.round(5).to_excel(writer, sheet_name="data", index=False) meta.to_frame().T.to_excel(writer, sheet_name="meta", index=False) From f5e8d2b11234c4f811339e36a30a9832ccdf3339 Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 18 Sep 2024 17:00:36 +0200 Subject: [PATCH 570/669] adjustments to cop netcdf and existing heating distribution --- workflow/Snakefile | 57 ++++++++++++------- .../scripts/add_district_heating_subnodes.py | 37 +++++++++++- 2 files changed, 72 insertions(+), 22 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 68247bd8a..858cd12bb 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -62,18 +62,18 @@ from pathlib import Path data_dir = Path("workflow/submodules/pypsa-eur/data") -rule get_data: - output: - [ - str(Path("data") / p.relative_to(data_dir)) - for p in data_dir.rglob("*") - if p.is_file() - ], - shell: - """ - mkdir -p data - cp -nR {data_dir}/. data/ - """ +# rule get_data: +# output: +# [ +# str(Path("data") / p.relative_to(data_dir)) +# for p in data_dir.rglob("*") +# if p.is_file() +# ], +# shell: +# """ +# mkdir -p data +# cp -nR {data_dir}/. data/ +# """ rule clean: @@ -200,6 +200,8 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ "district_heating" ].get("add_subnodes", True): + ruleorder: add_district_heating_subnodes > prepare_sector_network + rule add_district_heating_subnodes: params: district_heating=config_provider("sector", "district_heating"), @@ -213,15 +215,21 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ ), fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", cities="data/fernwaermeatlas/cities_geolocations.geojson", - cop_air_total=resources("cop_air_total_elec_s{simpl}_{clusters}.nc"), + cop_profiles=resources("cop_profiles_elec_s{simpl}_{clusters}.nc"), + existing_heating_distribution=resources( + "existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv" + ), output: network=RESULTS + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc", district_heating_subnodes=resources( "district_heating_subnodes_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" ), - cop_air_total_extended=resources( - "cop_air_total_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" + cop_profiles_extended=resources( + "cop_profiles_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" + ), + existing_heating_distribution_extended=resources( + "existing_heating_distribution_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.csv" ), resources: mem_mb=1000, @@ -398,7 +406,9 @@ use rule add_existing_baseyear from pypsaeur with: **{ k: v for k, v in rules.add_existing_baseyear.input.items() - if k != "network" and k != "cop_air_total" + if k != "network" + and k != "cop_profiles" + and k != "existing_heating_distribution" }, network=( RESULTS @@ -407,16 +417,25 @@ use rule add_existing_baseyear from pypsaeur with: else RESULTS + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" ), - cop_air_total=( + cop_profiles=( resources( - "cop_air_total_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" + "cop_profiles_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" ) if config["sector"]["district_heating"].get("add_subnodes", True) - else resources("cop_air_total_elec_s{simpl}_{clusters}.nc") + else resources("cop_profiles_elec_s{simpl}_{clusters}.nc") ), custom_powerplants=resources( "german_chp_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" ), + existing_heating_distribution=( + resources( + "existing_heating_distribution_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.csv" + ) + if config["sector"]["district_heating"].get("add_subnodes", True) + else resources( + "existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv" + ) + ), def input_profile_tech_brownfield(w): diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index 49d66b61b..d5e7a6c70 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -220,9 +220,28 @@ def extend_cops(cops, subnodes): # Combine the renamed entry with the extended dataset cops_extended = xr.concat([cops_extended, renamed_entry], dim="name") + # Change dtype of the name dimension to string + cops_extended.coords["name"] = cops_extended.coords["name"].astype(str) + return cops_extended +def extend_heating_distribution(existing_heating_distribution, subnodes): + """ + Extend heating distribution by subnodes mirroring the distribution of the + corresponding mother node. + """ + # Merge the existing heating distribution with subnodes on the cluster name + mother_nodes = existing_heating_distribution.loc[subnodes.cluster.unique()] + mother_nodes["cities"] = subnodes.groupby("cluster")["Stadt"].apply(list) + # Explode the list of cities + mother_nodes = mother_nodes.explode(("cities", "")) + mother_nodes.index = mother_nodes.index + " " + mother_nodes[("cities", "")] + mother_nodes.drop(columns=("cities", ""), inplace=True) + + return mother_nodes + + if __name__ == "__main__": if "snakemake" not in globals(): import os @@ -237,7 +256,7 @@ def extend_cops(cops, subnodes): snakemake = mock_snakemake( "add_district_heating_subnodes", simpl="", - clusters=22, + clusters=27, opts="", ll="vopt", sector_opts="none", @@ -275,7 +294,19 @@ def extend_cops(cops, subnodes): add_subnodes(n, subnodes) if snakemake.config["foresight"] == "myopic": - cops = xr.open_dataarray(snakemake.input.cop_air_total) + cops = xr.open_dataarray(snakemake.input.cop_profiles) cops_extended = extend_cops(cops, subnodes) - cops_extended.to_netcdf(snakemake.output.cop_air_total_extended) + cops_extended.to_netcdf(snakemake.output.cop_profiles_extended) + + existing_heating_distribution = pd.read_csv( + snakemake.input.existing_heating_distribution, + header=[0, 1], + index_col=0, + ) + existing_heating_distribution_extended = extend_heating_distribution( + existing_heating_distribution, subnodes + ) + existing_heating_distribution_extended.to_csv( + snakemake.output.existing_heating_distribution_extended + ) n.export_to_netcdf(snakemake.output.network) From cd756641687e993c1b22a1430acd3839ba45c262 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 19 Sep 2024 11:04:56 +0200 Subject: [PATCH 571/669] fix extension of existing_heating df --- workflow/scripts/add_district_heating_subnodes.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index d5e7a6c70..26e978a53 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -238,8 +238,10 @@ def extend_heating_distribution(existing_heating_distribution, subnodes): mother_nodes = mother_nodes.explode(("cities", "")) mother_nodes.index = mother_nodes.index + " " + mother_nodes[("cities", "")] mother_nodes.drop(columns=("cities", ""), inplace=True) - - return mother_nodes + existing_heating_distribution_extended = pd.concat( + [existing_heating_distribution, mother_nodes] + ) + return existing_heating_distribution_extended if __name__ == "__main__": From 5b9ed82460fb549d79b448438ad5d43ada936d7f Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 19 Sep 2024 18:17:29 +0200 Subject: [PATCH 572/669] fix snakemake issue for existing heating --- workflow/Snakefile | 20 ++++++++++++------- .../scripts/add_district_heating_subnodes.py | 1 + 2 files changed, 14 insertions(+), 7 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 858cd12bb..6454d47c9 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -200,11 +200,13 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ "district_heating" ].get("add_subnodes", True): - ruleorder: add_district_heating_subnodes > prepare_sector_network + # ruleorder: prepare_sector_network > add_district_heating_subnodes + baseyear_value = config["scenario"]["planning_horizons"][0] rule add_district_heating_subnodes: params: district_heating=config_provider("sector", "district_heating"), + baseyear=config_provider("scenario", "planning_horizons", 0), input: network=RESULTS + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", @@ -217,19 +219,23 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ cities="data/fernwaermeatlas/cities_geolocations.geojson", cop_profiles=resources("cop_profiles_elec_s{simpl}_{clusters}.nc"), existing_heating_distribution=resources( - "existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv" + f"existing_heating_distribution_elec_s{{simpl}}_{{clusters}}_{baseyear_value}.csv" ), output: network=RESULTS - + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc", + + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc", district_heating_subnodes=resources( "district_heating_subnodes_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" ), cop_profiles_extended=resources( "cop_profiles_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" ), - existing_heating_distribution_extended=resources( - "existing_heating_distribution_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.csv" + existing_heating_distribution_extended=( + resources( + "existing_heating_distribution_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.csv" + ) + if baseyear_value == "{planning_horizons}" + else [] ), resources: mem_mb=1000, @@ -412,7 +418,7 @@ use rule add_existing_baseyear from pypsaeur with: }, network=( RESULTS - + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc" + + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" if config["sector"]["district_heating"].get("add_subnodes", True) else RESULTS + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" @@ -452,7 +458,7 @@ use rule add_brownfield from pypsaeur with: **{k: v for k, v in rules.add_brownfield.input.items() if k != "network"}, network=( RESULTS - + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}_dh.nc" + + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" if config["sector"]["district_heating"].get("add_subnodes", True) else RESULTS + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index 26e978a53..4c1244fcc 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -300,6 +300,7 @@ def extend_heating_distribution(existing_heating_distribution, subnodes): cops_extended = extend_cops(cops, subnodes) cops_extended.to_netcdf(snakemake.output.cop_profiles_extended) + if snakemake.wildcards.planning_horizons == str(snakemake.params["baseyear"]): existing_heating_distribution = pd.read_csv( snakemake.input.existing_heating_distribution, header=[0, 1], From 2d6949e42576fa2c48c73b8611c8557a4e4565d0 Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 20 Sep 2024 13:58:45 +0200 Subject: [PATCH 573/669] dirty fix for workflow and optional output --- workflow/Snakefile | 9 ++++----- workflow/scripts/add_district_heating_subnodes.py | 4 ++++ 2 files changed, 8 insertions(+), 5 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 6454d47c9..4d7b7b790 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -200,7 +200,6 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ "district_heating" ].get("add_subnodes", True): - # ruleorder: prepare_sector_network > add_district_heating_subnodes baseyear_value = config["scenario"]["planning_horizons"][0] rule add_district_heating_subnodes: @@ -223,7 +222,7 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ ), output: network=RESULTS - + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc", + + "prenetworks/elec-extended_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", district_heating_subnodes=resources( "district_heating_subnodes_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" ), @@ -234,7 +233,7 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ resources( "existing_heating_distribution_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.csv" ) - if baseyear_value == "{planning_horizons}" + if baseyear_value != "{planning_horizons}" else [] ), resources: @@ -418,7 +417,7 @@ use rule add_existing_baseyear from pypsaeur with: }, network=( RESULTS - + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" + + "prenetworks/elec-extended_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" if config["sector"]["district_heating"].get("add_subnodes", True) else RESULTS + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" @@ -458,7 +457,7 @@ use rule add_brownfield from pypsaeur with: **{k: v for k, v in rules.add_brownfield.input.items() if k != "network"}, network=( RESULTS - + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" + + "prenetworks/elec-extended_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" if config["sector"]["district_heating"].get("add_subnodes", True) else RESULTS + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index 4c1244fcc..5d81576fd 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -312,4 +312,8 @@ def extend_heating_distribution(existing_heating_distribution, subnodes): existing_heating_distribution_extended.to_csv( snakemake.output.existing_heating_distribution_extended ) + else: + # write empty file to output + with open(snakemake.output.existing_heating_distribution_extended, "w") as f: + pass n.export_to_netcdf(snakemake.output.network) From 1a2ed801b94918df9aeef333bec402bfb2034bc3 Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 24 Sep 2024 10:41:34 +0200 Subject: [PATCH 574/669] match CHP by LAU shapes --- workflow/Snakefile | 4 ++++ workflow/scripts/add_district_heating_subnodes.py | 14 +++++++++++++- 2 files changed, 17 insertions(+), 1 deletion(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 4d7b7b790..72d0ac889 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -220,6 +220,10 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ existing_heating_distribution=resources( f"existing_heating_distribution_elec_s{{simpl}}_{{clusters}}_{baseyear_value}.csv" ), + lau=storage( + "https://gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson.zip", + keep_local=True, + ), output: network=RESULTS + "prenetworks/elec-extended_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index 5d81576fd..831e56936 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -18,7 +18,7 @@ def encode_utf8(city_name): return city_name.encode("utf-8") -def prepare_subnodes(subnodes, cities, regions_onshore, heat_techs, head=40): +def prepare_subnodes(subnodes, cities, regions_onshore, lau, heat_techs, head=40): # TODO: Embed I&O in snakemake rule, add potentials, match CHP capacities # If head is boolean set it to 40 for default behavior if isinstance(head, bool): @@ -46,6 +46,13 @@ def prepare_subnodes(subnodes, cities, regions_onshore, heat_techs, head=40): subnodes["cluster"] = subnodes.apply( lambda x: regions_onshore.geometry.contains(x.geometry).idxmax(), axis=1 ) + subnodes["lau"] = subnodes.apply( + lambda x: lau.loc[lau.geometry.contains(x.geometry).idxmax(), "LAU_ID"], axis=1 + ) + subnodes["lau_shape"] = subnodes.apply( + lambda x: lau.loc[lau.geometry.contains(x.geometry).idxmax(), "geometry"].wkt, + axis=1, + ) subnodes["nuts3"] = subnodes.apply( lambda x: heat_techs.geometry.contains(x.geometry).idxmax(), axis=1, @@ -272,6 +279,10 @@ def extend_heating_distribution(existing_heating_distribution, subnodes): heat_techs = gpd.read_file(snakemake.input.heating_technologies_nuts3).set_index( "index" ) + lau = gpd.read_file( + f"{snakemake.input.lau}!LAU_RG_01M_2021_3035.geojson", crs="EPSG:3035" + ).to_crs("EPSG:4326") + fernwaermeatlas = pd.read_excel( snakemake.input.fernwaermeatlas, sheet_name="Fernwärmeatlas_öffentlich", @@ -288,6 +299,7 @@ def extend_heating_distribution(existing_heating_distribution, subnodes): fernwaermeatlas, cities, regions_onshore, + lau, heat_techs, head=snakemake.params.district_heating["add_subnodes"], ) From 913da0bc149d9ea819aa23a65d1f15300014136f Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 24 Sep 2024 15:50:27 +0200 Subject: [PATCH 575/669] added industry heat load --- .../scripts/add_district_heating_subnodes.py | 86 +++++++++++++------ 1 file changed, 61 insertions(+), 25 deletions(-) diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index 831e56936..933d604ef 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -34,6 +34,12 @@ def prepare_subnodes(subnodes, cities, regions_onshore, lau, heat_techs, head=40 by="Wärmeeinspeisung in GWh/a", ascending=False ).head(head) + subnodes["yearly_heat_demand_MWh"] = subnodes["Wärmeeinspeisung in GWh/a"] * 1e3 + + logger.info( + f"The selected district heating networks have an overall yearly heat demand of {subnodes['yearly_heat_demand_MWh'].sum()} MWh/a. " + ) + subnodes["geometry"] = subnodes["Stadt"].apply( lambda s: cities.loc[cities["Stadt"] == s, "geometry"].values[0] ) @@ -89,50 +95,80 @@ def add_subnodes(n, subnodes): ) # Add heat loads + + uch_load_cluster = ( + n.snapshot_weightings.generators + @ n.loads_t.p_set[f"{row['cluster']} urban central heat"] + ) + lti_load_cluster = ( + n.loads.loc[f"{row['cluster']} low-temperature heat for industry", "p_set"] + * 8760 + ) + dh_load_cluster = uch_load_cluster + lti_load_cluster + lti_share = lti_load_cluster / dh_load_cluster + scalar = min( 1, - ( - row["Wärmeeinspeisung in GWh/a"] - * 1e3 - / n.loads_t.p_set.filter(regex=f"{row['cluster']} urban central heat") - .sum(axis=1) - .mul(n.snapshot_weightings.generators) - .sum() - ), - ) - lost_load = ( - row["Wärmeeinspeisung in GWh/a"] * 1e3 - - n.loads_t.p_set.filter(regex=f"{row['cluster']} urban central heat") - .sum(axis=1) - .mul(n.snapshot_weightings.generators) - .sum() + (row["yearly_heat_demand_MWh"] / dh_load_cluster), ) + + lost_load = row["yearly_heat_demand_MWh"] - dh_load_cluster + if scalar == 1: logger.info( f"District heating load of {row['Stadt']} exceeds load of its assigned cluster {row['cluster']}. {lost_load} MWh/a are disregarded." ) - heat_load = scalar * n.loads_t.p_set.filter( - regex=f"{row['cluster']} urban central heat" - ).rename( - { - f"{row['cluster']} urban central heat": f"{row['cluster']} {row['Stadt']} urban central heat" - }, - axis=1, + uch_load = ( + scalar + * (1 - lti_share) + * n.loads_t.p_set.filter( + regex=f"{row['cluster']} urban central heat" + ).rename( + { + f"{row['cluster']} urban central heat": f"{row['cluster']} {row['Stadt']} urban central heat" + }, + axis=1, + ) ) n.madd( "Load", [name], bus=name, - p_set=heat_load, + p_set=uch_load, carrier="urban central heat", location=row["cluster"], ) + lti_load = ( + scalar + * lti_share + * n.loads.filter( + regex=f"{row['cluster']} low-temperature heat for industry", axis=0 + ).p_set.rename( + { + f"{row['cluster']} low-temperature heat for industry": f"{row['cluster']} {row['Stadt']} low-temperature heat for industry" + }, + axis=0, + ) + ) + n.madd( + "Load", + [f"{name} low-temperature heat for industry"], + bus=name, + p_set=lti_load, + carrier="low-temperature heat for industry", + location=row["cluster"], + ) + # Adjust loads of cluster buses - n.loads_t.p_set.loc[:, f'{row["cluster"]} urban central heat'] *= 1 - scalar + n.loads_t.p_set.loc[:, f'{row["cluster"]} urban central heat'] *= 1 - scalar * ( + 1 - lti_share + ) + n.loads.loc[f'{row["cluster"]} low-temperature heat for industry', "p_set"] *= ( + 1 - scalar * lti_share + ) # Replicate district heating stores and links of mother node for subnodes - # TODO: Add heat pump links n.madd( "Bus", From 8dbb0cda84a5d64cfeb310b570808b7891d9a3d4 Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 22 Oct 2024 17:48:55 +0200 Subject: [PATCH 576/669] make workflow run after merge --- workflow/Snakefile | 107 +++++++++++------- .../scripts/add_district_heating_subnodes.py | 48 ++++++-- workflow/scripts/build_existing_chp_de.py | 22 ++-- 3 files changed, 114 insertions(+), 63 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 72d0ac889..30bb7ba79 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -115,9 +115,9 @@ rule retrieve_ariadne_database: def input_profile_offwind(w): return { - f"profile_{tech}": resources(f"profile_{tech}.nc") + f"profile_{tech}": resources("profile_{clusters}_" + tech + ".nc") for tech in ["offwind-ac", "offwind-dc", "offwind-float"] - if (tech in config["electricity"]["renewable_carriers"]) + if (tech in config_provider("electricity", "renewable_carriers")(w)) } @@ -130,7 +130,7 @@ use rule prepare_sector_network from pypsaeur with: if k != "district_heat_share" }, district_heat_share=resources( - "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}-modified.csv" + "district_heat_share_base_s_{clusters}_{planning_horizons}-modified.csv" ), @@ -170,13 +170,15 @@ rule build_mobility_demand: leitmodelle=config_provider("iiasa_database", "leitmodelle"), input: ariadne=resources("ariadne_database.csv"), - clustered_pop_layout=resources("pop_layout_elec_s{simpl}_{clusters}.csv"), + clustered_pop_layout=resources("pop_layout_base_s_{clusters}.csv"), output: mobility_demand=resources( - "mobility_demand_aladin_{simpl}_{clusters}_{planning_horizons}.csv" + "mobility_demand_aladin_{clusters}_{planning_horizons}.csv" ), resources: mem_mb=1000, + log: + logs("build_mobility_demand_{clusters}_{planning_horizons}.log"), script: "scripts/build_mobility_demand.py" @@ -208,17 +210,17 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ baseyear=config_provider("scenario", "planning_horizons", 0), input: network=RESULTS - + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + + "prenetworks/base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), nuts3=resources("nuts3_shapes.geojson"), regions_onshore=resources( - "regions_onshore_elec_s{simpl}_{clusters}.geojson" + "regions_onshore_base_s_{clusters}.geojson" ), fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", cities="data/fernwaermeatlas/cities_geolocations.geojson", - cop_profiles=resources("cop_profiles_elec_s{simpl}_{clusters}.nc"), + cop_profiles=resources("cop_profiles_base_s_{clusters}.nc"), existing_heating_distribution=resources( - f"existing_heating_distribution_elec_s{{simpl}}_{{clusters}}_{baseyear_value}.csv" + f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value}.csv" ), lau=storage( "https://gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson.zip", @@ -226,16 +228,16 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ ), output: network=RESULTS - + "prenetworks/elec-extended_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + + "prenetworks/base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", district_heating_subnodes=resources( - "district_heating_subnodes_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" + "district_heating_subnodes_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" ), cop_profiles_extended=resources( - "cop_profiles_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" + "cop_profiles_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" ), existing_heating_distribution_extended=( resources( - "existing_heating_distribution_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.csv" + "existing_heating_distribution_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.csv" ) if baseyear_value != "{planning_horizons}" else [] @@ -254,13 +256,13 @@ rule modify_district_heat_share: district_heating=config_provider("sector", "district_heating"), input: heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), - regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"), + regions_onshore=resources("regions_onshore_base_s_{clusters}.geojson"), district_heat_share=resources( - "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}.csv" + "district_heat_share_base_s_{clusters}_{planning_horizons}.csv" ), output: district_heat_share=resources( - "district_heat_share_elec_s{simpl}_{clusters}_{planning_horizons}-modified.csv" + "district_heat_share_base_s_{clusters}_{planning_horizons}-modified.csv" ), resources: mem_mb=1000, @@ -293,30 +295,49 @@ rule modify_prenetwork: land_transport_electric_share=config_provider( "sector", "land_transport_electric_share" ), + onshore_nep_force=config_provider("onshore_nep_force"), + offshore_nep_force=config_provider("offshore_nep_force"), + shipping_methanol_efficiency=config_provider( + "sector", "shipping_methanol_efficiency" + ), + shipping_oil_efficiency=config_provider("sector", "shipping_oil_efficiency"), + shipping_methanol_share=config_provider("sector", "shipping_methanol_share"), + mwh_meoh_per_tco2=config_provider("sector", "MWh_MeOH_per_tCO2"), input: + costs_modifications="ariadne-data/costs_{planning_horizons}-modifications.csv", network=RESULTS - + "prenetworks-brownfield/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + + "prenetworks-brownfield/base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", wkn=( - resources("wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv") + resources("wasserstoff_kernnetz_base_s_{clusters}.csv") if config_provider("wasserstoff_kernnetz", "enable") else [] ), costs=resources("costs_{planning_horizons}.csv"), aladin_demand=resources( - "mobility_demand_aladin_{simpl}_{clusters}_{planning_horizons}.csv" + "mobility_demand_aladin_{clusters}_{planning_horizons}.csv" ), - transport_data=resources("transport_data_s{simpl}_{clusters}.csv"), + transport_data=resources("transport_data_s_{clusters}.csv"), biomass_potentials=resources( - "biomass_potentials_s{simpl}_{clusters}_{planning_horizons}.csv" + "biomass_potentials_s_{clusters}_{planning_horizons}.csv" ), industrial_demand=resources( - "industrial_energy_demand_elec_s{simpl}_{clusters}_{planning_horizons}.csv" + "industrial_energy_demand_base_s_{clusters}_{planning_horizons}.csv" ), + pop_weighted_energy_totals=resources( + "pop_weighted_energy_totals_s_{clusters}.csv" + ), + shipping_demand=resources("shipping_demand_s_{clusters}.csv"), + regions_onshore=resources("regions_onshore_base_s_{clusters}.geojson"), + regions_offshore=resources("regions_offshore_base_s_{clusters}.geojson"), + offshore_connection_points="ariadne-data/offshore_connection_points.csv", output: network=RESULTS - + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + + "prenetworks-final/base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", resources: mem_mb=1000, + log: + RESULTS + + "logs/modify_prenetwork_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.log", script: "scripts/modify_prenetwork.py" @@ -341,7 +362,7 @@ use rule solve_sector_network_myopic from pypsaeur with: if k != "network" }, network=RESULTS - + "prenetworks-final/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + + "prenetworks-final/base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", co2_totals_name=resources("co2_totals.csv"), @@ -389,17 +410,17 @@ rule build_existing_chp_de: "https://raw.githubusercontent.com/WZBSocialScienceCenter/plz_geocoord/master/plz_geocoord.csv", keep_local=True, ), - busmap=resources("networks/base.nc"), + regions=resources("regions_onshore_base_s_{clusters}.geojson"), district_heating_subnodes=( resources( - "district_heating_subnodes_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" + "district_heating_subnodes_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" ) if config["sector"]["district_heating"].get("add_subnodes", True) else [] ), output: german_chp=resources( - "german_chp_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" + "german_chp_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" ), script: "scripts/build_existing_chp_de.py" @@ -421,35 +442,35 @@ use rule add_existing_baseyear from pypsaeur with: }, network=( RESULTS - + "prenetworks/elec-extended_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" + + "prenetworks/base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" if config["sector"]["district_heating"].get("add_subnodes", True) else RESULTS - + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" + + "prenetworks/base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" ), cop_profiles=( resources( - "cop_profiles_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" + "cop_profiles_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" ) if config["sector"]["district_heating"].get("add_subnodes", True) - else resources("cop_profiles_elec_s{simpl}_{clusters}.nc") + else resources("cop_profiles_base_s_{clusters}.nc") ), custom_powerplants=resources( - "german_chp_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" + "german_chp_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" ), existing_heating_distribution=( resources( - "existing_heating_distribution_elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.csv" + "existing_heating_distribution_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.csv" ) if config["sector"]["district_heating"].get("add_subnodes", True) else resources( - "existing_heating_distribution_elec_s{simpl}_{clusters}_{planning_horizons}.csv" + "existing_heating_distribution_base_s_{clusters}_{planning_horizons}.csv" ) ), def input_profile_tech_brownfield(w): return { - f"profile_{tech}": resources(f"profile_{tech}.nc") + f"profile_{tech}": resources("profile_{clusters}_" + tech + ".nc") for tech in config_provider("electricity", "renewable_carriers")(w) if tech != "hydro" } @@ -461,10 +482,10 @@ use rule add_brownfield from pypsaeur with: **{k: v for k, v in rules.add_brownfield.input.items() if k != "network"}, network=( RESULTS - + "prenetworks/elec-extended_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" + + "prenetworks/base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" if config["sector"]["district_heating"].get("add_subnodes", True) else RESULTS - + "prenetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" + + "prenetworks/base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" ), @@ -558,11 +579,11 @@ rule cluster_wasserstoff_kernnetz: kernnetz=config_provider("wasserstoff_kernnetz"), input: cleaned_h2_network=resources("wasserstoff_kernnetz.csv"), - regions_onshore=resources("regions_onshore_elec_s{simpl}_{clusters}.geojson"), - regions_offshore=resources("regions_offshore_elec_s{simpl}_{clusters}.geojson"), + regions_onshore=resources("regions_onshore_base_s_{clusters}.geojson"), + regions_offshore=resources("regions_offshore_base_s_{clusters}.geojson"), output: clustered_h2_network=resources( - "wasserstoff_kernnetz_elec_s{simpl}_{clusters}.csv" + "wasserstoff_kernnetz_base_s_{clusters}.csv" ), script: "scripts/cluster_wasserstoff_kernnetz.py" @@ -596,14 +617,14 @@ rule export_ariadne_variables: template=resources("template_ariadne_database.xlsx"), industry_demands=expand( resources( - "industrial_energy_demand_elec_s{simpl}_{clusters}_{planning_horizons}.csv" + "industrial_energy_demand_base_s_{clusters}_{planning_horizons}.csv" ), **config["scenario"], allow_missing=True, ), networks=expand( RESULTS - + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + + "postnetworks/base_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", **config["scenario"], allow_missing=True, ), @@ -707,7 +728,7 @@ rule build_scenarios: rule check_sector_ratios: input: network=RESULTS - + "postnetworks/elec_s{simpl}_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + + "postnetworks/base_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", log: "logs/check_sector_ratios.log", script: diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index 933d604ef..ae3c35881 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -89,7 +89,7 @@ def add_subnodes(n, subnodes): y=row.geometry.y, x=row.geometry.x, country="DE", - location=row["cluster"], + location=f"{row['cluster']} {row['Stadt']}", carrier="urban central heat", unit="MWh_th", ) @@ -136,7 +136,7 @@ def add_subnodes(n, subnodes): bus=name, p_set=uch_load, carrier="urban central heat", - location=row["cluster"], + location=f"{row['cluster']} {row['Stadt']}", ) lti_load = ( @@ -153,11 +153,11 @@ def add_subnodes(n, subnodes): ) n.madd( "Load", - [f"{name} low-temperature heat for industry"], + [f"{row['cluster']} {row['Stadt']} low-temperature heat for industry"], bus=name, p_set=lti_load, carrier="low-temperature heat for industry", - location=row["cluster"], + location=f"{row['cluster']} {row['Stadt']}", ) # Adjust loads of cluster buses @@ -173,7 +173,7 @@ def add_subnodes(n, subnodes): n.madd( "Bus", [f"{row['cluster']} {row['Stadt']} urban central water tanks"], - location=row["cluster"], + location=f"{row['cluster']} {row['Stadt']}", carrier="urban central water tanks", unit="MWh_th", ) @@ -275,12 +275,36 @@ def extend_heating_distribution(existing_heating_distribution, subnodes): corresponding mother node. """ # Merge the existing heating distribution with subnodes on the cluster name - mother_nodes = existing_heating_distribution.loc[subnodes.cluster.unique()] - mother_nodes["cities"] = subnodes.groupby("cluster")["Stadt"].apply(list) + mother_nodes = ( + existing_heating_distribution.loc[subnodes.cluster.unique()] + .unstack(-1) + .to_frame() + ) + cities_within_cluster = subnodes.groupby("cluster")["Stadt"].apply(list) + mother_nodes["cities"] = mother_nodes.apply( + lambda i: cities_within_cluster[i.name[2]], axis=1 + ) # Explode the list of cities - mother_nodes = mother_nodes.explode(("cities", "")) - mother_nodes.index = mother_nodes.index + " " + mother_nodes[("cities", "")] - mother_nodes.drop(columns=("cities", ""), inplace=True) + mother_nodes = mother_nodes.explode("cities") + + # Reset index to temporarily flatten it + mother_nodes_reset = mother_nodes.reset_index() + + # Append city name to the third level of the index + mother_nodes_reset["name"] = ( + mother_nodes_reset["name"] + " " + mother_nodes_reset["cities"] + ) + + # Set the index back + mother_nodes = mother_nodes_reset.set_index(["heat name", "technology", "name"]) + + # Drop the temporary 'cities' column + mother_nodes.drop("cities", axis=1, inplace=True) + + # Reformat to match the existing heating distribution + mother_nodes = mother_nodes.squeeze().unstack(-1).T + + # Combine the exploded data with the existing heating distribution existing_heating_distribution_extended = pd.concat( [existing_heating_distribution, mother_nodes] ) @@ -316,7 +340,9 @@ def extend_heating_distribution(existing_heating_distribution, subnodes): "index" ) lau = gpd.read_file( - f"{snakemake.input.lau}!LAU_RG_01M_2021_3035.geojson", crs="EPSG:3035" + # "/home/cpschau/Code/dev/pypsa-ariadne/.snakemake/storage/http/gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson/LAU_RG_01M_2021_3035.geojson", + f"{snakemake.input.lau}!LAU_RG_01M_2021_3035.geojson", + crs="EPSG:3035", ).to_crs("EPSG:4326") fernwaermeatlas = pd.read_excel( diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py index c48d3caff..7e3bb3bfd 100644 --- a/workflow/scripts/build_existing_chp_de.py +++ b/workflow/scripts/build_existing_chp_de.py @@ -215,14 +215,16 @@ def assign_subnode(CHP_de, subnodes): ) CHP_de.crs = subnodes.crs # Set nuts_3 shape wkt column as geometry - subnodes["geometry"] = gpd.GeoSeries.from_wkt(subnodes["nuts3_shape"]) - subnodes.drop("nuts3_shape", axis=1, inplace=True) + subnodes["geometry"] = gpd.GeoSeries.from_wkt(subnodes["lau_shape"]) + subnodes.drop("lau_shape", axis=1, inplace=True) subnodes.index.rename("city", inplace=True) # Assign subnode to CHP plants based on the nuts3 region CHP_de = CHP_de.sjoin(subnodes, how="left", predicate="within") - CHP_de["subnode"] = CHP_de["cluster"] + " " + CHP_de["city"] - CHP_de.drop(["city", "cluster"], axis=1, inplace=True) + # Insert leading whitespace for citynames where not nan + CHP_de["city"] = CHP_de["city"].apply(lambda x: " " + x if pd.notna(x) else "") + CHP_de["bus"] = CHP_de["bus"] + CHP_de["city"] + CHP_de.drop("city", axis=1, inplace=True) return CHP_de @@ -241,7 +243,7 @@ def assign_subnode(CHP_de, subnodes): snakemake = mock_snakemake( "build_existing_chp_de", simpl="", - clusters=44, + clusters=27, opts="", ll="vopt", sector_opts="none", @@ -268,14 +270,16 @@ def assign_subnode(CHP_de, subnodes): CHP_de = clean_data(combustion, biomass, geodata) CHP_de = calculate_efficiency(CHP_de) - bn = pypsa.Network(snakemake.input.busmap) - substations = bn.buses.query("substation_lv") - CHP_de = map_country_bus(CHP_de, substations) + logger.info("Mapping CHP plants to regions") + regions = gpd.read_file(snakemake.input.regions).set_index("name") + geometry = gpd.points_from_xy(CHP_de["lon"], CHP_de["lat"]) + gdf = gpd.GeoDataFrame(geometry=geometry, crs=4326) + CHP_de["bus"] = gpd.sjoin_nearest(gdf, regions, how="left")["name"] if snakemake.params.add_district_heating_subnodes: subnodes = gpd.read_file( snakemake.input.district_heating_subnodes, - columns=["Stadt", "cluster", "nuts3_shape"], + columns=["Stadt", "lau_shape"], ).set_index("Stadt") CHP_de = assign_subnode(CHP_de, subnodes) From ade4e85cc422a744f44e426b4ba3282ea4fc52e5 Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 23 Oct 2024 08:30:21 +0200 Subject: [PATCH 577/669] add heat vent and remove load shedder --- workflow/scripts/add_district_heating_subnodes.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index ae3c35881..1225b9f40 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -226,17 +226,17 @@ def add_subnodes(n, subnodes): ) n.madd("Link", heat_pumps.index, efficiency=heat_pumps_t, **heat_pumps) - # Add artificial gas boiler to subnode + # Add heat vent to subnode n.madd( "Generator", - [f"{name} load shedding"], + [f"{name} heat vent"], bus=name, - carrier="gas", + location=f"{row['cluster']} {row['Stadt']}", + carrier="urban central heat vent", p_nom_extendable=True, - p_nom_max=1e6, - capital_cost=10000, - marginal_cost=200, - efficiency=1, + p_min_pu=-1, + p_max_pu=0, + unit="MWh_th", ) return From ce3d85ba851f96a9abdbaa802119780f4eed9762 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 14 Nov 2024 10:48:37 +0100 Subject: [PATCH 578/669] fix workflow --- workflow/Snakefile | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 30bb7ba79..250aee5bb 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -218,7 +218,7 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ ), fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", cities="data/fernwaermeatlas/cities_geolocations.geojson", - cop_profiles=resources("cop_profiles_base_s_{clusters}.nc"), + cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), existing_heating_distribution=resources( f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value}.csv" ), @@ -233,11 +233,11 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ "district_heating_subnodes_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" ), cop_profiles_extended=resources( - "cop_profiles_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" + "cop_profiles_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" ), existing_heating_distribution_extended=( resources( - "existing_heating_distribution_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.csv" + "existing_heating_distribution_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" ) if baseyear_value != "{planning_horizons}" else [] @@ -449,17 +449,17 @@ use rule add_existing_baseyear from pypsaeur with: ), cop_profiles=( resources( - "cop_profiles_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.nc" + "cop_profiles_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" ) if config["sector"]["district_heating"].get("add_subnodes", True) - else resources("cop_profiles_base_s_{clusters}.nc") + else resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc") ), custom_powerplants=resources( "german_chp_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" ), existing_heating_distribution=( resources( - "existing_heating_distribution_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}-extended.csv" + "existing_heating_distribution_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" ) if config["sector"]["district_heating"].get("add_subnodes", True) else resources( From 1901d24b6e5a77530346a67996f3a6e74d663b82 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 14 Nov 2024 13:04:31 +0100 Subject: [PATCH 579/669] uncomment get_data --- workflow/Snakefile | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index 250aee5bb..f1978e71e 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -62,18 +62,18 @@ from pathlib import Path data_dir = Path("workflow/submodules/pypsa-eur/data") -# rule get_data: -# output: -# [ -# str(Path("data") / p.relative_to(data_dir)) -# for p in data_dir.rglob("*") -# if p.is_file() -# ], -# shell: -# """ -# mkdir -p data -# cp -nR {data_dir}/. data/ -# """ +rule get_data: + output: + [ + str(Path("data") / p.relative_to(data_dir)) + for p in data_dir.rglob("*") + if p.is_file() + ], + shell: + """ + mkdir -p data + cp -nR {data_dir}/. data/ + """ rule clean: From e76741bde6a84324f0c9f7f03415a6e9b64f828b Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 2 Dec 2024 17:16:22 +0100 Subject: [PATCH 580/669] add type hints and docstrings; clean-up unused code snippets; simplify snakefile --- workflow/Snakefile | 93 +++++++-------- .../scripts/add_district_heating_subnodes.py | 112 +++++++++++------- workflow/scripts/build_existing_chp_de.py | 10 +- 3 files changed, 120 insertions(+), 95 deletions(-) diff --git a/workflow/Snakefile b/workflow/Snakefile index f1978e71e..66d7f1887 100644 --- a/workflow/Snakefile +++ b/workflow/Snakefile @@ -198,54 +198,51 @@ rule build_egon_data: "scripts/build_egon_data.py" -if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ - "district_heating" -].get("add_subnodes", True): - - baseyear_value = config["scenario"]["planning_horizons"][0] - - rule add_district_heating_subnodes: - params: - district_heating=config_provider("sector", "district_heating"), - baseyear=config_provider("scenario", "planning_horizons", 0), - input: - network=RESULTS - + "prenetworks/base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", - heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), - nuts3=resources("nuts3_shapes.geojson"), - regions_onshore=resources( - "regions_onshore_base_s_{clusters}.geojson" - ), - fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", - cities="data/fernwaermeatlas/cities_geolocations.geojson", - cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), - existing_heating_distribution=resources( - f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value}.csv" - ), - lau=storage( - "https://gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson.zip", - keep_local=True, - ), - output: - network=RESULTS - + "prenetworks/base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", - district_heating_subnodes=resources( - "district_heating_subnodes_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" - ), - cop_profiles_extended=resources( - "cop_profiles_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" - ), - existing_heating_distribution_extended=( - resources( - "existing_heating_distribution_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" - ) - if baseyear_value != "{planning_horizons}" - else [] - ), - resources: - mem_mb=1000, - script: - "scripts/add_district_heating_subnodes.py" +baseyear_value = config["scenario"]["planning_horizons"][0] + + +rule add_district_heating_subnodes: + params: + district_heating=config_provider("sector", "district_heating"), + baseyear=config_provider("scenario", "planning_horizons", 0), + input: + network=RESULTS + + "prenetworks/base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), + nuts3=resources("nuts3_shapes.geojson"), + regions_onshore=resources( + "regions_onshore_base_s_{clusters}.geojson" + ), + fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", + cities="data/fernwaermeatlas/cities_geolocations.geojson", + cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), + existing_heating_distribution=resources( + f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value}.csv" + ), + lau=storage( + "https://gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson.zip", + keep_local=True, + ), + output: + network=RESULTS + + "prenetworks/base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + district_heating_subnodes=resources( + "district_heating_subnodes_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" + ), + cop_profiles_extended=resources( + "cop_profiles_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" + ), + existing_heating_distribution_extended=( + resources( + "existing_heating_distribution_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" + ) + if baseyear_value != "{planning_horizons}" + else [] + ), + resources: + mem_mb=1000, + script: + "scripts/add_district_heating_subnodes.py" ruleorder: modify_district_heat_share > build_district_heat_share diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index 1225b9f40..94af2b379 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -10,16 +10,30 @@ import pandas as pd import pypsa import xarray as xr -from geopy.geocoders import Nominatim +from typing import Union -# Function to encode city names in UTF-8 -def encode_utf8(city_name): - return city_name.encode("utf-8") - - -def prepare_subnodes(subnodes, cities, regions_onshore, lau, heat_techs, head=40): - # TODO: Embed I&O in snakemake rule, add potentials, match CHP capacities +def prepare_subnodes( + subnodes: pd.DataFrame, + cities: gpd.GeoDataFrame, + regions_onshore: gpd.GeoDataFrame, + lau: gpd.GeoDataFrame, + head: Union[int, bool] = 40, +) -> gpd.GeoDataFrame: + """ + Prepare subnodes by filtering district heating systems data for largest systems and assigning the corresponding LAU and onshore region shapes. + + Parameters: + subnodes (pd.DataFrame): DataFrame containing information about district heating systems. + cities (gpd.GeoDataFrame): GeoDataFrame containing city coordinates with columns 'Stadt' and 'geometry'. + regions_onshore (gpd.GeoDataFrame): GeoDataFrame containing onshore region geometries of clustered network. + lau (gpd.GeoDataFrame): GeoDataFrame containing LAU (Local Administrative Units) geometries and IDs. + heat_techs (gpd.GeoDataFrame): GeoDataFrame containing heat technology geometries. + head (Union[int, bool], optional): Number of largest district heating networks to keep. Defaults to 40. If set to True, it will be set to 40. + + Returns: + gpd.GeoDataFrame: GeoDataFrame with processed subnodes, including geometries, clusters, LAU IDs, and NUTS3 shapes. + """ # If head is boolean set it to 40 for default behavior if isinstance(head, bool): head = 40 @@ -45,6 +59,7 @@ def prepare_subnodes(subnodes, cities, regions_onshore, lau, heat_techs, head=40 ) subnodes = subnodes.dropna(subset=["geometry"]) + # Convert the DataFrame to a GeoDataFrame subnodes = gpd.GeoDataFrame(subnodes, crs="EPSG:4326") @@ -59,27 +74,29 @@ def prepare_subnodes(subnodes, cities, regions_onshore, lau, heat_techs, head=40 lambda x: lau.loc[lau.geometry.contains(x.geometry).idxmax(), "geometry"].wkt, axis=1, ) - subnodes["nuts3"] = subnodes.apply( - lambda x: heat_techs.geometry.contains(x.geometry).idxmax(), - axis=1, - ) - subnodes["nuts3_shape"] = subnodes.apply( - lambda x: heat_techs.loc[ - heat_techs.geometry.contains(x.geometry).idxmax(), "geometry" - ].wkt, - axis=1, - ) return subnodes -def add_subnodes(n, subnodes): +def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: """ - Add subnodes to the network and adjust loads and capacities accordingly. + Add largest district heating systems subnodes to the network. They are initialized with + - the total annual heat demand taken from the mother node, that is assigned to urban central heat and low-temperature heat for industry, + - the heat demand profiles taken from the mother node, + - and the district heating investment options (stores, links) from the mother node, + - and heat vents as generator components + The district heating loads in the mother nodes are recuded accordingly. + + Parameters: + n (pypsa.Network): The PyPSA network object to which subnodes will be added. + subnodes (gpd.GeoDataFrame): GeoDataFrame containing information about district heating subnodes. + + Returns: + None """ # Add subnodes to network - for idx, row in subnodes.iterrows(): + for _, row in subnodes.iterrows(): name = f'{row["cluster"]} {row["Stadt"]} urban central heat' # Add buses @@ -94,8 +111,7 @@ def add_subnodes(n, subnodes): unit="MWh_th", ) - # Add heat loads - + # Add heat loads for urban central heat and low-temperature heat for industry uch_load_cluster = ( n.snapshot_weightings.generators @ n.loads_t.p_set[f"{row['cluster']} urban central heat"] @@ -107,19 +123,19 @@ def add_subnodes(n, subnodes): dh_load_cluster = uch_load_cluster + lti_load_cluster lti_share = lti_load_cluster / dh_load_cluster - scalar = min( + demand_ratio = min( 1, (row["yearly_heat_demand_MWh"] / dh_load_cluster), ) lost_load = row["yearly_heat_demand_MWh"] - dh_load_cluster - if scalar == 1: + if demand_ratio == 1: logger.info( f"District heating load of {row['Stadt']} exceeds load of its assigned cluster {row['cluster']}. {lost_load} MWh/a are disregarded." ) uch_load = ( - scalar + demand_ratio * (1 - lti_share) * n.loads_t.p_set.filter( regex=f"{row['cluster']} urban central heat" @@ -140,7 +156,7 @@ def add_subnodes(n, subnodes): ) lti_load = ( - scalar + demand_ratio * lti_share * n.loads.filter( regex=f"{row['cluster']} low-temperature heat for industry", axis=0 @@ -161,15 +177,14 @@ def add_subnodes(n, subnodes): ) # Adjust loads of cluster buses - n.loads_t.p_set.loc[:, f'{row["cluster"]} urban central heat'] *= 1 - scalar * ( - 1 - lti_share - ) + n.loads_t.p_set.loc[ + :, f'{row["cluster"]} urban central heat' + ] *= 1 - demand_ratio * (1 - lti_share) n.loads.loc[f'{row["cluster"]} low-temperature heat for industry', "p_set"] *= ( - 1 - scalar * lti_share + 1 - demand_ratio * lti_share ) # Replicate district heating stores and links of mother node for subnodes - n.madd( "Bus", [f"{row['cluster']} {row['Stadt']} urban central water tanks"], @@ -242,10 +257,17 @@ def add_subnodes(n, subnodes): return -def extend_cops(cops, subnodes): +def extend_cops(cops: xr.DataArray, subnodes: gpd.GeoDataFrame) -> xr.DataArray: """ - Extend COPs by subnodes mirroring the timeseries of the corresponding + Extend COPs (Coefficient of Performance) by subnodes mirroring the timeseries of the corresponding mother node. + + Parameters: + cops (xr.DataArray): DataArray containing COP timeseries data. + subnodes (gpd.GeoDataFrame): GeoDataFrame containing information about district heating subnodes. + + Returns: + xr.DataArray: Extended DataArray with COP timeseries for subnodes. """ cops_extended = cops.copy() @@ -269,10 +291,19 @@ def extend_cops(cops, subnodes): return cops_extended -def extend_heating_distribution(existing_heating_distribution, subnodes): +def extend_heating_distribution( + existing_heating_distribution: pd.DataFrame, subnodes: gpd.GeoDataFrame +) -> pd.DataFrame: """ Extend heating distribution by subnodes mirroring the distribution of the corresponding mother node. + + Parameters: + existing_heating_distribution (pd.DataFrame): DataFrame containing the existing heating distribution. + subnodes (gpd.GeoDataFrame): GeoDataFrame containing information about district heating subnodes. + + Returns: + pd.DataFrame: Extended DataFrame with heating distribution for subnodes. """ # Merge the existing heating distribution with subnodes on the cluster name mother_nodes = ( @@ -336,11 +367,8 @@ def extend_heating_distribution(existing_heating_distribution, subnodes): logger.info("Adding SysGF-specific functionality") n = pypsa.Network(snakemake.input.network) - heat_techs = gpd.read_file(snakemake.input.heating_technologies_nuts3).set_index( - "index" - ) + lau = gpd.read_file( - # "/home/cpschau/Code/dev/pypsa-ariadne/.snakemake/storage/http/gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson/LAU_RG_01M_2021_3035.geojson", f"{snakemake.input.lau}!LAU_RG_01M_2021_3035.geojson", crs="EPSG:3035", ).to_crs("EPSG:4326") @@ -351,18 +379,12 @@ def extend_heating_distribution(existing_heating_distribution, subnodes): ) cities = gpd.read_file(snakemake.input.cities) regions_onshore = gpd.read_file(snakemake.input.regions_onshore).set_index("name") - # Assign onshore region to heat techs based on geometry - heat_techs["cluster"] = heat_techs.apply( - lambda x: regions_onshore.geometry.contains(x.geometry).idxmax(), - axis=1, - ) subnodes = prepare_subnodes( fernwaermeatlas, cities, regions_onshore, lau, - heat_techs, head=snakemake.params.district_heating["add_subnodes"], ) subnodes.to_file(snakemake.output.district_heating_subnodes, driver="GeoJSON") diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py index 7e3bb3bfd..6e8b3e518 100644 --- a/workflow/scripts/build_existing_chp_de.py +++ b/workflow/scripts/build_existing_chp_de.py @@ -204,9 +204,16 @@ def BP(cap, year): return CHP_de -def assign_subnode(CHP_de, subnodes): +def assign_subnode(CHP_de: pd.DataFrame, subnodes: gpd.GeoDataFrame) -> pd.DataFrame: """ Assign subnodes to the CHP plants based on their location. + + Parameters: + CHP_de (pd.DataFrame): DataFrame containing CHP plant data with latitude and longitude. + subnodes (gpd.GeoDataFrame): GeoDataFrame containing subnode data with geometries. + + Returns: + pd.DataFrame: DataFrame with assigned subnodes. """ # Make a geodataframe from CHP_de using the lat and lon columns @@ -250,7 +257,6 @@ def assign_subnode(CHP_de, subnodes): planning_horizons="2020", run="KN2045_Bal_v4", ) - # snakemake = mock_snakemake("build_existing_chp_de") logging.basicConfig(level=snakemake.config["logging"]["level"]) From f5d4363eb153f2f02316bfc8fc96a762daf18684 Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 2 Dec 2024 17:27:46 +0100 Subject: [PATCH 581/669] change variable name row to subnode --- .../scripts/add_district_heating_subnodes.py | 78 ++++++++++--------- 1 file changed, 42 insertions(+), 36 deletions(-) diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index 94af2b379..2f3956489 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -96,17 +96,17 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: """ # Add subnodes to network - for _, row in subnodes.iterrows(): - name = f'{row["cluster"]} {row["Stadt"]} urban central heat' + for _, subnode in subnodes.iterrows(): + name = f'{subnode["cluster"]} {subnode["Stadt"]} urban central heat' # Add buses n.madd( "Bus", [name], - y=row.geometry.y, - x=row.geometry.x, + y=subnode.geometry.y, + x=subnode.geometry.x, country="DE", - location=f"{row['cluster']} {row['Stadt']}", + location=f"{subnode['cluster']} {subnode['Stadt']}", carrier="urban central heat", unit="MWh_th", ) @@ -114,10 +114,12 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: # Add heat loads for urban central heat and low-temperature heat for industry uch_load_cluster = ( n.snapshot_weightings.generators - @ n.loads_t.p_set[f"{row['cluster']} urban central heat"] + @ n.loads_t.p_set[f"{subnode['cluster']} urban central heat"] ) lti_load_cluster = ( - n.loads.loc[f"{row['cluster']} low-temperature heat for industry", "p_set"] + n.loads.loc[ + f"{subnode['cluster']} low-temperature heat for industry", "p_set" + ] * 8760 ) dh_load_cluster = uch_load_cluster + lti_load_cluster @@ -125,23 +127,23 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: demand_ratio = min( 1, - (row["yearly_heat_demand_MWh"] / dh_load_cluster), + (subnode["yearly_heat_demand_MWh"] / dh_load_cluster), ) - lost_load = row["yearly_heat_demand_MWh"] - dh_load_cluster + lost_load = subnode["yearly_heat_demand_MWh"] - dh_load_cluster if demand_ratio == 1: logger.info( - f"District heating load of {row['Stadt']} exceeds load of its assigned cluster {row['cluster']}. {lost_load} MWh/a are disregarded." + f"District heating load of {subnode['Stadt']} exceeds load of its assigned cluster {subnode['cluster']}. {lost_load} MWh/a are disregarded." ) uch_load = ( demand_ratio * (1 - lti_share) * n.loads_t.p_set.filter( - regex=f"{row['cluster']} urban central heat" + regex=f"{subnode['cluster']} urban central heat" ).rename( { - f"{row['cluster']} urban central heat": f"{row['cluster']} {row['Stadt']} urban central heat" + f"{subnode['cluster']} urban central heat": f"{subnode['cluster']} {subnode['Stadt']} urban central heat" }, axis=1, ) @@ -152,53 +154,55 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: bus=name, p_set=uch_load, carrier="urban central heat", - location=f"{row['cluster']} {row['Stadt']}", + location=f"{subnode['cluster']} {subnode['Stadt']}", ) lti_load = ( demand_ratio * lti_share * n.loads.filter( - regex=f"{row['cluster']} low-temperature heat for industry", axis=0 + regex=f"{subnode['cluster']} low-temperature heat for industry", axis=0 ).p_set.rename( { - f"{row['cluster']} low-temperature heat for industry": f"{row['cluster']} {row['Stadt']} low-temperature heat for industry" + f"{subnode['cluster']} low-temperature heat for industry": f"{subnode['cluster']} {subnode['Stadt']} low-temperature heat for industry" }, axis=0, ) ) n.madd( "Load", - [f"{row['cluster']} {row['Stadt']} low-temperature heat for industry"], + [ + f"{subnode['cluster']} {subnode['Stadt']} low-temperature heat for industry" + ], bus=name, p_set=lti_load, carrier="low-temperature heat for industry", - location=f"{row['cluster']} {row['Stadt']}", + location=f"{subnode['cluster']} {subnode['Stadt']}", ) # Adjust loads of cluster buses n.loads_t.p_set.loc[ - :, f'{row["cluster"]} urban central heat' + :, f'{subnode["cluster"]} urban central heat' ] *= 1 - demand_ratio * (1 - lti_share) - n.loads.loc[f'{row["cluster"]} low-temperature heat for industry', "p_set"] *= ( - 1 - demand_ratio * lti_share - ) + n.loads.loc[ + f'{subnode["cluster"]} low-temperature heat for industry', "p_set" + ] *= (1 - demand_ratio * lti_share) # Replicate district heating stores and links of mother node for subnodes n.madd( "Bus", - [f"{row['cluster']} {row['Stadt']} urban central water tanks"], - location=f"{row['cluster']} {row['Stadt']}", + [f"{subnode['cluster']} {subnode['Stadt']} urban central water tanks"], + location=f"{subnode['cluster']} {subnode['Stadt']}", carrier="urban central water tanks", unit="MWh_th", ) stores = ( - n.stores.filter(like=f"{row['cluster']} urban central", axis=0) + n.stores.filter(like=f"{subnode['cluster']} urban central", axis=0) .reset_index() .replace( { - f"{row['cluster']} urban central": f"{row['cluster']} {row['Stadt']} urban central" + f"{subnode['cluster']} urban central": f"{subnode['cluster']} {subnode['Stadt']} urban central" }, regex=True, ) @@ -208,11 +212,11 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: links = ( n.links.loc[~n.links.carrier.str.contains("heat pump")] - .filter(like=f"{row['cluster']} urban central", axis=0) + .filter(like=f"{subnode['cluster']} urban central", axis=0) .reset_index() .replace( { - f"{row['cluster']} urban central": f"{row['cluster']} {row['Stadt']} urban central" + f"{subnode['cluster']} urban central": f"{subnode['cluster']} {subnode['Stadt']} urban central" }, regex=True, ) @@ -222,22 +226,24 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: # Add heat pumps to subnode heat_pumps = ( - n.links.filter(regex=f"{row['cluster']} urban central.*heat pump", axis=0) + n.links.filter( + regex=f"{subnode['cluster']} urban central.*heat pump", axis=0 + ) .reset_index() .replace( { - f"{row['cluster']} urban central": f"{row['cluster']} {row['Stadt']} urban central" + f"{subnode['cluster']} urban central": f"{subnode['cluster']} {subnode['Stadt']} urban central" }, regex=True, ) .set_index("Link") ).drop("efficiency", axis=1) heat_pumps_t = n.links_t.efficiency.filter( - regex=f"{row['cluster']} urban central.*heat pump" + regex=f"{subnode['cluster']} urban central.*heat pump" ) heat_pumps_t.columns = heat_pumps_t.columns.str.replace( - f"{row['cluster']} urban central", - f"{row['cluster']} {row['Stadt']} urban central", + f"{subnode['cluster']} urban central", + f"{subnode['cluster']} {subnode['Stadt']} urban central", ) n.madd("Link", heat_pumps.index, efficiency=heat_pumps_t, **heat_pumps) @@ -246,7 +252,7 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: "Generator", [f"{name} heat vent"], bus=name, - location=f"{row['cluster']} {row['Stadt']}", + location=f"{subnode['cluster']} {subnode['Stadt']}", carrier="urban central heat vent", p_nom_extendable=True, p_min_pu=-1, @@ -272,9 +278,9 @@ def extend_cops(cops: xr.DataArray, subnodes: gpd.GeoDataFrame) -> xr.DataArray: cops_extended = cops.copy() # Iterate over the DataFrame rows - for _, row in subnodes.iterrows(): - cluster_name = row["cluster"] - city_name = row["Stadt"] + for _, subnode in subnodes.iterrows(): + cluster_name = subnode["cluster"] + city_name = subnode["Stadt"] # Select the xarray entry where name matches the cluster selected_entry = cops.sel(name=cluster_name) From 892ead0509718963d1117566b3e310624bef0532 Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 2 Dec 2024 17:33:04 +0100 Subject: [PATCH 582/669] add fernwaermeatlas data --- .../cities_geolocations.geojson | 167 ++++++++++++++++++ data/fernwaermeatlas/fernwaermeatlas.xlsx | Bin 0 -> 21880 bytes 2 files changed, 167 insertions(+) create mode 100755 data/fernwaermeatlas/cities_geolocations.geojson create mode 100755 data/fernwaermeatlas/fernwaermeatlas.xlsx diff --git a/data/fernwaermeatlas/cities_geolocations.geojson b/data/fernwaermeatlas/cities_geolocations.geojson new file mode 100755 index 000000000..b67c63b0d --- /dev/null +++ b/data/fernwaermeatlas/cities_geolocations.geojson @@ -0,0 +1,167 @@ +{ +"type": "FeatureCollection", +"name": "cities_geolocation", +"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } }, +"features": [ +{ "type": "Feature", "properties": { "Stadt": "Berlin" }, "geometry": { "type": "Point", "coordinates": [ 13.3989421, 52.5108638 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Hamburg" }, "geometry": { "type": "Point", "coordinates": [ 10.000654, 53.550341 ] } }, +{ "type": "Feature", "properties": { "Stadt": "München" }, "geometry": { "type": "Point", "coordinates": [ 11.5753822, 48.1371079 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Köln" }, "geometry": { "type": "Point", "coordinates": [ 6.959974, 50.938361 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Mülheim an der Ruhr" }, "geometry": { "type": "Point", "coordinates": [ 6.8829192, 51.4272925 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Leverkusen" }, "geometry": { "type": "Point", "coordinates": [ 6.9881194, 51.0324743 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Bonn" }, "geometry": { "type": "Point", "coordinates": [ 7.10066, 50.735851 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Bergisch Gladbach" }, "geometry": { "type": "Point", "coordinates": [ 7.1277379, 50.9929303 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Frankfurt am Main" }, "geometry": { "type": "Point", "coordinates": [ 8.6820917, 50.1106444 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Offenbach am Main" }, "geometry": { "type": "Point", "coordinates": [ 8.7610698, 50.1055002 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Stuttgart" }, "geometry": { "type": "Point", "coordinates": [ 9.1800132, 48.7784485 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Düsseldorf" }, "geometry": { "type": "Point", "coordinates": [ 6.7763137, 51.2254018 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Neuss" }, "geometry": { "type": "Point", "coordinates": [ 6.6916476, 51.1981778 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Dortmund" }, "geometry": { "type": "Point", "coordinates": [ 7.4652789, 51.5142273 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Essen" }, "geometry": { "type": "Point", "coordinates": [ 7.0158171, 51.4582235 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Duisburg" }, "geometry": { "type": "Point", "coordinates": [ 6.759562, 51.434999 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Bochum" }, "geometry": { "type": "Point", "coordinates": [ 7.2196635, 51.4818111 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Krefeld" }, "geometry": { "type": "Point", "coordinates": [ 6.5623343, 51.3331205 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Oberhausen" }, "geometry": { "type": "Point", "coordinates": [ 6.8514435, 51.4696137 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Herne" }, "geometry": { "type": "Point", "coordinates": [ 7.219985, 51.5380394 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Gelsenkirchen" }, "geometry": { "type": "Point", "coordinates": [ 7.0960124, 51.5110321 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Bottrop" }, "geometry": { "type": "Point", "coordinates": [ 6.929204, 51.521581 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Recklinghausen" }, "geometry": { "type": "Point", "coordinates": [ 7.1978546, 51.6143815 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Moers" }, "geometry": { "type": "Point", "coordinates": [ 6.62843, 51.451283 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Leipzig" }, "geometry": { "type": "Point", "coordinates": [ 12.3747329, 51.3406321 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Bremen" }, "geometry": { "type": "Point", "coordinates": [ 8.8071646, 53.0758196 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Dresden" }, "geometry": { "type": "Point", "coordinates": [ 13.7381437, 51.0493286 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Hannover" }, "geometry": { "type": "Point", "coordinates": [ 9.7385532, 52.3744779 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Nürnberg" }, "geometry": { "type": "Point", "coordinates": [ 11.077298, 49.453872 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Fürth" }, "geometry": { "type": "Point", "coordinates": [ 10.9893626, 49.4772475 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Wuppertal" }, "geometry": { "type": "Point", "coordinates": [ 7.1780374, 51.264018 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Hagen" }, "geometry": { "type": "Point", "coordinates": [ 7.473296, 51.3582945 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Solingen" }, "geometry": { "type": "Point", "coordinates": [ 7.0845893, 51.1721629 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Remscheid" }, "geometry": { "type": "Point", "coordinates": [ 7.228287474564793, 51.184517 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Bielefeld" }, "geometry": { "type": "Point", "coordinates": [ 8.531007, 52.0191005 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Münster" }, "geometry": { "type": "Point", "coordinates": [ 7.6251879, 51.9625101 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Karlsruhe" }, "geometry": { "type": "Point", "coordinates": [ 8.4034195, 49.0068705 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Mannheim" }, "geometry": { "type": "Point", "coordinates": [ 8.4673098, 49.4892913 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Ludwigshafen am Rhein" }, "geometry": { "type": "Point", "coordinates": [ 8.4381568, 49.4704113 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Augsburg" }, "geometry": { "type": "Point", "coordinates": [ 10.8979522, 48.3690341 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Wiesbaden" }, "geometry": { "type": "Point", "coordinates": [ 8.2416556, 50.0820384 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Mainz" }, "geometry": { "type": "Point", "coordinates": [ 8.2762513, 50.0012314 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Mönchengladbach" }, "geometry": { "type": "Point", "coordinates": [ 6.4353792, 51.1947131 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Braunschweig" }, "geometry": { "type": "Point", "coordinates": [ 10.5236066, 52.2646577 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Kiel" }, "geometry": { "type": "Point", "coordinates": [ 10.135555, 54.3227085 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Chemnitz" }, "geometry": { "type": "Point", "coordinates": [ 12.918914, 50.8323531 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Aachen" }, "geometry": { "type": "Point", "coordinates": [ 6.083862, 50.776351 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Magdeburg" }, "geometry": { "type": "Point", "coordinates": [ 11.6399609, 52.1315889 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Halle" }, "geometry": { "type": "Point", "coordinates": [ 11.9705452, 51.4825041 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Freiburg im Breisgau" }, "geometry": { "type": "Point", "coordinates": [ 7.8494005, 47.9960901 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Lübeck" }, "geometry": { "type": "Point", "coordinates": [ 10.684738, 53.866444 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Erfurt" }, "geometry": { "type": "Point", "coordinates": [ 11.0287364, 50.9777974 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Rostock" }, "geometry": { "type": "Point", "coordinates": [ 12.1400211, 54.0886707 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Kassel" }, "geometry": { "type": "Point", "coordinates": [ 9.4924096, 51.3154546 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Saarbrücken" }, "geometry": { "type": "Point", "coordinates": [ 6.996379, 49.234362 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Hamm" }, "geometry": { "type": "Point", "coordinates": [ 7.815197, 51.6804093 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Potsdam" }, "geometry": { "type": "Point", "coordinates": [ 13.0591397, 52.4009309 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Oldenburg in Holstein" }, "geometry": { "type": "Point", "coordinates": [ 10.8809805, 54.2922574 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Osnabrück" }, "geometry": { "type": "Point", "coordinates": [ 8.047635, 52.2719595 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Heidelberg" }, "geometry": { "type": "Point", "coordinates": [ 8.694724, 49.4093582 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Darmstadt" }, "geometry": { "type": "Point", "coordinates": [ 8.6736295, 49.8851869 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Paderborn" }, "geometry": { "type": "Point", "coordinates": [ 8.764869778177559, 51.71895955 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Regensburg" }, "geometry": { "type": "Point", "coordinates": [ 12.0974869, 49.0195333 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Ingolstadt" }, "geometry": { "type": "Point", "coordinates": [ 11.4250395, 48.7630165 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Würzburg" }, "geometry": { "type": "Point", "coordinates": [ 9.9309779, 49.7933723 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Ulm" }, "geometry": { "type": "Point", "coordinates": [ 9.9912458, 48.3984968 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Wolfsburg" }, "geometry": { "type": "Point", "coordinates": [ 10.7861682, 52.4205588 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Heilbronn" }, "geometry": { "type": "Point", "coordinates": [ 9.218655, 49.142291 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Pforzheim" }, "geometry": { "type": "Point", "coordinates": [ 8.7029532, 48.8908846 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Göttingen" }, "geometry": { "type": "Point", "coordinates": [ 9.9351811, 51.5328328 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Reutlingen" }, "geometry": { "type": "Point", "coordinates": [ 9.2114144, 48.4919508 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Koblenz" }, "geometry": { "type": "Point", "coordinates": [ 7.5943951, 50.3533278 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Bremerhaven" }, "geometry": { "type": "Point", "coordinates": [ 8.5851945, 53.5505392 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Jena" }, "geometry": { "type": "Point", "coordinates": [ 11.5879359, 50.9281717 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Erlangen" }, "geometry": { "type": "Point", "coordinates": [ 11.0056, 49.5928616 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Trier" }, "geometry": { "type": "Point", "coordinates": [ 6.6441878, 49.7596208 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Salzgitter" }, "geometry": { "type": "Point", "coordinates": [ 10.3593147, 52.1503721 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Siegen" }, "geometry": { "type": "Point", "coordinates": [ 8.0256131, 50.8751175 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Hildesheim" }, "geometry": { "type": "Point", "coordinates": [ 9.9513046, 52.1521636 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Cottbus" }, "geometry": { "type": "Point", "coordinates": [ 14.3357307, 51.7567447 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Aschaffenburg" }, "geometry": { "type": "Point", "coordinates": [ 9.1493636, 49.9740542 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Baunatal" }, "geometry": { "type": "Point", "coordinates": [ 9.4119007, 51.2550775 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Bergkamen" }, "geometry": { "type": "Point", "coordinates": [ 7.6362876, 51.6149389 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Brühl" }, "geometry": { "type": "Point", "coordinates": [ 6.9037057, 50.8291313 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Datteln" }, "geometry": { "type": "Point", "coordinates": [ 7.3385906, 51.651468 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Dillingen-Saar" }, "geometry": { "type": "Point", "coordinates": [ 6.7243197, 49.3552721 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Dinslaken" }, "geometry": { "type": "Point", "coordinates": [ 6.7345106, 51.5623618 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Eisenhüttenstadt" }, "geometry": { "type": "Point", "coordinates": [ 14.6294413, 52.1448863 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Ensdorf" }, "geometry": { "type": "Point", "coordinates": [ 11.9353839, 49.3435347 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Esslingen am Neckar" }, "geometry": { "type": "Point", "coordinates": [ 9.3071685, 48.7427584 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Flensburg" }, "geometry": { "type": "Point", "coordinates": [ 9.4333264, 54.7833021 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Grevenbroich" }, "geometry": { "type": "Point", "coordinates": [ 6.584893682540318, 51.0862467 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Gladbeck" }, "geometry": { "type": "Point", "coordinates": [ 6.9877343, 51.5718665 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Glücksburg (Ostsee)" }, "geometry": { "type": "Point", "coordinates": [ 9.562033402693672, 54.84544485 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Hanau" }, "geometry": { "type": "Point", "coordinates": [ 8.9169797, 50.132881 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Harrislee" }, "geometry": { "type": "Point", "coordinates": [ 9.3915374, 54.8047109 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Herten" }, "geometry": { "type": "Point", "coordinates": [ 7.1368071, 51.5942009 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Hohenmölsen" }, "geometry": { "type": "Point", "coordinates": [ 12.0981844, 51.1573976 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Hünxe" }, "geometry": { "type": "Point", "coordinates": [ 6.7660319, 51.6414581 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Hürth" }, "geometry": { "type": "Point", "coordinates": [ 6.876568, 50.8807379 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Ketsch" }, "geometry": { "type": "Point", "coordinates": [ 8.5237178, 49.367538 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Langballig" }, "geometry": { "type": "Point", "coordinates": [ 9.663334714510913, 54.7919719 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Lünen" }, "geometry": { "type": "Point", "coordinates": [ 7.5228088, 51.6142482 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Marl" }, "geometry": { "type": "Point", "coordinates": [ 7.0829054, 51.6485843 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Merseburg" }, "geometry": { "type": "Point", "coordinates": [ 11.996148, 51.3564413 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Neukirchen-Vluyn" }, "geometry": { "type": "Point", "coordinates": [ 6.5467641, 51.4413742 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Neu-Ulm" }, "geometry": { "type": "Point", "coordinates": [ 9.9987169, 48.3943949 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Püttlingen" }, "geometry": { "type": "Point", "coordinates": [ 6.8827786, 49.287307 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Quierschied" }, "geometry": { "type": "Point", "coordinates": [ 7.052847, 49.3260163 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Saarlouis" }, "geometry": { "type": "Point", "coordinates": [ 6.749846, 49.3164661 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Schongau" }, "geometry": { "type": "Point", "coordinates": [ 10.8967857, 47.8134583 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Schwedt-Oder" }, "geometry": { "type": "Point", "coordinates": [ 14.2840858, 53.0586366 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Schwetzingen" }, "geometry": { "type": "Point", "coordinates": [ 8.5735135, 49.3832919 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Sindelfingen" }, "geometry": { "type": "Point", "coordinates": [ 9.0035455, 48.7084162 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Speyer" }, "geometry": { "type": "Point", "coordinates": [ 8.433615, 49.3165553 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Spremberg" }, "geometry": { "type": "Point", "coordinates": [ 14.3804302, 51.5714513 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Süderbrarup" }, "geometry": { "type": "Point", "coordinates": [ 9.775192, 54.6354193 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Tarp" }, "geometry": { "type": "Point", "coordinates": [ 9.4026852, 54.6641816 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Voerde (Niederrhein)" }, "geometry": { "type": "Point", "coordinates": [ 6.6811994, 51.5975224 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Völklingen" }, "geometry": { "type": "Point", "coordinates": [ 6.859519, 49.2522866 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Wadgassen" }, "geometry": { "type": "Point", "coordinates": [ 6.7922183, 49.2634657 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Wallerfangen" }, "geometry": { "type": "Point", "coordinates": [ 6.7183652, 49.3277048 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Wees" }, "geometry": { "type": "Point", "coordinates": [ 9.5186181, 54.8060252 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Zolling" }, "geometry": { "type": "Point", "coordinates": [ 11.7727339, 48.4514051 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Stendal" }, "geometry": { "type": "Point", "coordinates": [ 11.8594279, 52.6050782 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Schwerin" }, "geometry": { "type": "Point", "coordinates": [ 11.4148038, 53.6288297 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Schweinfurt" }, "geometry": { "type": "Point", "coordinates": [ 10.233302, 50.0499945 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Neumünster" }, "geometry": { "type": "Point", "coordinates": [ 9.9815377, 54.0757442 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Weißwasser-O.L." }, "geometry": { "type": "Point", "coordinates": [ 14.6373221, 51.5028807 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Lemgo" }, "geometry": { "type": "Point", "coordinates": [ 8.9012894, 52.0280674 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Bergheim" }, "geometry": { "type": "Point", "coordinates": [ 6.6410004, 50.9540457 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Brandenburg an der Havel" }, "geometry": { "type": "Point", "coordinates": [ 12.5497933, 52.4108261 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Castrop-Rauxel" }, "geometry": { "type": "Point", "coordinates": [ 7.3106175, 51.5646195 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Dessau-Roßlau" }, "geometry": { "type": "Point", "coordinates": [ 12.2312238, 51.8465924 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Frankfurt (Oder)" }, "geometry": { "type": "Point", "coordinates": [ 14.549452, 52.3412273 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Gera" }, "geometry": { "type": "Point", "coordinates": [ 12.0832666, 50.8765537 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Greifswald" }, "geometry": { "type": "Point", "coordinates": [ 13.3815238, 54.095791 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Hameln" }, "geometry": { "type": "Point", "coordinates": [ 9.3561569, 52.1039941 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Iserlohn" }, "geometry": { "type": "Point", "coordinates": [ 7.6999713, 51.3746778 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Kaiserslautern" }, "geometry": { "type": "Point", "coordinates": [ 7.7689951, 49.4432174 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Kamp-Lintfort" }, "geometry": { "type": "Point", "coordinates": [ 6.547923, 51.5017981 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Altenholz" }, "geometry": { "type": "Point", "coordinates": [ 10.1187695, 54.3956762 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Annaberg-Buchholz" }, "geometry": { "type": "Point", "coordinates": [ 13.0106108, 50.5788781 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Bad Homburg v.d. Höhe" }, "geometry": { "type": "Point", "coordinates": [ 8.6169093, 50.2267699 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Bad Mergentheim" }, "geometry": { "type": "Point", "coordinates": [ 9.7730692, 49.490532 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Bernburg (Saale)" }, "geometry": { "type": "Point", "coordinates": [ 11.7391606, 51.7930788 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Coswig" }, "geometry": { "type": "Point", "coordinates": [ 12.458638, 51.8803541 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Dreieich" }, "geometry": { "type": "Point", "coordinates": [ 8.7123912, 50.011974 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Flensburg" }, "geometry": { "type": "Point", "coordinates": [ 9.4333264, 54.7833021 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Gelsenkirchen" }, "geometry": { "type": "Point", "coordinates": [ 7.0960124, 51.5110321 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Görlitz" }, "geometry": { "type": "Point", "coordinates": [ 14.991018, 51.1563185 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Kamen" }, "geometry": { "type": "Point", "coordinates": [ 7.6616804, 51.5918019 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Kiel" }, "geometry": { "type": "Point", "coordinates": [ 10.135555, 54.3227085 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Neustrelitz" }, "geometry": { "type": "Point", "coordinates": [ 13.0630004, 53.3617163 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Pfaffenhofen a.d. Ilm" }, "geometry": { "type": "Point", "coordinates": [ 11.5084954, 48.5296743 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Pullach i. Isartal" }, "geometry": { "type": "Point", "coordinates": [ 11.5217455, 48.0556122 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Rottweil" }, "geometry": { "type": "Point", "coordinates": [ 8.6251283, 48.165531 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Soltau" }, "geometry": { "type": "Point", "coordinates": [ 9.8433909, 52.9859666 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Traunreut" }, "geometry": { "type": "Point", "coordinates": [ 12.5952942, 47.9627599 ] } }, +{ "type": "Feature", "properties": { "Stadt": "Zittau" }, "geometry": { "type": "Point", "coordinates": [ 14.8064807, 50.8960964 ] } } +] +} diff --git a/data/fernwaermeatlas/fernwaermeatlas.xlsx b/data/fernwaermeatlas/fernwaermeatlas.xlsx new file mode 100755 index 0000000000000000000000000000000000000000..4edd34dfafaa453129eb3ac9d0312076563b0cd9 GIT binary patch literal 21880 zcmaI8WmH_-wl#_eg1fr}E8N}P-QC^YgS$HfcXtc!7Tnzl7F+{gC3~NHzxU2-j~@lC z)u>T(4(YwG$r?*R8XV#?$e*7~DOAnBfBgFb1^lh=WNPC~ukf!8^j{mRp042|;CoVF zARw^+V?+1HvO2L(YLEdbRG)m(mwOXk#H7(1+0dTk9(34b4PeVmjNSbDAckmUh>6Y< zYSR7jI$-m7%aW-s*PdozsJm#u!Ex<-Ld(PYSc%J^N#%hS5;b=>?Zon$v$m~PyUckNeM}V{>mLXgkRKd zitZ$NzcjT|vcx@6SbAV!zrTj1(s%1D5z@7-1a5NwCmjDBG8kYuOze#noa`O`H){WF z1`agyu=$^`{i8JD6PVTmJz8M$^`;*lE2lO;=rNc&O*P#t*jG-+Cpj> z&~Mg`Eg7B#yoccH+9B}0$pne-6pSjv_-dugupP=+KUqwFU}vX`e=Ah$@4r-eWvZI9?w%TwvH zT%UvFN=@^WAxY12KsJID-d)e_9m%6IaVu1_UMDU|Xh!2R_=QT9fuuu$u*n)jwUo7# z6qP+efEsRCzO&YBbvhy>p6&`z*t_0G_ROPwT~qZQ8%$1cPxq7R;?$qsk;SF@_G<*j zIMTW~Tg}^=swZJge*~Tl>O#<)iXPHn8B+etTEqNx+--ZT9*44%b@bByF6$meFKJt6 zz@BrgHP{~GX$i-V;j9aM4jI;5 za(-Goj5)WM$ETf~kZZ{CB{lV7!t#n{jJ;PKIM8?sOd1?w*0?c<&VaLB2Un-? z=8WiraaN@QY0_@L>wz=OA2Vl|^6~_{{GNBWWBVgt;{1ZZTp(jqmtQ!B6B4c$-M@X@ zPYK^0H`?p-J~#AU?ToVT`M+Mz>-#?!KqQOpOw{JSzrUSM)bhXXzkVTaW9k=YAw$_D z8950EGdN2$mfpF3=5QO;Nau6_83p6`%)km}KgBrj0FIvS=nkpU2DL$fuE-5HC^HM@ zVeGbTvqx}jlLfn(vq@CtV2<&ed9yi)hI$FIUzlje$h-&Dh_ytwDDqH|*!hDfZsiNI zVi_hIB^yn`Uiu+aFl_FO?OHu}=3`OKypO0p36?QBflnO_oED1e52Xa!GT0SZ--m2sF}`Qb+uJ!bXF(&JirdY#igZ+1t%%H>DnMU z#~FNJI)YNkAs;`&4x74q|1((WqlCjfjB1}@fU$zIJnIt^=7ltxGfXLLrIMSMNb!!d zn?&WIIf;OA^T_w;jjF}S#yKS!uAAbTvJ7aB%7&xib*f79UghQ#2=3C)EzP}xeFDRb zqP2w z;!FEAnkGl9%Qa%!&~LyJpmawed#vA3uv)I4js9R|HfAEEqbf)h`i%FDiUa}t3d>VP z0J7yq-Tts2DoC812Oek2#ck4T59DiWbpe#x_T_=gE8@WRw|<-i<{f-`;X(URu{Uem%kXb6|bXd@n-jX>$!BCPMtR~4pnfS%}& zU4g4Eyxy9#2D^nq#}7QUsM56e^74hS5{|?Yl&%8=O$LOQ2Cbt3l9rBC%F9OwkQd)r zv`8{J%DC6;q}JJieJ8ohAPjb@oRa6wM7i;x)Yd{9Cb}(}r^7ahMa#LKDsxHYzHi%h z-Jt&o=YMl5!aro`ZtrC6Y+-8Z^1lTAPv~jBQk74$f`AYagMwiFm+jw={AJf_U+bg| zj>H4~gwt2WL0qh}%VyK=FP>)Bk8f3}6{V)6&1*$JFLM0-k;{$Hd9y2}H>NJv&MD_$ z8craPcA+8sp3**^?yeVm_;8T5dp+)(zxUJiJwHKr_j}qmzo*;Vv>yN8_q)5-DLNnP%Y^zLFHcXe`deMkFPF<< z^7cIl-~9cbWc{8GZ`0)M2@k*NzdszEUFj2Sb@%Aro$llE$39P$wi5bz|E><{@o6uO z`O))sv%5L)e%r~<$NTp1RGmPNNVv^6J`enwfh+yACBE;SrR_k^Z@=TVKPEbVeDh1A z@O%GtJ+RMj7t`%`f4Zqp=l^cL*$4;TQ#I70rnhhO&kdcME+lXzzMOTyy5eY{=YKfO%J^LKfM ze*YlyuTQ-DIWa)b-~F!sn6_$KnvQ$m@9Xh&d-k)ZM=8kf{q6bcC2qpo_HuE5{TonM zj)b|#A>Pw0J6(c`29Al=7A8Ab=)A9Q8>u$lu%Wf&=4D+Yav%e)9KWkQNE*o6=!6NrBcXsXE zOu)y6*_m?V{ULcqxu( zNDkfh!9}y%AAi39#>DUG=K05m3AE?^;Zkoa)Hm_$UROh&$D)kN5effh_-JTz=vbd*~h^4v}-LUF3Rm5rM&7T#_mzWMpwWQsTYA@aXVc zb`c%o&m?r)NR}aG;ZHQAI3zXE4oAh)xbbPNFJc_;J;)c{5f36w%(SxGM9-%Y- zTHkq_jr_K1{cD8r*VA=JLyHD*(8V(bZsNZ_A z*xgJjkDBF~9pz85HzjoSf`SS6X0>~Zlk0>TlAqS!ihIdqiJuKV2=0w=Vd?bwK!{t2Y4{&V5lCfv2Sz}SLH zCFc z|3oLgv~6E>PZ%qu*Ol0*IuBcoVtFcKtgzdvOV2#cVQZU|b}SiepTwOERX{Pu1TvX_Xy9OyB>eLGOLW zo3iRVnp(+>&z7<-qAn}qq8wua?ceq6~EgRv*Q$^h=PIE0_!Aano`? zUqcUA(+WgdQ@dEl<6Ip$rAF$$+s7o<5=9uRn3ORe>^hJ2(#e&zUcGHBMRR1d*?zG} z6}E2E8rXQTP~I(ICL)aBkSBg_dw&&9u$Xwi<{pd|1*61G2Jatx!$_=M^dbkDk0skL z88li7fzY5ecD8i@XcD3rtXuO}_xbK7(m5^DVn zp>Z<0>IaE=94=(to@lD4eQ8v!P3BmY=uw&2)_lHm#xV|k2(YCrj#i`Y+dc$@F+p8x z(b|I~^^zjyo0?mK?-q|IQ_8DUk2v-pPiI(aTVvlKr(n_A7Nv3|OP3ud=ry!#3>mgc z?P*Zd^KBh0bqG(%`MOCHLt_=T(tUX+C<>u8Z2YZ-0F4?MaxSI3h-|>*Ep?1nVZY@R z{$mQQ<}mR*(kC}nC{cRUiG1Rm3mtVCkioGe)3qq06MQWh+9}dVV1<^-T$qteGO%O8 z+6UfC)=MBIm%k$CC!*n6_|u?WWMUO3l~fU`K=SjV)exq50gPsiNrrBz-Cjos>d1J+ z1$h$quJB?hgOWUWb${rIw+#t=-z#X%x+U5lQ4(%uU9YRJ=g8JwS-xXv3| zaFQuu^HHR~A!=3~lqCc;wJ-PTw1pjM3p{8F+M@A7iADC1?%*r&F6$#$q9t`?NBlnb zO4*{cFB!=7lCGc}lFdayf^2{SQ^XOy1kSZfYOC0WA!LO5 zDgA|565tTiXuOm{m%g0ZNqL^CfoDy-Wkrh+41Y}wbs3u1u#(p7E@oElie{GG2nR;X zkpb!(OJ)f+S*oUmKb$>g9%ybs2S|(|2K^@X517Yl-pDE#9}Pie{LHIM zqx12n13`;~IDV5(HHdf<@(-XxKDl43;<)|zASJve4y&{0;W1+x{3U`qs%Ir6v`=Kp zwz6vVoZd(#CfP)+>q$hysWh5@y6fjlqnbv1z25%8a(}1?nXn5=$ZE*9eg=-uH80ZmLr=gy7D+grxnkuIc;SV2?joFKHt zOAE*4ZaE*})v6K9jctldPr#NUU|aa`zf?{FG)#+Y8^z7M;fvF6_6 zaC6BL++}Kf>a?f>7pXH^+$zi@C6>k&&m>&V!%)VtvQB_f@kl*70LN0QC!T@1;;@^F z%UhP<&KOpjv;Ny~-1j)!)yp1B)>R0co-;;w>n(;m(}gS~iXtwOU{Vvh{dQ?V!M9^l z6Oz(Zrqw5EDQ=OkcwA#AA%XaS%3^xrOg!F%k!4Anf!w=B(>UQ*R%^OMXPHFqT$ARGHSoIM^({-nlin`-*W&T+Vr!}vINtX35vVt3H7wVp@-jQblKcuA~rs^#pam#O7Ump_4bs1hyoz!&GRi&>Y-W5p&{6swK|^i&{e_PuZ8| zA^;mG^V+C?To1Rc;G4o3A_0h+@+=Xta<7|6x_Ye{R-x=Z$FA&m7V+pB)#T(2i)9hI z+#;N|(1msyU53}`Nvv(a506yy^NDmGN_^Ag`UMJ!OAzJi_pV2^JjYgnpird%R_wLV zgDMRN2$jSYCaG*x8-k@V<99gbHVkbt5S$AQpKG$2URK(cS;)pKGz+0t0aT5=dRS{^ z4H|r=82CQ92krot^`yr>XqGtv*+P5(A_#2r0+Ar;@j#q}ft(z4QxxC}__{>6zVsJK zp4wR^EQxP0+dty+VUK1q2vIv&GkP`cr%|3qHlL%o!T7*3rT3quK-~&%hQ>5(MVak%>n2R>@oLFGj1SdUgeZQBH$` zXt*D4^?dQaf|eaVk)cD;o#>=PZ$`=(hz?ULDQigMpoFn%nSqIdAz(N8m;J$*%-Xmtg?%drqx(It=Zk2D0;KqRExk23X2cg*avy=Jw`uu{8lR zgL*4WJGQvJaP|qkq|>JOfMS$jlAG_-hJbX441?+=FPNfn2$^(Z3dt0h92n+&?Fg8v z!4-%Usw&7Byn~5SY$PNZB5D#Q!3rBA-bwJ@rpKrJ4v`9+UMUQyeWLtO-5?N+U%0-= zC}!DGP^p4ShC7)t-4fJrI`OY;=^=Ka6m=xVU+<{`ni9zBEYwcdK!>@<$wRi!kTON= z`LwnWp=su%p)hkUq(%b3i|N_VA5F9)^3GLM2ZwX{MMm#>B6OysGXu2 zqXp56<)zSLwDn7YTki-A(Z7cbA=-tRr2+XMb=yDr z3Z9rGbka%SzkRYHAL3cqpxk_iW~d!(&8O&`@f2FIIBs&*v1ZYuk<-ioB#QlqLB=~+ zGe>b^T$f6qpDDJaWz0*5PkOdtWiz9t=2+)btph~AI6GMPLH!n=Pp9KRXkPWsog{6h z&Z}SZIKd;9E?KZ?tfWgw{)_G-(}U?NfKd?)6PqR;(NV7mrU0caN+FA5B^IgZqi?Fz zP|hG4cl5g5bBN+b_UTlt$%sKr-zftt> zos#efT9ie|j7JMc0s~V#GB3ItP;DxJmS9PHvU9ziC7B=;9b6$tqp%$5VK`V-tYmjQ znq*vrb-BnMviY}Ll=d~)H1Az6`kV-cdTqA|+Rl}Fv&cI6QK(SvC(d=UAG~k0%36y~ z^j%I64D{2ISVm<{%{T^(<{5-xc(zc#UyvO|J1QFFE=|2b3oY*&&nHhx!}B0EEki3{ zUV>kfCh-$aX8;@Hul)FFQ?FefQMIrV%Q4h^lpt2UW4!zm6on%kq?}@Gfl~^X?VSrm zrYl*{eUgQ{2EV=;rw{_UiT*U0l5QD|Ch?R?mm*OCwTFIT2GaRlCM{xfPsYS?*eX<6 z#~QD%HGf5Q6JMZfihFh7M@J{ah7uyce@4P}&nERJ0H|hC6c*&C)kOFWt;w7EmX~bq z{A24XslwR>auH6MuU}vOB13bna><>llbZ|P`{!yYt6!Am~?VoH*ZfeOG0fuYNWMC2vh43jkwm=7GFJDZWurg+xitxUO zNS>#KsaPs;lgMx--A&G3e&<9USAxQco=7hDkSywpKa@)4bhTnA*ZwM5)wdEIPL-dY zFg{$tW6*_f{x}xSP@aN=hnO@INmCfFh9Vjc0=oykM4=c7z;x};YQY(lr9LpqMYUqg z4Zf5n0YKHPVgV%6C3E^^eqxxRz%nm^r=w8PX^HpGg>y2gEH9obRCG&48yp4!G4LUk z0&7mKgtXTQtGNgcJ%E>Zd=)O%8O+eEYL-qz4+Vx92G!IiTmDb&9W#miRI@>$VOx^U zn$vohu)_nxJcT44LeP3OQNbm2l3cAh#s@jd;_4*k=+yHRNq5oZMHyHZ9ZU+WKLe|X zxl_-5lW6`EH0Gwx&!d+lb=pmmv}-Gteo}3$REWtxTEQinUKRZ3+6d%$fdVx0%l2+bLF)tYrzOrISzVWsz)yHU>qdcbRObH%2GxBDN!O(a$7zf zC@&T=7?L_n(+8QNUCBxzOnqEoS!BcV`d1h|z9}GMH+0>mmx~~^?780hpp1N@&M{`i zb+lYZ;&B(C1yq&ylF#Q>I)j;tCPiL+MkS)1@R!|IH`_5kQ=0l^U3!q(fu1!O83W*C zAg4V<2|E&piHdN@>N3I}F}ouRUz3OjvU%=u!A^f!80IKD(gi_0YHw4UFuH%UVn|ez znmo?MMjIK5#UFv2&E;(7c%+5CU z!{)YxAdiUTnouMh*;~N?K z(H6s%E7GC%YPBScat^Q+sqm5ynxGi}-6i)>`UYUw1jD$>iQBYl6eWz3K)j$zD1gX z-^DqX{!HvtO`EKU!e1(d8`6lBVeb1v-QNM8{`A<|aqH6}$9BrVI;2DC{~l1sV--k< z-F-es*h|KeTsog)%4XHOr*WE`^Y5;m%@buVQ+1f6=^k*inLbn4 z<~0(#L6LNOCbb#}kMQ=p#APg_)DIHd$_2p=6^^wcm?p8xgU}>jWDrk@+SxS1&}E2V zILE|%ItlW$ZI5bvM@`T$t>5ZTR$MH@h4q21_cVRAQAx$nI;cAjsH4>nWB4X%3aT+p ze3TzUYHE;`bu%kLl;L3+4kg2f2UAN7^;}gXmqG46L7QQUp*`w9u7S#KON#|+^0m*% zTN~Mm@)6PiP&thvMqTFyk^Vz z?Jbn9?5QoLPt%gioca@fs-#XA#ISI?C-W@AP%1nSmMdw|sdXVy)2e>cc04_X#7|~o zXw|O?Tq6Pn*+LG-c4T&dHQMUDEk%P1lmSq9T*A5lAg~39{FG85q1ZUE_Qeg{)`P4wKtrPa;#` z46`R(unF)`zE(ETx}WtU{Su7sT{7QpAeeq~q3;eF?E3Z|xjbK|Es;o-lPGhVYVui{ zX;F&FwAyy1=mP&u%9-NLtC9?Lusq*N4rHDbfn_`oJRlaNQZMP;{%gx2@~!i5+2L9y z0MnU{XuNHhd;vCs=|94`T05DFc6=qym0F`sT`zf20924ki!m`8!m7}NYH7W1{eTEL z#|5t91h#HZEB?vB#_fqWBdeiRSs*!KbQG!zQ(&gcqNbEi!bAB1*3O?HrK4OZ6ZuP>NTQTV7cr@YvCw0hpeOkzhJ zNyJBQ<_DQPL-zC%gI!c(M%>q)Q*QBKfz)u#d?(|bA1@wKdBQK}!6a%k_v<;4A!aOf ziR3KSo}{8ZTDhMp7jTM>!#zU>xpwo~9Qg6`rvxPj6f8FpZ5YLGMIK$QFiZo%u95<} z1lfM^^xP$M;XI?=V=$|j=rk85QR0xWe?e=*HHs@l6kq$ZEwx5ZF+yKWz$KE={iH8r zfgHZHWrT=IfT-hZSiPu}6_=6qX^Yd<=W-|L{e>tnuox#ZRAkr)u0I)}%i)qc<-gB# z#nXN?r7q!tgLMqAQ}nN=o~C5hFP0JnnRiCCLY7bZObkMM0y>FOqSm?Q#8f?7WPXQ5 zZR<_tbJN@mJi$nteoLPNETW}a*{q$Z{F*sgH*`xtIM@Jgt1rY12b@p z_7buu)xFSASd1vQ0N7PF=7OX~$x85H&S*A4fZwyORf+t2h;!6Ip5BiV4R2l=R4`Ts zvraX8od7anhvoXMw3T3|d!;Dtz_)l)H%tfxP6sP-UYEYl?NwQjnDTT>MEsR%8WIgl z*SA3UNHXxBgsK==wSp;Y2G*y@mqe1QLvb&hgAgg_E|FFCiN(EIq3TBlBL_Ckny)ac zuXLy7vU|YH(`tfDc%gYFLJvBr3Nm2p<{RWGRlxqae6}vFQR;L}8SjYPEMZlZ07!Zo zb3+J7$ZQS#z{xXx&L*vvAd`HcQd5{fpZc`;dlm_ey$?W@}6^^|5uEnSuyW7ADS|w}GDDxeNC5dA#-94O z&rA$ra<0lUiul28EnP~3);|jiiC+T*t6&IKxv;9La6)P8!T2p(i8C=Oa31jH-JMsE zYd7Wdu_yu8)?!;vqe_|6k*Ows47FJd4b4UuwXF4I2VQAkXl^(HA1vH6A%!- ztDx}yvnc;t1HrYPWTk;MAHbE5cB=Ag%iy|;l2u3|00mUbvM7<|p9NCIG}&1e)w2kB2bDr) ziX}`RAADbrDdr9sd+n0cOJTyTW0n0vJ3Cu*ECwbi3@XM|vOzpUL1g2%kkm9-nhzEa z9~)f4d`cH{hy3UGvQ^Hv$n}gg<{la6Q)#Fsv6cm0yP0YMey@eBe;mK{UNyv+%IY~t zT|tDTDxyg}a$virRr4vQbISl|w6#ui^UiEjNzq{p3(6m7z<#)10z|Q-ie{rvm4@Ov zun-b)-$1*8D3?+cGdk_6+Ei1~D;k?m5T>@Ls8jn3wO9hg1IC^%ngw|AEuvyJyU?#- zIcaPGxeJ+PMLwk0!GG|wTA9akb5GLvdQj8R-HJ%;q$r<8JJ}Sr?!-28mLO|3aPCl{ z%;A#x+_We-RC>uP#JFjE1!kR)+%Fy`Ix^9HHJdb{Im>d#m9vW&U&$oJxeqQ8j-9)%Bgkf#hM zMmA0mD}!f{S|CU!os14cz~4t{uL_iGy3D7hkwo7Stisv)XXjXrQ&DTDg{P?q^t_>xSvR9Hon^XL>Cmu%xr8!p<7HE{AJAAH;@pa}7?a5(AHfTv6QN zd^(wi+I1;`f&2=`a^W zy0l=mL!k8TaUd8=bSr>@+5p6`Sw5v%OdtY}ws+icO#r?MCLysK?JRRDe^6qBixr*S zEsDBTn%1AKD;HxyI-Q8l)Yc7bmAFP~;jqHKX~fumZC(pZFuloecNg;Uyk)1DSUQpB-QA|6!4hiT_s&(CwpBWuud<%DjQm2l;1>}n z1U_Fhhj^vX(IW@M7v_}K>7BlvprT<{#)n5n6>oRs-5POO1S}IbU7$9HKDC zam6tp;w1}Uv&v2*m)H?#_*-sK4ip9F#Yl&~gEwuC**{o45^Rl49ox5vCEm&}Xc%1ZL^caDZ&Z62mnYz{hick7xkzS;F2({$*~x4HQ}L=S3HKm+#d~bewwlS%_Nd$PaNk}9 zgmp)_RZh3|B*V54N4A+pTrm!yr_UhTR< zCR!J!g1qpN9bN2V07Yq&8pl5CK3RSx>M;UGcBP~xjrtqdJtu2Zq~+o@f#2aA{7ac5 z`3kz?w;qf|#O9ToIhYHmg@M^c6G0$il4*apj&+f02Hbj~T9&4Q{N^;G%i1ymv1H}Y zb-I;mM#%`)EP>fzNZBX9GbvPexw1{A$|bw8lokS_8oQ~e^qaktjY&vQyhQ4O5^R}A z#}&Zj1|2a%HB)0A#oe8aPvMIe~t_D`HnF`<*b4fRS{ zX%ng4gW0CE2}(ZM-J7_hXEF|alQkO`jFBL3xua&%QBy&Xa@wW%KW$j_5XEXITvb0l z(v+9FSX6C>K^>n?_TC10{QOF~Jg1A)OAO0l0*ohN*l)1d zbtH##idsuS03*hAShM`FV9At7*xD7m9B(2LPL8{mK(ru(nY&+lc?PwZu85-A1T`v3gJmWb+;IgO$LFp*aPy=brf>Qn^7_ zpXGHu8my@aDJ>aqiEy!NBrS-#ebmdIm?BInWNXnA1$AEoQGk$|)!%)7eoet?&0koV z6POS3x>;%`6aq!p4uSMngHlD?Jn_xDZ(@U}7BKA`oZXNO5`rQ5Jv;}w1BQ;pOCL~N zX4WWKnFa~EP%j|-r%@D_>1W#D1BW~C|M-F#xY{Rx)=1j7--9B_wyRPl5H7b{6hCB}}kYIy>zjfBt<_0po^ zT?uq9Y#o}fgYnf3$wx~{GE#0C=M5kMtZGJo0!Fvw(}S|lo{W`6&Iu?pO;I(+sAsee zXw)Y8wY;92`jZ#`hYv$_QHeGOje30p2ln@{owE0xu?_W?lslzOIE#!sYekCiDCz5O z=8B>J_QtrM;;?-PW~5mG6Bns0`?c zn@ZJTy^utr`)XB$bz-vS+~HV4R&npF=O7QfV?e6>e;qIU<5*1{*mTlt+Q3`=*@V`K zZI#gHO2q(P(8(I7rvUAS! z4?09K{jFyI-v!azNT%nGA;2tOn`HkIQmsQOxgRv5-IsuQZsE+puY~As;py9jY%TbK zC#0L>@@A#JCm%j-9F61W>jfcY)-Bgr$|B{}n^;k+0 z9OxH(&E?=h-6942bzJMjJiS&6)Udp58wKcR2Cr@k$5AKPjG8}a3haKTsO@-dn_oPD zveL9X@$k?c-W-7_4*T!Ryzez=`8s|n@aha$QEpk#6Z zEL!o}cMkEd^P*-`pe?HG@=&d_sKithA{F%=L;<`Q27dwI;RO<_hq!meXA%fb2zrZc zbn{Bb(|ZlUX!WxtTfBQsYoh3MRE)O)9N0bI>3+p5q4SZ@4HNDE+{p%fabfz=ni6oe z+%IDpC>NoPB=CiX`A?Bx=H%;Vz~GL{keN~hwB%cgwyKNyqBxMl2~NOz(Fk10dQ0m2 zI;niz8aNmybW_QZh5iDb<-=3@E>^;XU?&HF<+ zjQ4MW>r8;Crrf=%-x$}N^=W2r(^e8CXxB;Vi?LhaT}`(4Y5GB)pDRK?_M-7+@R_l* zPxV=UJQ)Vqcv5g8(lUXf*i8SBC)2BFMji3^3Rwiur-|q_wh3G_-xPwQCz^P1`vyk^ z`^D)Kw&f0ASFc__e4Ek+9n4SPlEPxSBT1Hfo)bg+rg{>A=gpW~Rt$)lk<7oSC9dB? zfy%~$oz=?%C=;!7@v=z!xhO)2Hg;HJ0Xrr!`K>F44e`iLi>*Y2mp840WQ*=(bvWkc zll)P4?&qi+%)$A$lZx-lK!S^^n)+Lfv=7$IhQe9(eA_^Rd!9Wz6*exMw?iu3ZJW$5 zRzw$`&z+9L3H(*zYhVjSH>F6E5*JZPm8D&Fw%GMcW=<=hfC+`uiQXjUKWNkA7eirV z!Qw{P5A>(X0rNx0Sq0A}tSu&{`^kH*oUzBM^eu@{d_v0u&=r7i_wS`_$=xk z+vWm@cP5XmTQ@CqUIHr~(;s3V_JjXoW5L13X{x0ljRVQeb_8Ns@FS9ay0|xE9VE(d za_=}+EtxNKNoce%*JyHeBiwp*+W8pr8jVSf3*`|=MLZbxe=G6kWhkqTcuND)T1!Fx zK(pE-tVg=bz@7U7UTByXhQG?oNkAo{7=h87THd|s$Nv3}7Tv2Sle?|9FCy@sn~SYQ zAVxTAaqb2O%FMnD;5^ge2DLlk<4tE>R><9WTzADnZq$9y%- z1akNav6GepJ?!1=MkDfXphnNqjP^p&jOR^DA)9@E<~|yO z2gOz~!Jj0)VKp?)zJoey22>Xxly^|>-9-+D8~A?Nnc)y)7yxLR^S0Zb|@(hnY$U)lnZE# zoF?$^=49IQ7U8lvhHN#0*P`nv*4R*{!+>bhu1;Q1!TPd9BpLek6}Z{8f2qL&NDX^H zYS_F2R)sm>lnD{hl6#OdV)L#j*{ZSl0SdDRU)(V52$8-H-S>>9kl=$UIwSWWn1h$G zOyW^qZGe-$&GdV#os4f)SN!StAI&qnT-!AWe>mh<2wYu(yfx7VTaB_4&Q8#s+!r~8 zeM%&U)~eD2<3eX0JqMci9SkNtuL$Ct#T&Wsc_o3N34y*<3`an>$EKLTTm6&JzuDFA zc|u_y#60r^X7|*$ldUb)sR6c(d(e_Paqx-BW;V9ig2`fd@4))--fPe_M~r-_b+&JI zqt)cvqzg9N2ehs17WluZ1cVM<2l?FS+U#0<%|zn)l)sl;&H9NExQWr#lnj8f<3*@a z^v|}0YsAs5(<4?LMvhGBYx4UB4i%}JTRaz_kUCP$s#ADJml0k{SQRB|*KUz*sis{W zt%GC}OeX(a2FpB5FgXgR*1zmD<>m5O^9M65F|1{8;qUoiHCSuvd?wJl7%o8>9xYe= zQMY*V*`0C^tz1aJd@kclYHV5OMMhUMHR|(z7cDeVoGSJoM2YHJs2wkYR~@#S$-!7) zYI)%bm*-fkw+`cgK?>d3vmmeM?SJF2fG7STiRrOS4PKYKKjtlnj7jG8%kfvXK_tg> zUDt48woAei6TD|d1Ub&Xb;R{bp4mh^tI=Z*WYp3M7UU#~T~U42yqr|;uTk3~3W*em z;Zb{)CuXc#YaDB@v08S{5;~Yzj)LHRTv-QQdGE{=nm};*8%5&={aQ&}ub7w}pf;s7 z{8?d7?KZqdT(g<2U5h&tE=RgedE4h;Ox**^f4KUj=nB68=*1Z#E46OmQfOs1cIg zCz%@j+v{1TszUPW^7|Dt;1|VVdfjK{tlKm`7vKtJf^|3+xRMOimaAJ zf56%~YG&#(b<&2j`u|VySTlP9#RuUjP%OL`c)vI`-W($sp8FWlWP+)hHXSr?164UI zQka!;v%ph{4{KM5gLYE`RfMG{pzle<>IEodENKV+2pRUdEuTM=OpYH9*BA2qZ|@KG zh#&VCX+6GA7iX1mh&>xCN$uAY>@9X5zprnvT0ba!e!o2{w&}dzpAD=(BI@7iqo};! zJm2o$Ahyo~=Un*t-qzRYt9J zK>wDZ$ID66Eljk}n6`Q<@wvB|9xk>0&5fVGJw8aoIKNta^bkQpZ>pq<5D*TMrK4w_ z7G;wtsfblky|rnD+3x)tdPykx`dcH_9=B4Rx$Wt+eOk))aOwU4iJ9QI>5z^-wdmRB z>=I>t@Zqc&L^)@kP$flt0ZbLpx<)G=9NFY~s6(3y+y`f4?EZC^iV2^6+x_^#HTF@) zQH}2QlQ}v~%nfnX4`H>};~fwd>?s&UBoUy5Z`z%X|HDaLi1OK3-P#-R7m^^xywKqk;dX@c$YO{Qr9HK_=`@avd<) zq`<_J{*(0o`o#Z^3I2T^Ld=gJpZgi$pnj=SwXfR|h?s2Bk(^WCf*Pg$?yCmKqCY-h zxH<0hDMRnR`WBUK-ID2{dAO(v(=j8N#8`{3Teq>MZ6ZU6Hv#0P6GKC=DjM46f*D0U zuy~_PG?o|!PvoWQu`R?>r;}vUrbDoewS;SVGCw^OJ!rZq?5+n?Q{lkzioz>Zgg-`j z;J3?=gqvO8$$vZRn4MY8IF@01FVj^;a;+p@utlh#T{vpL`JZn1XChM9bg_31IEWer z2Lb~B&xV~{Jb~Tt_aOu7+xBY=Nbl+-kFE=WLZ2v$aAqV@I;@nqEo&(pgH%7l@k+nS zy>7d=ph6ohmNaX<&S2VnyXtusYmAV$m=kYnpXH=5dlppA5W(>J2}&x!!68X z5-|&=kuMU7+03oWx*1}bmW2~8DMK9t~B~Nikq5*^l7ScJWT1hpG z8A4r z(MB0ii)LwjfD0-ZQ)#Tz6U!bi#Tc zIkI~i`|jky-UqY4@i;4``n*Oo3VmJ+m0UBfQ_JKH%Be06lB$4lC%C5YAFuvDeO!4s zlx-JRh!JHOvXv!Kqu0I^8oTTbAz32EzHen3vS$#oXMM{OvL-^4v1E9Ml%=wbB};l4 z+4t?6Y0{MX-usW4Yp(10opYaa?&mqnHO~+3c5LMdi{MkHwdM2k?cE+0I8&abl-i4M z+0+ergBumLo6&7p4Qy>*?~VSy9Rn89U~mqV5&Y|zO93vR%dkeBwVBGkkR!;1uNTW4 zTj&y8D4KQUrIUr_ol65#T~_@+RNb&{MJo#j#&u=9$6{xN?Ck6Jw8f30FuF5G;gBa? z19N3AFXBaABv8whO?N_VK|B2gd zyV885;~{hS#&u~vj{ItPKdsNPVHZ2OfEM?!NBq+jxxdPrv-<>=3sf2CTzM@*yCY~=TF}vQh^Nw(3LGO6 zu|QtY?2?nG0fbv`t=0U+Ey3)7nAMl|UxmL*?&-H0dFf0AaGB40$ifsC)Z1umkuv78 zk~k7cs{zX~n}!J3xI>^SpTwc#BeK)_1+1ALBKwlDFfWy~07e#o+20}2(Y|N^FB~i0 z-gzwN>;!&?25?K?EW>&Gd2jbX>rHY`#Ywd@B4vr| zn$aBVsq?~I7S&4O6fo`k{1vCopZA=}Ig4!ex^--bS{(t#Z@doe+V{tAn~6qVzjSNq=i)JbJ1W*Go;Q z2MR(Y(w{0Sye%~|R`nO$m=Tpf(#bX2Iz42cLWf8}bxeMFlREzF!pH}HClQrd=eM>A z=h{0#*X)rU{X3h}6ZdW68dxkd&>6F$6<+6(8)3A$qP7tYEimPaMTqT;r2GV3B-eFaA?ZCyQ~$x*~VNSQ9*l z88V;;o*Ai1$7y2$;L<3SN~IN`#O$QOya&jLhE|9%5C8T7aJz)Nl)| zZpbsP83-9_pF1Qc6yIY}!DXaFF~>2cHrVPr*ZY-`8om@8Wo4+?z+2Zle?eK%EZ-;C zVIhhJ#}ajF=~>qe%;$Lq=qA;W&vNak8pYMLfF4^4YfNqa|0CuRKKEXF_nq>EvY)^-n`I}S6Kes$Ojr8yu6E&it1D# zH;3jReBUZw%BpWs^oNXred!GKf_dFSX8emjmE1+a$k0}=#FgiBZ}Q$-`gdI^B+f4s z39e|Pea9{nw~qMdMNXGH1MkMGo=^#PO#6E)iB(6FCgtnH)|(xHl2^=2rmedcx<|1@G`{84mz+28cE zfnN3Yba1u%mX&?3HM*Xbrrk*j3OYO(GVXHRMUU@#Gp1!&Mps{!gS-w{8J@*Z9A~Df zS+Sd1hvNeNgUNpzo8;N;>ePLLoaJJ?Iv5N-Sr2z~UI+x2NwZ)m8Nq~^i{bWsfTU@FF zG_2!}H57_xFQICJfYzv{wnK2yGq<#2a#)ZS6+ATFZ@TY90~_0R1Yuv^PpMCCQlx8p zs!i0pJv6Iqnkc;qX6WTQ)UQy;lE>!ts@6+I=<0_3QwVv;1#;ge-LboNh5FAV#92Q- zf=X96sts?zdjI_pq&vfu`^Gl*tds1R3a%`3$=IDg((A24$O!9G#wzZ6mL=-FXC7nT zQhL#iw}sNgLnmi58UDOT}7G~ON>foBdWpo7@HTPC%a#% ze2RQrP0JdF3Jytm4vk7@Ectl!gn~}zy{W%Kf<9*fL&b51wEpgfs8pGV>dG$ghP`Tm zxLeBfDrabBg3@+%@o6cO%d`Vitj8-IBJYsLZez1mwqxQRDsWAlsDG3Y9DLp$IT9C_ z38q9AY8zazbcFOn?OEv*kFIA#z_KXXvpfWwTwgd`4K-y34z!PZQ_|3_u~}8Q*OMJn zh}k%5ZLx^$$mA{&GKQFpUvd(?R&6@mQ;4`T7cAuryNlvX0nDeFnq02OIooJR(^bCMN$l! zodTj%O0F9M{HPCbW2%vVH&%8yUE)7EqB7*52G}GTy5^JBQ))%kvgw(8(+r3^C z*8?%xUbV{B$CiMarA0)P8dSK4mPj`qa>{LS4#$(4mb_MtgZR4Zvb{Mr~DNVm& z8?X-L8|FK`&KS#K zGNt8sSGM>PPu0*;DoDuG>h$PY)l@7`i!AIdxWh^*5R6qgX~;rLeK?UUN> z^4iZlDA1f>-kF?nJVAj9l3mF!9(34I8Mw~X*1nj;p$+Sn*Z|ZnsLx+K6|DTW$?|%Fu)PjVyUqS3+h^6~Mfr>D8xlj zCXNsPkK*&cVE97y`y#+h@UU-0fBPH!ea!T$9yk%OPyDwJBieP4`fpzo8CmwvFcJ|U zX`@5|2ic`a0s^UivTvVjiUj|C+XOZx;v(4jj{2LOKaE33Sfc8K>`MD+GP14Tu%sah zNy_g#Af6F|9KsIvz`suGe)ZhJc^yf+fc(!m()8}XG!w=}#6{3Nt#HuxKcC8j5) z@L!yYf0jV#mVGYR|BJ^N$OM=p<{;}0PDBxgYMiLOK_R~rF z-lmbzzlZVH^KYX5ZRdaX;KAO2q%`Pf*w4@AKRWJUAx)B#p+R)q!LpiU0MUO3GXhBh e^OYa5-0xN(T9gDTRs5hBNY+C^MivVp{Q4gbC;Zm{ literal 0 HcmV?d00001 From 11b3ec9ac5deea1dcc770083a7b776a746a40060 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 12 Dec 2024 17:35:48 +0100 Subject: [PATCH 583/669] change docstring to numpy --- .../scripts/add_district_heating_subnodes.py | 72 ++++++++++++------- 1 file changed, 46 insertions(+), 26 deletions(-) diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index 2f3956489..df88baa25 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -1,4 +1,6 @@ # -*- coding: utf-8 -*- + + import logging logger = logging.getLogger(__name__) @@ -23,16 +25,23 @@ def prepare_subnodes( """ Prepare subnodes by filtering district heating systems data for largest systems and assigning the corresponding LAU and onshore region shapes. - Parameters: - subnodes (pd.DataFrame): DataFrame containing information about district heating systems. - cities (gpd.GeoDataFrame): GeoDataFrame containing city coordinates with columns 'Stadt' and 'geometry'. - regions_onshore (gpd.GeoDataFrame): GeoDataFrame containing onshore region geometries of clustered network. - lau (gpd.GeoDataFrame): GeoDataFrame containing LAU (Local Administrative Units) geometries and IDs. - heat_techs (gpd.GeoDataFrame): GeoDataFrame containing heat technology geometries. - head (Union[int, bool], optional): Number of largest district heating networks to keep. Defaults to 40. If set to True, it will be set to 40. - - Returns: - gpd.GeoDataFrame: GeoDataFrame with processed subnodes, including geometries, clusters, LAU IDs, and NUTS3 shapes. + Parameters + ---------- + subnodes : pd.DataFrame + DataFrame containing information about district heating systems. + cities : gpd.GeoDataFrame + GeoDataFrame containing city coordinates with columns 'Stadt' and 'geometry'. + regions_onshore : gpd.GeoDataFrame + GeoDataFrame containing onshore region geometries of clustered network. + lau : gpd.GeoDataFrame + GeoDataFrame containing LAU (Local Administrative Units) geometries and IDs. + head : Union[int, bool], optional + Number of largest district heating networks to keep. Defaults to 40. If set to True, it will be set to 40. + + Returns + ------- + gpd.GeoDataFrame + GeoDataFrame with processed subnodes, including geometries, clusters, LAU IDs, and NUTS3 shapes. """ # If head is boolean set it to 40 for default behavior if isinstance(head, bool): @@ -80,18 +89,24 @@ def prepare_subnodes( def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: """ - Add largest district heating systems subnodes to the network. They are initialized with + Add largest district heating systems subnodes to the network. + + They are initialized with: - the total annual heat demand taken from the mother node, that is assigned to urban central heat and low-temperature heat for industry, - the heat demand profiles taken from the mother node, - - and the district heating investment options (stores, links) from the mother node, - - and heat vents as generator components - The district heating loads in the mother nodes are recuded accordingly. - - Parameters: - n (pypsa.Network): The PyPSA network object to which subnodes will be added. - subnodes (gpd.GeoDataFrame): GeoDataFrame containing information about district heating subnodes. - - Returns: + - the district heating investment options (stores, links) from the mother node, + - and heat vents as generator components. + The district heating loads in the mother nodes are reduced accordingly. + + Parameters + ---------- + n : pypsa.Network + The PyPSA network object to which subnodes will be added. + subnodes : gpd.GeoDataFrame + GeoDataFrame containing information about district heating subnodes. + + Returns + ------- None """ @@ -304,12 +319,17 @@ def extend_heating_distribution( Extend heating distribution by subnodes mirroring the distribution of the corresponding mother node. - Parameters: - existing_heating_distribution (pd.DataFrame): DataFrame containing the existing heating distribution. - subnodes (gpd.GeoDataFrame): GeoDataFrame containing information about district heating subnodes. - - Returns: - pd.DataFrame: Extended DataFrame with heating distribution for subnodes. + Parameters + ---------- + existing_heating_distribution : pd.DataFrame + DataFrame containing the existing heating distribution. + subnodes : gpd.GeoDataFrame + GeoDataFrame containing information about district heating subnodes. + + Returns + ------- + pd.DataFrame + Extended DataFrame with heating distribution for subnodes. """ # Merge the existing heating distribution with subnodes on the cluster name mother_nodes = ( From c1aaae810a40b2d082205019368f349fc0d78f73 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 12 Dec 2024 17:42:12 +0100 Subject: [PATCH 584/669] add comments --- workflow/scripts/add_district_heating_subnodes.py | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index df88baa25..978c0705d 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -126,7 +126,7 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: unit="MWh_th", ) - # Add heat loads for urban central heat and low-temperature heat for industry + # Get heat loads for urban central heat and low-temperature heat for industry uch_load_cluster = ( n.snapshot_weightings.generators @ n.loads_t.p_set[f"{subnode['cluster']} urban central heat"] @@ -137,9 +137,12 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: ] * 8760 ) + + # Calculate share of low-temperature heat for industry in total district heating load of cluster dh_load_cluster = uch_load_cluster + lti_load_cluster lti_share = lti_load_cluster / dh_load_cluster + # Calculate demand ratio between load of subnode according to Fernwärmeatlas and remaining load of assigned cluster demand_ratio = min( 1, (subnode["yearly_heat_demand_MWh"] / dh_load_cluster), @@ -147,10 +150,13 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: lost_load = subnode["yearly_heat_demand_MWh"] - dh_load_cluster + # District heating demand exceeding the original cluster load is disregarded if demand_ratio == 1: logger.info( f"District heating load of {subnode['Stadt']} exceeds load of its assigned cluster {subnode['cluster']}. {lost_load} MWh/a are disregarded." ) + + # Add load components to subnode preserving the share of low-temperature heat for industry of the cluster uch_load = ( demand_ratio * (1 - lti_share) From 57aa50c6f22b619b1817d47d4a4836617ae244e8 Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 13 Dec 2024 11:12:29 +0100 Subject: [PATCH 585/669] another docstring conversion to numpy format --- workflow/scripts/add_district_heating_subnodes.py | 15 ++++++++++----- 1 file changed, 10 insertions(+), 5 deletions(-) diff --git a/workflow/scripts/add_district_heating_subnodes.py b/workflow/scripts/add_district_heating_subnodes.py index 978c0705d..303ad2eea 100644 --- a/workflow/scripts/add_district_heating_subnodes.py +++ b/workflow/scripts/add_district_heating_subnodes.py @@ -289,12 +289,17 @@ def extend_cops(cops: xr.DataArray, subnodes: gpd.GeoDataFrame) -> xr.DataArray: Extend COPs (Coefficient of Performance) by subnodes mirroring the timeseries of the corresponding mother node. - Parameters: - cops (xr.DataArray): DataArray containing COP timeseries data. - subnodes (gpd.GeoDataFrame): GeoDataFrame containing information about district heating subnodes. + Parameters + ---------- + cops : xr.DataArray + DataArray containing COP timeseries data. + subnodes : gpd.GeoDataFrame + GeoDataFrame containing information about district heating subnodes. - Returns: - xr.DataArray: Extended DataArray with COP timeseries for subnodes. + Returns + ------- + xr.DataArray + Extended DataArray with COP timeseries for subnodes. """ cops_extended = cops.copy() From af60c5220558cf5e7c4821c7d063534401256ff6 Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 13 Dec 2024 11:14:46 +0100 Subject: [PATCH 586/669] one more numpy docstring --- workflow/scripts/build_existing_chp_de.py | 17 +++++++++++------ 1 file changed, 11 insertions(+), 6 deletions(-) diff --git a/workflow/scripts/build_existing_chp_de.py b/workflow/scripts/build_existing_chp_de.py index 6e8b3e518..c14c7e551 100644 --- a/workflow/scripts/build_existing_chp_de.py +++ b/workflow/scripts/build_existing_chp_de.py @@ -208,12 +208,17 @@ def assign_subnode(CHP_de: pd.DataFrame, subnodes: gpd.GeoDataFrame) -> pd.DataF """ Assign subnodes to the CHP plants based on their location. - Parameters: - CHP_de (pd.DataFrame): DataFrame containing CHP plant data with latitude and longitude. - subnodes (gpd.GeoDataFrame): GeoDataFrame containing subnode data with geometries. - - Returns: - pd.DataFrame: DataFrame with assigned subnodes. + Parameters + ---------- + CHP_de : pd.DataFrame + DataFrame containing CHP plant data with latitude and longitude. + subnodes : gpd.GeoDataFrame + GeoDataFrame containing subnode data with geometries. + + Returns + ------- + pd.DataFrame + DataFrame with assigned subnodes. """ # Make a geodataframe from CHP_de using the lat and lon columns From fa36e003b75fdd032c78547b3aa7be4a2c04cbb0 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 13 Feb 2025 11:24:43 +0100 Subject: [PATCH 587/669] Pre-merge: remapped directory structure --- workflow/Snakefile => Snakefile | 0 .../scripts => scripts/pypsa-de}/add_district_heating_subnodes.py | 0 .../scripts => scripts/pypsa-de}/additional_functionality.py | 0 {workflow/scripts => scripts/pypsa-de}/build_egon_data.py | 0 {workflow/scripts => scripts/pypsa-de}/build_existing_chp_de.py | 0 {workflow/scripts => scripts/pypsa-de}/build_mobility_demand.py | 0 {workflow/scripts => scripts/pypsa-de}/build_scenarios.py | 0 .../scripts => scripts/pypsa-de}/build_wasserstoff_kernnetz.py | 0 {workflow/scripts => scripts/pypsa-de}/check_sector_ratios.py | 0 .../scripts => scripts/pypsa-de}/cluster_wasserstoff_kernnetz.py | 0 .../scripts => scripts/pypsa-de}/export_ariadne_variables.py | 0 {workflow/scripts => scripts/pypsa-de}/modify_cost_data.py | 0 .../scripts => scripts/pypsa-de}/modify_district_heat_share.py | 0 {workflow/scripts => scripts/pypsa-de}/modify_energy_totals.py | 0 {workflow/scripts => scripts/pypsa-de}/modify_existing_heating.py | 0 {workflow/scripts => scripts/pypsa-de}/modify_industry_demand.py | 0 {workflow/scripts => scripts/pypsa-de}/modify_prenetwork.py | 0 .../pypsa-de}/plot_ariadne_scenario_comparison.py | 0 {workflow/scripts => scripts/pypsa-de}/plot_ariadne_variables.py | 0 .../scripts => scripts/pypsa-de}/retrieve_ariadne_database.py | 0 20 files changed, 0 insertions(+), 0 deletions(-) rename workflow/Snakefile => Snakefile (100%) rename {workflow/scripts => scripts/pypsa-de}/add_district_heating_subnodes.py (100%) rename {workflow/scripts => scripts/pypsa-de}/additional_functionality.py (100%) rename {workflow/scripts => scripts/pypsa-de}/build_egon_data.py (100%) rename {workflow/scripts => scripts/pypsa-de}/build_existing_chp_de.py (100%) rename {workflow/scripts => scripts/pypsa-de}/build_mobility_demand.py (100%) rename {workflow/scripts => scripts/pypsa-de}/build_scenarios.py (100%) rename {workflow/scripts => scripts/pypsa-de}/build_wasserstoff_kernnetz.py (100%) rename {workflow/scripts => scripts/pypsa-de}/check_sector_ratios.py (100%) rename {workflow/scripts => scripts/pypsa-de}/cluster_wasserstoff_kernnetz.py (100%) rename {workflow/scripts => scripts/pypsa-de}/export_ariadne_variables.py (100%) rename {workflow/scripts => scripts/pypsa-de}/modify_cost_data.py (100%) rename {workflow/scripts => scripts/pypsa-de}/modify_district_heat_share.py (100%) rename {workflow/scripts => scripts/pypsa-de}/modify_energy_totals.py (100%) rename {workflow/scripts => scripts/pypsa-de}/modify_existing_heating.py (100%) rename {workflow/scripts => scripts/pypsa-de}/modify_industry_demand.py (100%) rename {workflow/scripts => scripts/pypsa-de}/modify_prenetwork.py (100%) rename {workflow/scripts => scripts/pypsa-de}/plot_ariadne_scenario_comparison.py (100%) rename {workflow/scripts => scripts/pypsa-de}/plot_ariadne_variables.py (100%) rename {workflow/scripts => scripts/pypsa-de}/retrieve_ariadne_database.py (100%) diff --git a/workflow/Snakefile b/Snakefile similarity index 100% rename from workflow/Snakefile rename to Snakefile diff --git a/workflow/scripts/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py similarity index 100% rename from workflow/scripts/add_district_heating_subnodes.py rename to scripts/pypsa-de/add_district_heating_subnodes.py diff --git a/workflow/scripts/additional_functionality.py b/scripts/pypsa-de/additional_functionality.py similarity index 100% rename from workflow/scripts/additional_functionality.py rename to scripts/pypsa-de/additional_functionality.py diff --git a/workflow/scripts/build_egon_data.py b/scripts/pypsa-de/build_egon_data.py similarity index 100% rename from workflow/scripts/build_egon_data.py rename to scripts/pypsa-de/build_egon_data.py diff --git a/workflow/scripts/build_existing_chp_de.py b/scripts/pypsa-de/build_existing_chp_de.py similarity index 100% rename from workflow/scripts/build_existing_chp_de.py rename to scripts/pypsa-de/build_existing_chp_de.py diff --git a/workflow/scripts/build_mobility_demand.py b/scripts/pypsa-de/build_mobility_demand.py similarity index 100% rename from workflow/scripts/build_mobility_demand.py rename to scripts/pypsa-de/build_mobility_demand.py diff --git a/workflow/scripts/build_scenarios.py b/scripts/pypsa-de/build_scenarios.py similarity index 100% rename from workflow/scripts/build_scenarios.py rename to scripts/pypsa-de/build_scenarios.py diff --git a/workflow/scripts/build_wasserstoff_kernnetz.py b/scripts/pypsa-de/build_wasserstoff_kernnetz.py similarity index 100% rename from workflow/scripts/build_wasserstoff_kernnetz.py rename to scripts/pypsa-de/build_wasserstoff_kernnetz.py diff --git a/workflow/scripts/check_sector_ratios.py b/scripts/pypsa-de/check_sector_ratios.py similarity index 100% rename from workflow/scripts/check_sector_ratios.py rename to scripts/pypsa-de/check_sector_ratios.py diff --git a/workflow/scripts/cluster_wasserstoff_kernnetz.py b/scripts/pypsa-de/cluster_wasserstoff_kernnetz.py similarity index 100% rename from workflow/scripts/cluster_wasserstoff_kernnetz.py rename to scripts/pypsa-de/cluster_wasserstoff_kernnetz.py diff --git a/workflow/scripts/export_ariadne_variables.py b/scripts/pypsa-de/export_ariadne_variables.py similarity index 100% rename from workflow/scripts/export_ariadne_variables.py rename to scripts/pypsa-de/export_ariadne_variables.py diff --git a/workflow/scripts/modify_cost_data.py b/scripts/pypsa-de/modify_cost_data.py similarity index 100% rename from workflow/scripts/modify_cost_data.py rename to scripts/pypsa-de/modify_cost_data.py diff --git a/workflow/scripts/modify_district_heat_share.py b/scripts/pypsa-de/modify_district_heat_share.py similarity index 100% rename from workflow/scripts/modify_district_heat_share.py rename to scripts/pypsa-de/modify_district_heat_share.py diff --git a/workflow/scripts/modify_energy_totals.py b/scripts/pypsa-de/modify_energy_totals.py similarity index 100% rename from workflow/scripts/modify_energy_totals.py rename to scripts/pypsa-de/modify_energy_totals.py diff --git a/workflow/scripts/modify_existing_heating.py b/scripts/pypsa-de/modify_existing_heating.py similarity index 100% rename from workflow/scripts/modify_existing_heating.py rename to scripts/pypsa-de/modify_existing_heating.py diff --git a/workflow/scripts/modify_industry_demand.py b/scripts/pypsa-de/modify_industry_demand.py similarity index 100% rename from workflow/scripts/modify_industry_demand.py rename to scripts/pypsa-de/modify_industry_demand.py diff --git a/workflow/scripts/modify_prenetwork.py b/scripts/pypsa-de/modify_prenetwork.py similarity index 100% rename from workflow/scripts/modify_prenetwork.py rename to scripts/pypsa-de/modify_prenetwork.py diff --git a/workflow/scripts/plot_ariadne_scenario_comparison.py b/scripts/pypsa-de/plot_ariadne_scenario_comparison.py similarity index 100% rename from workflow/scripts/plot_ariadne_scenario_comparison.py rename to scripts/pypsa-de/plot_ariadne_scenario_comparison.py diff --git a/workflow/scripts/plot_ariadne_variables.py b/scripts/pypsa-de/plot_ariadne_variables.py similarity index 100% rename from workflow/scripts/plot_ariadne_variables.py rename to scripts/pypsa-de/plot_ariadne_variables.py diff --git a/workflow/scripts/retrieve_ariadne_database.py b/scripts/pypsa-de/retrieve_ariadne_database.py similarity index 100% rename from workflow/scripts/retrieve_ariadne_database.py rename to scripts/pypsa-de/retrieve_ariadne_database.py From c5def7cbc147bfd72b9a6d86a2c76fb93129de3f Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 14 Feb 2025 16:27:33 +0100 Subject: [PATCH 588/669] Adjust add_existing_baseyear to allow for subnodes --- scripts/add_existing_baseyear.py | 47 ++++++++++++++++++++++---------- 1 file changed, 32 insertions(+), 15 deletions(-) diff --git a/scripts/add_existing_baseyear.py b/scripts/add_existing_baseyear.py index 53ef61dec..bc724ca8e 100644 --- a/scripts/add_existing_baseyear.py +++ b/scripts/add_existing_baseyear.py @@ -163,6 +163,8 @@ def add_power_capacities_installed_before_baseyear(n, grouping_years, costs, bas "OCGT": "OCGT", "CCGT": "CCGT", "Bioenergy": "solid biomass", + # "Waste": "waste", + # "nicht biogener Abfall": "waste", } # If heat is considered, add CHPs in the add_heating_capacities function. @@ -450,7 +452,9 @@ def add_chp_plants(n, grouping_years, costs, baseyear): ppl = pd.read_csv(snakemake.input.powerplants, index_col=0) if snakemake.input.get("custom_powerplants"): - if snakemake.input.custom_powerplants.endswith("german_chp_{clusters}.csv"): + if snakemake.input.custom_powerplants.endswith( + f"german_chp_base_s_{snakemake.wildcards.clusters}_l{snakemake.wildcards.ll}_{snakemake.wildcards.opts}_{snakemake.wildcards.sector_opts}_{snakemake.wildcards.planning_horizons}.csv" + ): logger.info("Supersedeing default German CHPs with custom_powerplants.") ppl = ppl.query("~(Set == 'CHP' and Country == 'DE')") ppl = add_custom_powerplants(ppl, snakemake.input.custom_powerplants, True) @@ -470,7 +474,10 @@ def add_chp_plants(n, grouping_years, costs, baseyear): chp["grouping_year"] = np.take( grouping_years, np.digitize(chp.DateIn, grouping_years, right=True) ) - chp["lifetime"] = chp.DateOut - chp["grouping_year"] + 1 + chp["lifetime"] = (chp.DateOut - chp["grouping_year"] + 1).fillna( + snakemake.params.costs["fill_values"]["lifetime"] + ) + chp = chp.loc[chp.grouping_year + chp.lifetime >= baseyear] # check if the CHPs were read in from MaStR for Germany if "Capacity_thermal" in chp.columns: @@ -581,7 +588,7 @@ def add_chp_plants(n, grouping_years, costs, baseyear): bus, suffix=f" urban central {generator} CHP-{grouping_year}", bus0=bus0, - bus1=bus, + bus1=" ".join(bus.split()[:2]), bus2=bus + " urban central heat", bus3="co2 atmosphere", carrier=f"urban central {generator} CHP", @@ -603,8 +610,8 @@ def add_chp_plants(n, grouping_years, costs, baseyear): "Link", bus, suffix=f" urban {key}-{grouping_year}", - bus0=spatial.biomass.df.loc[bus]["nodes"], - bus1=bus, + bus0=spatial.biomass.df.loc[" ".join(bus.split()[:2])]["nodes"], + bus1=" ".join(bus.split()[:2]), bus2=bus + " urban central heat", carrier=generator, p_nom=p_nom[bus], @@ -687,7 +694,7 @@ def add_chp_plants(n, grouping_years, costs, baseyear): bus, suffix=f" urban central {generator} CHP-{grouping_year}", bus0=bus0, - bus1=bus, + bus1=" ".join(bus.split()[:2]), bus2=bus + " urban central heat", bus3="co2 atmosphere", carrier=f"urban central {generator} CHP", @@ -708,8 +715,8 @@ def add_chp_plants(n, grouping_years, costs, baseyear): "Link", p_nom.index, suffix=f" urban {key}-{grouping_year}", - bus0=spatial.biomass.df.loc[p_nom.index]["nodes"], - bus1=bus, + bus0=spatial.biomass.df.loc[" ".join(bus.split()[:2])]["nodes"], + bus1=" ".join(bus.split()[:2]), bus2=bus + " urban central heat", carrier=generator, p_nom=p_nom[bus] / costs.at[key, "efficiency"], @@ -840,18 +847,24 @@ def add_heating_capacities_installed_before_baseyear( logger.debug(f"Adding heating capacities installed before {baseyear}") for heat_system in existing_heating.columns.get_level_values(0).unique(): - heat_system = HeatSystem(heat_system) - nodes = pd.Index( - n.buses.location[n.buses.index.str.contains(f"{heat_system} heat")] + nodes = ( + n.buses.loc[n.buses.carrier == f"{heat_system} heat"] + .index.str.split("urban central|residential|services", regex=True) + .str[0] + .str.strip() ) + heat_system = HeatSystem(heat_system) + if (not heat_system == HeatSystem.URBAN_CENTRAL) and options[ "electricity_distribution_grid" ]: nodes_elec = nodes + " low voltage" + nodes_biomass = nodes else: - nodes_elec = nodes + nodes_elec = nodes.str.split().str[:2].str.join(" ") + nodes_biomass = nodes_elec too_large_grouping_years = [ gy for gy in grouping_years if gy >= int(baseyear) @@ -874,7 +887,8 @@ def add_heating_capacities_installed_before_baseyear( # get number of years of each interval _years = valid_grouping_years.diff() # Fill NA from .diff() with value for the first interval - _years[0] = valid_grouping_years[0] - baseyear + default_lifetime + if valid_grouping_years.size > 1: + _years[0] = valid_grouping_years[0] - baseyear + default_lifetime # Installation is assumed to be linear for the past ratios = _years / _years.sum() @@ -892,7 +906,10 @@ def add_heating_capacities_installed_before_baseyear( name=nodes, ) .to_pandas() - .reindex(index=n.snapshots) + .T.reset_index() + .drop_duplicates() + .set_index("name") + .T.reindex(index=n.snapshots) if time_dep_hp_cop else costs.at[costs_name, "efficiency"] ) @@ -1010,7 +1027,7 @@ def add_heating_capacities_installed_before_baseyear( "Link", nodes, suffix=f" {heat_system} biomass boiler-{grouping_year}", - bus0=spatial.biomass.df.loc[nodes, "nodes"].values, + bus0=spatial.biomass.df.loc[nodes_biomass, "nodes"].values, bus1=nodes + " " + heat_system.value + " heat", carrier=heat_system.value + " biomass boiler", efficiency=costs.at["biomass boiler", "efficiency"], From d2f2721c5482a1fe47d93fb84ee3556655b4b506 Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 17 Feb 2025 11:03:26 +0100 Subject: [PATCH 589/669] fix snakefile --- Snakefile | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/Snakefile b/Snakefile index d2b296198..706476b7a 100644 --- a/Snakefile +++ b/Snakefile @@ -254,7 +254,7 @@ rule build_egon_data: script: "scripts/pypsa-de/build_egon_data.py" -aseyear_value = config["scenario"]["planning_horizons"][0] +baseyear_value = config["scenario"]["planning_horizons"][0] rule add_district_heating_subnodes: @@ -298,7 +298,7 @@ rule add_district_heating_subnodes: resources: mem_mb=1000, script: - "scripts/add_district_heating_subnodes.py" + "scripts/pypsa-de/add_district_heating_subnodes.py" ruleorder: modify_district_heat_share > build_district_heat_share @@ -457,9 +457,11 @@ rule build_existing_chp_de: else [] ), output: - german_chp=resources("german_chp_{clusters}.csv"), + german_chp=resources( + "german_chp_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" + ), log: - logs("build_existing_chp_de_{clusters}.log"), + logs("build_existing_chp_de_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.log"), script: "scripts/pypsa-de/build_existing_chp_de.py" From 7bee646e055a5ca9cf42dc5e451ed7171147a517 Mon Sep 17 00:00:00 2001 From: Amos Schledorn <60692940+amos-schledorn@users.noreply.github.com> Date: Mon, 2 Dec 2024 17:05:44 +0100 Subject: [PATCH 590/669] Add geothermal-sourced central heat pumps (#1359) * feat: add utilisation potential retrieval * feat: add build_heat_source_potentials module * feat: update config * feat: extend retrieve.smk * feat: pass potential to update prepare_sector_network * feat: update cop profile module * feat: update build_sector.smk accordingly * fix: use generator + links for heat source * clean up run.py * feat: generalise 'geothermal' to any heat source in Fraunhofer data * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * chor: simplify indexing * style: rename potentials var * fix: return 0 for COP calculation when source inlet temperature exceeds sink outlet temperature * refactor: remove unused function and clean up code in build_cop_profiles.run.py * style: clean-up comments in OnshoreRegionData.py and prepare_sector_network.py * feat: add direct heat source utilisation when source temp > forward temp * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat: add costs for geothermal heat source * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * style: pre-commit, add dev to gitignore * feat: replace access to config with unpack where possible Note: unpack() doesn't work in snakemake output, so geothermal is specified explicitly as only heat source! * feat: replace dict access to config in snakemake * doc: add docstrings, clean up code * docs: update release notes * doc: update configtables * doc: update data sourcs * update docs * Update config/config.default.yaml Co-authored-by: Lukas Trippe * docs: fix data-retrieval docs * feat: turn off geothermal DH heat by default * style: remove "fraunhofer_" in naming * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * style: use snakemake.wildcards.heat_sources rather than additional param * Update doc/configtables/sector.csv Co-authored-by: Fabian Neumann * Update doc/configtables/sector.csv Co-authored-by: Fabian Neumann * docs: update sector.csv * refactor: refactor scaling factor calculation in run.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * docs: add direct_utilisation_heat_sources to configtables * udpate release_notes --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Lukas Trippe Co-authored-by: Fabian Neumann --- config/config.default.yaml | 19 ++- doc/configtables/sector.csv | 9 ++ doc/release_notes.rst | 14 ++ rules/build_sector.smk | 82 +++++++++++ rules/retrieve.smk | 18 +++ .../CentralHeatingCopApproximator.py | 10 +- scripts/build_cop_profiles/run.py | 32 +++-- ...direct_heat_source_utilisation_profiles.py | 115 +++++++++++++++ .../onshore_region_data.py | 96 +++++++++++++ scripts/build_heat_source_potentials/run.py | 96 +++++++++++++ scripts/definitions/heat_system.py | 18 +++ scripts/prepare_sector_network.py | 136 +++++++++++++++--- ...ieve_heat_source_utilisation_potentials.py | 57 ++++++++ 13 files changed, 662 insertions(+), 40 deletions(-) create mode 100644 scripts/build_direct_heat_source_utilisation_profiles.py create mode 100755 scripts/build_heat_source_potentials/onshore_region_data.py create mode 100644 scripts/build_heat_source_potentials/run.py create mode 100644 scripts/retrieve_heat_source_utilisation_potentials.py diff --git a/config/config.default.yaml b/config/config.default.yaml index 57faeb9e0..61d7704f5 100644 --- a/config/config.default.yaml +++ b/config/config.default.yaml @@ -480,6 +480,18 @@ sector: heat_exchanger_pinch_point_temperature_difference: 5 #K isentropic_compressor_efficiency: 0.8 heat_loss: 0.0 + heat_utilisation_potentials: + geothermal: + # activate for 85C hydrothermal + # key: hydrothermal_85 + # constant_temperature_celsius: 85 + key: hydrothermal_65 + constant_temperature_celsius: 65 + column_name: Energy_TWh + unit: TWh + full_load_hours: 4000 + direct_utilisation_heat_sources: + - geothermal heat_pump_sources: urban central: - air @@ -828,7 +840,7 @@ industry: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#costs costs: year: 2030 - version: v0.9.2 + version: v0.10.0 social_discountrate: 0.02 fill_values: FOM: 0 @@ -1248,8 +1260,11 @@ plotting: services urban decentral air heat pump: '#5af95d' services rural air heat pump: '#5af95d' urban central air heat pump: '#6cfb6b' + urban central geothermal heat pump: '#4f2144' + geothermal heat pump: '#4f2144' + geothermal heat direct utilisation: '#ba91b1' ground heat pump: '#2fb537' - residential rural ground heat pump: '#48f74f' + residential rural ground heat pump: '#4f2144' residential rural air heat pump: '#48f74f' services rural ground heat pump: '#5af95d' Ambient: '#98eb9d' diff --git a/doc/configtables/sector.csv b/doc/configtables/sector.csv index 96ebe8ab3..e6c5e61de 100644 --- a/doc/configtables/sector.csv +++ b/doc/configtables/sector.csv @@ -23,6 +23,15 @@ district_heating,--,,`prepare_sector_network.py ) should be used, +-- -- geothermal,-,Name of the heat source. Must be the same as in ``heat_pump_sources``, +-- -- -- key,-,string used to complete URL for data download - e.g. `geothermal_65` or `geothermal_85`","i.e file names in `Fordatis `, +-- -- -- constant_temperature_celsius,°C,heat source temperature, +-- -- -- column_name,-,name of the data column in retrieved GeoDataFrame, + +-- -- -- unit,-,unit of heat source potential must be in (K/M/G/T)Wh, +-- -- -- full_load_hours,h,assumed full-load hours in Manz et al. (used to scale from utilisation to technical potential), +-- direct_utilisation_heat_sources,--,List of heat sources for direct heat utilisation in district heating. Must be in the keys of `heat_utilisation_potentials` (e.g. ``geothermal``), -- heat_pump_sources,--,, -- -- urban central,--,List of heat sources for heat pumps in urban central heating, -- -- urban decentral,--,List of heat sources for heat pumps in urban decentral heating, diff --git a/doc/release_notes.rst b/doc/release_notes.rst index 5b22e2a5e..60109af30 100644 --- a/doc/release_notes.rst +++ b/doc/release_notes.rst @@ -32,6 +32,20 @@ ariadne2 Branch Upcoming Release ================ +* Feature: Introduce geothermal district heating (direct utilisation and heat pumps). Potentials are based on `Manz et al. 2024: Spatial analysis of renewable and excess heat potentials for climate-neutral district heating in Europe `. + +* Feature: Allow CHPs to use different fuel sources such as gas, oil, coal, and methanol. Note that the cost assumptions are based on a gas CHP (except for solid biomass-fired CHP). + +* Improve `sanitize_carrier`` function by filling in colors of missing carriers with colors mapped after using the function `rename_techs`. + +* Bugfix: Adjusted efficiency2 (to atmosphere) for bioliquids-to-oil Link in `prepare_sector_network` to exactly offset the corresponding oil emissions. + +* Bugfix: Waste CHPs were added to all electricity buses even if they were not connected to heating network. This is now fixed. + +* Bugfix: Duplicates in build_transmission_projects were caught, but not removed from the network. This is now fixed. + +* Replaced the Store representation of biogenic carriers (solid biomass, biogas, bioliquids, MSW) in ``prepare_sector_network`` with the extended Generator component that uses the ``e_sum_min`` and ``e_sum_max`` attributes to enforce minimum usage and limit maximum potential, respectively. + * Added option to reduce central heating forward temperatures by annual percentage (see rule :mod:`build_central_heating_temperature_profiles`). This makes COP profiles and heat pump efficiencies planning-horizon-dependent. Myopic and perfect foresight modes were adjusted accordingly to update COPs of existing heat pumps in preceding years to adjusted temperatures. * Rearranged workflow to cluster the electricity network before calculating diff --git a/rules/build_sector.smk b/rules/build_sector.smk index 074e0c241..9d656cd71 100755 --- a/rules/build_sector.smk +++ b/rules/build_sector.smk @@ -284,6 +284,28 @@ rule build_central_heating_temperature_profiles: "../scripts/build_central_heating_temperature_profiles/run.py" +rule build_heat_source_potentials: + params: + heat_utilisation_potentials=config_provider( + "sector", "district_heating", "heat_utilisation_potentials" + ), + input: + utilisation_potential="data/heat_source_utilisation_potentials/{heat_source}.gpkg", + regions_onshore=resources("regions_onshore_base_s_{clusters}.geojson"), + output: + resources("heat_source_potential_{heat_source}_base_s_{clusters}.csv"), + resources: + mem_mb=2000, + log: + logs("build_heat_source_potentials_{heat_source}_s_{clusters}.log"), + benchmark: + benchmarks("build_heat_source_potentials/{heat_source}_s_{clusters}") + conda: + "../envs/environment.yaml" + script: + "../scripts/build_heat_source_potentials/run.py" + + rule build_cop_profiles: params: heat_pump_sink_T_decentral_heating=config_provider( @@ -296,6 +318,9 @@ rule build_cop_profiles: "sector", "district_heating", "heat_pump_cop_approximation" ), heat_pump_sources=config_provider("sector", "heat_pump_sources"), + heat_utilisation_potentials=config_provider( + "sector", "district_heating", "heat_utilisation_potentials" + ), snapshots=config_provider("snapshots"), input: central_heating_forward_temperature_profiles=resources( @@ -321,6 +346,39 @@ rule build_cop_profiles: "../scripts/build_cop_profiles/run.py" +rule build_direct_heat_source_utilisation_profiles: + params: + direct_utilisation_heat_sources=config_provider( + "sector", "district_heating", "direct_utilisation_heat_sources" + ), + heat_utilisation_potentials=config_provider( + "sector", "district_heating", "heat_utilisation_potentials" + ), + snapshots=config_provider("snapshots"), + input: + central_heating_forward_temperature_profiles=resources( + "central_heating_forward_temperature_profiles_base_s_{clusters}_{planning_horizons}.nc" + ), + output: + direct_heat_source_utilisation_profiles=resources( + "direct_heat_source_utilisation_profiles_base_s_{clusters}_{planning_horizons}.nc" + ), + resources: + mem_mb=20000, + log: + logs( + "build_direct_heat_source_utilisation_profiles_s_{clusters}_{planning_horizons}.log" + ), + benchmark: + benchmarks( + "build_direct_heat_source_utilisation_profiles/s_{clusters}_{planning_horizons}" + ) + conda: + "../envs/environment.yaml" + script: + "../scripts/build_direct_heat_source_utilisation_profiles.py" + + def solar_thermal_cutout(wildcards): c = config_provider("solar_thermal", "cutout")(wildcards) if c == "default": @@ -1006,6 +1064,20 @@ rule build_egs_potentials: "../scripts/build_egs_potentials.py" +def input_heat_source_potentials(w): + + return { + heat_source_name: resources( + "heat_source_potential_" + heat_source_name + "_base_s_{clusters}.csv" + ) + for heat_source_name in config_provider( + "sector", "district_heating", "heat_utilisation_potentials" + )(w).keys() + if heat_source_name + in config_provider("sector", "heat_pump_sources", "urban central")(w) + } + + rule prepare_sector_network: params: time_resolution=config_provider("clustering", "temporal", "resolution_sector"), @@ -1030,8 +1102,15 @@ rule prepare_sector_network: heat_pump_sources=config_provider("sector", "heat_pump_sources"), heat_systems=config_provider("sector", "heat_systems"), energy_totals_year=config_provider("energy", "energy_totals_year"), + heat_utilisation_potentials=config_provider( + "sector", "district_heating", "heat_utilisation_potentials" + ), + direct_utilisation_heat_sources=config_provider( + "sector", "district_heating", "direct_utilisation_heat_sources" + ), input: unpack(input_profile_offwind), + unpack(input_heat_source_potentials), **rules.cluster_gas_network.output, **rules.build_gas_input_locations.output, snapshot_weightings=resources( @@ -1126,6 +1205,9 @@ rule prepare_sector_network: if config_provider("sector", "enhanced_geothermal", "enable")(w) else [] ), + direct_heat_source_utilisation_profiles=resources( + "direct_heat_source_utilisation_profiles_base_s_{clusters}_{planning_horizons}.nc" + ), output: RESULTS + "prenetworks/base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", diff --git a/rules/retrieve.smk b/rules/retrieve.smk index 843fb65fc..0a1eebecb 100755 --- a/rules/retrieve.smk +++ b/rules/retrieve.smk @@ -631,3 +631,21 @@ if config["enable"]["retrieve"] and ( "data/osm-raw/{country}/substations_relation.json", country=config_provider("countries"), ), + + +if config["enable"]["retrieve"]: + + rule retrieve_heat_source_utilisation_potentials: + params: + heat_source="{heat_source}", + heat_utilisation_potentials=config_provider( + "sector", "district_heating", "heat_utilisation_potentials" + ), + log: + "logs/retrieve_heat_source_potentials_{heat_source}.log", + resources: + mem_mb=500, + output: + "data/heat_source_utilisation_potentials/{heat_source}.gpkg", + script: + "../scripts/retrieve_heat_source_utilisation_potentials.py" diff --git a/scripts/build_cop_profiles/CentralHeatingCopApproximator.py b/scripts/build_cop_profiles/CentralHeatingCopApproximator.py index 08dd6a1a8..30f84356b 100644 --- a/scripts/build_cop_profiles/CentralHeatingCopApproximator.py +++ b/scripts/build_cop_profiles/CentralHeatingCopApproximator.py @@ -144,11 +144,17 @@ def approximate_cop(self) -> Union[xr.DataArray, np.array]: """ Calculate the coefficient of performance (COP) for the system. + Notes: + ------ + Returns 0 where the source inlet temperature is greater than the sink outlet temperature. + Returns: -------- Union[xr.DataArray, np.array]: The calculated COP values. """ - return ( + return xr.where( + self.t_source_in_kelvin > self.t_sink_out_kelvin, + 0, self.ideal_lorenz_cop * ( ( @@ -170,7 +176,7 @@ def approximate_cop(self) -> Union[xr.DataArray, np.array]: * (1 - self.ratio_evaporation_compression_work) + 1 - self.isentropic_efficiency_compressor_kelvin - - self.heat_loss + - self.heat_loss, ) @property diff --git a/scripts/build_cop_profiles/run.py b/scripts/build_cop_profiles/run.py index a4a3e2eb6..5cc563404 100644 --- a/scripts/build_cop_profiles/run.py +++ b/scripts/build_cop_profiles/run.py @@ -4,7 +4,7 @@ # SPDX-License-Identifier: MIT """ Approximate heat pump coefficient-of-performance (COP) profiles for different -heat sources and systems. +heat sources and systems. Returns zero where source temperature higher than sink temperature. For central heating, this is based on Jensen et al. (2018) (c.f. `CentralHeatingCopApproximator `_) and for decentral heating, the approximation is based on Staffell et al. (2012) (c.f. `DecentralHeatingCopApproximator `_). @@ -27,11 +27,8 @@ urban central: urban decentral: rural: - snapshots: - Inputs ------ -- `resources//regions_onshore.geojson`: Onshore regions - `resources//temp_soil_total`: Ground temperature - `resources//temp_air_total`: Air temperature @@ -94,10 +91,6 @@ def get_cop( ).approximate_cop() -def get_country_from_node_name(node_name: str) -> str: - return node_name[:2] - - if __name__ == "__main__": if "snakemake" not in globals(): from scripts._helpers import mock_snakemake @@ -109,9 +102,6 @@ def get_country_from_node_name(node_name: str) -> str: set_scenario_config(snakemake) - # map forward and return temperatures specified on country-level to onshore regions - regions_onshore = gpd.read_file(snakemake.input.regions_onshore)["name"] - snapshots = pd.date_range(freq="h", **snakemake.params.snapshots) central_heating_forward_temperature: xr.DataArray = xr.open_dataarray( snakemake.input.central_heating_forward_temperature_profiles ) @@ -123,9 +113,23 @@ def get_country_from_node_name(node_name: str) -> str: for heat_system_type, heat_sources in snakemake.params.heat_pump_sources.items(): cop_this_system_type = [] for heat_source in heat_sources: - source_inlet_temperature_celsius = xr.open_dataarray( - snakemake.input[f"temp_{heat_source.replace('ground', 'soil')}_total"] - ) + if heat_source in ["ground", "air"]: + source_inlet_temperature_celsius = xr.open_dataarray( + snakemake.input[ + f"temp_{heat_source.replace('ground', 'soil')}_total" + ] + ) + elif heat_source in snakemake.params.heat_utilisation_potentials.keys(): + source_inlet_temperature_celsius = ( + snakemake.params.heat_utilisation_potentials[heat_source][ + "constant_temperature_celsius" + ] + ) + else: + raise ValueError( + f"Unknown heat source {heat_source}. Must be one of [ground, air] or {snakemake.params.heat_sources.keys()}." + ) + cop_da = get_cop( heat_system_type=heat_system_type, heat_source=heat_source, diff --git a/scripts/build_direct_heat_source_utilisation_profiles.py b/scripts/build_direct_heat_source_utilisation_profiles.py new file mode 100644 index 000000000..72a9e4646 --- /dev/null +++ b/scripts/build_direct_heat_source_utilisation_profiles.py @@ -0,0 +1,115 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT +""" +Build availability profiles for direct heat source utilisation (1 in regions and time steps where heat source can be utilised, 0 otherwise). +When direct utilisation is possible, heat pump COPs are set to zero (c.f. `build_cop_profiles`). + +Relevant Settings +----------------- + +.. code:: yaml + sector: + district_heating: + heat_utilisation_potentials: + direct_utilisation_heat_sources: + snapshots: + +Inputs +------ +- `resources//central_heating_forward_temperatures_base_s_{clusters}_{planning_horizons}.nc`: Central heating forward temperature profiles + +Outputs +------- +- `resources//direct_heat_source_utilisation_profiles_base_s_{clusters}_{planning_horizons}.nc`: Direct heat source utilisation profiles +""" + +from typing import List + +import xarray as xr +from _helpers import set_scenario_config + + +def get_source_temperature(heat_source_key: str): + """ + Get the constant temperature of a heat source. + + Args: + ----- + heat_source_key: str + The key (name) of the heat source. + + Returns: + -------- + float + The constant temperature of the heat source in degrees Celsius. + + Raises: + ------- + ValueError + If the heat source is unknown (not in `config`). + """ + + if heat_source_key in snakemake.params.heat_utilisation_potentials.keys(): + return snakemake.params.heat_utilisation_potentials[heat_source_key][ + "constant_temperature_celsius" + ] + else: + raise ValueError( + f"Unknown heat source {heat_source_key}. Must be one of { + snakemake.params.heat_sources.keys()}." + ) + + +def get_profile( + source_temperature: float | xr.DataArray, forward_temperature: xr.DataArray +) -> xr.DataArray | float: + """ + Get the direct heat source utilisation profile. + + Args: + ----- + source_temperature: float | xr.DataArray + The constant temperature of the heat source in degrees Celsius. If `xarray`, indexed by `time` and `region`. If a float, it is broadcasted to the shape of `forward_temperature`. + forward_temperature: xr.DataArray + The central heating forward temperature profiles. If `xarray`, indexed by `time` and `region`. If a float, it is broadcasted to the shape of `return_temperature`. + + Returns: + -------- + xr.DataArray | float + The direct heat source utilisation profile. + + """ + return xr.where(source_temperature >= forward_temperature, 1.0, 0.0) + + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_cop_profiles", + clusters=48, + ) + + set_scenario_config(snakemake) + + direct_utilisation_heat_sources: List[str] = ( + snakemake.params.direct_utilisation_heat_sources + ) + + central_heating_forward_temperature: xr.DataArray = xr.open_dataarray( + snakemake.input.central_heating_forward_temperature_profiles + ) + + xr.concat( + [ + get_profile( + source_temperature=get_source_temperature(heat_source_key), + forward_temperature=central_heating_forward_temperature, + ).assign_coords(heat_source=heat_source_key) + for heat_source_key in direct_utilisation_heat_sources + ], + dim="heat_source", + ).to_netcdf(snakemake.output.direct_heat_source_utilisation_profiles) diff --git a/scripts/build_heat_source_potentials/onshore_region_data.py b/scripts/build_heat_source_potentials/onshore_region_data.py new file mode 100755 index 000000000..1dfcbf42d --- /dev/null +++ b/scripts/build_heat_source_potentials/onshore_region_data.py @@ -0,0 +1,96 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT +""" +Helper class for matching heat source potentials to onshore regions. +""" + +from typing import List + +import geopandas as gpd + + +class OnshoreRegionData: + """ + This class is used to map heat potentials to onshore regions. + + Attributes + ---------- + onshore_regions : gpd.GeoDataFrame + GeoDataFrame containing the onshore regions + data : gpd.GeoDataFrame + GeoDataFrame containing the heat potentials + scaling_factor : float + Scaling factor for the heat potentials + """ + + def __init__( + self, + onshore_regions: gpd.GeoDataFrame, + data: gpd.GeoDataFrame, + column_name: str, + scaling_factor: float = 1.0, + ) -> None: + """ + Parameters + ---------- + onshore_regions : gpd.GeoDataFrame + GeoDataFrame containing the onshore regions + data : gpd.GeoDataFrame + GeoDataFrame containing the heat potentials + column_name : str + Column name of the heat potential data in `data` + scaling_factor : float, optional + Scaling factor for the heat potentials, by default 1.0 + """ + + self.onshore_regions = onshore_regions + self.scaling_factor = scaling_factor + self.data = data.to_crs(onshore_regions.crs) + self._column_name = column_name + + self._mapped = False + + @property + def data_in_regions_scaled(self) -> gpd.GeoDataFrame: + """ + Scale the heat potentials and map them to the onshore regions. + + Returns + ------- + gpd.GeoDataFrame + GeoDataFrame containing the scaled heat potentials in the onshore regions + """ + if self._mapped: + return self._scaled_data_in_regions + else: + self._data_in_regions = self._map_to_onshore_regions() + self._mapped = True + return self._scaled_data_in_regions + + def _map_to_onshore_regions(self): + """ + Map the heat potentials to the onshore regions + """ + data_in_regions = gpd.sjoin(self.data, self.onshore_regions, how="right") + + # Initialize an empty list to store the merged GeoDataFrames + ret_val = self.onshore_regions.copy() + ret_val[self._column_name] = ( + data_in_regions.groupby("name")[self._column_name] + .sum() + .reset_index(drop=True) + ) + ret_val = ret_val.set_index("name", drop=True).rename_axis("name")[ + self._column_name + ] + + return ret_val + + @property + def _scaled_data_in_regions(self): + """ + Scale the heat potentials in the onshore regions + """ + return self._data_in_regions * self.scaling_factor diff --git a/scripts/build_heat_source_potentials/run.py b/scripts/build_heat_source_potentials/run.py new file mode 100644 index 000000000..b824b613f --- /dev/null +++ b/scripts/build_heat_source_potentials/run.py @@ -0,0 +1,96 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT +""" +Build heat source potentials for a given heat source. + +This script maps and aggregates heat source potentials per heat source to `onshore_regions` using `OnshoreRegionData`. +It scales the heat source utilisation potentials to technical potentials by dividing the utilisation potentials by the full load hours of the heat source, also taking into account the energy unit set for the respective source in the config. + + +Relevant Settings +----------------- +.. code:: yaml + sector: + district_heating: + heat_utilisation_potentials: + {heat_source} + + +Inputs +------ +- `resources//regions_onshore.geojson` +- `resources//heat_source_utilisation_potentials/.gpkg` + +Outputs +------- +- `resources//heat_source_technical_potential_{heat_source}_base_s_{clusters}.csv` +""" + +import geopandas as gpd +from _helpers import set_scenario_config + +from scripts.build_heat_source_potentials.onshore_region_data import OnshoreRegionData + + +def get_unit_conversion_factor( + input_unit: str, + output_unit: str, + unit_scaling: dict = {"Wh": 1, "kWh": 1e3, "MWh": 1e6, "GWh": 1e9, "TWh": 1e12}, +) -> float: + + if input_unit not in unit_scaling.keys(): + raise ValueError( + f"Input unit {input_unit} not allowed. Must be one of { + unit_scaling.keys()}" + ) + elif output_unit not in unit_scaling.keys(): + raise ValueError( + f"Output unit {output_unit} not allowed. Must be one of { + unit_scaling.keys()}" + ) + + return unit_scaling[input_unit] / unit_scaling[output_unit] + + +if __name__ == "__main__": + + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "build_heat_source_potentials", + clusters=48, + ) + + set_scenario_config(snakemake) + + regions_onshore = gpd.read_file(snakemake.input.regions_onshore) + heat_source_utilisation_potential = gpd.read_file( + snakemake.input.utilisation_potential + ) + + unit_conversion_factor = get_unit_conversion_factor( + input_unit=snakemake.params.heat_utilisation_potentials[ + snakemake.wildcards.heat_source + ]["unit"], + output_unit="MWh", + ) + scaling_factor = ( + unit_conversion_factor + / snakemake.params.heat_utilisation_potentials[snakemake.wildcards.heat_source][ + "full_load_hours" + ] + ) + + heat_source_technical_potential = OnshoreRegionData( + onshore_regions=regions_onshore, + data=heat_source_utilisation_potential, + column_name=snakemake.params.heat_utilisation_potentials[ + snakemake.wildcards.heat_source + ]["column_name"], + scaling_factor=scaling_factor, + ).data_in_regions_scaled + + heat_source_technical_potential.to_csv(snakemake.output[0]) diff --git a/scripts/definitions/heat_system.py b/scripts/definitions/heat_system.py index b907b0fef..aeebbf322 100644 --- a/scripts/definitions/heat_system.py +++ b/scripts/definitions/heat_system.py @@ -226,6 +226,24 @@ def heat_pump_costs_name(self, heat_source: str) -> str: """ return f"{self.central_or_decentral} {heat_source}-sourced heat pump" + def heat_source_costs_name(self, heat_source: str) -> str: + """ + Generates the name for direct source utilisation costs based on the heat source and + system. + Used to retrieve data from `technology-data `. + + Parameters + ---------- + heat_source : str + The heat source. + + Returns + ------- + str + The name for the technology-data costs. + """ + return f"{self.central_or_decentral} {heat_source} heat source" + @property def resistive_heater_costs_name(self) -> str: """ diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 7508e4faa..816c4a415 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -2224,7 +2224,12 @@ def build_heat_demand(n): return heat_demand -def add_heat(n: pypsa.Network, costs: pd.DataFrame, cop: xr.DataArray): +def add_heat( + n: pypsa.Network, + costs: pd.DataFrame, + cop: xr.DataArray, + direct_heat_source_utilisation_profile: xr.DataArray, +): """ Add heat sector to the network. @@ -2341,8 +2346,8 @@ def add_heat(n: pypsa.Network, costs: pd.DataFrame, cop: xr.DataArray): for heat_source in snakemake.params.heat_pump_sources[ heat_system.system_type.value ]: - costs_name = heat_system.heat_pump_costs_name(heat_source) - efficiency = ( + costs_name_heat_pump = heat_system.heat_pump_costs_name(heat_source) + cop_heat_pump = ( cop.sel( heat_system=heat_system.system_type.value, heat_source=heat_source, @@ -2351,26 +2356,106 @@ def add_heat(n: pypsa.Network, costs: pd.DataFrame, cop: xr.DataArray): .to_pandas() .reindex(index=n.snapshots) if options["time_dep_hp_cop"] - else costs.at[costs_name, "efficiency"] + else costs.at[costs_name_heat_pump, "efficiency"] ) - n.add( - "Link", - nodes, - suffix=f" {heat_system} {heat_source} heat pump", - bus0=nodes, - bus1=nodes + f" {heat_system} heat", - carrier=f"{heat_system} {heat_source} heat pump", - efficiency=efficiency, - capital_cost=costs.at[costs_name, "efficiency"] - * costs.at[costs_name, "fixed"] - * overdim_factor, - overnight_cost=costs.at[costs_name, "efficiency"] - * costs.at[costs_name, "investment"] - * overdim_factor, - p_nom_extendable=True, - lifetime=costs.at[costs_name, "lifetime"], - ) + if heat_source in snakemake.params.heat_utilisation_potentials: + # get potential + p_max_source = pd.read_csv( + snakemake.input[heat_source], + index_col=0, + ).squeeze()[nodes] + + # add resource + heat_carrier = f"{heat_system} {heat_source} heat" + n.add("Carrier", heat_carrier) + n.madd( + "Bus", + nodes, + suffix=f" {heat_carrier}", + carrier=heat_carrier, + ) + + costs_name_heat_source = heat_system.heat_source_costs_name(heat_source) + if heat_source in snakemake.params.direct_utilisation_heat_sources: + capital_cost = ( + costs.at[ + heat_system.heat_source_costs_name(heat_source), "fixed" + ] + * overdim_factor + ) + lifetime = costs.at[ + heat_system.heat_source_costs_name(heat_source), "lifetime" + ] + else: + capital_cost = 0.0 + lifetime = np.inf + n.madd( + "Generator", + nodes, + suffix=f" {heat_carrier}", + bus=nodes + f" {heat_carrier}", + carrier=heat_carrier, + p_nom_extendable=True, + capital_cost=capital_cost, + lifetime=lifetime, + p_nom_max=p_max_source, + ) + + # add heat pump converting source heat + electricity to urban central heat + n.madd( + "Link", + nodes, + suffix=f" {heat_system} {heat_source} heat pump", + bus0=nodes, + bus1=nodes + f" {heat_carrier}", + bus2=nodes + f" {heat_system} heat", + carrier=f"{heat_system} {heat_source} heat pump", + efficiency=-(cop_heat_pump - 1), + efficiency2=cop_heat_pump, + capital_cost=costs.at[costs_name_heat_pump, "efficiency"] + * costs.at[costs_name_heat_pump, "fixed"] + * overdim_factor, + p_nom_extendable=True, + lifetime=costs.at[costs_name_heat_pump, "lifetime"], + ) + + if heat_source in snakemake.params.direct_utilisation_heat_sources: + # 1 if source temperature exceeds forward temperature, 0 otherwise: + efficiency_direct_utilisation = ( + direct_heat_source_utilisation_profile.sel( + heat_source=heat_source, + name=nodes, + ) + .to_pandas() + .reindex(index=n.snapshots) + ) + # add link for direct usage of heat source when source temperature exceeds forward temperature + n.madd( + "Link", + nodes, + suffix=f" {heat_system} {heat_source} heat direct utilisation", + bus0=nodes + f" {heat_carrier}", + bus1=nodes + f" {heat_system} heat", + efficiency=efficiency_direct_utilisation, + carrier=f"{heat_system} {heat_source} heat direct utilisation", + p_nom_extendable=True, + ) + else: + n.madd( + "Link", + nodes, + suffix=f" {heat_system} {heat_source} heat pump", + bus0=nodes, + bus1=nodes + f" {heat_system} heat", + carrier=f"{heat_system} {heat_source} heat pump", + efficiency=cop_heat_pump, + capital_cost=costs.at[costs_name_heat_pump, "efficiency"] + * costs.at[costs_name_heat_pump, "fixed"] + * overdim_factor, + p_nom_extendable=True, + lifetime=costs.at[costs_name_heat_pump, "lifetime"], + ) if options["tes"]: n.add("Carrier", f"{heat_system} water tanks") @@ -4886,7 +4971,14 @@ def add_enhanced_geothermal(n, egs_potentials, egs_overlap, costs): add_land_transport(n, costs) if options["heating"]: - add_heat(n=n, costs=costs, cop=xr.open_dataarray(snakemake.input.cop_profiles)) + add_heat( + n=n, + costs=costs, + cop=xr.open_dataarray(snakemake.input.cop_profiles), + direct_heat_source_utilisation_profile=xr.open_dataarray( + snakemake.input.direct_heat_source_utilisation_profiles + ), + ) if options["biomass"]: add_biomass(n, costs) diff --git a/scripts/retrieve_heat_source_utilisation_potentials.py b/scripts/retrieve_heat_source_utilisation_potentials.py new file mode 100644 index 000000000..59e662d8b --- /dev/null +++ b/scripts/retrieve_heat_source_utilisation_potentials.py @@ -0,0 +1,57 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2024 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT +""" +Retrieve heat source utilisation potentials from Fraunhofer Fordatis. + +Source +------ +Manz et al. 2024: "Spatial analysis of renewable and excess heat potentials for climate-neutral district heating in Europe", Renewable Energy, vol. 224, no. 120111, https://doi.org/10.1016/j.renene.2024.120111 + +Relevant Settings +----------------- +.. code:: yaml + sector: + district_heating: + heat_utilisation_potentials: + +Outputs +------ +- `resources//heat_source_utilisation_potentials/.gpkg` +""" + +import logging +from pathlib import Path + +from _helpers import configure_logging, progress_retrieve, set_scenario_config + +logger = logging.getLogger(__name__) + +if __name__ == "__main__": + if "snakemake" not in globals(): + from _helpers import mock_snakemake + + snakemake = mock_snakemake("retrieve_heat_source_utilisation_potentials") + rootpath = ".." + else: + rootpath = "." + configure_logging(snakemake) + set_scenario_config(snakemake) + + # license: https://creativecommons.org/licenses/by/4.0/ + # download the data in url + heat_source = snakemake.params["heat_source"] + filepath = Path(snakemake.output[0]) + if not filepath.parent.exists(): + filepath.parent.mkdir(parents=True) + + url = f"https://fordatis.fraunhofer.de/bitstream/fordatis/341.3/10/{snakemake.params.heat_utilisation_potentials[heat_source]['key']}.gpkg" + + logger.info( + f"Downloading heat source utilisation potential data for {heat_source} from '{url}'." + ) + disable_progress = snakemake.config["run"].get("disable_progressbar", False) + progress_retrieve(url, filepath, disable=disable_progress) + + logger.info(f"Data available at at {filepath}") From e072a5c92c5ef701984d6b194c938032ca77759f Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 13 Dec 2024 14:16:59 +0100 Subject: [PATCH 591/669] fix workflow --- scripts/add_brownfield.py | 1 + scripts/build_cop_profiles/run.py | 2 +- scripts/build_existing_heating_distribution.py | 1 + scripts/build_heat_source_potentials/run.py | 2 +- scripts/prepare_sector_network.py | 6 +++--- 5 files changed, 7 insertions(+), 5 deletions(-) diff --git a/scripts/add_brownfield.py b/scripts/add_brownfield.py index 4ce7c4497..d3554cc70 100644 --- a/scripts/add_brownfield.py +++ b/scripts/add_brownfield.py @@ -246,6 +246,7 @@ def update_heat_pump_efficiency(n: pypsa.Network, n_p: pypsa.Network, year: int) # get names of heat pumps in previous iteration heat_pump_idx_previous_iteration = n_p.links.index[ n_p.links.index.str.contains("heat pump") + & n_p.links.index.str[:-4].isin(n.links_t.efficiency.columns.str[:-4]) ] # construct names of same-technology heat pumps in the current iteration corresponding_idx_this_iteration = heat_pump_idx_previous_iteration.str[:-4] + str( diff --git a/scripts/build_cop_profiles/run.py b/scripts/build_cop_profiles/run.py index 5cc563404..2b01a140e 100644 --- a/scripts/build_cop_profiles/run.py +++ b/scripts/build_cop_profiles/run.py @@ -127,7 +127,7 @@ def get_cop( ) else: raise ValueError( - f"Unknown heat source {heat_source}. Must be one of [ground, air] or {snakemake.params.heat_sources.keys()}." + f"Unknown heat source {heat_source}. Must be one of [ground, air] or {snakemake.params.heat_pump_sources.keys()}." ) cop_da = get_cop( diff --git a/scripts/build_existing_heating_distribution.py b/scripts/build_existing_heating_distribution.py index 85c2419a8..49776987f 100644 --- a/scripts/build_existing_heating_distribution.py +++ b/scripts/build_existing_heating_distribution.py @@ -144,6 +144,7 @@ def build_existing_heating(): nodal_heat_name_tech[(f"{sector} rural", "air heat pump")] = 0.0 nodal_heat_name_tech[("urban central", "ground heat pump")] = 0.0 + nodal_heat_name_tech[("urban central", "geothermal heat pump")] = 0.0 nodal_heat_name_tech.to_csv(snakemake.output.existing_heating_distribution) diff --git a/scripts/build_heat_source_potentials/run.py b/scripts/build_heat_source_potentials/run.py index b824b613f..1b71cdce7 100644 --- a/scripts/build_heat_source_potentials/run.py +++ b/scripts/build_heat_source_potentials/run.py @@ -68,7 +68,7 @@ def get_unit_conversion_factor( regions_onshore = gpd.read_file(snakemake.input.regions_onshore) heat_source_utilisation_potential = gpd.read_file( - snakemake.input.utilisation_potential + snakemake.input.utilisation_potential, use_arrow=True ) unit_conversion_factor = get_unit_conversion_factor( diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 816c4a415..e5814a6f4 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -1976,7 +1976,7 @@ def add_EVs( # temperature corrected efficiency efficiency = get_temp_efficency( car_efficiency, - temperature, + temperature[spatial.nodes], options["transport_heating_deadband_lower"], options["transport_heating_deadband_upper"], options["EV_lower_degree_factor"], @@ -2056,7 +2056,7 @@ def add_fuel_cell_cars(n, p_set, fuel_cell_share, temperature): # temperature corrected efficiency efficiency = get_temp_efficency( car_efficiency, - temperature, + temperature[spatial.nodes], options["transport_heating_deadband_lower"], options["transport_heating_deadband_upper"], options["ICE_lower_degree_factor"], @@ -2083,7 +2083,7 @@ def add_ice_cars(n, p_set, ice_share, temperature): # temperature corrected efficiency efficiency = get_temp_efficency( car_efficiency, - temperature, + temperature[spatial.nodes], options["transport_heating_deadband_lower"], options["transport_heating_deadband_upper"], options["ICE_lower_degree_factor"], From b37c0409010232bafe4b74d359a718cdc2f40107 Mon Sep 17 00:00:00 2001 From: Tom Kaehler Date: Wed, 4 Dec 2024 14:02:35 +0100 Subject: [PATCH 592/669] cleaned up unnecessary code --- scripts/prepare_sector_network.py | 69 +++++++++++++++---------------- 1 file changed, 33 insertions(+), 36 deletions(-) diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index e5814a6f4..2428d1cb8 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -2458,60 +2458,57 @@ def add_heat( ) if options["tes"]: - n.add("Carrier", f"{heat_system} water tanks") - - n.add( - "Bus", - nodes + f" {heat_system} water tanks", - location=nodes, - carrier=f"{heat_system} water tanks", - unit="MWh_th", - ) - n.add( - "Link", - nodes + f" {heat_system} water tanks charger", - bus0=nodes + f" {heat_system} heat", - bus1=nodes + f" {heat_system} water tanks", - efficiency=costs.at["water tank charger", "efficiency"], - carrier=f"{heat_system} water tanks charger", - p_nom_extendable=True, - ) - - n.add( - "Link", - nodes + f" {heat_system} water tanks discharger", - bus0=nodes + f" {heat_system} water tanks", - bus1=nodes + f" {heat_system} heat", - carrier=f"{heat_system} water tanks discharger", - efficiency=costs.at["water tank discharger", "efficiency"], - p_nom_extendable=True, - ) + n.add("Carrier", f"{heat_system} water tanks") tes_time_constant_days = options["tes_tau"][ heat_system.central_or_decentral ] n.add( - "Store", + "StorageUnit", nodes + f" {heat_system} water tanks", - bus=nodes + f" {heat_system} water tanks", - e_cyclic=True, - e_nom_extendable=True, + bus=nodes + f" {heat_system} heat", carrier=f"{heat_system} water tanks", + efficiency_store=costs.at["water tank charger", "efficiency"], + max_hours=costs.at[ + "central water tank storage", "energy to power ratio" + ], + efficiency_dispatch=costs.at["water tank discharger", "efficiency"], + p_nom_extendable=True, standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days), capital_cost=costs.at[ heat_system.central_or_decentral + " water tank storage", "fixed" ], - overnight_cost=costs.at[ - heat_system.central_or_decentral + " water tank storage", - "investment", - ], lifetime=costs.at[ heat_system.central_or_decentral + " water tank storage", "lifetime" ], + e_nom_extendable=True, + e_cyclic=True, ) + if heat_system == HeatSystem.URBAN_CENTRAL: + + n.add("Carrier", f"{heat_system} water pits") + + n.add( + "StorageUnit", + nodes + f" {heat_system} water pits", + bus=nodes + f" {heat_system} heat", + carrier=f"{heat_system} water pits", + efficiency_store=costs.at["water pit charger", "efficiency"], + max_hours=costs.at[ + "central water pit storage", "energy to power ratio" + ], + efficiency_dispatch=costs.at["water pit discharger", "efficiency"], + p_nom_extendable=True, + standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days), + capital_cost=costs.at["central water pit storage", "fixed"], + lifetime=costs.at["central water pit storage", "lifetime"], + e_nom_extendable=True, + e_cyclic=True, + ) + if options["resistive_heaters"]: key = f"{heat_system.central_or_decentral} resistive heater" From da66842616207ce1055ad420fc7e43ddbcfeb040 Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 25 Feb 2025 14:19:10 +0100 Subject: [PATCH 593/669] EEM paper setup --- Snakefile | 139 +++-- ariadne-data/costs/mean/costs_2020.csv | 221 +++++-- ariadne-data/costs/mean/costs_2025.csv | 221 +++++-- ariadne-data/costs/mean/costs_2030.csv | 221 +++++-- ariadne-data/costs/mean/costs_2035.csv | 221 +++++-- ariadne-data/costs/mean/costs_2040.csv | 221 +++++-- ariadne-data/costs/mean/costs_2045.csv | 221 +++++-- ariadne-data/costs/mean/costs_2050.csv | 221 +++++-- config/config.default.yaml | 1 + config/config.eem.yaml | 84 +++ config/config.yaml | 5 +- config/scenarios.eem.yaml | 354 +++++++++++ doc/data_sources.rst | 8 + rules/build_sector.smk | 16 +- rules/solve_myopic.smk | 8 +- .../onshore_region_data.py | 12 +- scripts/build_heat_source_potentials/run.py | 2 +- scripts/prepare_sector_network.py | 35 +- .../pypsa-de/add_district_heating_subnodes.py | 554 +++++++++++------- scripts/pypsa-de/build_existing_chp_de.py | 4 +- scripts/pypsa-de/build_scenarios.py | 5 + .../prepare_district_heating_subnodes.py | 244 ++++++++ 22 files changed, 2379 insertions(+), 639 deletions(-) create mode 100644 config/config.eem.yaml create mode 100644 config/scenarios.eem.yaml create mode 100644 scripts/pypsa-de/prepare_district_heating_subnodes.py diff --git a/Snakefile b/Snakefile index 706476b7a..d66fe8de4 100644 --- a/Snakefile +++ b/Snakefile @@ -254,51 +254,104 @@ rule build_egon_data: script: "scripts/pypsa-de/build_egon_data.py" -baseyear_value = config["scenario"]["planning_horizons"][0] +if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ + "district_heating" +].get("add_subnodes", True): + + rule prepare_district_heating_subnodes: + params: + district_heating=config_provider("sector", "district_heating"), + baseyear=config_provider("scenario", "planning_horizons", 0), + input: + heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), + regions_onshore=resources( + "regions_onshore_base_s_{clusters}.geojson" + ), + fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", + cities="data/fernwaermeatlas/cities_geolocations.geojson", + lau=storage( + "https://gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson.zip", + keep_local=True, + ), + output: + district_heating_subnodes=resources( + "district_heating_subnodes_base_s_{clusters}.geojson" + ), + regions_onshore_extended=resources( + "regions_onshore_base-extended_s_{clusters}.geojson" + ), + regions_onshore_restricted=resources( + "regions_onshore_base-restricted_s_{clusters}.geojson" + ), -rule add_district_heating_subnodes: - params: - district_heating=config_provider("sector", "district_heating"), - baseyear=config_provider("scenario", "planning_horizons", 0), - input: - network=RESULTS - + "prenetworks/base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", - heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), - nuts3=resources("nuts3_shapes.geojson"), - regions_onshore=resources( - "regions_onshore_base_s_{clusters}.geojson" - ), - fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", - cities="data/fernwaermeatlas/cities_geolocations.geojson", - cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), - existing_heating_distribution=resources( - f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value}.csv" - ), - lau=storage( - "https://gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson.zip", - keep_local=True, - ), - output: - network=RESULTS - + "prenetworks/base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", - district_heating_subnodes=resources( - "district_heating_subnodes_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" - ), - cop_profiles_extended=resources( - "cop_profiles_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" - ), - existing_heating_distribution_extended=( - resources( - "existing_heating_distribution_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" - ) - if baseyear_value != "{planning_horizons}" - else [] - ), - resources: - mem_mb=1000, - script: - "scripts/pypsa-de/add_district_heating_subnodes.py" + resources: + mem_mb=1000, + script: + "scripts/pypsa-de/prepare_district_heating_subnodes.py" + + baseyear_value = config["scenario"]["planning_horizons"][0] + + rule add_district_heating_subnodes: + params: + district_heating=config_provider("sector", "district_heating"), + baseyear=config_provider("scenario", "planning_horizons", 0), + sector=config_provider("sector"), + heat_pump_sources=config_provider("sector", "heat_pump_sources", "urban central"), + heat_utilisation_potentials=config_provider( + "sector", "district_heating", "heat_utilisation_potentials" + ), + direct_utilisation_heat_sources=config_provider( + "sector", "district_heating", "direct_utilisation_heat_sources" + ), + adjustments=config_provider( "adjustments", "sector"), + input: + unpack(input_heat_source_potentials), + network=RESULTS + + "prenetworks/base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + subnodes=resources( + "district_heating_subnodes_base_s_{clusters}.geojson" + ), + nuts3=resources("nuts3_shapes.geojson"), + regions_onshore=resources( + "regions_onshore_base_s_{clusters}.geojson" + ), + fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", + cities="data/fernwaermeatlas/cities_geolocations.geojson", + corine=ancient("data/bundle/corine/g100_06.tif"), + natura=ancient("data/bundle/natura/natura.tiff"), + groundwater_depth=storage( + "http://thredds-gfnl.usc.es/thredds/fileServer/GLOBALWTDFTP/annualmeans/EURASIA_WTD_annualmean.nc", + keep_local=True + ), + cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), + direct_heat_source_utilisation_profiles=resources( + "direct_heat_source_utilisation_profiles_base_s_{clusters}_{planning_horizons}.nc" + ), + existing_heating_distribution=resources( + f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value}.csv" + ), + lau=storage( + "https://gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson.zip", + keep_local=True, + ), + output: + network=RESULTS + + "prenetworks/base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + district_heating_subnodes=resources( + "district_heating_subnodes_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" + ), + existing_heating_distribution_extended=( + resources( + "existing_heating_distribution_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" + ) + if baseyear_value != "{planning_horizons}" + else [] + ), + resources: + mem_mb=10000, + script: + "scripts/pypsa-de/add_district_heating_subnodes.py" ruleorder: modify_district_heat_share > build_district_heat_share diff --git a/ariadne-data/costs/mean/costs_2020.csv b/ariadne-data/costs/mean/costs_2020.csv index db63b7679..5bb342164 100644 --- a/ariadne-data/costs/mean/costs_2020.csv +++ b/ariadne-data/costs/mean/costs_2020.csv @@ -1,4 +1,8 @@ technology,parameter,value,unit,source,further description,currency_year +Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,efficiency,0.65,p.u.,ICCT IRA e-fuels assumptions ,, +Alkaline electrolyzer,investment,1019.8742,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -50,6 +54,13 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +Biomass gasification,efficiency,0.35,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,efficiency,0.328,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -115,6 +126,29 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,efficiency,0.56,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification,investment,483.8765,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,efficiency,0.532,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, +Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, +Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -215,15 +249,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,819108.478,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, +Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 +Fischer-Tropsch,lifetime,20.0,years,ICCT IRA e-fuels assumptions ,,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -231,7 +265,7 @@ General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 - 60 000 m^3 .,2012.0 General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 @@ -312,6 +346,10 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,1785.0713,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,187899.5061,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -428,6 +466,18 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -438,6 +488,14 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,efficiency,0.75,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming,investment,212.5817,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,efficiency,0.637,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -450,6 +508,10 @@ OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 OCGT,investment,480.3903,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,efficiency,0.63,p.u.,ICCT IRA e-fuels assumptions ,, +PEM electrolyzer,investment,1220.1113,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -472,15 +534,19 @@ Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90 Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates between 54%-90%, SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,efficiency,0.82,p.u.,ICCT IRA e-fuels assumptions ,, +SOEC,investment,1389.2004,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,152624.5646,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -492,6 +558,10 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,8014.7441,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 @@ -547,6 +617,13 @@ battery inverter,investment,285.7198,EUR/kW,"Danish Energy Agency, technology_da battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,245.5074,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.4615,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,167272.82,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,96.2077,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,62.1519,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -633,7 +710,7 @@ cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technolo cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 @@ -643,6 +720,11 @@ central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_ central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 central coal CHP,investment,2010.6211,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3003,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,1.7884,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.1,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,704.7435,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 central gas CHP,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 @@ -662,6 +744,14 @@ central gas boiler,VOM,1.164,EUR/MWh_th,"Danish Energy Agency, technology_data_f central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 central gas boiler,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4715,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.0281,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1625.2908,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.3935,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.0281,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,704.7435,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 central ground-sourced heat pump,VOM,1.0392,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 @@ -705,26 +795,40 @@ central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energ central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP powerboost CC,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.6133,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.6133,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.8942,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.78,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,efficiency,0.356,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,2020.0 csp-tower,investment,159.96,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.0,%/year,see solar-tower.,-,1.0 +csp-tower TES,FOM,1.0,%/year,see solar-tower.,-,2020.0 csp-tower TES,investment,21.43,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.0,%/year,see solar-tower.,-,1.0 +csp-tower power block,FOM,1.0,%/year,see solar-tower.,-,2020.0 csp-tower power block,investment,1120.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 @@ -761,23 +865,28 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,VOM,0.7408,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 +direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 direct firing gas,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 @@ -818,8 +927,8 @@ electric boiler steam,VOM,0.8711,EUR/MWh,"Danish Energy Agency, technology_data_ electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 electric boiler steam,investment,80.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 +electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -832,18 +941,23 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,5.153,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels,,2015.0 +electrobiofuels,VOM,4.4117,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation,, -electrobiofuels,investment,559887.2932,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,1.0308,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.5785,per unit,Stoichiometric calculation,, +electrobiofuels,investment,1028354.9161,EUR/kW_th,combination of BtL and electrofuels,,2022.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,1900.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 @@ -857,7 +971,7 @@ gas boiler steam,VOM,1.1077,EUR/MWh,"Danish Energy Agency, technology_data_for_i gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 gas boiler steam,investment,54.9273,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 @@ -881,14 +995,14 @@ hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pyp hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., +hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 hydrogen storage tank type 1 including compressor,investment,60.3186,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 @@ -907,6 +1021,11 @@ industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy industrial heat pump medium temperature,investment,877.2984,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +iron-air battery,FOM,1.0219,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,investment,23.45,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery charge,efficiency,0.7,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery discharge,efficiency,0.59,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -925,13 +1044,13 @@ methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 -methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1.35,EUR/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-kerosene,investment,307000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker,2015.0 +methanol-to-olefins/aromatics,VOM,31.7466,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -958,7 +1077,7 @@ nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysi nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1992.6105,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,investment,1992.6105,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -992,7 +1111,7 @@ ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2015.0 seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, seawater desalination,investment,42561.4413,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -1030,7 +1149,7 @@ solid biomass boiler steam CC,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technolo solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 @@ -1051,5 +1170,5 @@ waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_f waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 waste CHP CC,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file diff --git a/ariadne-data/costs/mean/costs_2025.csv b/ariadne-data/costs/mean/costs_2025.csv index eb8fe67e8..65199f511 100644 --- a/ariadne-data/costs/mean/costs_2025.csv +++ b/ariadne-data/costs/mean/costs_2025.csv @@ -1,4 +1,8 @@ technology,parameter,value,unit,source,further description,currency_year +Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,efficiency,0.67,p.u.,ICCT IRA e-fuels assumptions ,, +Alkaline electrolyzer,investment,926.4302,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -50,6 +54,13 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +Biomass gasification,efficiency,0.3792,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,efficiency,0.328,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -115,6 +126,29 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,efficiency,0.5978,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification,investment,441.5535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,efficiency,0.532,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, +Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, +Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -215,15 +249,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,761417.4621,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, +Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 +Fischer-Tropsch,lifetime,25.0,years,ICCT IRA e-fuels assumptions ,,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -231,7 +265,7 @@ General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 - 60 000 m^3 .,2012.0 General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 @@ -312,6 +346,10 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,1622.5424,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,166045.8871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -428,6 +466,18 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -438,6 +488,14 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,efficiency,0.7562,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming,investment,196.3225,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,efficiency,0.637,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -450,6 +508,10 @@ OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 OCGT,investment,470.4853,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,efficiency,0.655,p.u.,ICCT IRA e-fuels assumptions ,, +PEM electrolyzer,investment,1108.4235,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -472,15 +534,19 @@ Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90 Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates between 54%-90%, SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,efficiency,0.83,p.u.,ICCT IRA e-fuels assumptions ,, +SOEC,investment,1262.3836,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,148408.4164,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -492,6 +558,10 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,7357.7979,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 @@ -547,6 +617,13 @@ battery inverter,investment,227.5176,EUR/kW,"Danish Energy Agency, technology_da battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,197.8874,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.4615,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,167272.82,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,116.9293,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,72.2943,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -633,7 +710,7 @@ cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technolo cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 @@ -643,6 +720,11 @@ central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_ central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 central coal CHP,investment,1989.708,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3003,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,1.7884,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.2,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,704.7435,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 central gas CHP,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 @@ -662,6 +744,14 @@ central gas boiler,VOM,1.1111,EUR/MWh_th,"Danish Energy Agency, technology_data_ central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 central gas boiler,investment,58.2022,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4691,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.0453,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1577.4881,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.0453,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,704.7435,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 central ground-sourced heat pump,VOM,1.183,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 @@ -705,26 +795,40 @@ central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energ central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP powerboost CC,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5947,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.5947,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.7884,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,efficiency,0.356,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,2020.0 csp-tower,investment,134.165,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.05,%/year,see solar-tower.,-,1.0 +csp-tower TES,FOM,1.05,%/year,see solar-tower.,-,2020.0 csp-tower TES,investment,17.975,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.05,%/year,see solar-tower.,-,1.0 +csp-tower power block,FOM,1.05,%/year,see solar-tower.,-,2020.0 csp-tower power block,investment,939.87,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 @@ -761,23 +865,28 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,VOM,0.8995,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 +direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 @@ -818,8 +927,8 @@ electric boiler steam,VOM,0.8761,EUR/MWh,"Danish Energy Agency, technology_data_ electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 +electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -832,18 +941,23 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,4.6849,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels,,2015.0 +electrobiofuels,VOM,4.011,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation,, -electrobiofuels,investment,512440.2631,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,1.047,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.5839,per unit,Stoichiometric calculation,, +electrobiofuels,investment,1012250.914,EUR/kW_th,combination of BtL and electrofuels,,2022.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.5874,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1800.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.5874,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,1400.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 @@ -857,7 +971,7 @@ gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, technology_data_for_i gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 @@ -881,14 +995,14 @@ hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pyp hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., +hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 hydrogen storage tank type 1 including compressor,investment,53.9217,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 @@ -907,6 +1021,11 @@ industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy industrial heat pump medium temperature,investment,830.775,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +iron-air battery,FOM,1.0219,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,investment,23.45,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery charge,efficiency,0.7,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery discharge,efficiency,0.59,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -925,13 +1044,13 @@ methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 -methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1.35,EUR/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-kerosene,investment,288000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker,2015.0 +methanol-to-olefins/aromatics,VOM,31.7466,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -958,7 +1077,7 @@ nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysi nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1769.1171,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,investment,1769.1171,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -992,7 +1111,7 @@ ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2015.0 seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, seawater desalination,investment,39056.5182,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -1030,7 +1149,7 @@ solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technolo solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 @@ -1051,5 +1170,5 @@ waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_f waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 waste CHP CC,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file diff --git a/ariadne-data/costs/mean/costs_2030.csv b/ariadne-data/costs/mean/costs_2030.csv index a31d7393c..c95356197 100644 --- a/ariadne-data/costs/mean/costs_2030.csv +++ b/ariadne-data/costs/mean/costs_2030.csv @@ -1,4 +1,8 @@ technology,parameter,value,unit,source,further description,currency_year +Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,efficiency,0.69,p.u.,ICCT IRA e-fuels assumptions ,, +Alkaline electrolyzer,investment,832.9863,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -50,6 +54,13 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +Biomass gasification,efficiency,0.4083,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,efficiency,0.328,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -115,6 +126,29 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,efficiency,0.6357,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification,investment,399.2305,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,efficiency,0.609,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, +Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, +Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -215,15 +249,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,703726.4462,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, +Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 +Fischer-Tropsch,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -231,7 +265,7 @@ General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 - 60 000 m^3 .,2012.0 General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 @@ -312,6 +346,10 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,1460.0135,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -428,6 +466,18 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -438,6 +488,14 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,efficiency,0.7623,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming,investment,180.0632,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,efficiency,0.637,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -450,6 +508,10 @@ OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 OCGT,investment,460.5804,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,efficiency,0.68,p.u.,ICCT IRA e-fuels assumptions ,, +PEM electrolyzer,investment,996.7357,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -472,15 +534,19 @@ Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90 Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates between 54%-90%, SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,efficiency,0.84,p.u.,ICCT IRA e-fuels assumptions ,, +SOEC,investment,1135.5667,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -492,6 +558,10 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 @@ -547,6 +617,13 @@ battery inverter,investment,169.3155,EUR/kW,"Danish Energy Agency, technology_da battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,150.2675,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.4167,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,154405.68,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,137.6508,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,82.4367,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -633,7 +710,7 @@ cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technolo cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 central air-sourced heat pump,VOM,2.6561,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 @@ -643,6 +720,11 @@ central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_ central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 central coal CHP,investment,1968.7948,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,2.127,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 central gas CHP,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 @@ -662,6 +744,14 @@ central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_ central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4735,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.4843,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1529.6854,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.7314,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.4843,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 central ground-sourced heat pump,VOM,1.3268,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 @@ -705,26 +795,40 @@ central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energ central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP powerboost CC,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5761,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.5761,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.6826,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.82,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,efficiency,0.356,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,2020.0 csp-tower,investment,108.37,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.1,%/year,see solar-tower.,-,1.0 +csp-tower TES,FOM,1.1,%/year,see solar-tower.,-,2020.0 csp-tower TES,investment,14.52,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.1,%/year,see solar-tower.,-,1.0 +csp-tower power block,FOM,1.1,%/year,see solar-tower.,-,2020.0 csp-tower power block,investment,759.17,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 @@ -761,23 +865,28 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,VOM,1.0582,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 +direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 direct firing gas,VOM,0.2794,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 @@ -818,8 +927,8 @@ electric boiler steam,VOM,0.8811,EUR/MWh,"Danish Energy Agency, technology_data_ electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 +electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -832,18 +941,23 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,4.2296,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels,,2015.0 +electrobiofuels,VOM,3.6212,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation,, -electrobiofuels,investment,466206.9921,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,1.0637,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.5894,per unit,Stoichiometric calculation,, +electrobiofuels,investment,996146.9119,EUR/kW_th,combination of BtL and electrofuels,,2022.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.6217,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1500.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6217,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,875.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 @@ -857,7 +971,7 @@ gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_in gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 @@ -881,14 +995,14 @@ hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pyp hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., +hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 hydrogen storage tank type 1 including compressor,investment,47.5247,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 @@ -907,6 +1021,11 @@ industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy A industrial heat pump medium temperature,investment,784.2516,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +iron-air battery,FOM,1.0,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,investment,15.61,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery charge,efficiency,0.71,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery discharge,efficiency,0.6,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -925,13 +1044,13 @@ methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 -methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1.35,EUR/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-kerosene,investment,269000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker,2015.0 +methanol-to-olefins/aromatics,VOM,31.7466,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -958,7 +1077,7 @@ nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysi nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1682.1226,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,investment,1682.1226,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -992,7 +1111,7 @@ ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2015.0 seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, seawater desalination,investment,34796.4978,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -1030,7 +1149,7 @@ solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technolo solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 @@ -1051,5 +1170,5 @@ waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_f waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 waste CHP CC,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file diff --git a/ariadne-data/costs/mean/costs_2035.csv b/ariadne-data/costs/mean/costs_2035.csv index dee4047e2..8b8185c6b 100644 --- a/ariadne-data/costs/mean/costs_2035.csv +++ b/ariadne-data/costs/mean/costs_2035.csv @@ -1,4 +1,8 @@ technology,parameter,value,unit,source,further description,currency_year +Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,efficiency,0.715,p.u.,ICCT IRA e-fuels assumptions ,, +Alkaline electrolyzer,investment,756.8962,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,982536.4099,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -50,6 +54,13 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +Biomass gasification,efficiency,0.4375,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,efficiency,0.421,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -115,6 +126,29 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,efficiency,0.6735,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification,investment,399.2305,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,efficiency,0.609,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, +Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, +Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -215,15 +249,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,657729.5552,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, +Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 +Fischer-Tropsch,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -231,7 +265,7 @@ General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 - 60 000 m^3 .,2012.0 General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 @@ -312,6 +346,10 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,1327.0808,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -428,6 +466,18 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -438,6 +488,14 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,efficiency,0.7685,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming,investment,180.0632,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,efficiency,0.6515,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -450,6 +508,10 @@ OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 OCGT,investment,454.3898,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,efficiency,0.695,p.u.,ICCT IRA e-fuels assumptions ,, +PEM electrolyzer,investment,905.5166,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -472,15 +534,19 @@ Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90 Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates between 54%-90%, SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,efficiency,0.855,p.u.,ICCT IRA e-fuels assumptions ,, +SOEC,investment,1031.4435,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -492,6 +558,10 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 @@ -547,6 +617,13 @@ battery inverter,investment,137.5688,EUR/kW,"Danish Energy Agency, technology_da battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,124.8702,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.3913,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,147972.11,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,137.5968,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,84.2795,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -633,7 +710,7 @@ cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technolo cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 central air-sourced heat pump,VOM,2.4868,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,efficiency,3.25,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 @@ -643,6 +720,11 @@ central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_ central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 central coal CHP,investment,1948.5297,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,2.1694,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 central gas CHP,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 @@ -662,6 +744,14 @@ central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_ central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4723,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.5503,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1505.7841,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.6701,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.5503,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 central ground-sourced heat pump,VOM,1.373,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 @@ -705,26 +795,40 @@ central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energ central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP powerboost CC,investment,3493.3,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5556,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.5556,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.5768,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.84,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,efficiency,0.356,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,2020.0 csp-tower,investment,104.17,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.2,%/year,see solar-tower.,-,1.0 +csp-tower TES,FOM,1.2,%/year,see solar-tower.,-,2020.0 csp-tower TES,investment,13.955,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.2,%/year,see solar-tower.,-,1.0 +csp-tower power block,FOM,1.2,%/year,see solar-tower.,-,2020.0 csp-tower power block,investment,729.755,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 @@ -761,23 +865,28 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,VOM,1.164,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 +direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 direct firing gas,VOM,0.2807,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 @@ -818,8 +927,8 @@ electric boiler steam,VOM,0.8333,EUR/MWh,"Danish Energy Agency, technology_data_ electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 +electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -832,18 +941,23 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,3.8235,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels,,2015.0 +electrobiofuels,VOM,3.2735,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation,, -electrobiofuels,investment,428759.8057,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,1.081,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.595,per unit,Stoichiometric calculation,, +electrobiofuels,investment,980042.9098,EUR/kW_th,combination of BtL and electrofuels,,2022.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.6374,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1350.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6374,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,775.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 @@ -857,7 +971,7 @@ gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_in gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 @@ -881,14 +995,14 @@ hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pyp hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., +hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 hydrogen storage tank type 1 including compressor,investment,38.075,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 @@ -907,6 +1021,11 @@ industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy industrial heat pump medium temperature,investment,759.6808,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +iron-air battery,FOM,1.1063,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,investment,11.79,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery charge,efficiency,0.73,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery discharge,efficiency,0.62,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -925,13 +1044,13 @@ methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 -methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1.35,EUR/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-kerosene,investment,251750.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker,2015.0 +methanol-to-olefins/aromatics,VOM,31.7466,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -958,7 +1077,7 @@ nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysi nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1622.2443,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,investment,1622.2443,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -992,7 +1111,7 @@ ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2015.0 seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, seawater desalination,investment,31312.5066,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -1030,7 +1149,7 @@ solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technolo solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 @@ -1051,5 +1170,5 @@ waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_f waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 waste CHP CC,investment,8307.058,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file diff --git a/ariadne-data/costs/mean/costs_2040.csv b/ariadne-data/costs/mean/costs_2040.csv index e7f9ffbf0..5e3b235cc 100644 --- a/ariadne-data/costs/mean/costs_2040.csv +++ b/ariadne-data/costs/mean/costs_2040.csv @@ -1,4 +1,8 @@ technology,parameter,value,unit,source,further description,currency_year +Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,efficiency,0.74,p.u.,ICCT IRA e-fuels assumptions ,, +Alkaline electrolyzer,investment,680.8061,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,841127.4391,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -50,6 +54,13 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +Biomass gasification,efficiency,0.4667,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,efficiency,0.514,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -115,6 +126,29 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,efficiency,0.7113,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification,investment,399.2305,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,efficiency,0.609,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, +Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, +Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -215,15 +249,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,611732.6641,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, +Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 +Fischer-Tropsch,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -231,7 +265,7 @@ General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 - 60 000 m^3 .,2012.0 General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 @@ -312,6 +346,10 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,1194.148,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -428,6 +466,18 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -438,6 +488,14 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,efficiency,0.7747,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming,investment,180.0632,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,efficiency,0.666,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -450,6 +508,10 @@ OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 OCGT,investment,448.1992,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,efficiency,0.71,p.u.,ICCT IRA e-fuels assumptions ,, +PEM electrolyzer,investment,814.2975,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -472,15 +534,19 @@ Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90 Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates between 54%-90%, SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,efficiency,0.87,p.u.,ICCT IRA e-fuels assumptions ,, +SOEC,investment,927.3202,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -492,6 +558,10 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 @@ -547,6 +617,13 @@ battery inverter,investment,105.8222,EUR/kW,"Danish Energy Agency, technology_da battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,99.4728,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.3636,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,141538.54,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,137.5427,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,86.1222,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -633,7 +710,7 @@ cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technolo cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,efficiency,3.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 @@ -643,6 +720,11 @@ central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_ central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 central coal CHP,investment,1928.2647,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,2.2117,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 central gas CHP,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 @@ -662,6 +744,14 @@ central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_ central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4711,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.6163,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1481.8828,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.6088,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.6163,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 central ground-sourced heat pump,VOM,1.4192,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 @@ -705,26 +795,40 @@ central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energ central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP powerboost CC,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.535,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.535,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.4709,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.86,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,efficiency,0.356,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,2020.0 csp-tower,investment,99.97,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.3,%/year,see solar-tower.,-,1.0 +csp-tower TES,FOM,1.3,%/year,see solar-tower.,-,2020.0 csp-tower TES,investment,13.39,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.3,%/year,see solar-tower.,-,1.0 +csp-tower power block,FOM,1.3,%/year,see solar-tower.,-,2020.0 csp-tower power block,investment,700.34,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 @@ -761,23 +865,28 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,VOM,1.2699,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 +direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 @@ -818,8 +927,8 @@ electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_ electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 +electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -832,18 +941,23 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,3.429,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels,,2015.0 +electrobiofuels,VOM,2.9357,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation,, -electrobiofuels,investment,392280.346,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,1.0989,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6007,per unit,Stoichiometric calculation,, +electrobiofuels,investment,963938.9077,EUR/kW_th,combination of BtL and electrofuels,,2022.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.6532,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1200.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6532,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,675.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 @@ -857,7 +971,7 @@ gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_in gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 @@ -881,14 +995,14 @@ hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pyp hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., +hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 hydrogen storage tank type 1 including compressor,investment,28.6253,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 @@ -907,6 +1021,11 @@ industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy A industrial heat pump medium temperature,investment,735.11,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +iron-air battery,FOM,1.1808,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,investment,10.4,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery charge,efficiency,0.74,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery discharge,efficiency,0.63,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -925,13 +1044,13 @@ methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 -methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1.35,EUR/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-kerosene,investment,234500.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker,2015.0 +methanol-to-olefins/aromatics,VOM,31.7466,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -958,7 +1077,7 @@ nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysi nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1562.3661,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,investment,1562.3661,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -992,7 +1111,7 @@ ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2015.0 seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, seawater desalination,investment,27828.5154,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -1030,7 +1149,7 @@ solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technolo solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 @@ -1051,5 +1170,5 @@ waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_f waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 waste CHP CC,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file diff --git a/ariadne-data/costs/mean/costs_2045.csv b/ariadne-data/costs/mean/costs_2045.csv index 0828e2143..1334ed97f 100644 --- a/ariadne-data/costs/mean/costs_2045.csv +++ b/ariadne-data/costs/mean/costs_2045.csv @@ -1,4 +1,8 @@ technology,parameter,value,unit,source,further description,currency_year +Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,efficiency,0.76,p.u.,ICCT IRA e-fuels assumptions ,, +Alkaline electrolyzer,investment,618.5101,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,699718.4683,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -50,6 +54,13 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +Biomass gasification,efficiency,0.4958,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,efficiency,0.514,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -115,6 +126,29 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,efficiency,0.7492,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification,investment,399.2305,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,efficiency,0.609,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, +Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, +Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -215,15 +249,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,565735.7731,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, +Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 +Fischer-Tropsch,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -231,7 +265,7 @@ General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 - 60 000 m^3 .,2012.0 General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 @@ -312,6 +346,10 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,1054.8211,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -428,6 +466,18 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -438,6 +488,14 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,efficiency,0.7808,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming,investment,180.0632,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,efficiency,0.6805,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -450,6 +508,10 @@ OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 OCGT,investment,442.0086,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,efficiency,0.72,p.u.,ICCT IRA e-fuels assumptions ,, +PEM electrolyzer,investment,739.9873,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -472,15 +534,19 @@ Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90 Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates between 54%-90%, SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,efficiency,0.885,p.u.,ICCT IRA e-fuels assumptions ,, +SOEC,investment,842.7756,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -492,6 +558,10 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 @@ -547,6 +617,13 @@ battery inverter,investment,84.6577,EUR/kW,"Danish Energy Agency, technology_dat battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,89.4197,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.381,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,135104.97,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,134.6872,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,87.9862,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -633,7 +710,7 @@ cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technolo cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 central air-sourced heat pump,VOM,2.5715,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,efficiency,3.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 @@ -643,6 +720,11 @@ central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_ central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 central coal CHP,investment,1907.9996,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,2.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.45,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 central gas CHP,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 @@ -662,6 +744,14 @@ central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_ central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4698,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.411,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1457.9814,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.5475,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.411,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 central ground-sourced heat pump,VOM,1.4654,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 @@ -705,26 +795,40 @@ central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energ central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP powerboost CC,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.5144,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.5144,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.4709,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.86,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,efficiency,0.356,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,2020.0 csp-tower,investment,99.675,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.35,%/year,see solar-tower.,-,1.0 +csp-tower TES,FOM,1.35,%/year,see solar-tower.,-,2020.0 csp-tower TES,investment,13.355,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.35,%/year,see solar-tower.,-,1.0 +csp-tower power block,FOM,1.35,%/year,see solar-tower.,-,2020.0 csp-tower power block,investment,698.27,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 @@ -761,23 +865,28 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,VOM,1.2699,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 +direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 @@ -818,8 +927,8 @@ electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_ electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 +electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -832,18 +941,23 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,3.0103,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels,,2015.0 +electrobiofuels,VOM,2.5772,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation,, -electrobiofuels,investment,356768.6132,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,1.1173,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6065,per unit,Stoichiometric calculation,, +electrobiofuels,investment,947834.9056,EUR/kW_th,combination of BtL and electrofuels,,2022.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.6763,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1100.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6763,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,575.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 @@ -857,7 +971,7 @@ gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_in gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 @@ -881,14 +995,14 @@ hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pyp hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., +hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 hydrogen storage tank type 1 including compressor,investment,25.424,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 @@ -907,6 +1021,11 @@ industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy industrial heat pump medium temperature,investment,720.005,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +iron-air battery,FOM,1.1808,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,investment,10.4,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery charge,efficiency,0.74,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery discharge,efficiency,0.63,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -925,13 +1044,13 @@ methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 -methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1.35,EUR/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-kerosene,investment,217250.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker,2015.0 +methanol-to-olefins/aromatics,VOM,31.7466,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -958,7 +1077,7 @@ nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysi nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1543.1486,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,investment,1543.1486,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -992,7 +1111,7 @@ ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2015.0 seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, seawater desalination,investment,25039.1517,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -1030,7 +1149,7 @@ solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technolo solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 @@ -1051,5 +1170,5 @@ waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_f waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 waste CHP CC,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file diff --git a/ariadne-data/costs/mean/costs_2050.csv b/ariadne-data/costs/mean/costs_2050.csv index 0bf0ad9b2..46207edef 100644 --- a/ariadne-data/costs/mean/costs_2050.csv +++ b/ariadne-data/costs/mean/costs_2050.csv @@ -1,4 +1,8 @@ technology,parameter,value,unit,source,further description,currency_year +Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,efficiency,0.78,p.u.,ICCT IRA e-fuels assumptions ,, +Alkaline electrolyzer,investment,556.2141,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,558309.4975,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -50,6 +54,13 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 +Biomass gasification,efficiency,0.525,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,efficiency,0.514,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -115,6 +126,29 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 +Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,efficiency,0.787,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification,investment,399.2305,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,efficiency,0.609,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, +Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, +Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -215,15 +249,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,519738.882,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, +Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 +Fischer-Tropsch,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -231,7 +265,7 @@ General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida General liquid hydrocarbon storage (crude),investment,137.8999,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 .,2012.0 General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility).,2012.0 -General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 .,2012.0 +General liquid hydrocarbon storage (product),investment,172.3748,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 - 60 000 m^3 .,2012.0 General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.",,2012.0 Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}",2020.0 Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}",2020.0 @@ -312,6 +346,10 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,915.4941,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", +Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -428,6 +466,18 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., +NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, +NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -438,6 +488,14 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 +Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,efficiency,0.787,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming,investment,180.0632,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,efficiency,0.695,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -450,6 +508,10 @@ OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 OCGT,investment,435.818,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 +PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,efficiency,0.73,p.u.,ICCT IRA e-fuels assumptions ,, +PEM electrolyzer,investment,665.6771,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -472,15 +534,19 @@ Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90 Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}",2020.0 Pumped-Storage-Hydro-store,investment,57074.0625,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}",2020.0 Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR,investment,522201.0492,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311", -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90%, +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 +SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates between 54%-90%, SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, +SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,efficiency,0.9,p.u.,ICCT IRA e-fuels assumptions ,, +SOEC,investment,758.2311,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 +SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -492,6 +558,10 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 +Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, +Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 +Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 @@ -547,6 +617,13 @@ battery inverter,investment,63.4933,EUR/kW,"Danish Energy Agency, technology_dat battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 battery storage,investment,79.3666,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,128671.4,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,131.8317,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,89.8502,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -633,7 +710,7 @@ cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technolo cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 central air-sourced heat pump,VOM,2.8255,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average",2015.0 +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 @@ -643,6 +720,11 @@ central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_ central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 central coal CHP,investment,1887.7345,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,1.7884,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 central gas CHP,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 @@ -662,6 +744,14 @@ central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_ central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4684,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.2056,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1434.0801,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.4861,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.2056,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 central ground-sourced heat pump,VOM,1.5116,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 @@ -705,26 +795,40 @@ central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energ central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP powerboost CC,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water tank storage,investment,0.4938,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.4938,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.4709,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.86,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100.",2023.0 coal,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR).",2023.0 -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 +coal,efficiency,0.356,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up.",2023.0 coal,fuel,9.5542,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t.",2010.0 coal,investment,3827.1629,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR).",2023.0 coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,1.0 +csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario.,2020.0 csp-tower,investment,99.38,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),-,2020.0 -csp-tower TES,FOM,1.4,%/year,see solar-tower.,-,1.0 +csp-tower TES,FOM,1.4,%/year,see solar-tower.,-,2020.0 csp-tower TES,investment,13.32,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower TES,lifetime,30.0,years,see solar-tower.,-,2020.0 -csp-tower power block,FOM,1.4,%/year,see solar-tower.,-,1.0 +csp-tower power block,FOM,1.4,%/year,see solar-tower.,-,2020.0 csp-tower power block,investment,696.2,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR.",2020.0 csp-tower power block,lifetime,30.0,years,see solar-tower.,-,2020.0 decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 @@ -761,23 +865,28 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,VOM,1.2699,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,investment,19.446,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions,2015.0 -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 +direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 @@ -818,8 +927,8 @@ electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_ electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 -electric steam cracker,FOM,3.0,%/year,Guesstimate,, -electric steam cracker,VOM,190.4799,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 +electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 +electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing., electric steam cracker,investment,11124025.7434,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -832,18 +941,23 @@ electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost assumptions,2015.0 electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation,, -electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels,, -electrobiofuels,VOM,2.6044,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels,,2015.0 +electrobiofuels,VOM,2.2297,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation,, -electrobiofuels,investment,322224.6071,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,1.1364,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6125,per unit,Stoichiometric calculation,, +electrobiofuels,investment,931730.9035,EUR/kW_th,combination of BtL and electrofuels,,2022.0 electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.6994,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6994,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,475.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 @@ -857,7 +971,7 @@ gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_in gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)",2015.0 +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 gas storage charger,investment,15.1737,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)",2015.0 @@ -881,14 +995,14 @@ hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pyp hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 -hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., +hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 +hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 +hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 hydrogen storage tank type 1 including compressor,investment,22.2227,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 @@ -907,6 +1021,11 @@ industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy industrial heat pump medium temperature,investment,704.9,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 +iron-air battery,FOM,1.1808,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,investment,10.4,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery charge,efficiency,0.74,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery discharge,efficiency,0.63,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -925,13 +1044,13 @@ methane storage tank incl. compressor,investment,8961.5075,EUR/m^3,Storage costs methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA).,2014.0 methanol,CO2 intensity,0.2482,tCO2/MWh_th,,, methanol-to-kerosene,FOM,4.5,%/year,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 -methanol-to-kerosene,VOM,1350.0,EUR/GWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 +methanol-to-kerosene,VOM,1.35,EUR/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", methanol-to-kerosene,investment,200000.0,EUR/MW_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",,2020.0 methanol-to-kerosene,lifetime,30.0,years,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.",, methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen.", -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker, -methanol-to-olefins/aromatics,VOM,31.7466,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker,2015.0 +methanol-to-olefins/aromatics,VOM,31.7466,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", ,2015.0 methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. ", methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC , methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 @@ -958,7 +1077,7 @@ nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysi nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1523.9311,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs",2020.0 +offwind,investment,1523.9311,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -992,7 +1111,7 @@ ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from ror,investment,3412.2266,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3., -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2015.0 seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",, seawater desalination,investment,22249.7881,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.",,2015.0 seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -1030,7 +1149,7 @@ solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technolo solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 solid biomass boiler steam CC,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 @@ -1051,5 +1170,5 @@ waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_f waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 waste CHP CC,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency),2015.0 +water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file diff --git a/config/config.default.yaml b/config/config.default.yaml index 61d7704f5..e41984ddb 100644 --- a/config/config.default.yaml +++ b/config/config.default.yaml @@ -494,6 +494,7 @@ sector: - geothermal heat_pump_sources: urban central: + - geothermal - air urban decentral: - air diff --git a/config/config.eem.yaml b/config/config.eem.yaml new file mode 100644 index 000000000..e7ca7071c --- /dev/null +++ b/config/config.eem.yaml @@ -0,0 +1,84 @@ +# SPDX-FileCopyrightText: : 2017-2024 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: CC0-1.0 + +run: + prefix: 20250225_eem_config + name: + - Baseline + - No_PTES + - LowPTESCAPEX + - HighPTESCAPEX + - LowStandingLosses + - HighStandingLosses + - LowGroundWaterDepth + - HighGroundWaterDepth + - LowEtPRatio + - HighEtPRatio + # - 8Gt_Elec_v3 + # - 8Gt_H2_v3 + scenarios: + enable: true + manual_file: config/scenarios.eem.yaml + file: config/scenarios.automated.yaml + shared_resources: + policy: base #stops recalculating + exclude: + - existing_heating.csv # specify files which should not be shared between scenarios + - costs + - retrieve_cost # This is necessary to save retrieve_cost_data_{year}.log in the correct folder + - industry_sector_ratios + - build_industry_sector_ratios # This is necessary to save build_industry_sector_ratios_data.log in the correct folder + - modify_existing_heating + +iiasa_database: + db_name: ariadne + leitmodelle: + general: REMIND-EU v1.1 + buildings: REMod v1.0 + transport: REMIND-EU v1.1 + transport_stock: DLR-VECTOR21 + industry: FORECAST v1.0 + scenarios: + - 8Gt_Bal_v3 + - 8Gt_Elec_v3 + - 8Gt_H2_v3 + reference_scenario: 8Gt_Bal_v3 + region: Deutschland + +foresight: myopic + +scenario: + ll: + - vopt + clusters: + - 27 #current options: 27, 49 + opts: + - '' + sector_opts: + - none + planning_horizons: + # - 2020 + # - 2025 + # - 2030 + # - 2035 + # - 2040 + - 2045 + +adjustments: + electricity: false + sector: + absolute: + StorageUnit: + urban central water pits: + standing_loss: 0.00012121 + urban central water tanks: + standing_loss: 0.00015476 + +wasserstoff_kernnetz: + enable: false + +sector: + district_heating: + potential: 0.5 + add_subnodes: true \ No newline at end of file diff --git a/config/config.yaml b/config/config.yaml index c61e3ffb5..90aab12d7 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20242008_dh_subnodes_off + prefix: 20250218_ptes_potential name: # - CurrentPolicies - KN2045_Bal_v4 @@ -294,6 +294,9 @@ sector: 2045: 0.8 2050: 1.0 add_subnodes: false + ptes_codes_corine: [12, 13, 14, 16, 18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32] + max_groundwater_depth: -10 + ptes_potential_scalar: 1 central_heat_vent: true co2_spatial: true biomass_spatial: true diff --git a/config/scenarios.eem.yaml b/config/scenarios.eem.yaml new file mode 100644 index 000000000..a06904bf7 --- /dev/null +++ b/config/scenarios.eem.yaml @@ -0,0 +1,354 @@ +# -*- coding: utf-8 -*- +# SPDX-FileCopyrightText: : 2017-2023 The PyPSA-Eur Authors +# +# SPDX-License-Identifier: MIT + +Baseline: + iiasa_database: + reference_scenario: 8Gt_Bal_v3 + fallback_reference_scenario: 8Gt_Bal_v3 + co2_budget_DE_source: KSG + industry: + + St_primary_fraction: + 2020: 0.7023 + 2025: 0.705 + 2030: 0.6929 + 2035: 0.6598 + 2040: 0.6273 + 2045: 0.6047 + DRI_fraction: + 2020: 0.0 + 2025: 0.0 + 2030: 0.2011 + 2035: 0.496 + 2040: 0.7729 + 2045: 1.0 + costs: + horizon: mean + NEP: 2023 + transmission: overhead # either overhead line ("overhead") or underground cable ("underground") + +No_PTES: + adjustments: + electricity: false + sector: + absolute: + StorageUnit: + urban central water pits: + p_nom_max: 0 + iiasa_database: + reference_scenario: 8Gt_Bal_v3 + fallback_reference_scenario: 8Gt_Bal_v3 + co2_budget_DE_source: KSG + industry: + + St_primary_fraction: + 2020: 0.7023 + 2025: 0.705 + 2030: 0.6929 + 2035: 0.6598 + 2040: 0.6273 + 2045: 0.6047 + DRI_fraction: + 2020: 0.0 + 2025: 0.0 + 2030: 0.2011 + 2035: 0.496 + 2040: 0.7729 + 2045: 1.0 + costs: + horizon: mean + NEP: 2023 + transmission: overhead # either overhead line ("overhead") or underground cable ("underground") + +LowPTESCAPEX: + adjustments: + electricity: false + sector: + factor: + StorageUnit: + urban central water pits: + capital_cost: 0.5 + absolute: + StorageUnit: + urban central water pits: + standing_loss: 0.00012121 + urban central water tanks: + standing_loss: 0.00015476 + + iiasa_database: + reference_scenario: 8Gt_Bal_v3 + fallback_reference_scenario: 8Gt_Bal_v3 + co2_budget_DE_source: KSG + industry: + + St_primary_fraction: + 2020: 0.7023 + 2025: 0.705 + 2030: 0.6929 + 2035: 0.6598 + 2040: 0.6273 + 2045: 0.6047 + DRI_fraction: + 2020: 0.0 + 2025: 0.0 + 2030: 0.2011 + 2035: 0.496 + 2040: 0.7729 + 2045: 1.0 + costs: + horizon: mean + NEP: 2023 + transmission: overhead # either overhead line ("overhead") or underground cable ("underground") + + +HighPTESCAPEX: + adjustments: + electricity: false + sector: + factor: + StorageUnit: + urban central water pits: + capital_cost: 2 + absolute: + StorageUnit: + urban central water pits: + standing_loss: 0.00012121 + urban central water tanks: + standing_loss: 0.00015476 + + iiasa_database: + reference_scenario: 8Gt_Bal_v3 + fallback_reference_scenario: 8Gt_Bal_v3 + co2_budget_DE_source: KSG + industry: + + St_primary_fraction: + 2020: 0.7023 + 2025: 0.705 + 2030: 0.6929 + 2035: 0.6598 + 2040: 0.6273 + 2045: 0.6047 + DRI_fraction: + 2020: 0.0 + 2025: 0.0 + 2030: 0.2011 + 2035: 0.496 + 2040: 0.7729 + 2045: 1.0 + costs: + horizon: mean + NEP: 2023 + transmission: overhead # either overhead line ("overhead") or underground cable ("underground") + + +LowStandingLosses: + adjustments: + electricity: false + sector: + absolute: + StorageUnit: + urban central water pits: + standing_loss: 0 + iiasa_database: + reference_scenario: 8Gt_Bal_v3 + fallback_reference_scenario: 8Gt_Bal_v3 + co2_budget_DE_source: KSG + industry: + + St_primary_fraction: + 2020: 0.7023 + 2025: 0.705 + 2030: 0.6929 + 2035: 0.6598 + 2040: 0.6273 + 2045: 0.6047 + DRI_fraction: + 2020: 0.0 + 2025: 0.0 + 2030: 0.2011 + 2035: 0.496 + 2040: 0.7729 + 2045: 1.0 + costs: + horizon: mean + NEP: 2023 + transmission: overhead # either overhead line ("overhead") or underground cable ("underground") + + +HighStandingLosses: + adjustments: + electricity: false + sector: + absolute: + StorageUnit: + urban central water pits: + standing_loss: 0.0012121 + iiasa_database: + reference_scenario: 8Gt_Bal_v3 + fallback_reference_scenario: 8Gt_Bal_v3 + co2_budget_DE_source: KSG + industry: + + St_primary_fraction: + 2020: 0.7023 + 2025: 0.705 + 2030: 0.6929 + 2035: 0.6598 + 2040: 0.6273 + 2045: 0.6047 + DRI_fraction: + 2020: 0.0 + 2025: 0.0 + 2030: 0.2011 + 2035: 0.496 + 2040: 0.7729 + 2045: 1.0 + costs: + horizon: mean + NEP: 2023 + transmission: overhead # either overhead line ("overhead") or underground cable ("underground") + +LowGroundWaterDepth: + sector: + district_heating: + max_groundwater_depth: -25 + iiasa_database: + reference_scenario: 8Gt_Bal_v3 + fallback_reference_scenario: 8Gt_Bal_v3 + co2_budget_DE_source: KSG + industry: + + St_primary_fraction: + 2020: 0.7023 + 2025: 0.705 + 2030: 0.6929 + 2035: 0.6598 + 2040: 0.6273 + 2045: 0.6047 + DRI_fraction: + 2020: 0.0 + 2025: 0.0 + 2030: 0.2011 + 2035: 0.496 + 2040: 0.7729 + 2045: 1.0 + costs: + horizon: mean + NEP: 2023 + transmission: overhead # either overhead line ("overhead") or underground cable ("underground") + +HighGroundWaterDepth: + sector: + district_heating: + max_groundwater_depth: 0 + iiasa_database: + reference_scenario: 8Gt_Bal_v3 + fallback_reference_scenario: 8Gt_Bal_v3 + co2_budget_DE_source: KSG + industry: + + St_primary_fraction: + 2020: 0.7023 + 2025: 0.705 + 2030: 0.6929 + 2035: 0.6598 + 2040: 0.6273 + 2045: 0.6047 + DRI_fraction: + 2020: 0.0 + 2025: 0.0 + 2030: 0.2011 + 2035: 0.496 + 2040: 0.7729 + 2045: 1.0 + costs: + horizon: mean + NEP: 2023 + transmission: overhead # either overhead line ("overhead") or underground cable ("underground") + +LowEtPRatio: + adjustments: + electricity: false + sector: + factor: + StorageUnit: + urban central water pits: + max_hours: 0.5 + capital_cost: 0.5 + p_nom_max: 2 + absolute: + StorageUnit: + urban central water pits: + standing_loss: 0.00012121 + urban central water tanks: + standing_loss: 0.00015476 + + iiasa_database: + reference_scenario: 8Gt_Bal_v3 + fallback_reference_scenario: 8Gt_Bal_v3 + co2_budget_DE_source: KSG + industry: + + St_primary_fraction: + 2020: 0.7023 + 2025: 0.705 + 2030: 0.6929 + 2035: 0.6598 + 2040: 0.6273 + 2045: 0.6047 + DRI_fraction: + 2020: 0.0 + 2025: 0.0 + 2030: 0.2011 + 2035: 0.496 + 2040: 0.7729 + 2045: 1.0 + costs: + horizon: mean + NEP: 2023 + transmission: overhead # either overhead line ("overhead") or underground cable ("underground") + + +HighEtPRatio: + adjustments: + electricity: false + sector: + factor: + StorageUnit: + urban central water pits: + max_hours: 2 + capital_cost: 2 + p_nom_max: 0.5 + absolute: + StorageUnit: + urban central water pits: + standing_loss: 0.00012121 + urban central water tanks: + standing_loss: 0.00015476 + iiasa_database: + reference_scenario: 8Gt_Bal_v3 + fallback_reference_scenario: 8Gt_Bal_v3 + co2_budget_DE_source: KSG + industry: + + St_primary_fraction: + 2020: 0.7023 + 2025: 0.705 + 2030: 0.6929 + 2035: 0.6598 + 2040: 0.6273 + 2045: 0.6047 + DRI_fraction: + 2020: 0.0 + 2025: 0.0 + 2030: 0.2011 + 2035: 0.496 + 2040: 0.7729 + 2045: 1.0 + costs: + horizon: mean + NEP: 2023 + transmission: overhead # either overhead line ("overhead") or underground cable ("underground") diff --git a/doc/data_sources.rst b/doc/data_sources.rst index f11714db0..85f58cc72 100644 --- a/doc/data_sources.rst +++ b/doc/data_sources.rst @@ -120,6 +120,14 @@ Specific retrieval rules Data in this section is retrieved and extracted in rules specified in ``rules/retrieve.smk``. +``data/fraunhofer_heat_source_utilisation_potentials`` + +- **Source:** Fraunhofer Fordatis +- **Link:** https://fordatis.fraunhofer.de/handle/fordatis/341.3?mode=simple +- **License:** `CC BY 4.0 `__ +- **Description:** Utilisation potentials for different heat sources across Europe, based on Manz et al. 2024. + + ``data/nuts`` - **Source:** GISCO diff --git a/rules/build_sector.smk b/rules/build_sector.smk index 9d656cd71..e1db91aa8 100755 --- a/rules/build_sector.smk +++ b/rules/build_sector.smk @@ -194,7 +194,9 @@ rule build_temperature_profiles: drop_leap_day=config_provider("enable", "drop_leap_day"), input: pop_layout=resources("pop_layout_total.nc"), - regions_onshore=resources("regions_onshore_base_s_{clusters}.geojson"), + regions_onshore=resources("regions_onshore_base-extended_s_{clusters}.geojson") if config["sector"][ + "district_heating" +].get("add_subnodes", True) else resources("regions_onshore_base_s_{clusters}.geojson"), cutout=heat_demand_cutout, output: temp_soil=resources("temp_soil_total_base_s_{clusters}.nc"), @@ -260,7 +262,9 @@ rule build_central_heating_temperature_profiles: energy_totals_year=config_provider("energy", "energy_totals_year"), input: temp_air_total=resources("temp_air_total_base_s_{clusters}.nc"), - regions_onshore=resources("regions_onshore_base_s_{clusters}.geojson"), + regions_onshore=resources("regions_onshore_base-extended_s_{clusters}.geojson") if config["sector"][ + "district_heating" +].get("add_subnodes", True) else resources("regions_onshore_base_s_{clusters}.geojson"), output: central_heating_forward_temperature_profiles=resources( "central_heating_forward_temperature_profiles_base_s_{clusters}_{planning_horizons}.nc" @@ -291,7 +295,9 @@ rule build_heat_source_potentials: ), input: utilisation_potential="data/heat_source_utilisation_potentials/{heat_source}.gpkg", - regions_onshore=resources("regions_onshore_base_s_{clusters}.geojson"), + regions_onshore=resources("regions_onshore_base-restricted_s_{clusters}.geojson") if config["sector"][ + "district_heating" +].get("add_subnodes", True) else resources("regions_onshore_base_s_{clusters}.geojson"), output: resources("heat_source_potential_{heat_source}_base_s_{clusters}.csv"), resources: @@ -331,7 +337,9 @@ rule build_cop_profiles: ), temp_soil_total=resources("temp_soil_total_base_s_{clusters}.nc"), temp_air_total=resources("temp_air_total_base_s_{clusters}.nc"), - regions_onshore=resources("regions_onshore_base_s_{clusters}.geojson"), + regions_onshore=resources("regions_onshore_base_s_{clusters}.geojson") if config["sector"][ + "district_heating" +].get("add_subnodes", True) else resources("regions_onshore_base_s_{clusters}.geojson"), output: cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), resources: diff --git a/rules/solve_myopic.smk b/rules/solve_myopic.smk index 64f83fba5..7a7299a67 100644 --- a/rules/solve_myopic.smk +++ b/rules/solve_myopic.smk @@ -31,13 +31,7 @@ rule add_existing_baseyear: config_provider("scenario", "planning_horizons", 0)(w) ) ), - cop_profiles=( - resources( - "cop_profiles_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc" - ) - if config["sector"]["district_heating"].get("add_subnodes", True) - else resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc") - ), + cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), existing_heating_distribution=( resources( "existing_heating_distribution_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" diff --git a/scripts/build_heat_source_potentials/onshore_region_data.py b/scripts/build_heat_source_potentials/onshore_region_data.py index 1dfcbf42d..01456dd12 100755 --- a/scripts/build_heat_source_potentials/onshore_region_data.py +++ b/scripts/build_heat_source_potentials/onshore_region_data.py @@ -76,15 +76,11 @@ def _map_to_onshore_regions(self): data_in_regions = gpd.sjoin(self.data, self.onshore_regions, how="right") # Initialize an empty list to store the merged GeoDataFrames - ret_val = self.onshore_regions.copy() - ret_val[self._column_name] = ( - data_in_regions.groupby("name")[self._column_name] - .sum() - .reset_index(drop=True) - ) - ret_val = ret_val.set_index("name", drop=True).rename_axis("name")[ + ret_val = self.onshore_regions.copy().set_index("name", drop=True) + ret_val[self._column_name] = data_in_regions.groupby("name")[ self._column_name - ] + ].sum() + ret_val = ret_val.rename_axis("name")[self._column_name] return ret_val diff --git a/scripts/build_heat_source_potentials/run.py b/scripts/build_heat_source_potentials/run.py index 1b71cdce7..d24142d96 100644 --- a/scripts/build_heat_source_potentials/run.py +++ b/scripts/build_heat_source_potentials/run.py @@ -29,7 +29,7 @@ """ import geopandas as gpd -from _helpers import set_scenario_config +from scripts._helpers import set_scenario_config from scripts.build_heat_source_potentials.onshore_region_data import OnshoreRegionData diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 2428d1cb8..1d5778992 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -22,6 +22,10 @@ from pypsa.geo import haversine_pts from scipy.stats import beta +import sys + +sys.path.append(os.path.join(os.path.dirname(__file__), "..")) + from scripts._helpers import ( configure_logging, get, @@ -2470,11 +2474,17 @@ def add_heat( nodes + f" {heat_system} water tanks", bus=nodes + f" {heat_system} heat", carrier=f"{heat_system} water tanks", - efficiency_store=costs.at["water tank charger", "efficiency"], + efficiency_store=costs.at[ + f"{heat_system.central_or_decentral} water tank charger", + "efficiency", + ], max_hours=costs.at[ "central water tank storage", "energy to power ratio" ], - efficiency_dispatch=costs.at["water tank discharger", "efficiency"], + efficiency_dispatch=costs.at[ + f"{heat_system.central_or_decentral} water tank discharger", + "efficiency", + ], p_nom_extendable=True, standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days), capital_cost=costs.at[ @@ -2496,11 +2506,18 @@ def add_heat( nodes + f" {heat_system} water pits", bus=nodes + f" {heat_system} heat", carrier=f"{heat_system} water pits", - efficiency_store=costs.at["water pit charger", "efficiency"], + efficiency_store=costs.at[ + "central water pit charger", + "efficiency", + ], max_hours=costs.at[ - "central water pit storage", "energy to power ratio" + "central water pit storage", + "energy to power ratio", + ], + efficiency_dispatch=costs.at[ + "central water pit discharger", + "efficiency", ], - efficiency_dispatch=costs.at["water pit discharger", "efficiency"], p_nom_extendable=True, standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days), capital_cost=costs.at["central water pit storage", "fixed"], @@ -4898,13 +4915,17 @@ def add_enhanced_geothermal(n, egs_potentials, egs_overlap, costs): if "snakemake" not in globals(): from scripts._helpers import mock_snakemake + # Change directory to this script + os.chdir(os.path.dirname(os.path.realpath(__file__))) + snakemake = mock_snakemake( "prepare_sector_network", opts="", - clusters="38", + clusters="27", ll="vopt", - sector_opts="", + sector_opts="none", planning_horizons="2030", + run="KN2045_Bal_v4", ) configure_logging(snakemake) diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index 303ad2eea..950edce99 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -1,11 +1,7 @@ # -*- coding: utf-8 -*- - - import logging logger = logging.getLogger(__name__) -from random import randint -from time import sleep import geopandas as gpd import numpy as np @@ -14,117 +10,189 @@ import xarray as xr from typing import Union +import os +import sys -def prepare_subnodes( - subnodes: pd.DataFrame, - cities: gpd.GeoDataFrame, - regions_onshore: gpd.GeoDataFrame, - lau: gpd.GeoDataFrame, - head: Union[int, bool] = 40, +sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..")) + +from scripts.prepare_network import maybe_adjust_costs_and_potentials +from scripts._helpers import ( + configure_logging, + set_scenario_config, + update_config_from_wildcards, +) + +import shapely +import rasterio +from atlite.gis import ExclusionContainer +from atlite.gis import shape_availability + + +def add_ptes_limit( + subnodes: gpd.GeoDataFrame, + corine: rasterio.io.DatasetReader, + natura: rasterio.io.DatasetReader, + groundwater: xr.Dataset, + codes: list, + max_groundwater_depth: float, + ptes_potential_scalar: float, ) -> gpd.GeoDataFrame: """ - Prepare subnodes by filtering district heating systems data for largest systems and assigning the corresponding LAU and onshore region shapes. + Add PTES limit to subnodes according to land availability within city regions. Parameters ---------- - subnodes : pd.DataFrame - DataFrame containing information about district heating systems. - cities : gpd.GeoDataFrame - GeoDataFrame containing city coordinates with columns 'Stadt' and 'geometry'. - regions_onshore : gpd.GeoDataFrame - GeoDataFrame containing onshore region geometries of clustered network. - lau : gpd.GeoDataFrame - GeoDataFrame containing LAU (Local Administrative Units) geometries and IDs. - head : Union[int, bool], optional - Number of largest district heating networks to keep. Defaults to 40. If set to True, it will be set to 40. + subnodes : gpd.GeoDataFrame + GeoDataFrame containing information about district heating subnodes. + corine : rasterio.io.DatasetReader + CORINE land cover raster dataset. + natura : rasterio.io.DatasetReader + NATURA 2000 protected areas raster dataset. + groundwater : xr.Dataset + Groundwater depth dataset. + codes : list + List of CORINE land cover codes to include. + max_groundwater_depth : float + Maximum allowable groundwater depth for PTES installation. + ptes_potential_scalar : float + Scalar to adjust PTES potential. Returns ------- gpd.GeoDataFrame - GeoDataFrame with processed subnodes, including geometries, clusters, LAU IDs, and NUTS3 shapes. + Updated GeoDataFrame with PTES potential added. """ - # If head is boolean set it to 40 for default behavior - if isinstance(head, bool): - head = 40 - - subnodes["Stadt"] = subnodes["Stadt"].str.split("_").str[0] - - # Drop duplicates if Gelsenkirchen, Kiel, or Flensburg is included and keep the one with higher Wärmeeinspeisung in GWh/a - subnodes = subnodes.drop_duplicates(subset="Stadt", keep="first") - - # Keep only n largest district heating networks according to head parameter - subnodes = subnodes.sort_values( - by="Wärmeeinspeisung in GWh/a", ascending=False - ).head(head) - - subnodes["yearly_heat_demand_MWh"] = subnodes["Wärmeeinspeisung in GWh/a"] * 1e3 - - logger.info( - f"The selected district heating networks have an overall yearly heat demand of {subnodes['yearly_heat_demand_MWh'].sum()} MWh/a. " + dh_systems = subnodes.copy() + dh_systems["lau_shape"] = dh_systems["lau_shape"].apply(shapely.wkt.loads) + dh_systems = dh_systems.set_geometry("lau_shape") + dh_systems.crs = "EPSG:4326" + dh_systems = dh_systems.to_crs(3035) + + excluder = ExclusionContainer(crs=3035, res=100) + + # Exclusion of unsuitable areas + excluder.add_raster(corine, codes=codes, invert=True, crs=3035) + + # Exclusion of NATURA protected areas + excluder.add_raster(natura, codes=[1], invert=True, crs=3035) + + # Calculation of shape availability and transformation of raster data to geodataframe + band, transform = shape_availability(dh_systems.lau_shape, excluder) + masked_data = band + row_indices, col_indices = np.where(masked_data != corine.nodata) + values = masked_data[row_indices, col_indices] + + x_coords, y_coords = rasterio.transform.xy(transform, row_indices, col_indices) + eligible_areas = pd.DataFrame({"x": x_coords, "y": y_coords, "eligible": values}) + eligible_areas = gpd.GeoDataFrame( + eligible_areas, + geometry=gpd.points_from_xy(eligible_areas.x, eligible_areas.y), + crs=corine.crs, ) - subnodes["geometry"] = subnodes["Stadt"].apply( - lambda s: cities.loc[cities["Stadt"] == s, "geometry"].values[0] + # Area calculation with buffer to match raster resolution of 100mx100m + eligible_areas["geometry"] = eligible_areas.geometry.buffer(50, cap_style="square") + merged_data = eligible_areas.union_all() + eligible_areas = ( + gpd.GeoDataFrame(geometry=[merged_data], crs=eligible_areas.crs) + .explode(index_parts=False) + .reset_index(drop=True) ) - subnodes = subnodes.dropna(subset=["geometry"]) + # Divide geometries with boundaries of dh_systems + eligible_areas = gpd.overlay(eligible_areas, dh_systems, how="intersection") + eligible_areas = gpd.sjoin( + eligible_areas, dh_systems.drop("Stadt", axis=1), how="left", rsuffix="" + )[["Stadt", "geometry"]].set_geometry("geometry") - # Convert the DataFrame to a GeoDataFrame - subnodes = gpd.GeoDataFrame(subnodes, crs="EPSG:4326") + # filter for eligible areas that are larger than 10000 m^2 + eligible_areas = eligible_areas[eligible_areas.area > 10000] - # Assign cluster to subnodes according to onshore regions - subnodes["cluster"] = subnodes.apply( - lambda x: regions_onshore.geometry.contains(x.geometry).idxmax(), axis=1 - ) - subnodes["lau"] = subnodes.apply( - lambda x: lau.loc[lau.geometry.contains(x.geometry).idxmax(), "LAU_ID"], axis=1 - ) - subnodes["lau_shape"] = subnodes.apply( - lambda x: lau.loc[lau.geometry.contains(x.geometry).idxmax(), "geometry"].wkt, + # Find closest value in groundwater dataset and kick out areas with groundwater level > threshold + eligible_areas["groundwater_level"] = eligible_areas.to_crs("EPSG:4326").apply( + lambda a: groundwater.sel( + lon=a.geometry.centroid.x, lat=a.geometry.centroid.y, method="nearest" + )["WTD"].values[0], axis=1, ) + eligible_areas = eligible_areas[ + eligible_areas.groundwater_level < max_groundwater_depth + ] + + # Combine eligible areas by city + eligible_areas = eligible_areas.dissolve("Stadt") + + # Calculate PTES potential according to Dronninglund and DEA parameters + eligible_areas["area_m2"] = eligible_areas.area + eligible_areas["nstorages_pot"] = eligible_areas.area_m2 / 10000 + eligible_areas["storage_pot_mwh"] = eligible_areas["nstorages_pot"] * 4500 + + subnodes.set_index("Stadt", inplace=True) + subnodes["ptes_pot_mwh"] = ( + eligible_areas.loc[subnodes.index.intersection(eligible_areas.index)][ + "storage_pot_mwh" + ] + * ptes_potential_scalar + ) + subnodes["ptes_pot_mwh"] = subnodes["ptes_pot_mwh"].fillna(0) + subnodes.reset_index(inplace=True) return subnodes -def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: +def add_subnodes( + n: pypsa.Network, + subnodes: gpd.GeoDataFrame, + cop: xr.DataArray, + direct_heat_source_utilisation_profile: xr.DataArray, + head: Union[int, bool] = 40, +) -> None: """ Add largest district heating systems subnodes to the network. - They are initialized with: - the total annual heat demand taken from the mother node, that is assigned to urban central heat and low-temperature heat for industry, - the heat demand profiles taken from the mother node, - - the district heating investment options (stores, links) from the mother node, - - and heat vents as generator components. + - the district heating investment options (stores, storage units, links, generators) from the mother node, The district heating loads in the mother nodes are reduced accordingly. - Parameters ---------- n : pypsa.Network The PyPSA network object to which subnodes will be added. subnodes : gpd.GeoDataFrame GeoDataFrame containing information about district heating subnodes. - + cop : xr.DataArray + COPs for heat pumps. + direct_heat_source_utilisation_profile : xr.DataArray + Direct heat source utilisation profiles. Returns ------- None """ + # If head is boolean set it to 40 for default behavior + if isinstance(head, bool): + head = 40 + + # Keep only n largest district heating networks according to head parameter + subnodes_head = subnodes.sort_values( + by="Wärmeeinspeisung in GWh/a", ascending=False + ).head(head) + subnodes_head.to_file(snakemake.output.district_heating_subnodes, driver="GeoJSON") + + subnodes_rest = subnodes[~subnodes.index.isin(subnodes_head.index)] + # Add subnodes to network - for _, subnode in subnodes.iterrows(): - name = f'{subnode["cluster"]} {subnode["Stadt"]} urban central heat' + for _, subnode in subnodes_head.iterrows(): + name = f'{subnode["cluster"]} {subnode["Stadt"]} urban central' # Add buses - n.madd( - "Bus", - [name], - y=subnode.geometry.y, - x=subnode.geometry.x, - country="DE", - location=f"{subnode['cluster']} {subnode['Stadt']}", - carrier="urban central heat", - unit="MWh_th", + buses = ( + n.buses.filter(like=f"{subnode['cluster']} urban central", axis=0) + .reset_index() + .replace({f"{subnode['cluster']} urban central": name}, regex=True) + .set_index("Bus") ) + n.add("Bus", buses.index, **buses) # Get heat loads for urban central heat and low-temperature heat for industry uch_load_cluster = ( @@ -140,7 +208,6 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: # Calculate share of low-temperature heat for industry in total district heating load of cluster dh_load_cluster = uch_load_cluster + lti_load_cluster - lti_share = lti_load_cluster / dh_load_cluster # Calculate demand ratio between load of subnode according to Fernwärmeatlas and remaining load of assigned cluster demand_ratio = min( @@ -148,31 +215,27 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: (subnode["yearly_heat_demand_MWh"] / dh_load_cluster), ) - lost_load = subnode["yearly_heat_demand_MWh"] - dh_load_cluster + dh_load_cluster_subnodes = subnodes.loc[ + subnodes.cluster == subnode["cluster"], "yearly_heat_demand_MWh" + ].sum() + lost_load = dh_load_cluster_subnodes - dh_load_cluster - # District heating demand exceeding the original cluster load is disregarded - if demand_ratio == 1: - logger.info( - f"District heating load of {subnode['Stadt']} exceeds load of its assigned cluster {subnode['cluster']}. {lost_load} MWh/a are disregarded." + # District heating demand from Fernwärmeatlas exceeding the original cluster load is disregarded. The shares of the subsystems are set according to Fernwärmeatlas, while the aggregate load of cluster is preserved. + if dh_load_cluster_subnodes > dh_load_cluster: + logger.warning( + f"Aggregated district heating load of systems within {subnode['cluster']} exceeds load of cluster. {lost_load} MWh/a are disregarded." ) + demand_ratio *= subnode["yearly_heat_demand_MWh"] / dh_load_cluster_subnodes # Add load components to subnode preserving the share of low-temperature heat for industry of the cluster - uch_load = ( - demand_ratio - * (1 - lti_share) - * n.loads_t.p_set.filter( - regex=f"{subnode['cluster']} urban central heat" - ).rename( - { - f"{subnode['cluster']} urban central heat": f"{subnode['cluster']} {subnode['Stadt']} urban central heat" - }, - axis=1, - ) - ) - n.madd( + uch_load = demand_ratio * n.loads_t.p_set[ + f"{subnode['cluster']} urban central heat" + ].rename(f"{subnode['cluster']} {subnode['Stadt']} urban central heat") + + n.add( "Load", - [name], - bus=name, + f"{name} heat", + bus=f"{name} heat", p_set=uch_load, carrier="urban central heat", location=f"{subnode['cluster']} {subnode['Stadt']}", @@ -180,44 +243,29 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: lti_load = ( demand_ratio - * lti_share - * n.loads.filter( - regex=f"{subnode['cluster']} low-temperature heat for industry", axis=0 - ).p_set.rename( - { - f"{subnode['cluster']} low-temperature heat for industry": f"{subnode['cluster']} {subnode['Stadt']} low-temperature heat for industry" - }, - axis=0, - ) + * n.loads.loc[ + f"{subnode['cluster']} low-temperature heat for industry", "p_set" + ] ) - n.madd( + n.add( "Load", - [ - f"{subnode['cluster']} {subnode['Stadt']} low-temperature heat for industry" - ], - bus=name, + f"{subnode['cluster']} {subnode['Stadt']} low-temperature heat for industry", + bus=f"{name} heat", p_set=lti_load, carrier="low-temperature heat for industry", location=f"{subnode['cluster']} {subnode['Stadt']}", ) # Adjust loads of cluster buses - n.loads_t.p_set.loc[ - :, f'{subnode["cluster"]} urban central heat' - ] *= 1 - demand_ratio * (1 - lti_share) + n.loads_t.p_set.loc[:, f'{subnode["cluster"]} urban central heat'] *= ( + 1 - demand_ratio + ) + n.loads.loc[ f'{subnode["cluster"]} low-temperature heat for industry', "p_set" - ] *= (1 - demand_ratio * lti_share) - - # Replicate district heating stores and links of mother node for subnodes - n.madd( - "Bus", - [f"{subnode['cluster']} {subnode['Stadt']} urban central water tanks"], - location=f"{subnode['cluster']} {subnode['Stadt']}", - carrier="urban central water tanks", - unit="MWh_th", - ) + ] *= (1 - demand_ratio) + # Replicate district heating stores of mother node for subnodes stores = ( n.stores.filter(like=f"{subnode['cluster']} urban central", axis=0) .reset_index() @@ -229,11 +277,17 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: ) .set_index("Store") ) - n.madd("Store", stores.index, **stores) - links = ( - n.links.loc[~n.links.carrier.str.contains("heat pump")] - .filter(like=f"{subnode['cluster']} urban central", axis=0) + # Restrict PTES capacity in subnodes if modeled as store + if stores.carrier.str.contains("pits$").any(): + stores[stores.carrier.str.contains("pits$").index, "e_nom_max"] = subnode[ + "ptes_pot_mwh" + ] + n.add("Store", stores.index, **stores) + + # Replicate district heating storage units of mother node for subnodes + storage_units = ( + n.storage_units.filter(like=f"{subnode['cluster']} urban central", axis=0) .reset_index() .replace( { @@ -241,15 +295,36 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: }, regex=True, ) - .set_index("Link") + .set_index("StorageUnit") + ) + + # Restrict PTES capacity in subnodes if modeled as storage unit + if storage_units.carrier.str.contains("pits$").any(): + storage_units.loc[ + storage_units.carrier.str.contains("pits$"), "p_nom_max" + ] = (subnode["ptes_pot_mwh"] / storage_units["max_hours"]) + n.add("StorageUnit", storage_units.index, **storage_units) + + # restrict PTES capacity in mother nodes + mother_nodes_ptes_pot = subnodes_rest.groupby("cluster").ptes_pot_mwh.sum() + + mother_nodes_ptes_pot.index = ( + mother_nodes_ptes_pot.index + " urban central water pits" ) - n.madd("Link", links.index, **links) - # Add heat pumps to subnode - heat_pumps = ( - n.links.filter( - regex=f"{subnode['cluster']} urban central.*heat pump", axis=0 + if "urban central water pits" in n.storage_units.index: + n.storage_units.loc[mother_nodes_ptes_pot.index, "p_nom_max"] = ( + mother_nodes_ptes_pot + / n.storage_units.loc[mother_nodes_ptes_pot.index, "max_hours"] ) + elif "urban central water pits" in n.stores.index: + n.stores.loc[mother_nodes_ptes_pot.index, "e_nom_max"] = ( + mother_nodes_ptes_pot + ) + + # Replicate district heating generators of mother node for subnodes + generators = ( + n.generators.filter(like=f"{subnode['cluster']} urban central", axis=0) .reset_index() .replace( { @@ -257,70 +332,115 @@ def add_subnodes(n: pypsa.Network, subnodes: gpd.GeoDataFrame) -> None: }, regex=True, ) - .set_index("Link") - ).drop("efficiency", axis=1) - heat_pumps_t = n.links_t.efficiency.filter( - regex=f"{subnode['cluster']} urban central.*heat pump" - ) - heat_pumps_t.columns = heat_pumps_t.columns.str.replace( - f"{subnode['cluster']} urban central", - f"{subnode['cluster']} {subnode['Stadt']} urban central", + .set_index("Generator") ) - n.madd("Link", heat_pumps.index, efficiency=heat_pumps_t, **heat_pumps) + n.add("Generator", generators.index, **generators) - # Add heat vent to subnode - n.madd( - "Generator", - [f"{name} heat vent"], - bus=name, - location=f"{subnode['cluster']} {subnode['Stadt']}", - carrier="urban central heat vent", - p_nom_extendable=True, - p_min_pu=-1, - p_max_pu=0, - unit="MWh_th", + # Replicate district heating links of mother node for subnodes with separate treatment for links with dynamic efficiencies + links = ( + n.links.loc[~n.links.carrier.str.contains("heat pump|direct", regex=True)] + .filter(like=f"{subnode['cluster']} urban central", axis=0) + .reset_index() + .replace( + { + f"{subnode['cluster']} urban central": f"{subnode['cluster']} {subnode['Stadt']} urban central" + }, + regex=True, + ) + .set_index("Link") ) + n.add("Link", links.index, **links) + + # Add heat pumps and direct heat source utilization to subnode + for heat_source in snakemake.params.heat_pump_sources: + cop_heat_pump = ( + cop.sel( + heat_system="urban central", + heat_source=heat_source, + name=f"{subnode['cluster']} {subnode['Stadt']}", + ) + .to_pandas() + .to_frame(name=f"{name} {heat_source} heat pump") + .reindex(index=n.snapshots) + if snakemake.params.sector["time_dep_hp_cop"] + else n.links.filter(like=heat_source, axis=0).efficiency.mode() + ) - return - - -def extend_cops(cops: xr.DataArray, subnodes: gpd.GeoDataFrame) -> xr.DataArray: - """ - Extend COPs (Coefficient of Performance) by subnodes mirroring the timeseries of the corresponding - mother node. - - Parameters - ---------- - cops : xr.DataArray - DataArray containing COP timeseries data. - subnodes : gpd.GeoDataFrame - GeoDataFrame containing information about district heating subnodes. - - Returns - ------- - xr.DataArray - Extended DataArray with COP timeseries for subnodes. - """ - cops_extended = cops.copy() - - # Iterate over the DataFrame rows - for _, subnode in subnodes.iterrows(): - cluster_name = subnode["cluster"] - city_name = subnode["Stadt"] - - # Select the xarray entry where name matches the cluster - selected_entry = cops.sel(name=cluster_name) - - # Rename the selected entry - renamed_entry = selected_entry.assign_coords(name=f"{cluster_name} {city_name}") - - # Combine the renamed entry with the extended dataset - cops_extended = xr.concat([cops_extended, renamed_entry], dim="name") - - # Change dtype of the name dimension to string - cops_extended.coords["name"] = cops_extended.coords["name"].astype(str) + heat_pump = ( + n.links.filter( + regex=f"{subnode['cluster']} urban central.*{heat_source}.*heat pump", + axis=0, + ) + .reset_index() + .replace( + { + f"{subnode['cluster']} urban central": f"{subnode['cluster']} {subnode['Stadt']} urban central" + }, + regex=True, + ) + .drop(["efficiency", "efficiency2"], axis=1) + .set_index("Link") + ) + if heat_pump["bus2"].str.match("$").any(): + n.add("Link", heat_pump.index, efficiency=cop_heat_pump, **heat_pump) + else: + n.add( + "Link", + heat_pump.index, + efficiency=-(cop_heat_pump - 1), + efficiency2=cop_heat_pump, + **heat_pump, + ) + + if heat_source in snakemake.params.direct_utilisation_heat_sources: + # Add direct heat source utilization to subnode + efficiency_direct_utilisation = ( + direct_heat_source_utilisation_profile.sel( + heat_source=heat_source, + name=f"{subnode['cluster']} {subnode['Stadt']}", + ) + .to_pandas() + .to_frame(name=f"{name} {heat_source} heat direct utilisation") + .reindex(index=n.snapshots) + ) + + direct_utilization = ( + n.links.filter( + regex=f"{subnode['cluster']} urban central.*{heat_source}.*direct", + axis=0, + ) + .reset_index() + .replace( + { + f"{subnode['cluster']} urban central": f"{subnode['cluster']} {subnode['Stadt']} urban central" + }, + regex=True, + ) + .set_index("Link") + .drop("efficiency", axis=1) + ) + + n.add( + "Link", + direct_utilization.index, + efficiency=efficiency_direct_utilisation, + **direct_utilization, + ) + + # Restrict heat source potential in subnodes + if heat_source in snakemake.params.heat_utilisation_potentials: + # get potential + p_max_source = pd.read_csv( + snakemake.input[heat_source], + index_col=0, + ).squeeze()[f"{subnode['cluster']} {subnode['Stadt']}"] + # add potential to generator + n.generators.loc[ + f"{subnode['cluster']} {subnode['Stadt']} urban central {heat_source} heat", + "p_nom_max", + ] = p_max_source - return cops_extended + return def extend_heating_distribution( @@ -336,7 +456,6 @@ def extend_heating_distribution( DataFrame containing the existing heating distribution. subnodes : gpd.GeoDataFrame GeoDataFrame containing information about district heating subnodes. - Returns ------- pd.DataFrame @@ -381,14 +500,11 @@ def extend_heating_distribution( if __name__ == "__main__": if "snakemake" not in globals(): - import os - import sys - os.chdir(os.path.dirname(os.path.abspath(__file__))) + from scripts._helpers import mock_snakemake - path = "../submodules/pypsa-eur/scripts" - sys.path.insert(0, os.path.abspath(path)) - from _helpers import mock_snakemake + # Change directory to this script directory + os.chdir(os.path.dirname(os.path.realpath(__file__))) snakemake = mock_snakemake( "add_district_heating_subnodes", @@ -401,11 +517,16 @@ def extend_heating_distribution( run="KN2045_Bal_v4", ) + configure_logging(snakemake) + set_scenario_config(snakemake) + update_config_from_wildcards(snakemake.config, snakemake.wildcards) + logger.info("Adding SysGF-specific functionality") n = pypsa.Network(snakemake.input.network) lau = gpd.read_file( + # "/home/cpschau/Code/dev/pypsa-ariadne/.snakemake/storage/http/gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson/LAU_RG_01M_2021_3035.geojson", f"{snakemake.input.lau}!LAU_RG_01M_2021_3035.geojson", crs="EPSG:3035", ).to_crs("EPSG:4326") @@ -417,21 +538,34 @@ def extend_heating_distribution( cities = gpd.read_file(snakemake.input.cities) regions_onshore = gpd.read_file(snakemake.input.regions_onshore).set_index("name") - subnodes = prepare_subnodes( - fernwaermeatlas, - cities, - regions_onshore, - lau, - head=snakemake.params.district_heating["add_subnodes"], - ) - subnodes.to_file(snakemake.output.district_heating_subnodes, driver="GeoJSON") + subnodes = gpd.read_file(snakemake.input.subnodes) - add_subnodes(n, subnodes) + # Add PTES limit to subnodes according to land availability within city regions + corine = rasterio.open(snakemake.input.corine) + natura = rasterio.open(snakemake.input.natura) + groundwater = xr.open_dataset(snakemake.input.groundwater_depth).sel( + lon=slice(subnodes["geometry"].x.min(), subnodes["geometry"].x.max()), + lat=slice(subnodes["geometry"].y.min(), subnodes["geometry"].y.max()), + ) + subnodes = add_ptes_limit( + subnodes, + corine, + natura, + groundwater, + snakemake.params.district_heating["ptes_codes_corine"], + snakemake.params.district_heating["max_groundwater_depth"], + snakemake.params.district_heating["ptes_potential_scalar"], + ) - if snakemake.config["foresight"] == "myopic": - cops = xr.open_dataarray(snakemake.input.cop_profiles) - cops_extended = extend_cops(cops, subnodes) - cops_extended.to_netcdf(snakemake.output.cop_profiles_extended) + add_subnodes( + n, + subnodes, + cop=xr.open_dataarray(snakemake.input.cop_profiles), + direct_heat_source_utilisation_profile=xr.open_dataarray( + snakemake.input.direct_heat_source_utilisation_profiles + ), + head=snakemake.params.district_heating["add_subnodes"], + ) if snakemake.wildcards.planning_horizons == str(snakemake.params["baseyear"]): existing_heating_distribution = pd.read_csv( @@ -449,4 +583,8 @@ def extend_heating_distribution( # write empty file to output with open(snakemake.output.existing_heating_distribution_extended, "w") as f: pass + + maybe_adjust_costs_and_potentials( + n, snakemake.params["adjustments"], snakemake.wildcards.planning_horizons + ) n.export_to_netcdf(snakemake.output.network) diff --git a/scripts/pypsa-de/build_existing_chp_de.py b/scripts/pypsa-de/build_existing_chp_de.py index 02b22f928..f36370adc 100644 --- a/scripts/pypsa-de/build_existing_chp_de.py +++ b/scripts/pypsa-de/build_existing_chp_de.py @@ -215,14 +215,12 @@ def BP(cap, year): def assign_subnode(CHP_de: pd.DataFrame, subnodes: gpd.GeoDataFrame) -> pd.DataFrame: """ Assign subnodes to the CHP plants based on their location. - Parameters ---------- CHP_de : pd.DataFrame DataFrame containing CHP plant data with latitude and longitude. subnodes : gpd.GeoDataFrame GeoDataFrame containing subnode data with geometries. - Returns ------- pd.DataFrame @@ -234,7 +232,7 @@ def assign_subnode(CHP_de: pd.DataFrame, subnodes: gpd.GeoDataFrame) -> pd.DataF CHP_de, geometry=gpd.points_from_xy(CHP_de.lon, CHP_de.lat) ) CHP_de.crs = subnodes.crs - # Set nuts_3 shape wkt column as geometry + # Set LAU shape column as geometry subnodes["geometry"] = gpd.GeoSeries.from_wkt(subnodes["lau_shape"]) subnodes.drop("lau_shape", axis=1, inplace=True) subnodes.index.rename("city", inplace=True) diff --git a/scripts/pypsa-de/build_scenarios.py b/scripts/pypsa-de/build_scenarios.py index 9475c4fa7..b4374602e 100644 --- a/scripts/pypsa-de/build_scenarios.py +++ b/scripts/pypsa-de/build_scenarios.py @@ -210,6 +210,11 @@ def write_to_scenario_yaml(input, output, scenarios, df): dri_fraction.loc["DRI_Steel_Share", year].item(), 4 ) + if "solving" not in config[scenario]: + config[scenario]["solving"] = {} + if "constraints" not in config[scenario]["solving"]: + config[scenario]["solving"]["constraints"] = {} + config[scenario]["solving"]["constraints"]["co2_budget_national"] = {} for year, target in co2_budget_fractions.items(): config[scenario]["solving"]["constraints"]["co2_budget_national"][year] = {} diff --git a/scripts/pypsa-de/prepare_district_heating_subnodes.py b/scripts/pypsa-de/prepare_district_heating_subnodes.py new file mode 100644 index 000000000..3d510c397 --- /dev/null +++ b/scripts/pypsa-de/prepare_district_heating_subnodes.py @@ -0,0 +1,244 @@ +# -*- coding: utf-8 -*- +import logging + +logger = logging.getLogger(__name__) + +import geopandas as gpd +import pandas as pd +from typing import Union + +import shapely + + +# Function to encode city names in UTF-8 +def encode_utf8(city_name: str) -> bytes: + """ + Encode a city name as a UTF-8 byte string. + + Parameters + ---------- + city_name : str + The name of the city to be encoded. + + Returns + ------- + bytes + The UTF-8 encoded byte string of the city name. + """ + return city_name.encode("utf-8") + + +def prepare_subnodes( + subnodes: pd.DataFrame, + cities: gpd.GeoDataFrame, + regions_onshore: gpd.GeoDataFrame, + lau: gpd.GeoDataFrame, + heat_techs: gpd.GeoDataFrame, +) -> gpd.GeoDataFrame: + """ + Prepare subnodes by filtering district heating systems data for largest systems and assigning the corresponding LAU and onshore region shapes. + Parameters + ---------- + subnodes : pd.DataFrame + DataFrame containing information about district heating systems. + cities : gpd.GeoDataFrame + GeoDataFrame containing city coordinates with columns 'Stadt' and 'geometry'. + regions_onshore : gpd.GeoDataFrame + GeoDataFrame containing onshore region geometries of clustered network. + lau : gpd.GeoDataFrame + GeoDataFrame containing LAU (Local Administrative Units) geometries and IDs. + heat_techs : gpd.GeoDataFrame + GeoDataFrame containing NUTS3 region geometries of heat technologies and data from eGo^N project. + Returns + ------- + gpd.GeoDataFrame + GeoDataFrame with processed subnodes, including geometries, clusters, LAU IDs, and NUTS3 shapes. + """ + + subnodes["Stadt"] = subnodes["Stadt"].str.split("_").str[0] + + # Drop duplicates if Gelsenkirchen, Kiel, or Flensburg is included and keep the one with higher Wärmeeinspeisung in GWh/a + subnodes = subnodes.drop_duplicates(subset="Stadt", keep="first") + + subnodes["yearly_heat_demand_MWh"] = subnodes["Wärmeeinspeisung in GWh/a"] * 1e3 + + logger.info( + f"The selected district heating networks have an overall yearly heat demand of {subnodes['yearly_heat_demand_MWh'].sum()} MWh/a. " + ) + + subnodes["geometry"] = subnodes["Stadt"].apply( + lambda s: cities.loc[cities["Stadt"] == s, "geometry"].values[0] + ) + + subnodes = subnodes.dropna(subset=["geometry"]) + # Convert the DataFrame to a GeoDataFrame + subnodes = gpd.GeoDataFrame(subnodes, crs="EPSG:4326") + + # Assign cluster to subnodes according to onshore regions + subnodes["cluster"] = subnodes.apply( + lambda x: regions_onshore.geometry.contains(x.geometry).idxmax(), axis=1 + ) + # For cities that are assigned to onshore regions outside Germany assign closest German cluster + subnodes.loc[~subnodes.cluster.str.contains("DE"), "cluster"] = subnodes.loc[ + ~subnodes.cluster.str.contains("DE") + ].apply( + lambda x: ( + regions_onshore.filter(like="DE", axis=0) + .geometry.distance(x.geometry) + .idxmin() + ), + axis=1, + ) + subnodes["lau"] = subnodes.apply( + lambda x: lau.loc[lau.geometry.contains(x.geometry).idxmax(), "LAU_ID"], axis=1 + ) + subnodes["lau_shape"] = subnodes.apply( + lambda x: lau.loc[lau.geometry.contains(x.geometry).idxmax(), "geometry"].wkt, + axis=1, + ) + subnodes["nuts3"] = subnodes.apply( + lambda x: heat_techs.geometry.contains(x.geometry).idxmax(), + axis=1, + ) + subnodes["nuts3_shape"] = subnodes.apply( + lambda x: heat_techs.loc[ + heat_techs.geometry.contains(x.geometry).idxmax(), "geometry" + ].wkt, + axis=1, + ) + + return subnodes + + +def extend_regions_onshore( + regions_onshore: gpd.GeoDataFrame, + subnodes_all: gpd.GeoDataFrame, + head: Union[int, bool] = 40, +) -> Union[gpd.GeoDataFrame, gpd.GeoDataFrame]: + """ + Extend onshore regions to include city LAU regions and restrict geometries. + + Parameters + ---------- + regions_onshore : geopandas.GeoDataFrame + GeoDataFrame containing the onshore regions with geometries. + subnodes_all : pandas.DataFrame + DataFrame containing information about subnodes, including city names, + clusters, and LAU shapes in WKT format. + head : int or bool, optional + Number of top cities to include based on "Wärmeeinspeisung in GWh/a". + If set to True, defaults to 40. Default is 40. + + Returns + ------- + regions_onshore_extended : geopandas.GeoDataFrame + GeoDataFrame with extended onshore regions including city LAU regions. + regions_onshore_restricted : geopandas.GeoDataFrame + GeoDataFrame with restricted onshore regions, replacing geometries + with the remaining city areas. + """ + subnodes_all["lau_shape"] = subnodes_all["lau_shape"].apply(shapely.wkt.loads) + if isinstance(head, bool): + head = 40 + # Extend regions_onshore to include the cities' lau regions + subnodes = subnodes_all.sort_values( + by="Wärmeeinspeisung in GWh/a", ascending=False + ).head(head)[["Stadt", "cluster", "lau_shape"]] + + subnodes = gpd.GeoDataFrame(subnodes, crs="EPSG:4326", geometry="lau_shape") + # Create column name that comprises cluster and Stadt + subnodes["name"] = subnodes["cluster"] + " " + subnodes["Stadt"] + # Crop city regions from onshore regions + regions_onshore["geometry"] = regions_onshore.geometry.difference( + subnodes.unary_union + ) + + # Rename lau_shape to geometry + subnodes = subnodes.rename(columns={"lau_shape": "geometry"}).drop( + columns=["Stadt", "cluster"] + ) + # Concat regions_onshore and subnodes + regions_onshore_extended = pd.concat([regions_onshore, subnodes.set_index("name")]) + + # Restrict regions_onshore geometries to only consist of the remaining city areas + subnodes_rest = subnodes_all[~subnodes_all["Stadt"].isin(subnodes["name"])] + + subnodes_rest_dissolved = subnodes_rest.set_geometry("lau_shape").dissolve( + "cluster" + ) + # regions_onshore_restricted should replace geometries of regions_onshore with the geometries of subnodes_rest + regions_onshore_restricted = regions_onshore_extended.copy() + regions_onshore_restricted.loc[subnodes_rest_dissolved.index, "geometry"] = ( + subnodes_rest_dissolved["lau_shape"] + ) + + return regions_onshore_extended, regions_onshore_restricted + + +if __name__ == "__main__": + if "snakemake" not in globals(): + import os + import sys + + os.chdir(os.path.dirname(os.path.abspath(__file__))) + + path = "../submodules/pypsa-eur/scripts" + sys.path.insert(0, os.path.abspath(path)) + from _helpers import mock_snakemake + + snakemake = mock_snakemake( + "prepare_district_heating_subnodes", + simpl="", + clusters=27, + opts="", + ll="vopt", + sector_opts="none", + planning_horizons="2045", + run="LowGroundWaterDepth", + ) + + logger.info("Adding SysGF-specific functionality") + + heat_techs = gpd.read_file(snakemake.input.heating_technologies_nuts3).set_index( + "index" + ) + lau = gpd.read_file( + # "/home/cpschau/Code/dev/pypsa-ariadne/.snakemake/storage/http/gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson/LAU_RG_01M_2021_3035.geojson", + f"{snakemake.input.lau}!LAU_RG_01M_2021_3035.geojson", + crs="EPSG:3035", + ).to_crs("EPSG:4326") + + fernwaermeatlas = pd.read_excel( + snakemake.input.fernwaermeatlas, + sheet_name="Fernwärmeatlas_öffentlich", + ) + cities = gpd.read_file(snakemake.input.cities) + regions_onshore = gpd.read_file(snakemake.input.regions_onshore).set_index("name") + # Assign onshore region to heat techs based on geometry + heat_techs["cluster"] = heat_techs.apply( + lambda x: regions_onshore.geometry.contains(x.geometry).idxmax(), + axis=1, + ) + + subnodes = prepare_subnodes( + fernwaermeatlas, + cities, + regions_onshore, + lau, + heat_techs, + ) + subnodes.to_file(snakemake.output.district_heating_subnodes, driver="GeoJSON") + + regions_onshore_extended, regions_onshore_restricted = extend_regions_onshore( + regions_onshore, + subnodes, + head=snakemake.params.district_heating["add_subnodes"], + ) + + regions_onshore_extended.to_file( + snakemake.output.regions_onshore_extended, driver="GeoJSON" + ) + + regions_onshore_restricted.to_file( + snakemake.output.regions_onshore_restricted, driver="GeoJSON" + ) From a988333ebdeb83df89d8745d947f43df213b26ff Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 25 Feb 2025 16:23:42 +0100 Subject: [PATCH 594/669] replace corine with osm land cover data --- Snakefile | 7 +++++-- config/config.yaml | 4 ++-- .../pypsa-de/add_district_heating_subnodes.py | 20 +++++++++---------- 3 files changed, 17 insertions(+), 14 deletions(-) diff --git a/Snakefile b/Snakefile index d66fe8de4..254bf0f9c 100644 --- a/Snakefile +++ b/Snakefile @@ -318,7 +318,10 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ ), fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", cities="data/fernwaermeatlas/cities_geolocations.geojson", - corine=ancient("data/bundle/corine/g100_06.tif"), + osm_land_cover=storage( + "https://heidata.uni-heidelberg.de/api/access/datafile/23053?format=original&gbrecs=true", + keep_local=True, + ), natura=ancient("data/bundle/natura/natura.tiff"), groundwater_depth=storage( "http://thredds-gfnl.usc.es/thredds/fileServer/GLOBALWTDFTP/annualmeans/EURASIA_WTD_annualmean.nc", @@ -349,7 +352,7 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ else [] ), resources: - mem_mb=10000, + mem_mb=60000, script: "scripts/pypsa-de/add_district_heating_subnodes.py" diff --git a/config/config.yaml b/config/config.yaml index 90aab12d7..15ea2dcd3 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20250218_ptes_potential + prefix: 20242008_dh_subnodes_off name: # - CurrentPolicies - KN2045_Bal_v4 @@ -294,7 +294,7 @@ sector: 2045: 0.8 2050: 1.0 add_subnodes: false - ptes_codes_corine: [12, 13, 14, 16, 18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32] + osm_landcover_codes: [21, 23, 32, 33] max_groundwater_depth: -10 ptes_potential_scalar: 1 central_heat_vent: true diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index 950edce99..1e6d8e4bc 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -30,7 +30,7 @@ def add_ptes_limit( subnodes: gpd.GeoDataFrame, - corine: rasterio.io.DatasetReader, + osm_land_cover: rasterio.io.DatasetReader, natura: rasterio.io.DatasetReader, groundwater: xr.Dataset, codes: list, @@ -44,8 +44,8 @@ def add_ptes_limit( ---------- subnodes : gpd.GeoDataFrame GeoDataFrame containing information about district heating subnodes. - corine : rasterio.io.DatasetReader - CORINE land cover raster dataset. + osm_land_cover : rasterio.io.DatasetReader + OSM land cover raster dataset. natura : rasterio.io.DatasetReader NATURA 2000 protected areas raster dataset. groundwater : xr.Dataset @@ -68,10 +68,10 @@ def add_ptes_limit( dh_systems.crs = "EPSG:4326" dh_systems = dh_systems.to_crs(3035) - excluder = ExclusionContainer(crs=3035, res=100) + excluder = ExclusionContainer(crs=3035, res=50) # Exclusion of unsuitable areas - excluder.add_raster(corine, codes=codes, invert=True, crs=3035) + excluder.add_raster(osm_land_cover, codes=codes, invert=True, crs=3035) # Exclusion of NATURA protected areas excluder.add_raster(natura, codes=[1], invert=True, crs=3035) @@ -79,7 +79,7 @@ def add_ptes_limit( # Calculation of shape availability and transformation of raster data to geodataframe band, transform = shape_availability(dh_systems.lau_shape, excluder) masked_data = band - row_indices, col_indices = np.where(masked_data != corine.nodata) + row_indices, col_indices = np.where(masked_data != osm_land_cover.nodata) values = masked_data[row_indices, col_indices] x_coords, y_coords = rasterio.transform.xy(transform, row_indices, col_indices) @@ -87,7 +87,7 @@ def add_ptes_limit( eligible_areas = gpd.GeoDataFrame( eligible_areas, geometry=gpd.points_from_xy(eligible_areas.x, eligible_areas.y), - crs=corine.crs, + crs=osm_land_cover.crs, ) # Area calculation with buffer to match raster resolution of 100mx100m @@ -541,7 +541,7 @@ def extend_heating_distribution( subnodes = gpd.read_file(snakemake.input.subnodes) # Add PTES limit to subnodes according to land availability within city regions - corine = rasterio.open(snakemake.input.corine) + osm_land_cover = rasterio.open(snakemake.input.osm_land_cover) natura = rasterio.open(snakemake.input.natura) groundwater = xr.open_dataset(snakemake.input.groundwater_depth).sel( lon=slice(subnodes["geometry"].x.min(), subnodes["geometry"].x.max()), @@ -549,10 +549,10 @@ def extend_heating_distribution( ) subnodes = add_ptes_limit( subnodes, - corine, + osm_land_cover, natura, groundwater, - snakemake.params.district_heating["ptes_codes_corine"], + snakemake.params.district_heating["osm_landcover_codes"], snakemake.params.district_heating["max_groundwater_depth"], snakemake.params.district_heating["ptes_potential_scalar"], ) From 330884d9c5291fabb67f89c0bde137c3e4130149 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 27 Feb 2025 17:42:19 +0100 Subject: [PATCH 595/669] mv ptes land eligibility to prepare_subnodes; fix ptes initialization; increase resolution of exclusion container --- Snakefile | 18 +- config/config.eem.yaml | 2 +- scripts/prepare_sector_network.py | 37 ++- .../pypsa-de/add_district_heating_subnodes.py | 139 +---------- .../prepare_district_heating_subnodes.py | 218 +++++++++++++++++- 5 files changed, 241 insertions(+), 173 deletions(-) diff --git a/Snakefile b/Snakefile index 254bf0f9c..c93678952 100644 --- a/Snakefile +++ b/Snakefile @@ -274,6 +274,15 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ "https://gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson.zip", keep_local=True, ), + osm_land_cover=storage( + "https://heidata.uni-heidelberg.de/api/access/datafile/23053?format=original&gbrecs=true", + keep_local=True, + ), + natura=ancient("data/bundle/natura/natura.tiff"), + groundwater_depth=storage( + "http://thredds-gfnl.usc.es/thredds/fileServer/GLOBALWTDFTP/annualmeans/EURASIA_WTD_annualmean.nc", + keep_local=True + ), output: district_heating_subnodes=resources( "district_heating_subnodes_base_s_{clusters}.geojson" @@ -318,15 +327,6 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ ), fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", cities="data/fernwaermeatlas/cities_geolocations.geojson", - osm_land_cover=storage( - "https://heidata.uni-heidelberg.de/api/access/datafile/23053?format=original&gbrecs=true", - keep_local=True, - ), - natura=ancient("data/bundle/natura/natura.tiff"), - groundwater_depth=storage( - "http://thredds-gfnl.usc.es/thredds/fileServer/GLOBALWTDFTP/annualmeans/EURASIA_WTD_annualmean.nc", - keep_local=True - ), cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), direct_heat_source_utilisation_profiles=resources( "direct_heat_source_utilisation_profiles_base_s_{clusters}_{planning_horizons}.nc" diff --git a/config/config.eem.yaml b/config/config.eem.yaml index e7ca7071c..c8717a390 100644 --- a/config/config.eem.yaml +++ b/config/config.eem.yaml @@ -3,7 +3,7 @@ # SPDX-License-Identifier: CC0-1.0 run: - prefix: 20250225_eem_config + prefix: 20250227_eem_config_osm name: - Baseline - No_PTES diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 1d5778992..ac47df3e9 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -2474,56 +2474,49 @@ def add_heat( nodes + f" {heat_system} water tanks", bus=nodes + f" {heat_system} heat", carrier=f"{heat_system} water tanks", - efficiency_store=costs.at[ - f"{heat_system.central_or_decentral} water tank charger", - "efficiency", - ], + efficiency_store=costs.at["water tank charger", "efficiency"], max_hours=costs.at[ "central water tank storage", "energy to power ratio" ], - efficiency_dispatch=costs.at[ - f"{heat_system.central_or_decentral} water tank discharger", - "efficiency", - ], + efficiency_dispatch=costs.at["water tank discharger", "efficiency"], p_nom_extendable=True, standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days), capital_cost=costs.at[ heat_system.central_or_decentral + " water tank storage", "fixed" - ], + ] + * costs.at["central water tank storage", "energy to power ratio"], lifetime=costs.at[ heat_system.central_or_decentral + " water tank storage", "lifetime" ], - e_nom_extendable=True, - e_cyclic=True, + cyclic_state_of_charge=True, ) if heat_system == HeatSystem.URBAN_CENTRAL: n.add("Carrier", f"{heat_system} water pits") + nodes_pits = dist_fraction[dist_fraction > 0].filter(like="DE").index + n.add( "StorageUnit", - nodes + f" {heat_system} water pits", - bus=nodes + f" {heat_system} heat", + nodes_pits + f" {heat_system} water pits", + bus=nodes_pits + f" {heat_system} heat", carrier=f"{heat_system} water pits", efficiency_store=costs.at[ - "central water pit charger", - "efficiency", + "central water pit charger", "efficiency" ], max_hours=costs.at[ - "central water pit storage", - "energy to power ratio", + "central water pit storage", "energy to power ratio" ], efficiency_dispatch=costs.at[ - "central water pit discharger", - "efficiency", + "central water pit discharger", "efficiency" ], p_nom_extendable=True, standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days), - capital_cost=costs.at["central water pit storage", "fixed"], + capital_cost=costs.at["central water pit storage", "fixed"] + * costs.at["central water pit storage", "energy to power ratio"], lifetime=costs.at["central water pit storage", "lifetime"], - e_nom_extendable=True, - e_cyclic=True, + cyclic_state_of_charge=True, ) if options["resistive_heaters"]: diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index 1e6d8e4bc..0423c9af2 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -4,7 +4,6 @@ logger = logging.getLogger(__name__) import geopandas as gpd -import numpy as np import pandas as pd import pypsa import xarray as xr @@ -22,123 +21,6 @@ update_config_from_wildcards, ) -import shapely -import rasterio -from atlite.gis import ExclusionContainer -from atlite.gis import shape_availability - - -def add_ptes_limit( - subnodes: gpd.GeoDataFrame, - osm_land_cover: rasterio.io.DatasetReader, - natura: rasterio.io.DatasetReader, - groundwater: xr.Dataset, - codes: list, - max_groundwater_depth: float, - ptes_potential_scalar: float, -) -> gpd.GeoDataFrame: - """ - Add PTES limit to subnodes according to land availability within city regions. - - Parameters - ---------- - subnodes : gpd.GeoDataFrame - GeoDataFrame containing information about district heating subnodes. - osm_land_cover : rasterio.io.DatasetReader - OSM land cover raster dataset. - natura : rasterio.io.DatasetReader - NATURA 2000 protected areas raster dataset. - groundwater : xr.Dataset - Groundwater depth dataset. - codes : list - List of CORINE land cover codes to include. - max_groundwater_depth : float - Maximum allowable groundwater depth for PTES installation. - ptes_potential_scalar : float - Scalar to adjust PTES potential. - - Returns - ------- - gpd.GeoDataFrame - Updated GeoDataFrame with PTES potential added. - """ - dh_systems = subnodes.copy() - dh_systems["lau_shape"] = dh_systems["lau_shape"].apply(shapely.wkt.loads) - dh_systems = dh_systems.set_geometry("lau_shape") - dh_systems.crs = "EPSG:4326" - dh_systems = dh_systems.to_crs(3035) - - excluder = ExclusionContainer(crs=3035, res=50) - - # Exclusion of unsuitable areas - excluder.add_raster(osm_land_cover, codes=codes, invert=True, crs=3035) - - # Exclusion of NATURA protected areas - excluder.add_raster(natura, codes=[1], invert=True, crs=3035) - - # Calculation of shape availability and transformation of raster data to geodataframe - band, transform = shape_availability(dh_systems.lau_shape, excluder) - masked_data = band - row_indices, col_indices = np.where(masked_data != osm_land_cover.nodata) - values = masked_data[row_indices, col_indices] - - x_coords, y_coords = rasterio.transform.xy(transform, row_indices, col_indices) - eligible_areas = pd.DataFrame({"x": x_coords, "y": y_coords, "eligible": values}) - eligible_areas = gpd.GeoDataFrame( - eligible_areas, - geometry=gpd.points_from_xy(eligible_areas.x, eligible_areas.y), - crs=osm_land_cover.crs, - ) - - # Area calculation with buffer to match raster resolution of 100mx100m - eligible_areas["geometry"] = eligible_areas.geometry.buffer(50, cap_style="square") - merged_data = eligible_areas.union_all() - eligible_areas = ( - gpd.GeoDataFrame(geometry=[merged_data], crs=eligible_areas.crs) - .explode(index_parts=False) - .reset_index(drop=True) - ) - - # Divide geometries with boundaries of dh_systems - eligible_areas = gpd.overlay(eligible_areas, dh_systems, how="intersection") - eligible_areas = gpd.sjoin( - eligible_areas, dh_systems.drop("Stadt", axis=1), how="left", rsuffix="" - )[["Stadt", "geometry"]].set_geometry("geometry") - - # filter for eligible areas that are larger than 10000 m^2 - eligible_areas = eligible_areas[eligible_areas.area > 10000] - - # Find closest value in groundwater dataset and kick out areas with groundwater level > threshold - eligible_areas["groundwater_level"] = eligible_areas.to_crs("EPSG:4326").apply( - lambda a: groundwater.sel( - lon=a.geometry.centroid.x, lat=a.geometry.centroid.y, method="nearest" - )["WTD"].values[0], - axis=1, - ) - eligible_areas = eligible_areas[ - eligible_areas.groundwater_level < max_groundwater_depth - ] - - # Combine eligible areas by city - eligible_areas = eligible_areas.dissolve("Stadt") - - # Calculate PTES potential according to Dronninglund and DEA parameters - eligible_areas["area_m2"] = eligible_areas.area - eligible_areas["nstorages_pot"] = eligible_areas.area_m2 / 10000 - eligible_areas["storage_pot_mwh"] = eligible_areas["nstorages_pot"] * 4500 - - subnodes.set_index("Stadt", inplace=True) - subnodes["ptes_pot_mwh"] = ( - eligible_areas.loc[subnodes.index.intersection(eligible_areas.index)][ - "storage_pot_mwh" - ] - * ptes_potential_scalar - ) - subnodes["ptes_pot_mwh"] = subnodes["ptes_pot_mwh"].fillna(0) - subnodes.reset_index(inplace=True) - - return subnodes - def add_subnodes( n: pypsa.Network, @@ -513,8 +395,8 @@ def extend_heating_distribution( opts="", ll="vopt", sector_opts="none", - planning_horizons="2020", - run="KN2045_Bal_v4", + planning_horizons="2045", + run="Baseline", ) configure_logging(snakemake) @@ -540,23 +422,6 @@ def extend_heating_distribution( subnodes = gpd.read_file(snakemake.input.subnodes) - # Add PTES limit to subnodes according to land availability within city regions - osm_land_cover = rasterio.open(snakemake.input.osm_land_cover) - natura = rasterio.open(snakemake.input.natura) - groundwater = xr.open_dataset(snakemake.input.groundwater_depth).sel( - lon=slice(subnodes["geometry"].x.min(), subnodes["geometry"].x.max()), - lat=slice(subnodes["geometry"].y.min(), subnodes["geometry"].y.max()), - ) - subnodes = add_ptes_limit( - subnodes, - osm_land_cover, - natura, - groundwater, - snakemake.params.district_heating["osm_landcover_codes"], - snakemake.params.district_heating["max_groundwater_depth"], - snakemake.params.district_heating["ptes_potential_scalar"], - ) - add_subnodes( n, subnodes, diff --git a/scripts/pypsa-de/prepare_district_heating_subnodes.py b/scripts/pypsa-de/prepare_district_heating_subnodes.py index 3d510c397..41be0f472 100644 --- a/scripts/pypsa-de/prepare_district_heating_subnodes.py +++ b/scripts/pypsa-de/prepare_district_heating_subnodes.py @@ -5,9 +5,25 @@ import geopandas as gpd import pandas as pd +import numpy as np from typing import Union - +import xarray as xr import shapely +import rasterio +from atlite.gis import ExclusionContainer +from atlite.gis import shape_availability +from tqdm import tqdm +import sys +import os + +path = "dev/pypsa-de" +sys.path.insert(0, os.path.abspath(path)) + +from scripts._helpers import ( + configure_logging, + set_scenario_config, + update_config_from_wildcards, +) # Function to encode city names in UTF-8 @@ -28,6 +44,60 @@ def encode_utf8(city_name: str) -> bytes: return city_name.encode("utf-8") +def process_eligible_points( + x_coords: list[float], + y_coords: list[float], + values: np.ndarray, + crs: str, + lau_shapes: gpd.GeoDataFrame, +) -> gpd.GeoDataFrame: + """ + Process points to create eligible area geometries for PTES potential assessment. + + Parameters + ---------- + x_coords : list[float] + X-coordinates of eligible points. + y_coords : list[float] + Y-coordinates of eligible points. + values : np.ndarray + Values associated with each point (eligibility flags). + crs : str + Coordinate reference system of the input points. + lau_shapes : gpd.GeoDataFrame + GeoDataFrame containing LAU (Local Administrative Unit) shapes to intersect with eligible areas. + + Returns + ------- + gpd.GeoDataFrame + GeoDataFrame containing the intersection of eligible areas with LAU shapes. + """ + eligible_areas = pd.DataFrame({"x": x_coords, "y": y_coords, "eligible": values}) + eligible_areas = gpd.GeoDataFrame( + eligible_areas, + geometry=gpd.points_from_xy(eligible_areas.x, eligible_areas.y), + crs=crs, + ) + + chunk_size = 100000 # Adjust based on your memory constraints + buffers = [] + + for i in range(0, len(eligible_areas), chunk_size): + chunk = eligible_areas.iloc[i : i + chunk_size].copy() + chunk["geometry"] = chunk.geometry.buffer(5, cap_style="square") + buffers.append(chunk) + + eligible_areas = pd.concat(buffers, ignore_index=True) + + # Use spatial indexing for more efficient overlay + merged_data = eligible_areas.union_all() + result = gpd.GeoDataFrame(geometry=[merged_data], crs=eligible_areas.crs) + result = result.explode(index_parts=False).reset_index(drop=True) + + # Overlay with dh_systems using spatial indexing + return gpd.overlay(result, lau_shapes, how="intersection") + + def prepare_subnodes( subnodes: pd.DataFrame, cities: gpd.GeoDataFrame, @@ -110,6 +180,125 @@ def prepare_subnodes( return subnodes +def add_ptes_limit( + subnodes: gpd.GeoDataFrame, + osm_land_cover: rasterio.io.DatasetReader, + natura: rasterio.io.DatasetReader, + groundwater: xr.Dataset, + codes: list, + max_groundwater_depth: float, + ptes_potential_scalar: float, +) -> gpd.GeoDataFrame: + """ + Add PTES limit to subnodes according to land availability within city regions. + + Parameters + ---------- + subnodes : gpd.GeoDataFrame + GeoDataFrame containing information about district heating subnodes. + osm_land_cover : rasterio.io.DatasetReader + OSM land cover raster dataset. + natura : rasterio.io.DatasetReader + NATURA 2000 protected areas raster dataset. + groundwater : xr.Dataset + Groundwater depth dataset. + codes : list + List of CORINE land cover codes to include. + max_groundwater_depth : float + Maximum allowable groundwater depth for PTES installation. + ptes_potential_scalar : float + Scalar to adjust PTES potential. + + Returns + ------- + gpd.GeoDataFrame + Updated GeoDataFrame with PTES potential added. + """ + dh_systems = subnodes.copy() + dh_systems["lau_shape"] = dh_systems["lau_shape"].apply(shapely.wkt.loads) + dh_systems = dh_systems.set_geometry("lau_shape") + dh_systems.crs = "EPSG:4326" + dh_systems = dh_systems.to_crs(3035) + + # Process in batches by region/cluster + batch_results = [] + batch_size = 1 # Define the batch size + + for i in tqdm( + range(0, len(dh_systems), batch_size), desc="Processing LAU shapes", unit="area" + ): + batch = dh_systems.iloc[i : i + batch_size] + + # Create exclusion container for this batch + excluder = ExclusionContainer(crs=3035, res=10) + excluder.add_raster(osm_land_cover, codes=codes, invert=True, crs=3035) + excluder.add_raster(natura, codes=[1], invert=True, crs=3035) + + # Process just this batch + batch_shapes = batch["lau_shape"] + band, transform = shape_availability(batch_shapes, excluder) + masked_data = band + row_indices, col_indices = np.where(masked_data != osm_land_cover.nodata) + values = masked_data[row_indices, col_indices] + + x_coords, y_coords = rasterio.transform.xy(transform, row_indices, col_indices) + + # Create and process eligible areas for this batch + if len(x_coords) > 0: # Only process if there are eligible areas + eligible_areas = process_eligible_points( + x_coords, y_coords, values, osm_land_cover.crs, batch + ) + batch_results.append(eligible_areas) + + # Clear memory + del band, masked_data, excluder + import gc + + gc.collect() + + # Combine results from all batches + if batch_results: + eligible_areas = pd.concat(batch_results, ignore_index=True) + + eligible_areas = gpd.sjoin( + eligible_areas, dh_systems.drop("Stadt", axis=1), how="left", rsuffix="" + )[["Stadt", "geometry"]].set_geometry("geometry") + + # filter for eligible areas that are larger than 10000 m^2 + eligible_areas = eligible_areas[eligible_areas.area > 10000] + + # Find closest value in groundwater dataset and kick out areas with groundwater level > threshold + eligible_areas["groundwater_level"] = eligible_areas.to_crs("EPSG:4326").apply( + lambda a: groundwater.sel( + lon=a.geometry.centroid.x, lat=a.geometry.centroid.y, method="nearest" + )["WTD"].values[0], + axis=1, + ) + eligible_areas = eligible_areas[ + eligible_areas.groundwater_level < max_groundwater_depth + ] + + # Combine eligible areas by city + eligible_areas = eligible_areas.dissolve("Stadt") + + # Calculate PTES potential according to Dronninglund and DEA parameters + eligible_areas["area_m2"] = eligible_areas.area + eligible_areas["nstorages_pot"] = eligible_areas.area_m2 / 10000 + eligible_areas["storage_pot_mwh"] = eligible_areas["nstorages_pot"] * 4500 + + subnodes.set_index("Stadt", inplace=True) + subnodes["ptes_pot_mwh"] = ( + eligible_areas.loc[subnodes.index.intersection(eligible_areas.index)][ + "storage_pot_mwh" + ] + * ptes_potential_scalar + ) + subnodes["ptes_pot_mwh"] = subnodes["ptes_pot_mwh"].fillna(0) + subnodes.reset_index(inplace=True) + + return subnodes + + def extend_regions_onshore( regions_onshore: gpd.GeoDataFrame, subnodes_all: gpd.GeoDataFrame, @@ -150,7 +339,7 @@ def extend_regions_onshore( subnodes["name"] = subnodes["cluster"] + " " + subnodes["Stadt"] # Crop city regions from onshore regions regions_onshore["geometry"] = regions_onshore.geometry.difference( - subnodes.unary_union + subnodes.union_all() ) # Rename lau_shape to geometry @@ -182,9 +371,9 @@ def extend_regions_onshore( os.chdir(os.path.dirname(os.path.abspath(__file__))) - path = "../submodules/pypsa-eur/scripts" + path = "../../" sys.path.insert(0, os.path.abspath(path)) - from _helpers import mock_snakemake + from scripts._helpers import mock_snakemake snakemake = mock_snakemake( "prepare_district_heating_subnodes", @@ -197,6 +386,9 @@ def extend_regions_onshore( run="LowGroundWaterDepth", ) + configure_logging(snakemake) + set_scenario_config(snakemake) + update_config_from_wildcards(snakemake.config, snakemake.wildcards) logger.info("Adding SysGF-specific functionality") heat_techs = gpd.read_file(snakemake.input.heating_technologies_nuts3).set_index( @@ -227,6 +419,24 @@ def extend_regions_onshore( lau, heat_techs, ) + + # Add PTES limit to subnodes according to land availability within city regions + osm_land_cover = rasterio.open(snakemake.input.osm_land_cover) + natura = rasterio.open(snakemake.input.natura) + groundwater = xr.open_dataset(snakemake.input.groundwater_depth).sel( + lon=slice(subnodes["geometry"].x.min(), subnodes["geometry"].x.max()), + lat=slice(subnodes["geometry"].y.min(), subnodes["geometry"].y.max()), + ) + subnodes = add_ptes_limit( + subnodes, + osm_land_cover, + natura, + groundwater, + snakemake.params.district_heating["osm_landcover_codes"], + snakemake.params.district_heating["max_groundwater_depth"], + snakemake.params.district_heating["ptes_potential_scalar"], + ) + subnodes.to_file(snakemake.output.district_heating_subnodes, driver="GeoJSON") regions_onshore_extended, regions_onshore_restricted = extend_regions_onshore( From 092e3ed096db7a311b8ca9c7859b41eb415a4b20 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 27 Feb 2025 17:54:59 +0100 Subject: [PATCH 596/669] update prepare_sector_network --- scripts/prepare_sector_network.py | 94 +++++++++++++------------------ 1 file changed, 38 insertions(+), 56 deletions(-) diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index ac47df3e9..880df3f22 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -2910,18 +2910,15 @@ def add_biomass(n, costs): carrier="municipal solid waste", ) - e_max_pu = pd.DataFrame(1, index=n.snapshots, columns=spatial.msw.nodes) - e_max_pu.iloc[-1] = 0 - n.add( - "Store", + "Generator", spatial.msw.nodes, bus=spatial.msw.nodes, carrier="municipal solid waste", - e_nom=msw_biomass_potentials_spatial, + p_nom=msw_biomass_potentials_spatial, marginal_cost=0, # costs.at["municipal solid waste", "fuel"], - e_max_pu=e_max_pu, - e_initial=msw_biomass_potentials_spatial, + e_sum_min=msw_biomass_potentials_spatial, + e_sum_max=msw_biomass_potentials_spatial, ) n.add( @@ -2941,23 +2938,25 @@ def add_biomass(n, costs): ) n.add( - "Store", + "Generator", spatial.biogas.nodes, bus=spatial.biogas.nodes, carrier="biogas", - e_nom=biogas_potentials_spatial, + p_nom=biogas_potentials_spatial, marginal_cost=costs.at["biogas", "fuel"], - e_initial=biogas_potentials_spatial, + e_sum_min=0, + e_sum_max=biogas_potentials_spatial, ) n.add( - "Store", + "Generator", spatial.biomass.nodes, bus=spatial.biomass.nodes, carrier="solid biomass", - e_nom=solid_biomass_potentials_spatial, + p_nom=solid_biomass_potentials_spatial, marginal_cost=costs.at["solid biomass", "fuel"], - e_initial=solid_biomass_potentials_spatial, + e_sum_min=0, + e_sum_max=solid_biomass_potentials_spatial, ) if options["solid_biomass_import"].get("enable", False): @@ -3009,38 +3008,29 @@ def add_biomass(n, costs): ) if biomass_potentials.filter(like="unsustainable").sum().sum() > 0: - # Create timeseries to force usage of unsustainable potentials - e_max_pu = pd.DataFrame(1, index=n.snapshots, columns=spatial.biogas.nodes) - e_max_pu.iloc[-1] = 0 - n.add( - "Store", + "Generator", spatial.biogas.nodes, suffix=" unsustainable", bus=spatial.biogas.nodes, carrier="unsustainable biogas", - e_nom=unsustainable_biogas_potentials_spatial, + p_nom=unsustainable_biogas_potentials_spatial, + p_nom_extendable=False, marginal_cost=costs.at["biogas", "fuel"], - e_initial=unsustainable_biogas_potentials_spatial, - e_nom_extendable=False, - e_max_pu=e_max_pu, + e_sum_min=unsustainable_biogas_potentials_spatial, + e_sum_max=unsustainable_biogas_potentials_spatial, ) - e_max_pu = pd.DataFrame( - 1, index=n.snapshots, columns=spatial.biomass.nodes_unsustainable - ) - e_max_pu.iloc[-1] = 0 - n.add( - "Store", + "Generator", spatial.biomass.nodes_unsustainable, bus=spatial.biomass.nodes, carrier="unsustainable solid biomass", - e_nom=unsustainable_solid_biomass_potentials_spatial, + p_nom=unsustainable_solid_biomass_potentials_spatial, + p_nom_extendable=False, marginal_cost=costs.at["fuelwood", "fuel"], - e_initial=unsustainable_solid_biomass_potentials_spatial, - e_nom_extendable=False, - e_max_pu=e_max_pu, + e_sum_min=unsustainable_solid_biomass_potentials_spatial, + e_sum_max=unsustainable_solid_biomass_potentials_spatial, ) n.add( @@ -3051,21 +3041,16 @@ def add_biomass(n, costs): unit="MWh_LHV", ) - e_max_pu = pd.DataFrame( - 1, index=n.snapshots, columns=spatial.biomass.bioliquids - ) - e_max_pu.iloc[-1] = 0 - n.add( - "Store", + "Generator", spatial.biomass.bioliquids, bus=spatial.biomass.bioliquids, carrier="unsustainable bioliquids", - e_nom=unsustainable_liquid_biofuel_potentials_spatial, + p_nom=unsustainable_liquid_biofuel_potentials_spatial, + p_nom_extendable=False, marginal_cost=costs.at["biodiesel crops", "fuel"], - e_initial=unsustainable_liquid_biofuel_potentials_spatial, - e_nom_extendable=False, - e_max_pu=e_max_pu, + e_sum_min=unsustainable_liquid_biofuel_potentials_spatial, + e_sum_max=unsustainable_liquid_biofuel_potentials_spatial, ) add_carrier_buses(n, "oil") @@ -3191,6 +3176,7 @@ def add_biomass(n, costs): n.add( "Generator", spatial.biomass.nodes, + suffix=" transported", bus=spatial.biomass.nodes, carrier="solid biomass", p_nom=10000, @@ -3209,6 +3195,7 @@ def add_biomass(n, costs): n.add( "Generator", spatial.biomass.nodes_unsustainable, + suffix=" transported", bus=spatial.biomass.nodes, carrier="unsustainable solid biomass", p_nom=10000, @@ -3220,14 +3207,10 @@ def add_biomass(n, costs): ) * average_distance, ) - # Set last snapshot of e_max_pu for unsustainable solid biomass to 1 to make operational limit work - unsus_stores_idx = n.stores.query( - "carrier == 'unsustainable solid biomass'" - ).index - unsus_stores_idx = unsus_stores_idx.intersection( - n.stores_t.e_max_pu.columns - ) - n.stores_t.e_max_pu.loc[n.snapshots[-1], unsus_stores_idx] = 1 + # Set e_sum_min to 0 to allow for the faux biomass transport + n.generators.loc[ + n.generators.carrier == "unsustainable solid biomass", "e_sum_min" + ] = 0 n.add( "GlobalConstraint", "unsustainable biomass limit", @@ -3248,6 +3231,9 @@ def add_biomass(n, costs): marginal_cost=0 # costs.at["municipal solid waste", "fuel"] + bus_transport_costs * average_distance, ) + n.generators.loc[ + n.generators.carrier == "municipal solid waste", "e_sum_min" + ] = 0 n.add( "GlobalConstraint", "msw limit", @@ -4022,7 +4008,7 @@ def add_industry(n, costs): if cf_industry["waste_to_energy"]: n.add( "Link", - spatial.nodes + " waste CHP", + spatial.nodes + " urban central waste CHP", bus0=waste_source, bus1=spatial.nodes, bus2=spatial.nodes + " urban central heat", @@ -4550,7 +4536,7 @@ def define_clustering(attributes, aggregate_dict): return agg logger.info("Cluster residential and service heat buses.") - components = ["Bus", "Carrier", "Generator", "Link", "Load", "Store"] + components = ["Bus", "Carrier", "Generator", "Link", "Load", "Store", "StorageUnit"] for c in n.iterate_components(components): df = c.df @@ -5086,10 +5072,6 @@ def add_enhanced_geothermal(n, egs_potentials, egs_overlap, costs): if options["cluster_heat_buses"] and not first_year_myopic: cluster_heat_buses(n) - maybe_adjust_costs_and_potentials( - n, snakemake.params["adjustments"], investment_year - ) - n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards))) sanitize_carriers(n, snakemake.config) From de4fe8a89f3cd599c7724fd768ce91b5ff437841 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 27 Feb 2025 18:07:42 +0100 Subject: [PATCH 597/669] increase eem resolution --- config/config.eem.yaml | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/config/config.eem.yaml b/config/config.eem.yaml index c8717a390..a7593aa19 100644 --- a/config/config.eem.yaml +++ b/config/config.eem.yaml @@ -64,6 +64,10 @@ scenario: # - 2035 # - 2040 - 2045 + +clustering: + temporal: + resolution_sector: 3H adjustments: electricity: false From d7496e6caef9bfa2bc2852c3aafd14096b4aae91 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 27 Feb 2025 18:26:33 +0100 Subject: [PATCH 598/669] update TTES efficiencies --- scripts/prepare_sector_network.py | 10 ++++++++-- 1 file changed, 8 insertions(+), 2 deletions(-) diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 880df3f22..0e71be6dc 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -2474,11 +2474,17 @@ def add_heat( nodes + f" {heat_system} water tanks", bus=nodes + f" {heat_system} heat", carrier=f"{heat_system} water tanks", - efficiency_store=costs.at["water tank charger", "efficiency"], + efficiency_store=costs.at[ + f"{heat_system.central_or_decentral} water tank charger", + "efficiency", + ], max_hours=costs.at[ "central water tank storage", "energy to power ratio" ], - efficiency_dispatch=costs.at["water tank discharger", "efficiency"], + efficiency_dispatch=costs.at[ + f"{heat_system.central_or_decentral} water tank discharger", + "efficiency", + ], p_nom_extendable=True, standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days), capital_cost=costs.at[ From ae7ad2ecab77ce56e543577fabe5f458e7f08dd0 Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 7 Mar 2025 11:59:05 +0100 Subject: [PATCH 599/669] fix land eligibility --- scripts/pypsa-de/prepare_district_heating_subnodes.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/pypsa-de/prepare_district_heating_subnodes.py b/scripts/pypsa-de/prepare_district_heating_subnodes.py index 41be0f472..96f3d0662 100644 --- a/scripts/pypsa-de/prepare_district_heating_subnodes.py +++ b/scripts/pypsa-de/prepare_district_heating_subnodes.py @@ -232,7 +232,7 @@ def add_ptes_limit( # Create exclusion container for this batch excluder = ExclusionContainer(crs=3035, res=10) excluder.add_raster(osm_land_cover, codes=codes, invert=True, crs=3035) - excluder.add_raster(natura, codes=[1], invert=True, crs=3035) + excluder.add_raster(natura, codes=[1], invert=False, crs=3035) # Process just this batch batch_shapes = batch["lau_shape"] From b9c106f7f8681883375a1e28f06f30ca6f19bd34 Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 7 Mar 2025 11:59:26 +0100 Subject: [PATCH 600/669] adjust snakemake mem requirements --- Snakefile | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/Snakefile b/Snakefile index c93678952..829ba29f9 100644 --- a/Snakefile +++ b/Snakefile @@ -295,7 +295,7 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ ), resources: - mem_mb=1000, + mem_mb=20000, script: "scripts/pypsa-de/prepare_district_heating_subnodes.py" @@ -352,7 +352,7 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ else [] ), resources: - mem_mb=60000, + mem_mb=10000, script: "scripts/pypsa-de/add_district_heating_subnodes.py" From c656cd593ee58089803b63b0db9f2349598c7f7b Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 7 Mar 2025 11:59:48 +0100 Subject: [PATCH 601/669] fix eem config --- config/config.eem.yaml | 15 ++++++++++++++- 1 file changed, 14 insertions(+), 1 deletion(-) diff --git a/config/config.eem.yaml b/config/config.eem.yaml index a7593aa19..d2c944f72 100644 --- a/config/config.eem.yaml +++ b/config/config.eem.yaml @@ -85,4 +85,17 @@ wasserstoff_kernnetz: sector: district_heating: potential: 0.5 - add_subnodes: true \ No newline at end of file + add_subnodes: true + +solving: + constraints: + CCL: false + EQ: false + BAU: false + SAFE: false + efuel_export_ban: false + limits_capacity_max: {} + limits_capacity_min: {} + limits_volume_max: {} + limits_volume_min: {} + limits_power_max: {} \ No newline at end of file From 37e98f49d52d2a018f416fa9932b5905dacd58b7 Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 7 Mar 2025 12:00:35 +0100 Subject: [PATCH 602/669] fix ptes query --- scripts/pypsa-de/add_district_heating_subnodes.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index 0423c9af2..9849c8fcd 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -194,12 +194,12 @@ def add_subnodes( mother_nodes_ptes_pot.index + " urban central water pits" ) - if "urban central water pits" in n.storage_units.index: + if not n.storage_units.filter(like="urban central water pits", axis=0).empty: n.storage_units.loc[mother_nodes_ptes_pot.index, "p_nom_max"] = ( mother_nodes_ptes_pot / n.storage_units.loc[mother_nodes_ptes_pot.index, "max_hours"] ) - elif "urban central water pits" in n.stores.index: + elif not n.stores.filter(like="urban central water pits", axis=0).empty: n.stores.loc[mother_nodes_ptes_pot.index, "e_nom_max"] = ( mother_nodes_ptes_pot ) From 4caf3e3a9176b36a121bcc3d5e582a1d288f088d Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 10 Mar 2025 11:57:36 +0100 Subject: [PATCH 603/669] multithreaded potential calculation --- .../prepare_district_heating_subnodes.py | 202 +++++++++++++----- 1 file changed, 150 insertions(+), 52 deletions(-) diff --git a/scripts/pypsa-de/prepare_district_heating_subnodes.py b/scripts/pypsa-de/prepare_district_heating_subnodes.py index 96f3d0662..8f2169109 100644 --- a/scripts/pypsa-de/prepare_district_heating_subnodes.py +++ b/scripts/pypsa-de/prepare_district_heating_subnodes.py @@ -10,12 +10,15 @@ import xarray as xr import shapely import rasterio +from rasterio.windows import Window +import rasterio +import tempfile from atlite.gis import ExclusionContainer from atlite.gis import shape_availability -from tqdm import tqdm import sys import os + path = "dev/pypsa-de" sys.path.insert(0, os.path.abspath(path)) @@ -44,6 +47,86 @@ def encode_utf8(city_name: str) -> bytes: return city_name.encode("utf-8") +def get_chunked_raster(dataset_path, bounds, buffer_distance=1000): + """ + Returns windowed data from a raster without creating memory files. + + Parameters: + ---------- + dataset_path : str + Path to the raster dataset. + bounds : tuple + (min_x, min_y, max_x, max_y) in the dataset's CRS. + buffer_distance : int, optional + Buffer distance in the dataset's units to add around the bounds. + Default is 1000. + + Returns: + ------- + rasterio.io.DatasetReader + A windowed raster dataset with optimized memory usage. + """ + + # Open the source dataset + with rasterio.open(dataset_path) as src: + # Buffer the bounds + buffered_bounds = ( + bounds[0] - buffer_distance, + bounds[1] - buffer_distance, + bounds[2] + buffer_distance, + bounds[3] + buffer_distance, + ) + + # Get window for the buffered bounds + window = rasterio.windows.from_bounds(*buffered_bounds, transform=src.transform) + + # Ensure window coordinates are valid integers + window = Window( + int(max(0, window.col_off)), + int(max(0, window.row_off)), + int(min(src.width - int(window.col_off), window.width)), + int(min(src.height - int(window.row_off), window.height)), + ) + + # Create a temporary file for the windowed data + # This is more efficient than using MemoryFile for large datasets + with tempfile.NamedTemporaryFile(suffix=".tif", delete=False) as temp: + temp_path = temp.name + + # Create the output dataset with proper metadata + with rasterio.open( + temp_path, + "w", + driver="GTiff", + height=window.height, + width=window.width, + count=src.count, + dtype=src.dtypes[0], + crs=src.crs, + transform=src.window_transform(window), + nodata=src.nodata, + ) as dst: + # Read and write the windowed data + dst.write(src.read(window=window)) + + # Return a reader for the temporary file + # The OS will clean it up when the process exits or it's manually deleted + dataset = rasterio.open(temp_path) + + # Register finalizer to remove temporary file when dataset is garbage collected + import weakref + + def cleanup(temp_path): + try: + os.unlink(temp_path) + except: + pass + + weakref.finalize(dataset, cleanup, temp_path) + + return dataset + + def process_eligible_points( x_coords: list[float], y_coords: list[float], @@ -79,15 +162,8 @@ def process_eligible_points( crs=crs, ) - chunk_size = 100000 # Adjust based on your memory constraints - buffers = [] - - for i in range(0, len(eligible_areas), chunk_size): - chunk = eligible_areas.iloc[i : i + chunk_size].copy() - chunk["geometry"] = chunk.geometry.buffer(5, cap_style="square") - buffers.append(chunk) - - eligible_areas = pd.concat(buffers, ignore_index=True) + # Apply a 5 meter buffer to all geometries to yield 10m raster resolution + eligible_areas["geometry"] = eligible_areas.geometry.buffer(5, cap_style="square") # Use spatial indexing for more efficient overlay merged_data = eligible_areas.union_all() @@ -143,10 +219,13 @@ def prepare_subnodes( subnodes = subnodes.dropna(subset=["geometry"]) # Convert the DataFrame to a GeoDataFrame subnodes = gpd.GeoDataFrame(subnodes, crs="EPSG:4326") + # Rename geometry column to point_coords + subnodes = subnodes.rename(columns={"geometry": "point_coords"}) + subnodes = subnodes.set_geometry("point_coords") # Assign cluster to subnodes according to onshore regions subnodes["cluster"] = subnodes.apply( - lambda x: regions_onshore.geometry.contains(x.geometry).idxmax(), axis=1 + lambda x: regions_onshore.geometry.contains(x.point_coords).idxmax(), axis=1 ) # For cities that are assigned to onshore regions outside Germany assign closest German cluster subnodes.loc[~subnodes.cluster.str.contains("DE"), "cluster"] = subnodes.loc[ @@ -154,36 +233,48 @@ def prepare_subnodes( ].apply( lambda x: ( regions_onshore.filter(like="DE", axis=0) - .geometry.distance(x.geometry) + .geometry.distance(x.point_coords) .idxmin() ), axis=1, ) subnodes["lau"] = subnodes.apply( - lambda x: lau.loc[lau.geometry.contains(x.geometry).idxmax(), "LAU_ID"], axis=1 + lambda x: lau.loc[lau.geometry.contains(x.point_coords).idxmax(), "LAU_ID"], + axis=1, ) subnodes["lau_shape"] = subnodes.apply( - lambda x: lau.loc[lau.geometry.contains(x.geometry).idxmax(), "geometry"].wkt, + lambda x: lau.loc[ + lau.geometry.contains(x.point_coords).idxmax(), "geometry" + ].wkt, axis=1, ) subnodes["nuts3"] = subnodes.apply( - lambda x: heat_techs.geometry.contains(x.geometry).idxmax(), + lambda x: heat_techs.geometry.contains(x.point_coords).idxmax(), axis=1, ) subnodes["nuts3_shape"] = subnodes.apply( lambda x: heat_techs.loc[ - heat_techs.geometry.contains(x.geometry).idxmax(), "geometry" + heat_techs.geometry.contains(x.point_coords).idxmax(), "geometry" ].wkt, axis=1, ) + # Set LAU shapes as geometry and adjust CRS + subnodes["lau_shape"] = subnodes["lau_shape"].apply(shapely.wkt.loads) + subnodes = subnodes.set_geometry("lau_shape") + subnodes.crs = "EPSG:4326" + subnodes = subnodes.to_crs(3035) + + # Make point_coords wkt + subnodes["point_coords"] = subnodes["point_coords"].apply(lambda x: x.wkt) + return subnodes def add_ptes_limit( subnodes: gpd.GeoDataFrame, - osm_land_cover: rasterio.io.DatasetReader, - natura: rasterio.io.DatasetReader, + osm_land_cover_path: rasterio.io.DatasetReader, + natura_path: rasterio.io.DatasetReader, groundwater: xr.Dataset, codes: list, max_groundwater_depth: float, @@ -214,47 +305,57 @@ def add_ptes_limit( gpd.GeoDataFrame Updated GeoDataFrame with PTES potential added. """ + import dask + from dask.diagnostics import ProgressBar + dh_systems = subnodes.copy() - dh_systems["lau_shape"] = dh_systems["lau_shape"].apply(shapely.wkt.loads) - dh_systems = dh_systems.set_geometry("lau_shape") - dh_systems.crs = "EPSG:4326" - dh_systems = dh_systems.to_crs(3035) - # Process in batches by region/cluster - batch_results = [] - batch_size = 1 # Define the batch size + # Increase batch size for better performance + batch_size = 1 - for i in tqdm( - range(0, len(dh_systems), batch_size), desc="Processing LAU shapes", unit="area" - ): - batch = dh_systems.iloc[i : i + batch_size] + # Create batches + batches = [] + for i in range(0, len(dh_systems), batch_size): + batches.append(dh_systems.iloc[i : i + batch_size]) - # Create exclusion container for this batch + # Define the processing function for a single batch + def process_batch(batch): + # Get efficient chunked rasters for this batch + osm_dataset = get_chunked_raster(osm_land_cover_path, batch.total_bounds) + natura_dataset = get_chunked_raster(natura_path, batch.total_bounds) + + # Create exclusion container excluder = ExclusionContainer(crs=3035, res=10) - excluder.add_raster(osm_land_cover, codes=codes, invert=True, crs=3035) - excluder.add_raster(natura, codes=[1], invert=False, crs=3035) + excluder.add_raster(osm_dataset, codes=codes, invert=True, crs=3035) + excluder.add_raster(natura_dataset, codes=[1], invert=False, crs=3035) - # Process just this batch + # Process batch shapes batch_shapes = batch["lau_shape"] band, transform = shape_availability(batch_shapes, excluder) - masked_data = band - row_indices, col_indices = np.where(masked_data != osm_land_cover.nodata) - values = masked_data[row_indices, col_indices] + + # Extract valid points + row_indices, col_indices = np.where(band != osm_dataset.nodata) + values = band[row_indices, col_indices] x_coords, y_coords = rasterio.transform.xy(transform, row_indices, col_indices) - # Create and process eligible areas for this batch - if len(x_coords) > 0: # Only process if there are eligible areas + # Process eligible points if any exist + if len(x_coords) > 0: eligible_areas = process_eligible_points( - x_coords, y_coords, values, osm_land_cover.crs, batch + x_coords, y_coords, values, osm_dataset.crs, batch ) - batch_results.append(eligible_areas) + return eligible_areas + return None + + # Create delayed tasks for each batch + delayed_results = [dask.delayed(process_batch)(batch) for batch in batches] - # Clear memory - del band, masked_data, excluder - import gc + # Execute tasks in parallel with progress bar + with ProgressBar(): + results = dask.compute(*delayed_results) - gc.collect() + # Filter out None results and combine + batch_results = [result for result in results if result is not None] # Combine results from all batches if batch_results: @@ -326,7 +427,6 @@ def extend_regions_onshore( GeoDataFrame with restricted onshore regions, replacing geometries with the remaining city areas. """ - subnodes_all["lau_shape"] = subnodes_all["lau_shape"].apply(shapely.wkt.loads) if isinstance(head, bool): head = 40 # Extend regions_onshore to include the cities' lau regions @@ -420,17 +520,15 @@ def extend_regions_onshore( heat_techs, ) - # Add PTES limit to subnodes according to land availability within city regions - osm_land_cover = rasterio.open(snakemake.input.osm_land_cover) - natura = rasterio.open(snakemake.input.natura) + bounds = subnodes.to_crs("EPSG:4326").total_bounds # (minx, miny, maxx, maxy) groundwater = xr.open_dataset(snakemake.input.groundwater_depth).sel( - lon=slice(subnodes["geometry"].x.min(), subnodes["geometry"].x.max()), - lat=slice(subnodes["geometry"].y.min(), subnodes["geometry"].y.max()), + lon=slice(bounds[0], bounds[2]), # minx to maxx + lat=slice(bounds[1], bounds[3]), # miny to maxy ) subnodes = add_ptes_limit( subnodes, - osm_land_cover, - natura, + snakemake.input.osm_land_cover, + snakemake.input.natura, groundwater, snakemake.params.district_heating["osm_landcover_codes"], snakemake.params.district_heating["max_groundwater_depth"], From 8677562218b6f5a0b7a46f033fd59b4c4ede6da1 Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 12 Mar 2025 14:01:39 +0100 Subject: [PATCH 604/669] use raster data from census to refine district heating areas --- Snakefile | 4 + .../prepare_district_heating_subnodes.py | 192 +++++++++++++++--- 2 files changed, 165 insertions(+), 31 deletions(-) diff --git a/Snakefile b/Snakefile index 829ba29f9..f51093acd 100644 --- a/Snakefile +++ b/Snakefile @@ -274,6 +274,10 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ "https://gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson.zip", keep_local=True, ), + census=storage( + "https://www.zensus2022.de/static/Zensus_Veroeffentlichung/Zensus2022_Heizungsart.zip", + keep_local=True, + ), osm_land_cover=storage( "https://heidata.uni-heidelberg.de/api/access/datafile/23053?format=original&gbrecs=true", keep_local=True, diff --git a/scripts/pypsa-de/prepare_district_heating_subnodes.py b/scripts/pypsa-de/prepare_district_heating_subnodes.py index 8f2169109..d6dfb647b 100644 --- a/scripts/pypsa-de/prepare_district_heating_subnodes.py +++ b/scripts/pypsa-de/prepare_district_heating_subnodes.py @@ -17,6 +17,8 @@ from atlite.gis import shape_availability import sys import os +import dask +from dask.diagnostics import ProgressBar path = "dev/pypsa-de" @@ -29,6 +31,34 @@ ) +def load_census_data(census_path: str) -> gpd.GeoDataFrame: + """ + Load heating raster data of census from a CSV file, clean data, and return a GeoDataFrame. + + Parameters + ---------- + census_path : str + Path to the CSV file containing the census data. + + Returns + ------- + gpd.GeoDataFrame + GeoDataFrame containing the census data. + """ + # Load and clean the census data + census = pd.read_csv(census_path, encoding="latin1", sep=";") + census = census.replace("\x96", 0) + + # Create a GeoDataFrame from the census data + census = gpd.GeoDataFrame( + census, + geometry=gpd.points_from_xy(census.x_mp_100m, census.y_mp_100m), + crs="EPSG:3035", + ) + + return census + + # Function to encode city names in UTF-8 def encode_utf8(city_name: str) -> bytes: """ @@ -47,9 +77,13 @@ def encode_utf8(city_name: str) -> bytes: return city_name.encode("utf-8") -def get_chunked_raster(dataset_path, bounds, buffer_distance=1000): +def get_chunked_raster( + dataset_path: str, + bounds: tuple[float, float, float, float], + buffer_distance: float = 1000, +) -> rasterio.io.DatasetReader: """ - Returns windowed data from a raster without creating memory files. + Returns windowed data from a raster. Parameters: ---------- @@ -57,14 +91,14 @@ def get_chunked_raster(dataset_path, bounds, buffer_distance=1000): Path to the raster dataset. bounds : tuple (min_x, min_y, max_x, max_y) in the dataset's CRS. - buffer_distance : int, optional + buffer_distance : float, optional Buffer distance in the dataset's units to add around the bounds. Default is 1000. Returns: ------- rasterio.io.DatasetReader - A windowed raster dataset with optimized memory usage. + A windowed raster dataset. """ # Open the source dataset @@ -89,7 +123,6 @@ def get_chunked_raster(dataset_path, bounds, buffer_distance=1000): ) # Create a temporary file for the windowed data - # This is more efficient than using MemoryFile for large datasets with tempfile.NamedTemporaryFile(suffix=".tif", delete=False) as temp: temp_path = temp.name @@ -116,7 +149,7 @@ def get_chunked_raster(dataset_path, bounds, buffer_distance=1000): # Register finalizer to remove temporary file when dataset is garbage collected import weakref - def cleanup(temp_path): + def cleanup(temp_path: str) -> None: try: os.unlink(temp_path) except: @@ -227,6 +260,9 @@ def prepare_subnodes( subnodes["cluster"] = subnodes.apply( lambda x: regions_onshore.geometry.contains(x.point_coords).idxmax(), axis=1 ) + + subnodes["name"] = subnodes["cluster"] + " " + subnodes["Stadt"] + # For cities that are assigned to onshore regions outside Germany assign closest German cluster subnodes.loc[~subnodes.cluster.str.contains("DE"), "cluster"] = subnodes.loc[ ~subnodes.cluster.str.contains("DE") @@ -271,6 +307,92 @@ def prepare_subnodes( return subnodes +def process_geometries( + gdf: gpd.GeoDataFrame, min_area: float = None, buffer_factor: float = None +) -> gpd.GeoDataFrame: + """ + Process geometries in a GeoDataFrame by dissolving, exploding, and optionally filtering and buffering. + + Parameters + ---------- + gdf : gpd.GeoDataFrame + GeoDataFrame containing geometries to be processed. Must contain a 'Stadt' column for dissolving. + min_area : float, optional + Minimum area threshold. Geometries smaller than this will be filtered out. + buffer_factor : float, optional + Factor used to calculate buffer distance as a proportion of the square root of geometry area. + + Returns + ------- + gpd.GeoDataFrame + Processed GeoDataFrame with dissolved and exploded geometries, optionally filtered and buffered. + """ + gdf = gdf.dissolve("Stadt").explode(index_parts=False).reset_index(drop=False) + if min_area is not None: + gdf = gdf.loc[gdf.area > min_area] + if buffer_factor is not None: + gdf["geometry"] = gdf.geometry.buffer(np.sqrt(gdf.area) * buffer_factor) + return gdf + + +def refine_dh_areas_from_census_data( + subnodes: gpd.GeoDataFrame, census: gpd.GeoDataFrame +) -> gpd.GeoDataFrame: + """ + Refine district heating areas based on census raster data. + + Parameters + ---------- + subnodes : gpd.GeoDataFrame + GeoDataFrame containing information about district heating subnodes. + census : gpd.GeoDataFrame + GeoDataFrame containing census data about geographical distribution of heating systems. + + Returns + ------- + gpd.GeoDataFrame + Updated GeoDataFrame with refined district heating areas. + """ + # Keep rows where share of district heating is larger than 1% + census = census[ + census["Fernheizung"].astype(int) / census["Insgesamt_Heizungsart"].astype(int) + > 0.01 + ] + + # Add buffer, so tiles are 100x100m + census["geometry"] = census.geometry.buffer(50, cap_style="square") + + # Union of conjunct geometries + census = census.union_all() + census = gpd.GeoDataFrame(geometry=[census], crs="EPSG:3035") + + # Explode to single geometries + census = census.explode().reset_index(drop=True) + # Assign to subnodes lau_regions + census = gpd.overlay(subnodes, census, how="intersection") + + # Add lau_shape from subnodes to census + lau_shape_dict = dict(zip(subnodes["Stadt"], subnodes["lau_shape"])) + census["lau_shape"] = census["Stadt"].map(lau_shape_dict) + + census["geometry"] = census.convex_hull + + # Filter out single tiles with area < 10000 m^2 + census = census.loc[census.area > 10000] + + # Buffer the census areas by 1% of their area and combine them + # Buffer by 1% of area square root + census["geometry"] = census.geometry.buffer(np.sqrt(census.area) * 0.01) + + # Process with increasing buffer factors and area thresholds + census = process_geometries(census) + census = process_geometries(census, min_area=100000, buffer_factor=0.05) + census = process_geometries(census, buffer_factor=0.05) + census = process_geometries(census, min_area=1000000) + + return census.dissolve("Stadt").reset_index() + + def add_ptes_limit( subnodes: gpd.GeoDataFrame, osm_land_cover_path: rasterio.io.DatasetReader, @@ -305,8 +427,6 @@ def add_ptes_limit( gpd.GeoDataFrame Updated GeoDataFrame with PTES potential added. """ - import dask - from dask.diagnostics import ProgressBar dh_systems = subnodes.copy() @@ -330,7 +450,7 @@ def process_batch(batch): excluder.add_raster(natura_dataset, codes=[1], invert=False, crs=3035) # Process batch shapes - batch_shapes = batch["lau_shape"] + batch_shapes = batch["geometry"] band, transform = shape_availability(batch_shapes, excluder) # Extract valid points @@ -406,18 +526,17 @@ def extend_regions_onshore( head: Union[int, bool] = 40, ) -> Union[gpd.GeoDataFrame, gpd.GeoDataFrame]: """ - Extend onshore regions to include city LAU regions and restrict geometries. + Extend onshore regions to include city LAU regions and restrict onshore regions to + district heating areas of Fernwärmeatlas. Parameters ---------- regions_onshore : geopandas.GeoDataFrame - GeoDataFrame containing the onshore regions with geometries. + GeoDataFrame containing the onshore regions. subnodes_all : pandas.DataFrame - DataFrame containing information about subnodes, including city names, - clusters, and LAU shapes in WKT format. + DataFrame containing preprocessed district heating systems of Fernwärmeatlas. head : int or bool, optional - Number of top cities to include based on "Wärmeeinspeisung in GWh/a". - If set to True, defaults to 40. Default is 40. + Number of top cities to include based on yearly district heat feed-in. Default is 40. Returns ------- @@ -425,40 +544,47 @@ def extend_regions_onshore( GeoDataFrame with extended onshore regions including city LAU regions. regions_onshore_restricted : geopandas.GeoDataFrame GeoDataFrame with restricted onshore regions, replacing geometries - with the remaining city areas. + with the district heating areas. """ if isinstance(head, bool): head = 40 + # Extend regions_onshore to include the cities' lau regions - subnodes = subnodes_all.sort_values( - by="Wärmeeinspeisung in GWh/a", ascending=False - ).head(head)[["Stadt", "cluster", "lau_shape"]] + subnodes = ( + subnodes_all.sort_values(by="Wärmeeinspeisung in GWh/a", ascending=False) + .head(head)[["name", "cluster", "lau_shape"]] + .rename(columns={"lau_shape": "geometry"}) + ) + # Create GeoDataFrame with lau_shape as geometry and EPSG:4326 CRS + subnodes = gpd.GeoDataFrame(subnodes, geometry="geometry", crs="EPSG:3035") + subnodes = subnodes.to_crs("EPSG:4326") - subnodes = gpd.GeoDataFrame(subnodes, crs="EPSG:4326", geometry="lau_shape") - # Create column name that comprises cluster and Stadt - subnodes["name"] = subnodes["cluster"] + " " + subnodes["Stadt"] # Crop city regions from onshore regions regions_onshore["geometry"] = regions_onshore.geometry.difference( subnodes.union_all() ) # Rename lau_shape to geometry - subnodes = subnodes.rename(columns={"lau_shape": "geometry"}).drop( - columns=["Stadt", "cluster"] - ) - # Concat regions_onshore and subnodes + subnodes = subnodes.drop(columns=["cluster"]) + + # Concat regions_onshore and subnodes CRS of regions_onshore regions_onshore_extended = pd.concat([regions_onshore, subnodes.set_index("name")]) # Restrict regions_onshore geometries to only consist of the remaining city areas - subnodes_rest = subnodes_all[~subnodes_all["Stadt"].isin(subnodes["name"])] + subnodes_rest = subnodes_all.loc[ + ~subnodes_all.Stadt.apply(lambda s: s in subnodes.name.str.cat()) + ] - subnodes_rest_dissolved = subnodes_rest.set_geometry("lau_shape").dissolve( - "cluster" + subnodes_rest_dissolved = ( + subnodes_rest.set_geometry("geometry").dissolve("cluster").to_crs("EPSG:4326") ) # regions_onshore_restricted should replace geometries of regions_onshore with the geometries of subnodes_rest regions_onshore_restricted = regions_onshore_extended.copy() regions_onshore_restricted.loc[subnodes_rest_dissolved.index, "geometry"] = ( - subnodes_rest_dissolved["lau_shape"] + subnodes_rest_dissolved["geometry"] + ) + regions_onshore_restricted.loc[subnodes.name, "geometry"] = ( + subnodes_all.loc[subnodes.index].set_index("name").geometry.to_crs("EPSG:4326") ) return regions_onshore_extended, regions_onshore_restricted @@ -495,7 +621,6 @@ def extend_regions_onshore( "index" ) lau = gpd.read_file( - # "/home/cpschau/Code/dev/pypsa-ariadne/.snakemake/storage/http/gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson/LAU_RG_01M_2021_3035.geojson", f"{snakemake.input.lau}!LAU_RG_01M_2021_3035.geojson", crs="EPSG:3035", ).to_crs("EPSG:4326") @@ -520,6 +645,11 @@ def extend_regions_onshore( heat_techs, ) + census = load_census_data( + f"{snakemake.input.census}!Zensus2022_Heizungsart_100m-Gitter.csv" + ) + subnodes = refine_dh_areas_from_census_data(subnodes, census) + bounds = subnodes.to_crs("EPSG:4326").total_bounds # (minx, miny, maxx, maxy) groundwater = xr.open_dataset(snakemake.input.groundwater_depth).sel( lon=slice(bounds[0], bounds[2]), # minx to maxx From 2a723b5a67344834417dfea66656ca22014925c2 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 13 Mar 2025 15:00:19 +0100 Subject: [PATCH 605/669] add resolution for exclusion container as parameter --- config/config.yaml | 3 ++- scripts/pypsa-de/prepare_district_heating_subnodes.py | 4 +++- 2 files changed, 5 insertions(+), 2 deletions(-) diff --git a/config/config.yaml b/config/config.yaml index 15ea2dcd3..07cb8877e 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20242008_dh_subnodes_off + prefix: 20250313_refined_dh_areas name: # - CurrentPolicies - KN2045_Bal_v4 @@ -294,6 +294,7 @@ sector: 2045: 0.8 2050: 1.0 add_subnodes: false + excluder_resolution: 10 osm_landcover_codes: [21, 23, 32, 33] max_groundwater_depth: -10 ptes_potential_scalar: 1 diff --git a/scripts/pypsa-de/prepare_district_heating_subnodes.py b/scripts/pypsa-de/prepare_district_heating_subnodes.py index d6dfb647b..5879f43e0 100644 --- a/scripts/pypsa-de/prepare_district_heating_subnodes.py +++ b/scripts/pypsa-de/prepare_district_heating_subnodes.py @@ -395,6 +395,7 @@ def refine_dh_areas_from_census_data( def add_ptes_limit( subnodes: gpd.GeoDataFrame, + excluder_resolution: int, osm_land_cover_path: rasterio.io.DatasetReader, natura_path: rasterio.io.DatasetReader, groundwater: xr.Dataset, @@ -445,7 +446,7 @@ def process_batch(batch): natura_dataset = get_chunked_raster(natura_path, batch.total_bounds) # Create exclusion container - excluder = ExclusionContainer(crs=3035, res=10) + excluder = ExclusionContainer(crs=3035, res=excluder_resolution) excluder.add_raster(osm_dataset, codes=codes, invert=True, crs=3035) excluder.add_raster(natura_dataset, codes=[1], invert=False, crs=3035) @@ -663,6 +664,7 @@ def extend_regions_onshore( snakemake.params.district_heating["osm_landcover_codes"], snakemake.params.district_heating["max_groundwater_depth"], snakemake.params.district_heating["ptes_potential_scalar"], + snakemake.params.district_heating["excluder_resolution"], ) subnodes.to_file(snakemake.output.district_heating_subnodes, driver="GeoJSON") From 980d46859a0f7e1d063ea50d3d329347dadff00b Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 19 Mar 2025 16:03:36 +0100 Subject: [PATCH 606/669] preliminary fixes after merge --- Snakefile | 32 ++++++++----------- config/config.eem.yaml | 13 ++++++-- .../pypsa-de/add_district_heating_subnodes.py | 2 +- .../prepare_district_heating_subnodes.py | 2 +- 4 files changed, 27 insertions(+), 22 deletions(-) diff --git a/Snakefile b/Snakefile index ef1129aeb..68a10b18b 100644 --- a/Snakefile +++ b/Snakefile @@ -286,10 +286,7 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ ), fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", cities="data/fernwaermeatlas/cities_geolocations.geojson", - lau=storage( - "https://gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson.zip", - keep_local=True, - ), + lau="data/lau_regions.geojson", census=storage( "https://www.zensus2022.de/static/Zensus_Veroeffentlichung/Zensus2022_Heizungsart.zip", keep_local=True, @@ -335,9 +332,10 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ ), adjustments=config_provider( "adjustments", "sector"), input: - unpack(input_heat_source_potentials), - network=RESULTS - + "prenetworks/base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + unpack(input_heat_source_power), + network=resources( + "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" + ), subnodes=resources( "district_heating_subnodes_base_s_{clusters}.geojson" ), @@ -354,19 +352,17 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ existing_heating_distribution=resources( f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value}.csv" ), - lau=storage( - "https://gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson.zip", - keep_local=True, - ), + lau="data/lau_regions.geojson", output: - network=RESULTS - + "prenetworks/base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.nc", + network=resources( + "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" + ), district_heating_subnodes=resources( - "district_heating_subnodes_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" + "district_heating_subnodes_base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.geojson" ), existing_heating_distribution_extended=( resources( - "existing_heating_distribution_base-extended_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" + "existing_heating_distribution_base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.csv" ) if baseyear_value != "{planning_horizons}" else [] @@ -526,17 +522,17 @@ rule build_existing_chp_de: regions=resources("regions_onshore_base_s_{clusters}.geojson"), district_heating_subnodes=( resources( - "district_heating_subnodes_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.geojson" + "district_heating_subnodes_base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.geojson" ) if config["sector"]["district_heating"].get("add_subnodes", True) else [] ), output: german_chp=resources( - "german_chp_base_s_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.csv" + "german_chp_base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.csv" ), log: - logs("build_existing_chp_de_{clusters}_l{ll}_{opts}_{sector_opts}_{planning_horizons}.log"), + logs("build_existing_chp_de_{clusters}_{opts}_{sector_opts}_{planning_horizons}.log"), script: "scripts/pypsa-de/build_existing_chp_de.py" diff --git a/config/config.eem.yaml b/config/config.eem.yaml index d2c944f72..e5121e56d 100644 --- a/config/config.eem.yaml +++ b/config/config.eem.yaml @@ -3,7 +3,7 @@ # SPDX-License-Identifier: CC0-1.0 run: - prefix: 20250227_eem_config_osm + prefix: 20250319_osm_refined_areas name: - Baseline - No_PTES @@ -67,7 +67,7 @@ scenario: clustering: temporal: - resolution_sector: 3H + resolution_sector: 876H adjustments: electricity: false @@ -86,6 +86,15 @@ sector: district_heating: potential: 0.5 add_subnodes: true + heat_pump_sources: + urban central: + - air + - geothermal + urban decentral: + - air + rural: + - air + - ground solving: constraints: diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index 9849c8fcd..2d0120ea2 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -409,7 +409,7 @@ def extend_heating_distribution( lau = gpd.read_file( # "/home/cpschau/Code/dev/pypsa-ariadne/.snakemake/storage/http/gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson/LAU_RG_01M_2021_3035.geojson", - f"{snakemake.input.lau}!LAU_RG_01M_2021_3035.geojson", + snakemake.input.lau, crs="EPSG:3035", ).to_crs("EPSG:4326") diff --git a/scripts/pypsa-de/prepare_district_heating_subnodes.py b/scripts/pypsa-de/prepare_district_heating_subnodes.py index 5879f43e0..e333c7f35 100644 --- a/scripts/pypsa-de/prepare_district_heating_subnodes.py +++ b/scripts/pypsa-de/prepare_district_heating_subnodes.py @@ -622,7 +622,7 @@ def extend_regions_onshore( "index" ) lau = gpd.read_file( - f"{snakemake.input.lau}!LAU_RG_01M_2021_3035.geojson", + snakemake.input.lau, crs="EPSG:3035", ).to_crs("EPSG:4326") From d3d9f3adbb49d5a58d04595b788e1e0da145981f Mon Sep 17 00:00:00 2001 From: TomKae00 <144129436+TomKae00@users.noreply.github.com> Date: Fri, 14 Mar 2025 20:11:04 +0100 Subject: [PATCH 607/669] Add PTES and introduce PTES/TES energy-to-power ratios (#1546) * introduce etpr for TES using stores * add constraints * copleted implementation of constraints for TES stores * updated release notes * adjusted mock snakemake default * library change * update release notes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Delete .DS_Store * change retrieval of etpr values in etpr_constraint * changed TES constraints check based on the configs * constraint checks * enhance error handling for the tes constraints * small changes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * changed mock snakemake back to default settings * feat: add marginal cost for water tank chargers * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * docs: update add_retrofit_gas_boiler_constraint docs * docs: update return type annotation for get_heat_system_type method * feat: add heat vents for decentral and rural heating * feat: remove unnecessary central_heat_vent config * feat: pass heat vent marginal cost to prepare_sector_network * refactor: rename marginal_cost_storage to marginal_cost_home_battery_storage * docs: update configtables * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * docs: update release notes * add suggestions to ensure that charger and discharger align for charger ratio constraints and energy power constraints * add lifetime to PTES and TTES charger/discharger, so that they are built with correct baseyear * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat: add small penalty on ptes charging * feat: update fixed cost to capital cost str * feat: remove unnecessary passing of obsolete config * feat: remove unneeded config passing * feat: remove unneeded config passing * feat: remove unneeded config passing * Update scripts/solve_network.py * Update solve_network.py * feat: re-add TES necessary parameters * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Refactor string contains checks * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Amos Schledorn <60692940+amos-schledorn@users.noreply.github.com> Co-authored-by: Amos Schledorn --- config/config.default.yaml | 7 ++ doc/configtables/sector.csv | 1 - doc/release_notes.rst | 4 + scripts/prepare_sector_network.py | 115 +++++++++++++++--------- scripts/solve_network.py | 140 +++++++++++++++++++++++++++++- 5 files changed, 226 insertions(+), 41 deletions(-) diff --git a/config/config.default.yaml b/config/config.default.yaml index c07ee1e1e..32a0a6bd6 100644 --- a/config/config.default.yaml +++ b/config/config.default.yaml @@ -865,6 +865,7 @@ costs: battery inverter: 0. home battery storage: 0 water tank charger: 0.03 + central water pit charger: 0.025 emission_prices: enable: false co2: 0. @@ -1252,6 +1253,12 @@ plotting: residential urban decentral water tanks discharger: '#baac9e' services rural water tanks discharger: '#bbc2b8' services urban decentral water tanks discharger: '#bdd8d3' + water pits: "#cc826a" + water pits charger: "#b36a5e" + water pits discharger: "#b37468" + urban central water pits: "#d96f4c" + urban central water pits charger: "#a85d47" + urban central water pits discharger: "#b36452" # heat demand Heat load: '#cc1f1f' heat: '#cc1f1f' diff --git a/doc/configtables/sector.csv b/doc/configtables/sector.csv index c4cebe885..2c4a731d4 100644 --- a/doc/configtables/sector.csv +++ b/doc/configtables/sector.csv @@ -98,7 +98,6 @@ chp,--,, solar_thermal,--,"{true, false}",Add option for using solar thermal to generate heat. solar_cf_correction,--,float,The correction factor for the value provided by the solar thermal profile calculations marginal_cost_heat_vent,"currency/MWh ",float,The marginal cost of heat-venting in all heating systems - methanation,--,"{true, false}",Add option for transforming hydrogen and CO2 into methane using methanation. coal_cc,--,"{true, false}",Add option for coal CHPs with carbon capture dac,--,"{true, false}",Add option for Direct Air Capture (DAC) diff --git a/doc/release_notes.rst b/doc/release_notes.rst index 1d1a0544f..edd389999 100644 --- a/doc/release_notes.rst +++ b/doc/release_notes.rst @@ -33,13 +33,17 @@ Upcoming Release ================ * Introduced heat-venting in all heating systems at given marginal cost and added marginal cost for water tank charging. Renamed config setting for marginal cost of home-battery charging to ``marginal_cost_home_battery_storage``. (https://github.com/PyPSA/pypsa-eur/pull/1563) + * Added option to specify the cutout directory in the configuration file. This allows to the user to specify the directory where the cutouts are stored. Use it by setting ``atlite: cutout_directory:`` in the configuration file. (https://github.com/PyPSA/pypsa-eur/pull/1515) * Add the options to overwrite investment, lifetime, FOM, VOM, efficiency and fuel attributes from the configuration file under ``costs: overwrites:``. This mimics the existing capital and marginal cost behaviour. (https://github.com/PyPSA/pypsa-eur/pull/1532) + * Change: Rename "fixed" to "capital_cost" for annualised investment costs in sector-coupled networks. - Bugfix: Changed setting ``central_heat_vent`` (default: ``true``), because the water tanks charger and discharger were used as heat vents with an efficiency of 0.9. +- Implemented an energy-to-power ratio constraint for TES, linking storage capacity to the corresponding charger capacity. Additionally, chargers and dischargers are now sized identically through a unified constraint. + * Bugfix: Geothermal heat potentials are now restricted to those in close proximity to future district heating areas as projected by Manz et al. 2024. Includes a refactoring change: Building of generic technical potentials from heat utilisation potentials was changed to specific computation of geothermal heat potentials. * Bug fix: Added setting ``run: use_shadow_directory:`` (default: ``true``) which sets the ``shadow`` parameter of the snakemake workflow. Configuring to ``true`` sets snakemake ``shadow`` parameter to ``shalloow``, ``false`` to `Ǹone``. Should be set to ``false`` for those cases, where snakemake has an issue with finding missing input/output files in solving rules. diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 94480f561..d5f2debe1 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -2857,15 +2857,26 @@ def add_heat( unit="MWh_th", ) + energy_to_power_ratio_water_tanks = costs.at[ + heat_system.central_or_decentral + " water tank storage", + "energy to power ratio", + ] + n.add( "Link", nodes + f" {heat_system} water tanks charger", bus0=nodes + f" {heat_system} heat", bus1=nodes + f" {heat_system} water tanks", - efficiency=costs.at["water tank charger", "efficiency"], + efficiency=costs.at[ + heat_system.central_or_decentral + " water tank charger", + "efficiency", + ], carrier=f"{heat_system} water tanks charger", p_nom_extendable=True, marginal_cost=costs.at["water tank charger", "marginal_cost"], + lifetime=costs.at[ + heat_system.central_or_decentral + " water tank storage", "lifetime" + ], ) n.add( @@ -2874,76 +2885,102 @@ def add_heat( bus0=nodes + f" {heat_system} water tanks", bus1=nodes + f" {heat_system} heat", carrier=f"{heat_system} water tanks discharger", - efficiency=costs.at["water tank discharger", "efficiency"], + efficiency=costs.at[ + heat_system.central_or_decentral + " water tank discharger", + "efficiency", + ], p_nom_extendable=True, + lifetime=costs.at[ + heat_system.central_or_decentral + " water tank storage", "lifetime" + ], ) - if options["tes"]: - - n.add("Carrier", f"{heat_system} water tanks") + n.links.loc[ + nodes + f" {heat_system} water tanks charger", "energy to power ratio" + ] = energy_to_power_ratio_water_tanks tes_time_constant_days = options["tes_tau"][ heat_system.central_or_decentral ] n.add( - "StorageUnit", + "Store", nodes + f" {heat_system} water tanks", - bus=nodes + f" {heat_system} heat", + bus=nodes + f" {heat_system} water tanks", + e_cyclic=True, + e_nom_extendable=True, carrier=f"{heat_system} water tanks", - efficiency_store=costs.at[ - f"{heat_system.central_or_decentral} water tank charger", - "efficiency", - ], - max_hours=costs.at[ - "central water tank storage", "energy to power ratio" - ], - efficiency_dispatch=costs.at[ - f"{heat_system.central_or_decentral} water tank discharger", - "efficiency", - ], - p_nom_extendable=True, standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days), capital_cost=costs.at[ heat_system.central_or_decentral + " water tank storage", "capital_cost", ], - overnight_cost=costs.at[ - heat_system.central_or_decentral + " water tank storage", - "investment", - ], lifetime=costs.at[ heat_system.central_or_decentral + " water tank storage", "lifetime" ], - cyclic_state_of_charge=True, ) if heat_system == HeatSystem.URBAN_CENTRAL: - n.add("Carrier", f"{heat_system} water pits") - nodes_pits = dist_fraction[dist_fraction > 0].filter(like="DE").index - n.add( - "StorageUnit", - nodes_pits + f" {heat_system} water pits", - bus=nodes_pits + f" {heat_system} heat", + "Bus", + nodes + f" {heat_system} water pits", + location=nodes, carrier=f"{heat_system} water pits", - efficiency_store=costs.at[ - "central water pit charger", "efficiency" + unit="MWh_th", + ) + + energy_to_power_ratio_water_pit = costs.at[ + "central water pit storage", "energy to power ratio" + ] + + n.add( + "Link", + nodes + f" {heat_system} water pits charger", + bus0=nodes + f" {heat_system} heat", + bus1=nodes + f" {heat_system} water pits", + efficiency=costs.at[ + "central water pit charger", + "efficiency", ], - max_hours=costs.at[ - "central water pit storage", "energy to power ratio" + carrier=f"{heat_system} water pits charger", + p_nom_extendable=True, + lifetime=costs.at["central water pit storage", "lifetime"], + marginal_cost=costs.at[ + "central water pit charger", "marginal_cost" ], - efficiency_dispatch=costs.at[ - "central water pit discharger", "efficiency" + ) + + n.add( + "Link", + nodes + f" {heat_system} water pits discharger", + bus0=nodes + f" {heat_system} water pits", + bus1=nodes + f" {heat_system} heat", + carrier=f"{heat_system} water pits discharger", + efficiency=costs.at[ + "central water pit discharger", + "efficiency", ], p_nom_extendable=True, + lifetime=costs.at["central water pit storage", "lifetime"], + ) + + n.links.loc[ + nodes + f" {heat_system} water pits charger", + "energy to power ratio", + ] = energy_to_power_ratio_water_pit + + n.add( + "Store", + nodes + f" {heat_system} water pits", + bus=nodes + f" {heat_system} water pits", + e_cyclic=True, + e_nom_extendable=True, + carrier=f"{heat_system} water pits", standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days), - capital_cost=costs.at["central water pit storage", "fixed"] - * costs.at["central water pit storage", "energy to power ratio"], + capital_cost=costs.at["central water pit storage", "capital_cost"], lifetime=costs.at["central water pit storage", "lifetime"], - cyclic_state_of_charge=True, ) if options["resistive_heaters"]: diff --git a/scripts/solve_network.py b/scripts/solve_network.py index 0ef6b2676..ae3495a6e 100644 --- a/scripts/solve_network.py +++ b/scripts/solve_network.py @@ -35,6 +35,7 @@ from functools import partial from typing import Any +import linopy import numpy as np import pandas as pd import pypsa @@ -822,6 +823,124 @@ def add_operational_reserve_margin(n, sns, config): n.model.add_constraints(lhs <= rhs, name="Generator-p-reserve-upper") +def add_TES_energy_to_power_ratio_constraints(n: pypsa.Network) -> None: + """ + Add TES constraints to the network. + + For each TES storage unit, enforce: + Store-e_nom - etpr * Link-p_nom == 0 + + Parameters + ---------- + n : pypsa.Network + A PyPSA network with TES and heating sectors enabled. + + Raises + ------ + ValueError + If no valid TES storage or charger links are found. + RuntimeError + If the TES storage and charger indices do not align. + """ + indices_charger_p_nom_extendable = n.links.index[ + n.links.index.str.contains("water tanks charger|water pits charger") + & n.links.p_nom_extendable + ] + indices_stores_e_nom_extendable = n.stores.index[ + n.stores.index.str.contains("water tanks|water pits") + & n.stores.e_nom_extendable + ] + + if indices_charger_p_nom_extendable.empty or indices_stores_e_nom_extendable.empty: + raise ValueError( + "No valid extendable charger links or stores found for TES energy to power constraints." + ) + + energy_to_power_ratio_values = n.links.loc[ + indices_charger_p_nom_extendable, "energy to power ratio" + ].values + + linear_expr_list = [] + for charger, tes, energy_to_power_value in zip( + indices_charger_p_nom_extendable, + indices_stores_e_nom_extendable, + energy_to_power_ratio_values, + ): + charger_var = n.model["Link-p_nom"].loc[charger] + if not tes.replace("-", " ").split(" ")[:5] == charger.split(" ")[:5]: + # e.g. "DE0 0 urban central water tanks charger" -> ["DE0", "0", "urban", "central", "water"] + raise RuntimeError( + f"Charger {charger} and TES {tes} do not match. " + "Ensure that the charger and TES are in the same location and refer to the same technology." + ) + store_var = n.model["Store-e_nom"].loc[tes] + linear_expr = store_var - energy_to_power_value * charger_var + linear_expr_list.append(linear_expr) + + # Merge the individual expressions + merged_expr = linopy.expressions.merge( + linear_expr_list, dim="Store-ext, Link-ext", cls=type(linear_expr_list[0]) + ) + + n.model.add_constraints(merged_expr == 0, name="TES_energy_to_power_ratio") + + +def add_TES_charger_ratio_constraints(n: pypsa.Network) -> None: + """ + Add TES charger ratio constraints. + + For each TES unit, enforce: + Link-p_nom(charger) - efficiency * Link-p_nom(discharger) == 0 + + Parameters + ---------- + n : pypsa.Network + A PyPSA network with TES and heating sectors enabled. + + Raises + ------ + ValueError + If no valid TES discharger or charger links are found. + RuntimeError + If the charger and discharger indices do not align. + """ + indices_charger_p_nom_extendable = n.links.index[ + n.links.index.str.contains("water tanks charger|water pits charger") + & n.links.p_nom_extendable + ] + indices_discharger_p_nom_extendable = n.links.index[ + n.links.index.str.contains("water tanks discharger|water pits discharger") + & n.links.p_nom_extendable + ] + + if ( + indices_charger_p_nom_extendable.empty + or indices_discharger_p_nom_extendable.empty + ): + raise ValueError( + "No valid extendable TES discharger or charger links found for TES charger ratio constraints." + ) + + for charger, discharger in zip( + indices_charger_p_nom_extendable, indices_discharger_p_nom_extendable + ): + if not charger.split(" ")[:5] == discharger.split(" ")[:5]: + # e.g. "DE0 0 urban central water tanks charger" -> ["DE0", "0", "urban", "central", "water"] + raise RuntimeError( + f"Charger {charger} and discharger {discharger} do not match. " + "Ensure that the charger and discharger are in the same location and refer to the same technology." + ) + + eff_discharger = n.links.efficiency[indices_discharger_p_nom_extendable].values + lhs = ( + n.model["Link-p_nom"].loc[indices_charger_p_nom_extendable] + - n.model["Link-p_nom"].loc[indices_discharger_p_nom_extendable] + * eff_discharger + ) + + n.model.add_constraints(lhs == 0, name="TES_charger_ratio") + + def add_battery_constraints(n): """ Add constraint ensuring that charger = discharger, i.e. @@ -1025,6 +1144,25 @@ def extra_functionality( ): add_solar_potential_constraints(n, config) + if n.config.get("sector", {}).get("tes", False): + if n.buses.index.str.contains( + r"urban central heat|urban decentral heat|rural heat", + case=False, + na=False, + ).any(): + add_TES_energy_to_power_ratio_constraints(n) + add_TES_charger_ratio_constraints(n) + elif ( + n.links.index.str.contains( + "pits charger|tanks charger", case=False, na=False + ).any() + or n.stores.index.str.contains("pits", case=False, na=False).any() + or n.stores.index.str.contains("tanks", case=False, na=False).any() + ): + raise ValueError( + "Unsupported network configuration: tes is enabled but no heating bus was found." + ) + add_battery_constraints(n) add_lossy_bidirectional_link_constraints(n) add_pipe_retrofit_constraint(n) @@ -1198,9 +1336,9 @@ def solve_network( snakemake = mock_snakemake( "solve_sector_network_perfect", - configfiles="../config/test/config.perfect.yaml", opts="", clusters="5", + configfiles="config/test/config.perfect.yaml", ll="v1.0", sector_opts="", # planning_horizons="2030", From 908799410c114d21cfdc4a424db7b3db1b859c8c Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 20 Mar 2025 14:42:44 +0100 Subject: [PATCH 608/669] adjustments to new geothermal potentials and heat_stores --- Snakefile | 4 ++-- config/{config.eem.yaml => config.sysgf.yaml} | 24 +++++++++---------- config/config.yaml | 2 +- rules/build_sector.smk | 6 +++-- rules/retrieve.smk | 2 +- scripts/add_existing_baseyear.py | 2 +- .../pypsa-de/add_district_heating_subnodes.py | 11 ++++----- .../prepare_district_heating_subnodes.py | 13 ++++------ 8 files changed, 30 insertions(+), 34 deletions(-) rename config/{config.eem.yaml => config.sysgf.yaml} (87%) diff --git a/Snakefile b/Snakefile index 68a10b18b..8471146d9 100644 --- a/Snakefile +++ b/Snakefile @@ -286,7 +286,7 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ ), fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", cities="data/fernwaermeatlas/cities_geolocations.geojson", - lau="data/lau_regions.geojson", + lau_regions="data/lau_regions.zip", census=storage( "https://www.zensus2022.de/static/Zensus_Veroeffentlichung/Zensus2022_Heizungsart.zip", keep_local=True, @@ -352,7 +352,7 @@ if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ existing_heating_distribution=resources( f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value}.csv" ), - lau="data/lau_regions.geojson", + lau_regions="data/lau_regions.zip", output: network=resources( "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" diff --git a/config/config.eem.yaml b/config/config.sysgf.yaml similarity index 87% rename from config/config.eem.yaml rename to config/config.sysgf.yaml index e5121e56d..8c8c771aa 100644 --- a/config/config.eem.yaml +++ b/config/config.sysgf.yaml @@ -3,20 +3,18 @@ # SPDX-License-Identifier: CC0-1.0 run: - prefix: 20250319_osm_refined_areas + prefix: 20250320_dhsubnodes name: - Baseline - - No_PTES - - LowPTESCAPEX - - HighPTESCAPEX - - LowStandingLosses - - HighStandingLosses - - LowGroundWaterDepth - - HighGroundWaterDepth - - LowEtPRatio - - HighEtPRatio - # - 8Gt_Elec_v3 - # - 8Gt_H2_v3 + # - No_PTES + # - LowPTESCAPEX + # - HighPTESCAPEX + # - LowStandingLosses + # - HighStandingLosses + # - LowGroundWaterDepth + # - HighGroundWaterDepth + # - LowEtPRatio + # - HighEtPRatio scenarios: enable: true manual_file: config/scenarios.eem.yaml @@ -67,7 +65,7 @@ scenario: clustering: temporal: - resolution_sector: 876H + resolution_sector: 365H adjustments: electricity: false diff --git a/config/config.yaml b/config/config.yaml index 9f166dc94..d6b5bd0e0 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20250313_refined_dh_areas + prefix: 20250320_dhsubnodes name: # - CurrentPolicies - KN2045_Bal_v4 diff --git a/rules/build_sector.smk b/rules/build_sector.smk index ae27b1dc0..decbf9d6e 100755 --- a/rules/build_sector.smk +++ b/rules/build_sector.smk @@ -293,7 +293,9 @@ rule build_geothermal_heat_potential: ), input: isi_heat_potentials="data/isi_heat_utilisation_potentials.xlsx", - regions_onshore=resources("regions_onshore_base_s_{clusters}.geojson"), + regions_onshore=resources("regions_onshore_base-restricted_s_{clusters}.geojson") + if config["sector"]["district_heating"].get("add_subnodes", True) + else resources("regions_onshore_base_s_{clusters}.geojson"), lau_regions="data/lau_regions.zip", output: heat_source_power=resources( @@ -336,7 +338,7 @@ rule build_cop_profiles: ), temp_soil_total=resources("temp_soil_total_base_s_{clusters}.nc"), temp_air_total=resources("temp_air_total_base_s_{clusters}.nc"), - regions_onshore=resources("regions_onshore_base_s_{clusters}.geojson") if config["sector"][ + regions_onshore=resources("regions_onshore_base-extended_s_{clusters}.geojson") if config["sector"][ "district_heating" ].get("add_subnodes", True) else resources("regions_onshore_base_s_{clusters}.geojson"), output: diff --git a/rules/retrieve.smk b/rules/retrieve.smk index acdd6e1e6..abcf4982b 100755 --- a/rules/retrieve.smk +++ b/rules/retrieve.smk @@ -675,7 +675,7 @@ if config["enable"]["retrieve"]: keep_local=True, ), output: - lau_regions="data/lau_regions.geojson", + lau_regions="data/lau_regions.zip", log: "logs/retrieve_lau_regions.log", lau_regions="data/lau_regions.zip", diff --git a/scripts/add_existing_baseyear.py b/scripts/add_existing_baseyear.py index be098c8b3..f968dfe6c 100644 --- a/scripts/add_existing_baseyear.py +++ b/scripts/add_existing_baseyear.py @@ -498,7 +498,7 @@ def add_chp_plants(n, grouping_years, costs, baseyear): if snakemake.input.get("custom_powerplants"): if snakemake.input.custom_powerplants.endswith( - f"german_chp_base_s_{snakemake.wildcards.clusters}_l{snakemake.wildcards.ll}_{snakemake.wildcards.opts}_{snakemake.wildcards.sector_opts}_{snakemake.wildcards.planning_horizons}.csv" + f"german_chp_base_s_{snakemake.wildcards.clusters}_{snakemake.wildcards.opts}_{snakemake.wildcards.sector_opts}_{snakemake.wildcards.planning_horizons}.csv" ): logger.info("Supersedeing default German CHPs with custom_powerplants.") ppl = ppl.query("~(Set == 'CHP' and Country == 'DE')") diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index 2d0120ea2..7765f2d30 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -162,9 +162,9 @@ def add_subnodes( # Restrict PTES capacity in subnodes if modeled as store if stores.carrier.str.contains("pits$").any(): - stores[stores.carrier.str.contains("pits$").index, "e_nom_max"] = subnode[ - "ptes_pot_mwh" - ] + stores.loc[stores.carrier.str.contains("pits$").index, "e_nom_max"] = ( + subnode["ptes_pot_mwh"] + ) n.add("Store", stores.index, **stores) # Replicate district heating storage units of mother node for subnodes @@ -310,7 +310,7 @@ def add_subnodes( ) # Restrict heat source potential in subnodes - if heat_source in snakemake.params.heat_utilisation_potentials: + if heat_source in snakemake.params.district_heating["limited_heat_sources"]: # get potential p_max_source = pd.read_csv( snakemake.input[heat_source], @@ -408,8 +408,7 @@ def extend_heating_distribution( n = pypsa.Network(snakemake.input.network) lau = gpd.read_file( - # "/home/cpschau/Code/dev/pypsa-ariadne/.snakemake/storage/http/gisco-services.ec.europa.eu/distribution/v2/lau/download/ref-lau-2021-01m.geojson/LAU_RG_01M_2021_3035.geojson", - snakemake.input.lau, + f"{snakemake.input.lau_regions}!LAU_RG_01M_2019_3035.geojson", crs="EPSG:3035", ).to_crs("EPSG:4326") diff --git a/scripts/pypsa-de/prepare_district_heating_subnodes.py b/scripts/pypsa-de/prepare_district_heating_subnodes.py index e333c7f35..6db5f2e08 100644 --- a/scripts/pypsa-de/prepare_district_heating_subnodes.py +++ b/scripts/pypsa-de/prepare_district_heating_subnodes.py @@ -17,13 +17,11 @@ from atlite.gis import shape_availability import sys import os +import zipfile import dask from dask.diagnostics import ProgressBar -path = "dev/pypsa-de" -sys.path.insert(0, os.path.abspath(path)) - from scripts._helpers import ( configure_logging, set_scenario_config, @@ -395,13 +393,13 @@ def refine_dh_areas_from_census_data( def add_ptes_limit( subnodes: gpd.GeoDataFrame, - excluder_resolution: int, osm_land_cover_path: rasterio.io.DatasetReader, natura_path: rasterio.io.DatasetReader, groundwater: xr.Dataset, codes: list, max_groundwater_depth: float, ptes_potential_scalar: float, + excluder_resolution: int, ) -> gpd.GeoDataFrame: """ Add PTES limit to subnodes according to land availability within city regions. @@ -622,7 +620,7 @@ def extend_regions_onshore( "index" ) lau = gpd.read_file( - snakemake.input.lau, + f"{snakemake.input.lau_regions}!LAU_RG_01M_2019_3035.geojson", crs="EPSG:3035", ).to_crs("EPSG:4326") @@ -637,6 +635,8 @@ def extend_regions_onshore( lambda x: regions_onshore.geometry.contains(x.geometry).idxmax(), axis=1, ) + with zipfile.ZipFile(snakemake.input.census, "r") as z: + census = load_census_data(z.open("Zensus2022_Heizungsart_100m-Gitter.csv")) subnodes = prepare_subnodes( fernwaermeatlas, @@ -646,9 +646,6 @@ def extend_regions_onshore( heat_techs, ) - census = load_census_data( - f"{snakemake.input.census}!Zensus2022_Heizungsart_100m-Gitter.csv" - ) subnodes = refine_dh_areas_from_census_data(subnodes, census) bounds = subnodes.to_crs("EPSG:4326").total_bounds # (minx, miny, maxx, maxy) From d8ee5ef35f3a4abd6acefaa81cb074c9530962b8 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 20 Mar 2025 14:54:09 +0100 Subject: [PATCH 609/669] hot fix for missing geothermal potentials in GB --- scripts/build_geothermal_heat_potential.py | 17 +++++++++++++++-- 1 file changed, 15 insertions(+), 2 deletions(-) diff --git a/scripts/build_geothermal_heat_potential.py b/scripts/build_geothermal_heat_potential.py index 609923831..b7efb4409 100644 --- a/scripts/build_geothermal_heat_potential.py +++ b/scripts/build_geothermal_heat_potential.py @@ -38,7 +38,10 @@ import geopandas as gpd import pandas as pd -from _helpers import set_scenario_config +from _helpers import set_scenario_config, configure_logging +import logging + +logger = logging.getLogger(__name__) ISI_TEMPERATURE_SCENARIOS = { 65: "low_temperatures", @@ -139,6 +142,15 @@ def get_heat_source_power( heat_source_power = heat_potentials_in_onshore_regions_aggregated * scaling_factor + non_covered_regions = regions_onshore.index.difference(heat_source_power.index) + if not non_covered_regions.empty: + logger.warning( + f"The onshore regions {non_covered_regions.to_list()} have no heat source power. Filling with zeros." + ) + heat_source_power = heat_source_power.reindex( + regions_onshore.index, fill_value=0 + ) + return heat_source_power @@ -147,10 +159,11 @@ def get_heat_source_power( from _helpers import mock_snakemake snakemake = mock_snakemake( - "build_heat_source_potentials", + "build_geothermal_heat_potential", clusters=48, ) + configure_logging(snakemake) set_scenario_config(snakemake) # get onshore regions and index them by region name From b73bdb57b6fd8b4f0afab4aa1e1d6ea101efaa5d Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 20 Mar 2025 15:24:17 +0100 Subject: [PATCH 610/669] adjust reference of df with subnodes to correctly handle demand(subnodes) > demand(cluster) --- scripts/pypsa-de/add_district_heating_subnodes.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index 7765f2d30..f1d94724c 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -97,8 +97,8 @@ def add_subnodes( (subnode["yearly_heat_demand_MWh"] / dh_load_cluster), ) - dh_load_cluster_subnodes = subnodes.loc[ - subnodes.cluster == subnode["cluster"], "yearly_heat_demand_MWh" + dh_load_cluster_subnodes = subnodes_head.loc[ + subnodes_head.cluster == subnode["cluster"], "yearly_heat_demand_MWh" ].sum() lost_load = dh_load_cluster_subnodes - dh_load_cluster From df755732349a4183b59f8d8ffefbf53f6f89f193 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 20 Mar 2025 15:43:45 +0100 Subject: [PATCH 611/669] CHP plants in buffered dh area based on census instead of LAU --- scripts/pypsa-de/build_existing_chp_de.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/scripts/pypsa-de/build_existing_chp_de.py b/scripts/pypsa-de/build_existing_chp_de.py index f36370adc..0a97aad56 100644 --- a/scripts/pypsa-de/build_existing_chp_de.py +++ b/scripts/pypsa-de/build_existing_chp_de.py @@ -232,9 +232,9 @@ def assign_subnode(CHP_de: pd.DataFrame, subnodes: gpd.GeoDataFrame) -> pd.DataF CHP_de, geometry=gpd.points_from_xy(CHP_de.lon, CHP_de.lat) ) CHP_de.crs = subnodes.crs - # Set LAU shape column as geometry - subnodes["geometry"] = gpd.GeoSeries.from_wkt(subnodes["lau_shape"]) - subnodes.drop("lau_shape", axis=1, inplace=True) + + # Buffer the subnodes to avoid missing assignments + subnodes["geometry"] = subnodes.buffer(np.sqrt(subnodes.area) * 0.1) subnodes.index.rename("city", inplace=True) # Assign subnode to CHP plants based on the nuts3 region @@ -289,7 +289,7 @@ def assign_subnode(CHP_de: pd.DataFrame, subnodes: gpd.GeoDataFrame) -> pd.DataF if snakemake.params.add_district_heating_subnodes: subnodes = gpd.read_file( snakemake.input.district_heating_subnodes, - columns=["Stadt", "lau_shape"], + columns=["Stadt", "geometry"], ).set_index("Stadt") CHP_de = assign_subnode(CHP_de, subnodes) From e77bb20184ebd8db359456b1911a96bbda7dd455 Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 24 Mar 2025 14:54:55 +0100 Subject: [PATCH 612/669] fix COP revision of predecessing network --- scripts/add_brownfield.py | 19 +++++++++---------- 1 file changed, 9 insertions(+), 10 deletions(-) diff --git a/scripts/add_brownfield.py b/scripts/add_brownfield.py index aac407bcd..be6e0f16c 100644 --- a/scripts/add_brownfield.py +++ b/scripts/add_brownfield.py @@ -268,12 +268,7 @@ def update_heat_pump_efficiency(n: pypsa.Network, n_p: pypsa.Network, year: int) # get names of heat pumps in previous iteration that cannot be replaced by direct utilisation in this iteration heat_pump_idx_previous_iteration = n_p.links.index[ - n_p.links.index.str.contains("heat pump") - & n_p.links.index.str[:-4].isin( - n.links_t.efficiency.columns.str.rstrip( # sources that can be directly used are no longer represented by heat pumps in the dynamic efficiency dataframe - str(year) - ) - ) + n_p.links.index.str.contains("urban central.*heat pump") ] # construct names of same-technology heat pumps in the current iteration corresponding_idx_this_iteration = heat_pump_idx_previous_iteration.str[:-4] + str( @@ -281,18 +276,22 @@ def update_heat_pump_efficiency(n: pypsa.Network, n_p: pypsa.Network, year: int) ) # update efficiency of heat pumps in previous iteration in-place to efficiency in this iteration n_p.links_t["efficiency"].loc[:, heat_pump_idx_previous_iteration] = ( - n.links_t["efficiency"].loc[:, corresponding_idx_this_iteration].values + n.links_t["efficiency"] + .reindex(columns=corresponding_idx_this_iteration, fill_value=0) + .values ) # Change efficiency2 for heat pumps that use an explicitly modelled heat source previous_iteration_columns = heat_pump_idx_previous_iteration.intersection( n_p.links_t["efficiency2"].columns ) - current_iteration_columns = corresponding_idx_this_iteration.intersection( - n.links_t["efficiency2"].columns + corresponding_columns_this_iteration = previous_iteration_columns.str[:-4] + str( + year ) n_p.links_t["efficiency2"].loc[:, previous_iteration_columns] = ( - n.links_t["efficiency2"].loc[:, current_iteration_columns].values + n.links_t["efficiency2"] + .reindex(columns=corresponding_columns_this_iteration, fill_value=0) + .values ) From a416e5b4ab5ffa789cf577f7502d8fcc8aaa9126 Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 24 Mar 2025 14:56:51 +0100 Subject: [PATCH 613/669] single execution of build_existing_chp_de --- Snakefile | 6 ++--- scripts/pypsa-de/build_existing_chp_de.py | 28 +++++++++++++++++++---- 2 files changed, 27 insertions(+), 7 deletions(-) diff --git a/Snakefile b/Snakefile index 8471146d9..e794bee75 100644 --- a/Snakefile +++ b/Snakefile @@ -522,17 +522,17 @@ rule build_existing_chp_de: regions=resources("regions_onshore_base_s_{clusters}.geojson"), district_heating_subnodes=( resources( - "district_heating_subnodes_base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.geojson" + "district_heating_subnodes_base_s_{clusters}.geojson" ) if config["sector"]["district_heating"].get("add_subnodes", True) else [] ), output: german_chp=resources( - "german_chp_base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.csv" + "german_chp_base_s_{clusters}.csv" ), log: - logs("build_existing_chp_de_{clusters}_{opts}_{sector_opts}_{planning_horizons}.log"), + logs("build_existing_chp_de_{clusters}.log"), script: "scripts/pypsa-de/build_existing_chp_de.py" diff --git a/scripts/pypsa-de/build_existing_chp_de.py b/scripts/pypsa-de/build_existing_chp_de.py index 0a97aad56..a88a040da 100644 --- a/scripts/pypsa-de/build_existing_chp_de.py +++ b/scripts/pypsa-de/build_existing_chp_de.py @@ -13,6 +13,7 @@ logger = logging.getLogger(__name__) import os import sys +from typing import Union import geopandas as gpd import numpy as np @@ -212,7 +213,9 @@ def BP(cap, year): return CHP_de -def assign_subnode(CHP_de: pd.DataFrame, subnodes: gpd.GeoDataFrame) -> pd.DataFrame: +def assign_subnode( + CHP_de: pd.DataFrame, subnodes: gpd.GeoDataFrame, head: Union[bool, int] +) -> pd.DataFrame: """ Assign subnodes to the CHP plants based on their location. Parameters @@ -221,6 +224,8 @@ def assign_subnode(CHP_de: pd.DataFrame, subnodes: gpd.GeoDataFrame) -> pd.DataF DataFrame containing CHP plant data with latitude and longitude. subnodes : gpd.GeoDataFrame GeoDataFrame containing subnode data with geometries. + head : Union[bool, int] + If int, select the largest N subnodes. If True, use all subnodes. Returns ------- pd.DataFrame @@ -231,7 +236,20 @@ def assign_subnode(CHP_de: pd.DataFrame, subnodes: gpd.GeoDataFrame) -> pd.DataF CHP_de = gpd.GeoDataFrame( CHP_de, geometry=gpd.points_from_xy(CHP_de.lon, CHP_de.lat) ) - CHP_de.crs = subnodes.crs + # Set CRS to WGS84 + CHP_de.crs = 4326 + # Transform to the same CRS as the subnodes + CHP_de = CHP_de.to_crs(subnodes.crs) + + # Select largest subnodes + if isinstance(head, bool): + subnodes = subnodes.sort_values( + by="yearly_heat_demand_MWh", ascending=False + ).head(40) + else: + subnodes = subnodes.sort_values( + by="yearly_heat_demand_MWh", ascending=False + ).head(head) # Buffer the subnodes to avoid missing assignments subnodes["geometry"] = subnodes.buffer(np.sqrt(subnodes.area) * 0.1) @@ -289,8 +307,10 @@ def assign_subnode(CHP_de: pd.DataFrame, subnodes: gpd.GeoDataFrame) -> pd.DataF if snakemake.params.add_district_heating_subnodes: subnodes = gpd.read_file( snakemake.input.district_heating_subnodes, - columns=["Stadt", "geometry"], + columns=["Stadt", "yearly_heat_demand_MWh", "geometry"], ).set_index("Stadt") - CHP_de = assign_subnode(CHP_de, subnodes) + CHP_de = assign_subnode( + CHP_de, subnodes, head=snakemake.params.add_district_heating_subnodes + ) CHP_de.to_csv(snakemake.output.german_chp, index=False) From 3c56fb6188ec4b92e18d24ecbcb88fdb5a6c5506 Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 24 Mar 2025 14:59:17 +0100 Subject: [PATCH 614/669] adjust path in snakefile to networks subdirectory --- rules/solve_myopic.smk | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/rules/solve_myopic.smk b/rules/solve_myopic.smk index 93679e8f4..f761e7623 100644 --- a/rules/solve_myopic.smk +++ b/rules/solve_myopic.smk @@ -19,7 +19,7 @@ rule add_existing_baseyear: "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ) if config["sector"]["district_heating"].get("add_subnodes", True) else resources( - "base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" + "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ), powerplants=resources("powerplants_s_{clusters}.csv"), busmap_s=resources("busmap_base_s.csv"), @@ -94,10 +94,10 @@ rule add_brownfield: simplify_busmap=resources("busmap_base_s.csv"), cluster_busmap=resources("busmap_base_s_{clusters}.csv"), network=resources( - "prenetworks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" + "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ) if config["sector"]["district_heating"].get("add_subnodes", True) else resources( - "base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" + "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ), network_p=solved_previous_horizon, #solved network at previous time step costs=resources("costs_{planning_horizons}.csv"), From 72e7c5d1062243bbffb067202bdf9be80e9ad0c9 Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 24 Mar 2025 15:04:02 +0100 Subject: [PATCH 615/669] convert chps to eops if no urban central heat bus is available --- scripts/add_existing_baseyear.py | 42 ++++++-------------------------- 1 file changed, 8 insertions(+), 34 deletions(-) diff --git a/scripts/add_existing_baseyear.py b/scripts/add_existing_baseyear.py index f968dfe6c..c4ce46d3f 100644 --- a/scripts/add_existing_baseyear.py +++ b/scripts/add_existing_baseyear.py @@ -672,38 +672,6 @@ def add_chp_plants(n, grouping_years, costs, baseyear): ) # CHPs that are not from MaStR - - if options["central_heat_vent"]: - uch_buses = n.buses.index[n.buses.carrier == "urban central heat"] - missing_uch_buses = pd.Series( - { - bus + " urban central heat": bus - for bus in set(chp.bus.unique()) - if bus + " urban central heat" not in uch_buses - } - ) - if not missing_uch_buses.empty: - logger.info(f"add buses {missing_uch_buses}") - - n.add( - "Bus", - missing_uch_buses.index, - carrier="urban central heat", - location=missing_uch_buses, - ) - # Attach heat vent to these buses - n.add( - "Generator", - missing_uch_buses.index, - suffix=" vent", - bus=missing_uch_buses.index, - carrier="urban central heat vent", - p_nom_extendable=True, - p_max_pu=0, - p_min_pu=-1, - unit="MWh_th", - ) - chp_nodal_p_nom = chp.pivot_table( index=["grouping_year", "Fueltype"], columns="bus", @@ -728,6 +696,12 @@ def add_chp_plants(n, grouping_years, costs, baseyear): n.links.loc[bus + suffix, "p_nom"] = p_nom.loc[bus] continue + # CHPs are represented as EOP if no urban central heat bus is available + if f"{bus} urban central heat" in n.buses.index: + bus2 = bus + " urban central heat" + else: + bus2 = "" + if generator != "urban central solid biomass CHP": # lignite CHPs are not in DEA database - use coal CHP parameters key = keys[generator] @@ -741,7 +715,7 @@ def add_chp_plants(n, grouping_years, costs, baseyear): suffix=f" urban central {generator} CHP-{grouping_year}", bus0=bus0, bus1=" ".join(bus.split()[:2]), - bus2=bus + " urban central heat", + bus2=bus2, bus3="co2 atmosphere", carrier=f"urban central {generator} CHP", p_nom=p_nom[bus] / costs.at[key, "efficiency"], @@ -764,7 +738,7 @@ def add_chp_plants(n, grouping_years, costs, baseyear): suffix=f" urban {key}-{grouping_year}", bus0=spatial.biomass.df.loc[" ".join(bus.split()[:2])]["nodes"], bus1=" ".join(bus.split()[:2]), - bus2=bus + " urban central heat", + bus2=bus2, carrier=generator, p_nom=p_nom[bus] / costs.at[key, "efficiency"], capital_cost=costs.at[key, "capital_cost"] From eb33bfa431710c5cf1bf9e940068f71e874e782f Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 24 Mar 2025 15:07:41 +0100 Subject: [PATCH 616/669] reference cities as bus locations --- scripts/pypsa-de/add_district_heating_subnodes.py | 11 +++++++++-- 1 file changed, 9 insertions(+), 2 deletions(-) diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index f1d94724c..ab622718a 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -66,12 +66,19 @@ def add_subnodes( # Add subnodes to network for _, subnode in subnodes_head.iterrows(): name = f'{subnode["cluster"]} {subnode["Stadt"]} urban central' + location = f"{subnode['cluster']} {subnode['Stadt']}" # Add buses buses = ( n.buses.filter(like=f"{subnode['cluster']} urban central", axis=0) .reset_index() - .replace({f"{subnode['cluster']} urban central": name}, regex=True) + .replace( + { + f"{subnode['cluster']} urban central": name, + f"{subnode['cluster']}$": location, + }, + regex=True, + ) .set_index("Bus") ) n.add("Bus", buses.index, **buses) @@ -135,7 +142,7 @@ def add_subnodes( bus=f"{name} heat", p_set=lti_load, carrier="low-temperature heat for industry", - location=f"{subnode['cluster']} {subnode['Stadt']}", + location=location, ) # Adjust loads of cluster buses From 8c40e95402d5111dc4b11c060638a66e779c8e30 Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 24 Mar 2025 15:08:19 +0100 Subject: [PATCH 617/669] adjust docstring --- scripts/pypsa-de/prepare_district_heating_subnodes.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/pypsa-de/prepare_district_heating_subnodes.py b/scripts/pypsa-de/prepare_district_heating_subnodes.py index 6db5f2e08..faff93486 100644 --- a/scripts/pypsa-de/prepare_district_heating_subnodes.py +++ b/scripts/pypsa-de/prepare_district_heating_subnodes.py @@ -213,7 +213,7 @@ def prepare_subnodes( heat_techs: gpd.GeoDataFrame, ) -> gpd.GeoDataFrame: """ - Prepare subnodes by filtering district heating systems data for largest systems and assigning the corresponding LAU and onshore region shapes. + Prepare subnodes by assigning the corresponding LAU and onshore region shapes. Parameters ---------- subnodes : pd.DataFrame From 3c85e7f9bd16f6940e0041ee5daab39af6be46d9 Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 24 Mar 2025 15:23:37 +0100 Subject: [PATCH 618/669] adjust query of chp input path to removal of wildcards --- scripts/add_existing_baseyear.py | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/scripts/add_existing_baseyear.py b/scripts/add_existing_baseyear.py index c4ce46d3f..8fc0f496f 100644 --- a/scripts/add_existing_baseyear.py +++ b/scripts/add_existing_baseyear.py @@ -497,9 +497,7 @@ def add_chp_plants(n, grouping_years, costs, baseyear): ppl = pd.read_csv(snakemake.input.powerplants, index_col=0) if snakemake.input.get("custom_powerplants"): - if snakemake.input.custom_powerplants.endswith( - f"german_chp_base_s_{snakemake.wildcards.clusters}_{snakemake.wildcards.opts}_{snakemake.wildcards.sector_opts}_{snakemake.wildcards.planning_horizons}.csv" - ): + if snakemake.input.custom_powerplants.endswith("german_chp_{clusters}.csv"): logger.info("Supersedeing default German CHPs with custom_powerplants.") ppl = ppl.query("~(Set == 'CHP' and Country == 'DE')") ppl = add_custom_powerplants(ppl, snakemake.input.custom_powerplants, True) From 594ee66f987e3b8132492da049dd61265b2e2082 Mon Sep 17 00:00:00 2001 From: toniseibold Date: Wed, 19 Mar 2025 15:59:32 +0100 Subject: [PATCH 619/669] updating mean cost data --- ariadne-data/costs/mean/costs_2020.csv | 745 ++++++++++++------------- ariadne-data/costs/mean/costs_2025.csv | 745 ++++++++++++------------- ariadne-data/costs/mean/costs_2030.csv | 745 ++++++++++++------------- ariadne-data/costs/mean/costs_2035.csv | 745 ++++++++++++------------- ariadne-data/costs/mean/costs_2040.csv | 745 ++++++++++++------------- ariadne-data/costs/mean/costs_2045.csv | 745 ++++++++++++------------- ariadne-data/costs/mean/costs_2050.csv | 745 ++++++++++++------------- 7 files changed, 2590 insertions(+), 2625 deletions(-) diff --git a/ariadne-data/costs/mean/costs_2020.csv b/ariadne-data/costs/mean/costs_2020.csv index 5bb342164..b922efb51 100644 --- a/ariadne-data/costs/mean/costs_2020.csv +++ b/ariadne-data/costs/mean/costs_2020.csv @@ -48,11 +48,11 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,FOM,1.608,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 Biomass gasification,efficiency,0.35,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 @@ -64,19 +64,19 @@ Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,2.4,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,3638.1722,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,931.235,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3295,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.6562,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,931.235,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 @@ -249,8 +249,8 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, @@ -339,12 +339,12 @@ HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.101 HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1785.0713,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,investment,1785.0713,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, @@ -503,15 +503,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,344828.4062,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,480.3903,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,efficiency,0.63,p.u.,ICCT IRA e-fuels assumptions ,, -PEM electrolyzer,investment,1220.1113,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, +OCGT,FOM,1.7772,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,480.3903,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -603,215 +599,215 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Zn-Br-Nonflow-store,investment,276873.6097,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,1003392.2397,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +air separation unit,investment,1003392.2397,EUR/t_N2/h,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 -battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,285.7198,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,245.5074,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biochar pyrolysis,FOM,3.4615,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,167272.82,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 -biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,285.7198,EUR/kW,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,245.5074,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.4615,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,167272.82,EUR/kW_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,96.2077,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,62.1519,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas manure,fuel,19.7575,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.2361,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,926.3933,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,722.4205,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.2291,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3578.1349,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.2361,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,926.3933,EUR/kW_th - heat output,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,722.4205,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 -central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,3.0688,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,2010.6211,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central excess-heat-sourced heat pump,FOM,0.3003,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 -central excess-heat-sourced heat pump,VOM,1.7884,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 -central excess-heat-sourced heat pump,efficiency,5.1,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 -central excess-heat-sourced heat pump,investment,704.7435,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 -central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 -central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.1,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0688,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,2010.6211,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3003,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,1.7884,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.1,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,704.7435,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 +central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.6562,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,624.3508,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.6562,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,624.3508,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.164,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central geothermal heat source,FOM,1.4715,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal heat source,VOM,6.0281,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal heat source,investment,1625.2908,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal heat source,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central geothermal-sourced heat pump,FOM,3.3935,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal-sourced heat pump,VOM,6.0281,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal-sourced heat pump,investment,704.7435,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.0392,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,596.837,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1375.6881,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,0.9524,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,74.0755,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.6562,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,624.3508,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.164,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,63.4933,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4715,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.0281,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1625.2908,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.3935,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.0281,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,704.7435,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.0392,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,596.837,EUR/kW_th excluding drive energy,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1375.6881,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,0.9524,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,74.0755,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP CC,investment,5767.0987,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water pit storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 -central water pit storage,investment,0.6133,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water pit storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 -central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 -central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 -central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 -central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 -central water-sourced heat pump,VOM,1.8942,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 -central water-sourced heat pump,efficiency,3.78,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 -central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 -central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8694,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3740.4387,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.5176,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.6133,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.8942,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.78,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -835,23 +831,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,994.7283,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,994.7283,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,330.2494,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,206.4059,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,330.2494,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,206.4059,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1587.3324,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1587.3324,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -865,48 +861,47 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,VOM,0.7408,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 +decentral water tank storage,VOM,0.7408,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 -decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 -decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, -direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2845,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3276,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2845,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2845,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3276,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3276,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -922,11 +917,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8711,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,80.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8711,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,80.56,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, @@ -942,35 +937,35 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation,, electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,4.4117,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 +electrobiofuels,VOM,5.153,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.0308,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.5785,per unit,Stoichiometric calculation,, -electrobiofuels,investment,1028354.9161,EUR/kW_th,combination of BtL and electrofuels,,2022.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation,, +electrobiofuels,investment,559887.2932,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,2000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 -electrolysis small,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 -electrolysis small,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 -electrolysis small,investment,1900.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 -electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1375.6881,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.5773,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.2762,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,1900.0,EUR/kW_e,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1375.6881,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 fuelwood,fuel,15.9997,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.1077,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,54.9273,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.1077,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,54.9273,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 @@ -985,47 +980,47 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,398.9496,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,342.3682,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,398.9496,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,342.3682,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., -hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, -hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,60.3186,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,3.1747,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,1052.7581,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,877.2984,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,60.3186,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,3.1747,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,1052.7581,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2828,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,877.2984,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -iron-air battery,FOM,1.0219,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,investment,23.45,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery charge,efficiency,0.7,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery discharge,efficiency,0.59,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,FOM,1.0219,%/year,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,investment,25.1342,EUR/kWh,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,lifetime,17.5,years,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery charge,efficiency,0.7,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery discharge,efficiency,0.59,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -1064,21 +1059,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,819108.478,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,10630.1681,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,10630.1681,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,2.5093,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1992.6105,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 -offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1992.6105,"EUR/kW_e, 2020","Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 +offwind,lifetime,27.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -1092,16 +1087,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,FOM,2.5656,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.5873,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1183.9119,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2514,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.5873,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1183.9119,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,27.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 @@ -1125,50 +1120,50 @@ solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 solar-rooftop,investment,1057.1237,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,872.3118,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,1241.9355,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,562.5,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,650.3522,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,872.3118,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1241.9355,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,562.5,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,35.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,650.3522,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.7985,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,622.5091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.7985,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,622.5091,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.7985,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,622.5091,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,4237.1194,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.8648,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,9077.1074,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 -water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 diff --git a/ariadne-data/costs/mean/costs_2025.csv b/ariadne-data/costs/mean/costs_2025.csv index 65199f511..823bcc6ed 100644 --- a/ariadne-data/costs/mean/costs_2025.csv +++ b/ariadne-data/costs/mean/costs_2025.csv @@ -48,11 +48,11 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 Biomass gasification,efficiency,0.3792,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 @@ -64,19 +64,19 @@ Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,2.5263,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,3378.3027,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,904.7795,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3392,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.5504,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,904.7795,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 @@ -249,8 +249,8 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, @@ -339,12 +339,12 @@ HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.101 HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1622.5424,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,investment,1622.5424,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, @@ -503,15 +503,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,306333.1401,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,470.4853,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,efficiency,0.655,p.u.,ICCT IRA e-fuels assumptions ,, -PEM electrolyzer,investment,1108.4235,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, +OCGT,FOM,1.7784,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.405,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,470.4853,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -603,215 +599,215 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Zn-Br-Nonflow-store,investment,258047.096,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,912034.4091,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +air separation unit,investment,912034.4091,EUR/t_N2/h,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 -battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,227.5176,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,197.8874,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biochar pyrolysis,FOM,3.4615,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,167272.82,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 -biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,227.5176,EUR/kW,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,197.8874,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,22.5,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.4615,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,167272.82,EUR/kW_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,116.9293,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,72.2943,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas manure,fuel,19.8126,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.5909,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,903.7477,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,704.761,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.2255,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3487.6605,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.5909,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,903.7477,EUR/kW_th - heat output,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,704.761,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 -central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,3.0369,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1989.708,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central excess-heat-sourced heat pump,FOM,0.3003,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 -central excess-heat-sourced heat pump,VOM,1.7884,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 -central excess-heat-sourced heat pump,efficiency,5.2,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 -central excess-heat-sourced heat pump,investment,704.7435,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 -central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 -central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.15,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,1006.7765,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.0369,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1989.708,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3003,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,1.7884,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.2,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,704.7435,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 +central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.5504,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,608.4774,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,608.4774,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.5504,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,608.4774,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.1111,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,58.2022,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central geothermal heat source,FOM,1.4691,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal heat source,VOM,6.0453,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal heat source,investment,1577.4881,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal heat source,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central geothermal-sourced heat pump,FOM,3.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal-sourced heat pump,VOM,6.0453,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal-sourced heat pump,investment,704.7435,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.183,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,566.9951,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1269.866,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0053,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,68.7844,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.5504,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,608.4774,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.1111,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,58.2022,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4691,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.0453,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1577.4881,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.2884,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.0453,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,704.7435,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.183,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,566.9951,EUR/kW_th excluding drive energy,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1269.866,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0053,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,68.7844,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP CC,investment,5617.7823,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water pit storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 -central water pit storage,investment,0.5947,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water pit storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 -central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 -central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 -central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 -central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 -central water-sourced heat pump,VOM,1.7884,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 -central water-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 -central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 -central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8603,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3642.4702,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.5338,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.5947,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,22.5,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.7884,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -835,23 +831,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,947.1084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,947.1084,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,322.1765,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,201.3603,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,322.1765,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,201.3603,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1534.4214,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1534.4214,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -865,48 +861,47 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,VOM,0.8995,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 +decentral water tank storage,VOM,0.8995,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 -decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 -decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, -direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3301,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3301,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3301,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -922,11 +917,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8761,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8761,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,75.525,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, @@ -942,35 +937,35 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation,, electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,4.011,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 +electrobiofuels,VOM,4.6849,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.047,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.5839,per unit,Stoichiometric calculation,, -electrobiofuels,investment,1012250.914,EUR/kW_th,combination of BtL and electrofuels,,2022.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.5874,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation,, +electrobiofuels,investment,512440.2631,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.5874,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1800.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 -electrolysis small,efficiency,0.5874,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 -electrolysis small,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 -electrolysis small,investment,1400.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 -electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1269.866,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.5874,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.264,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,1400.0,EUR/kW_e,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1269.866,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 fuelwood,fuel,15.261,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.0574,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,50.35,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 @@ -985,47 +980,47 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,321.2749,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,280.1877,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,321.2749,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,280.1877,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., -hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, -hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,53.9217,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.6456,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,996.93,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,830.775,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,53.9217,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.6456,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,996.93,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2526,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,830.775,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -iron-air battery,FOM,1.0219,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,investment,23.45,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery charge,efficiency,0.7,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery discharge,efficiency,0.59,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,FOM,1.0219,%/year,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,investment,25.1342,EUR/kWh,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,lifetime,17.5,years,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery charge,efficiency,0.7,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery discharge,efficiency,0.59,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -1064,21 +1059,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,761417.4621,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,9224.3988,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,9224.3988,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,2.3741,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1769.1171,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1769.1171,"EUR/kW_e, 2020","Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -1092,16 +1087,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,FOM,2.5143,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.508,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1139.8826,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2347,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.508,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1139.8826,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,28.5,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 @@ -1125,50 +1120,50 @@ solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 solar-rooftop,investment,880.0251,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,719.0594,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,1040.9908,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,473.1156,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,552.4113,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,719.0594,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,1040.9908,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,473.1156,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,37.5,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,552.4113,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,608.7773,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8216,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,608.7773,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8216,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,608.7773,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3972.2994,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.4644,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8829.8509,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 -water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 diff --git a/ariadne-data/costs/mean/costs_2030.csv b/ariadne-data/costs/mean/costs_2030.csv index c95356197..48f9c0de9 100644 --- a/ariadne-data/costs/mean/costs_2030.csv +++ b/ariadne-data/costs/mean/costs_2030.csv @@ -48,11 +48,11 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 Biomass gasification,efficiency,0.4083,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 @@ -64,19 +64,19 @@ Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,2.6667,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,3118.4333,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,878.324,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3494,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.4445,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,878.324,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 @@ -249,8 +249,8 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, @@ -339,12 +339,12 @@ HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.101 HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1460.0135,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,investment,1460.0135,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, @@ -503,15 +503,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,460.5804,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,efficiency,0.68,p.u.,ICCT IRA e-fuels assumptions ,, -PEM electrolyzer,investment,996.7357,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, +OCGT,FOM,1.7795,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,460.5804,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -603,215 +599,215 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,820676.5784,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +air separation unit,investment,820676.5784,EUR/t_N2/h,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 -battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,169.3155,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,150.2675,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biochar pyrolysis,FOM,3.4167,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,154405.68,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 -biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,169.3155,EUR/kW,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,150.2675,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.4167,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,154405.68,EUR/kW_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,137.6508,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,82.4367,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas manure,fuel,19.8676,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,2.9457,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,881.102,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,687.1015,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3397.1862,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,2.9457,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,881.102,EUR/kW_th - heat output,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,687.1015,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.6561,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,3.005,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1968.7948,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 -central excess-heat-sourced heat pump,VOM,2.127,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 -central excess-heat-sourced heat pump,efficiency,5.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 -central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 -central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 -central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.6561,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.2,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,3.005,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1968.7948,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,2.127,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.3,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 +central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.4445,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,592.6041,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,592.6041,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.4445,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,592.6041,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central geothermal heat source,FOM,1.4735,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal heat source,VOM,6.4843,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal heat source,investment,1529.6854,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central geothermal-sourced heat pump,FOM,3.7314,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal-sourced heat pump,VOM,6.4843,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.3268,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,537.1533,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1164.0438,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.4445,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,592.6041,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4735,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.4843,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1529.6854,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.7314,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.4843,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.3268,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,537.1533,EUR/kW_th excluding drive energy,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1164.0438,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP CC,investment,5207.5282,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water pit storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 -central water pit storage,investment,0.5761,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water pit storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 -central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 -central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 -central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 -central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 -central water-sourced heat pump,VOM,1.6826,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 -central water-sourced heat pump,efficiency,3.82,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 -central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 -central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8512,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3544.5017,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.551,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.5761,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.6826,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.82,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -835,23 +831,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,899.4884,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,899.4884,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,314.1035,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,196.3147,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,314.1035,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,196.3147,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1481.5103,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1481.5103,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -865,48 +861,47 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,VOM,1.0582,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 +decentral water tank storage,VOM,1.0582,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 -decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 -decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, -direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2794,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2794,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3326,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2794,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2794,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3326,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3326,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -922,11 +917,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8811,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8811,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, @@ -942,35 +937,35 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation,, electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,3.6212,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 +electrobiofuels,VOM,4.2296,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.0637,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.5894,per unit,Stoichiometric calculation,, -electrobiofuels,investment,996146.9119,EUR/kW_th,combination of BtL and electrofuels,,2022.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6217,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation,, +electrobiofuels,investment,466206.9921,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6217,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1500.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 -electrolysis small,efficiency,0.6217,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 -electrolysis small,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 -electrolysis small,investment,875.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 -electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1164.0438,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6217,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.2228,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,875.0,EUR/kW_e,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1164.0438,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 fuelwood,fuel,14.5224,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 @@ -985,47 +980,47 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,241.3377,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,214.7158,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,241.3377,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,214.7158,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., -hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, -hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,47.5247,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,2.1164,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,941.1019,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,784.2516,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,47.5247,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,2.1164,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,941.1019,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2224,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,784.2516,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -iron-air battery,FOM,1.0,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,investment,15.61,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery charge,efficiency,0.71,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery discharge,efficiency,0.6,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,FOM,1.0,%/year,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,investment,16.7282,EUR/kWh,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,lifetime,17.5,years,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery charge,efficiency,0.71,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery discharge,efficiency,0.6,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -1064,21 +1059,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,703726.4462,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,7841.7127,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,7841.7127,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,2.3185,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1682.1226,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1682.1226,"EUR/kW_e, 2020","Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -1092,16 +1087,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,FOM,2.463,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,362.97,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.4286,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1095.8533,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +oil,investment,362.97,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2167,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.4286,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1095.8533,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 @@ -1125,50 +1120,50 @@ solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 solar-rooftop,investment,702.9265,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,565.8069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,840.0461,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,383.7312,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,454.4703,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,565.8069,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,840.0461,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,383.7312,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,454.4703,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,595.0455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8448,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,595.0455,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8448,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,595.0455,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3707.4795,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP,FOM,2.355,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,28.064,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8582.5944,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 -water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 diff --git a/ariadne-data/costs/mean/costs_2035.csv b/ariadne-data/costs/mean/costs_2035.csv index 8b8185c6b..5344e3952 100644 --- a/ariadne-data/costs/mean/costs_2035.csv +++ b/ariadne-data/costs/mean/costs_2035.csv @@ -48,11 +48,11 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 Biomass gasification,efficiency,0.4375,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 @@ -64,19 +64,19 @@ Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,2.7484,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,2858.5639,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,870.3873,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3252,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.3916,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.585,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,870.3873,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 @@ -249,8 +249,8 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, @@ -339,12 +339,12 @@ HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.101 HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1327.0808,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,investment,1327.0808,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, @@ -503,15 +503,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,454.3898,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,efficiency,0.695,p.u.,ICCT IRA e-fuels assumptions ,, -PEM electrolyzer,investment,905.5166,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, +OCGT,FOM,1.785,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.415,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,454.3898,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -603,215 +599,215 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,745954.8206,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +air separation unit,investment,745954.8206,EUR/t_N2/h,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 -battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,137.5688,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,124.8702,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biochar pyrolysis,FOM,3.3913,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,147972.11,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 -biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,137.5688,EUR/kW,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,124.8702,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,27.5,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.3913,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,147972.11,EUR/kW_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,137.5968,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,84.2795,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas manure,fuel,19.8729,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.0344,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,860.0901,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,670.7159,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3318.3391,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.0344,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,860.0901,EUR/kW_th - heat output,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,670.7159,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.4868,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.25,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9741,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1948.5297,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 -central excess-heat-sourced heat pump,VOM,2.1694,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 -central excess-heat-sourced heat pump,efficiency,5.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 -central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 -central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 -central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.4868,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.25,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9741,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1948.5297,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,2.1694,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.35,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 +central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.3916,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,582.0219,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.3916,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,582.0219,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central geothermal heat source,FOM,1.4723,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal heat source,VOM,6.5503,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal heat source,investment,1505.7841,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central geothermal-sourced heat pump,FOM,3.6701,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal-sourced heat pump,VOM,6.5503,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.373,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,523.7245,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1084.6772,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.3916,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,582.0219,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4723,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.5503,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1505.7841,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.6701,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.5503,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.373,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,523.7245,EUR/kW_th excluding drive energy,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1084.6772,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3493.3,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3493.3,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP CC,investment,5061.4763,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3493.3,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water pit storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 -central water pit storage,investment,0.5556,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water pit storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 -central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 -central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 -central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 -central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 -central water-sourced heat pump,VOM,1.5768,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 -central water-sourced heat pump,efficiency,3.84,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 -central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 -central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8732,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3493.3,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.5714,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.5556,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.5768,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.84,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -835,23 +831,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,875.6784,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,875.6784,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,306.613,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,191.6331,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,306.613,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,191.6331,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1428.5992,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1428.5992,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -865,48 +861,47 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,VOM,1.164,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 +decentral water tank storage,VOM,1.164,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 -decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 -decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, -direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.2807,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.2807,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3339,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.2807,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.2807,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3339,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3339,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -922,11 +917,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.8333,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.8333,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, @@ -942,35 +937,35 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation,, electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,3.2735,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 +electrobiofuels,VOM,3.8235,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.081,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.595,per unit,Stoichiometric calculation,, -electrobiofuels,investment,980042.9098,EUR/kW_th,combination of BtL and electrofuels,,2022.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6374,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation,, +electrobiofuels,investment,428759.8057,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6374,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1350.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 -electrolysis small,efficiency,0.6374,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 -electrolysis small,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 -electrolysis small,investment,775.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 -electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1084.6772,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6374,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.2039,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,775.0,EUR/kW_e,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1084.6772,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 fuelwood,fuel,13.8577,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 @@ -985,47 +980,47 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,197.4367,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,179.5623,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,197.4367,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,179.5623,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., -hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, -hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,38.075,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.8519,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,911.617,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,759.6808,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,38.075,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.8519,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,911.617,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2325,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,759.6808,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -iron-air battery,FOM,1.1063,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,investment,11.79,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery charge,efficiency,0.73,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery discharge,efficiency,0.62,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,FOM,1.1063,%/year,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,investment,12.6382,EUR/kWh,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,lifetime,17.5,years,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery charge,efficiency,0.73,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery discharge,efficiency,0.62,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -1064,21 +1059,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,657729.5552,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,7406.062,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,7406.062,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,2.25,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1622.2443,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1622.2443,"EUR/kW_e, 2020","Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -1092,16 +1087,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,FOM,2.4498,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,361.1181,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.3715,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1065.167,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +oil,investment,361.1181,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.2017,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.3715,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1065.167,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 @@ -1125,50 +1120,50 @@ solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 solar-rooftop,investment,641.373,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,513.1614,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,769.5846,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,352.2779,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,419.3908,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,513.1614,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,769.5846,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.498,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,352.2779,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,419.3908,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,581.3136,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8564,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,581.3136,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8564,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,581.3136,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3442.6595,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,8307.058,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,8307.058,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8307.058,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.8042,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8307.058,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 -water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 diff --git a/ariadne-data/costs/mean/costs_2040.csv b/ariadne-data/costs/mean/costs_2040.csv index 5e3b235cc..82d3f0e69 100644 --- a/ariadne-data/costs/mean/costs_2040.csv +++ b/ariadne-data/costs/mean/costs_2040.csv @@ -48,11 +48,11 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 Biomass gasification,efficiency,0.4667,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 @@ -64,19 +64,19 @@ Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,2.8364,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,2598.6944,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,862.4506,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.3006,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.3387,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,862.4506,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 @@ -249,8 +249,8 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, @@ -339,12 +339,12 @@ HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.101 HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1194.148,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,investment,1194.148,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, @@ -503,15 +503,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,448.1992,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,efficiency,0.71,p.u.,ICCT IRA e-fuels assumptions ,, -PEM electrolyzer,investment,814.2975,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, +OCGT,FOM,1.7906,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,448.1992,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -603,215 +599,215 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,671233.0629,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +air separation unit,investment,671233.0629,EUR/t_N2/h,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 -battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,105.8222,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,99.4728,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biochar pyrolysis,FOM,3.3636,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,141538.54,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 -biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +battery inverter,FOM,0.54,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,105.8222,EUR/kW,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,99.4728,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.3636,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,141538.54,EUR/kW_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,137.5427,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,86.1222,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,922.249,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas manure,fuel,19.8782,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.1231,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,839.0781,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,654.3303,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3239.492,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.1231,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,839.0781,EUR/kW_th - heat output,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,654.3303,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9431,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1928.2647,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 -central excess-heat-sourced heat pump,VOM,2.2117,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 -central excess-heat-sourced heat pump,efficiency,5.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 -central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 -central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 -central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.3175,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.3,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9431,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1928.2647,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,2.2117,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.4,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 +central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.3387,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,571.4397,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,571.4397,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.3387,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,571.4397,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central geothermal heat source,FOM,1.4711,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal heat source,VOM,6.6163,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal heat source,investment,1481.8828,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central geothermal-sourced heat pump,FOM,3.6088,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal-sourced heat pump,VOM,6.6163,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.4192,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,510.2956,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,1005.3105,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.3387,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,571.4397,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4711,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.6163,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1481.8828,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.6088,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.6163,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.4192,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,510.2956,EUR/kW_th excluding drive energy,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,1005.3105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP CC,investment,4917.5537,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water pit storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 -central water pit storage,investment,0.535,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water pit storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 -central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 -central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 -central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 -central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 -central water-sourced heat pump,VOM,1.4709,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 -central water-sourced heat pump,efficiency,3.86,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 -central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 -central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.8953,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3442.0984,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.5934,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.535,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.4709,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.86,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -835,23 +831,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,851.8684,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,851.8684,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,299.1224,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,186.9515,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,299.1224,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,186.9515,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1375.6881,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1375.6881,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -865,48 +861,47 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,VOM,1.2699,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 +decentral water tank storage,VOM,1.2699,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 -decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 -decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, -direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -922,11 +917,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, @@ -942,35 +937,35 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation,, electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,2.9357,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 +electrobiofuels,VOM,3.429,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.0989,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6007,per unit,Stoichiometric calculation,, -electrobiofuels,investment,963938.9077,EUR/kW_th,combination of BtL and electrofuels,,2022.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6532,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation,, +electrobiofuels,investment,392280.346,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6532,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1200.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 -electrolysis small,efficiency,0.6532,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 -electrolysis small,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 -electrolysis small,investment,675.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 -electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,1005.3105,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6532,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.1849,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,675.0,EUR/kW_e,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,1005.3105,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 fuelwood,fuel,13.193,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 @@ -985,47 +980,47 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,152.982,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,144.093,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,152.982,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,144.093,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., -hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, -hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,28.6253,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.5873,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,882.132,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,735.11,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,28.6253,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.5873,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,882.132,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.2425,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,735.11,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -iron-air battery,FOM,1.1808,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,investment,10.4,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery charge,efficiency,0.74,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery discharge,efficiency,0.63,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,FOM,1.1808,%/year,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,investment,11.1494,EUR/kWh,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,lifetime,17.5,years,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery charge,efficiency,0.74,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery discharge,efficiency,0.63,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -1064,21 +1059,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,611732.6641,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,6970.4113,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +micro CHP,FOM,6.25,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6970.4113,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,2.1762,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1562.3661,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1562.3661,"EUR/kW_e, 2020","Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -1092,16 +1087,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,FOM,2.4365,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,359.2662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.3143,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1034.4807,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +oil,investment,359.2662,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1858,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.3143,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1034.4807,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 @@ -1125,50 +1120,50 @@ solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 solar-rooftop,investment,579.8196,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,460.516,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,699.1231,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,320.8246,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,384.3112,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,460.516,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,699.1231,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,320.8246,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,384.3112,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,567.5818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,567.5818,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,567.5818,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,3177.8395,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.5443,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,8031.5216,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 -water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 diff --git a/ariadne-data/costs/mean/costs_2045.csv b/ariadne-data/costs/mean/costs_2045.csv index 1334ed97f..b47f083f7 100644 --- a/ariadne-data/costs/mean/costs_2045.csv +++ b/ariadne-data/costs/mean/costs_2045.csv @@ -48,11 +48,11 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 Biomass gasification,efficiency,0.4958,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 @@ -64,19 +64,19 @@ Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,2.9164,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,2338.825,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,854.514,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.2755,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.2858,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.595,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,854.514,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 @@ -249,8 +249,8 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, @@ -339,12 +339,12 @@ HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.101 HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,1054.8211,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,investment,1054.8211,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, @@ -503,15 +503,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,442.0086,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,efficiency,0.72,p.u.,ICCT IRA e-fuels assumptions ,, -PEM electrolyzer,investment,739.9873,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, +OCGT,FOM,1.7964,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.425,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,442.0086,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -603,215 +599,215 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,592917.0978,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +air separation unit,investment,592917.0978,EUR/t_N2/h,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 -battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,84.6577,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,89.4197,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biochar pyrolysis,FOM,3.381,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,135104.97,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 -biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +battery inverter,FOM,0.675,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,84.6577,EUR/kW,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,89.4197,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.381,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,135104.97,EUR/kW_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,134.6872,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,87.9862,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas manure,fuel,19.9144,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.2118,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,818.0661,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,637.9448,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3160.6449,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.2118,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,818.0661,EUR/kW_th - heat output,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,637.9448,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.5715,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.9122,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1907.9996,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 -central excess-heat-sourced heat pump,VOM,2.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 -central excess-heat-sourced heat pump,efficiency,5.45,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 -central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 -central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 -central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.5715,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.35,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.9122,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1907.9996,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,2.0,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.45,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 +central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.2858,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,560.8575,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,560.8575,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.2858,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,560.8575,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central geothermal heat source,FOM,1.4698,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal heat source,VOM,6.411,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal heat source,investment,1457.9814,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central geothermal-sourced heat pump,FOM,3.5475,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal-sourced heat pump,VOM,6.411,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.4654,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,496.8668,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,925.9439,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.2858,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,560.8575,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4698,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.411,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1457.9814,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.5475,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.411,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.4654,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,496.8668,EUR/kW_th excluding drive energy,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,925.9439,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP CC,investment,4836.5672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water pit storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 -central water pit storage,investment,0.5144,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water pit storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 -central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 -central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 -central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 -central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 -central water-sourced heat pump,VOM,1.4709,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 -central water-sourced heat pump,efficiency,3.86,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 -central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 -central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.9173,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3390.8967,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.6171,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.5144,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.4709,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.86,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -835,23 +831,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,828.0584,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,828.0584,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,291.6319,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,182.2699,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,291.6319,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,182.2699,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1322.777,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1322.777,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -865,48 +861,47 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,VOM,1.2699,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 +decentral water tank storage,VOM,1.2699,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 -decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 -decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, -direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -922,11 +917,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, @@ -942,35 +937,35 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation,, electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,2.5772,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 +electrobiofuels,VOM,3.0103,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.1173,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6065,per unit,Stoichiometric calculation,, -electrobiofuels,investment,947834.9056,EUR/kW_th,combination of BtL and electrofuels,,2022.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6763,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation,, +electrobiofuels,investment,356768.6132,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6763,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1100.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 -electrolysis small,efficiency,0.6763,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 -electrolysis small,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 -electrolysis small,investment,575.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 -electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,925.9439,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6763,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.1571,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,575.0,EUR/kW_e,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,925.9439,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 fuelwood,fuel,12.5949,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 @@ -985,47 +980,47 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,122.6452,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,129.8051,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,122.6452,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,129.8051,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., -hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, -hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,25.424,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.4286,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,864.006,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,720.005,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,25.424,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.4286,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,864.006,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1922,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,720.005,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -iron-air battery,FOM,1.1808,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,investment,10.4,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery charge,efficiency,0.74,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery discharge,efficiency,0.63,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,FOM,1.1808,%/year,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,investment,11.1494,EUR/kWh,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,lifetime,17.5,years,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery charge,efficiency,0.74,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery discharge,efficiency,0.63,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -1064,21 +1059,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,565735.7731,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,6534.7606,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6534.7606,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,2.1709,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1543.1486,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1543.1486,"EUR/kW_e, 2020","Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -1092,16 +1087,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,FOM,2.4231,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,357.4144,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1026.8091,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +oil,investment,357.4144,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1817,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1026.8091,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 @@ -1125,50 +1120,50 @@ solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 solar-rooftop,investment,552.3387,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,437.2089,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,667.4686,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,306.7008,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,368.412,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,437.2089,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,667.4686,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,306.7008,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,368.412,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,553.85,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,553.85,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,553.85,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,2913.0196,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.2845,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,7755.9852,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 -water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 diff --git a/ariadne-data/costs/mean/costs_2050.csv b/ariadne-data/costs/mean/costs_2050.csv index 46207edef..57d15a4d3 100644 --- a/ariadne-data/costs/mean/costs_2050.csv +++ b/ariadne-data/costs/mean/costs_2050.csv @@ -48,11 +48,11 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 -BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 +BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M",2020.0 +BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M",2020.0 BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 -BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 +BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 Biomass gasification,efficiency,0.525,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 @@ -64,19 +64,19 @@ Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 +BtL,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M",2020.0 +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M",2020.0 BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output",2020.0 BtL,investment,2078.9555,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment",2017.0 -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 -CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 -CCGT,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 -CCGT,investment,846.5773,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 +BtL,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime",2020.0 +CCGT,FOM,3.25,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M",2015.0 +CCGT,VOM,4.2329,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M",2015.0 +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient",2015.0 +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient",2015.0 +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average",2015.0 +CCGT,investment,846.5773,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment",2015.0 +CCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime",2015.0 CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,-,2020.0 CH4 (g) fill compressor station,investment,1654.96,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers.",2020.0 CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,-,2020.0 @@ -249,8 +249,8 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, @@ -339,12 +339,12 @@ HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.101 HVDC underground,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 HVDC underground,investment,1008.2934,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 (same as for HVDC submarine),2017.0 HVDC underground,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables. (same as for HVDC submarine)",2018.0 -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 -Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +Haber-Bosch,VOM,0.0225,EUR/MWh_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M,2015.0 Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3., Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed.", -Haber-Bosch,investment,915.4941,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +Haber-Bosch,investment,915.4941,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, @@ -503,15 +503,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Ni-Zn-store,investment,267837.874,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 -OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 -OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 -OCGT,investment,435.818,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 -PEM electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,efficiency,0.73,p.u.,ICCT IRA e-fuels assumptions ,, -PEM electrolyzer,investment,665.6771,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -PEM electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, +OCGT,FOM,1.8023,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M,2015.0 +OCGT,VOM,4.762,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M,2015.0 +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average",2015.0 +OCGT,investment,435.818,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment,2015.0 +OCGT,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime,2015.0 PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 PHS,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 @@ -603,215 +599,215 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}",2020.0 Zn-Br-Nonflow-store,investment,239220.5823,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}",2020.0 Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}",2020.0 -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M,2015.0 air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind .", -air separation unit,investment,514601.1327,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 +air separation unit,investment,514601.1327,EUR/t_N2/h,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 +air separation unit,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 allam,VOM,2.0,EUR/MWh,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,efficiency,0.6,p.u.,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,investment,1500.0,EUR/kW,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 allam,lifetime,30.0,years,Own assumption. TODO: Find better technology data and cost assumptions,,2020.0 -battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -battery inverter,investment,63.4933,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -battery storage,investment,79.3666,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 -biochar pyrolysis,FOM,3.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 -biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 -biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 -biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 -biochar pyrolysis,investment,128671.4,EUR/kW_biochar,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 -biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 -biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +battery inverter,investment,63.4933,EUR/kW,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +battery inverter,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +battery storage,investment,79.3666,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +battery storage,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +biochar pyrolysis,FOM,3.4,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Fixed O&M",2020.0 +biochar pyrolysis,VOM,823.497,EUR/MWh_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Variable O&M",2020.0 +biochar pyrolysis,efficiency-biochar,0.404,MWh_biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency biochar",2020.0 +biochar pyrolysis,efficiency-heat,0.4848,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: efficiency heat",2020.0 +biochar pyrolysis,investment,128671.4,EUR/kW_biochar,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Specific investment",2020.0 +biochar pyrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: Technical lifetime",2020.0 +biochar pyrolysis,yield-biochar,0.0582,ton biochar/MWh_feedstock,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","105 Slow pyrolysis, Straw: yield biochar",2020.0 biodiesel crops,fuel,131.8317,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIORPS1 (rape seed), ENS_BaU_GFTM",,2010.0 bioethanol crops,fuel,89.8502,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOCRP11 (Bioethanol barley, wheat, grain maize, oats, other cereals and rye), ENS_BaU_GFTM",,2010.0 biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, biogas,fuel,62.4351,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions,2015.0 -biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M",2020.0 biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output,, -biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 +biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment",2020.0 +biogas CC,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime",2020.0 biogas manure,fuel,19.9506,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOGAS1 (manure), ENS_BaU_GFTM",,2010.0 -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 -biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 -biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 -biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 -biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M,2020.0 +biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M,2020.0 +biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment,2020.0 +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime,2020.0 +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M ",2020.0 +biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M",2020.0 +biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)",2020.0 +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime",2020.0 biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,fuel,7.4076,EUR/MWhth,IEA2011b, from old pypsa cost assumptions,2015.0 biomass,investment,2337.6116,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 -biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass CHP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 -biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 -biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 -biomass EOP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 -biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 -biomass HOP,VOM,3.3005,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 -biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 -biomass HOP,investment,797.0541,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 -biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 -biomass boiler,investment,621.5592,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 +biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass CHP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass CHP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP,2020.0 +biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M",2015.0 +biomass EOP,VOM,2.222,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M ",2015.0 +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient",2015.0 +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient",2015.0 +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average",2015.0 +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average",2015.0 +biomass EOP,investment,3081.7978,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment ",2015.0 +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime",2015.0 +biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output",2015.0 +biomass HOP,VOM,3.3005,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output,2015.0 +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average",2015.0 +biomass HOP,investment,797.0541,EUR/kW_th - heat output,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment ,2015.0 +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime,2015.0 +biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M",2015.0 +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net",2015.0 +biomass boiler,investment,621.5592,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment",2015.0 +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime",2015.0 biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506,,2019.0 biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, -biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 +biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M,2020.0 +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M,2020.0 biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 -biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 -central air-sourced heat pump,VOM,2.8255,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 -central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 -central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 -central coal CHP,VOM,2.8813,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 -central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 -central coal CHP,investment,1887.7345,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 -central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 -central excess-heat-sourced heat pump,VOM,1.7884,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 -central excess-heat-sourced heat pump,efficiency,5.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 -central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 -central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 -central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output,",2020.0 +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output,",2020.0 +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output,",2020.0 +biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment,2020.0 +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime,2020.0 +cement capture,FOM,3.0,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +cement capture,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln,2020.0 +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M",2015.0 +central air-sourced heat pump,VOM,2.8255,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M",2015.0 +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency, net, name plate",2015.0 +central air-sourced heat pump,investment,906.0988,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment",2015.0 +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime",2015.0 +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M,2015.0 +central coal CHP,VOM,2.8813,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M,2015.0 +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient,2015.0 +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient,2015.0 +central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net",2015.0 +central coal CHP,investment,1887.7345,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment,2015.0 +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime,2015.0 +central excess-heat-sourced heat pump,FOM,0.3504,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Fixed O&M",2015.0 +central excess-heat-sourced heat pump,VOM,1.7884,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Variable O&M",2015.0 +central excess-heat-sourced heat pump,efficiency,5.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Total efficiency , net, annual average",2015.0 +central excess-heat-sourced heat pump,investment,604.0659,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Specific investment",2015.0 +central excess-heat-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, excess heat 10 MW: Technical lifetime",2015.0 +central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP,VOM,4.2329,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions,2015.0 -central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP,investment,550.2752,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP,investment,550.2752,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 -central gas CHP CC,VOM,4.2329,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 -central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 -central gas CHP CC,investment,550.2752,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 -central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 -central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 -central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 -central geothermal heat source,FOM,1.4684,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal heat source,VOM,6.2056,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal heat source,investment,1434.0801,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central geothermal-sourced heat pump,FOM,3.4861,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 -central geothermal-sourced heat pump,VOM,6.2056,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 -central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 -central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 -central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 -central ground-sourced heat pump,VOM,1.5116,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 -central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 -central ground-sourced heat pump,investment,483.438,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -central hydrogen CHP,investment,846.5773,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 -central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 -central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 -central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 +central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M",2015.0 +central gas CHP CC,VOM,4.2329,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M",2015.0 +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient",2015.0 +central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average",2015.0 +central gas CHP CC,investment,550.2752,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment",2015.0 +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime",2015.0 +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M,2015.0 +central gas boiler,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M,2015.0 +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average",2015.0 +central gas boiler,investment,52.9111,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment,2015.0 +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime,2015.0 +central geothermal heat source,FOM,1.4684,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal heat source,VOM,6.2056,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal heat source,investment,1434.0801,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal heat source,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central geothermal-sourced heat pump,FOM,3.4861,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Fixed O&M",2015.0 +central geothermal-sourced heat pump,VOM,6.2056,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Variable O&M",2015.0 +central geothermal-sourced heat pump,investment,604.0659,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Nominal investment",2015.0 +central geothermal-sourced heat pump,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","45.1.a Geothermal DH, 1200m, E: Technical lifetime",2015.0 +central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M",2015.0 +central ground-sourced heat pump,VOM,1.5116,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M",2015.0 +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average",2015.0 +central ground-sourced heat pump,investment,483.438,EUR/kW_th excluding drive energy,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment",2015.0 +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime",2015.0 +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +central hydrogen CHP,investment,846.5773,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M,2015.0 +central resistive heater,VOM,1.0582,EUR/MWh_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M,2015.0 +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average",2015.0 +central resistive heater,investment,63.4933,EUR/kW_th,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW,2015.0 +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime,2015.0 central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions,2015.0 central solar thermal,investment,148151.0278,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions,2015.0 -central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 central solid biomass CHP CC,investment,4755.697,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam,,2015.0 -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 -central solid biomass CHP powerboost CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 -central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 -central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 -central solid biomass CHP powerboost CC,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 -central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water pit storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 -central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 -central water pit storage,investment,0.4938,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 -central water pit storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 -central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 -central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 -central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 -central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 -central water tank storage,lifetime,40.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 -central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 -central water-sourced heat pump,VOM,1.4709,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 -central water-sourced heat pump,efficiency,3.86,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 -central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 -central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M",2015.0 +central solid biomass CHP powerboost CC,VOM,4.9394,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M ",2015.0 +central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient",2015.0 +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient",2015.0 +central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average",2015.0 +central solid biomass CHP powerboost CC,investment,3339.6951,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment ",2015.0 +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime",2015.0 +central water pit charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water pit discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water pit storage,FOM,0.6429,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M,2015.0 +central water pit storage,energy to power ratio,150.0,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Ratio between energy storage and input capacity,2015.0 +central water pit storage,investment,0.4938,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment,2015.0 +central water pit storage,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime,2015.0 +central water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +central water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +central water tank storage,FOM,0.2901,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Fixed O&M,2015.0 +central water tank storage,energy to power ratio,60.3448,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Ratio between energy storage and input capacity,2015.0 +central water tank storage,investment,3.1374,EUR/kWhCapacity,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Specific investment,2015.0 +central water tank storage,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",141 Large hot water tank: Technical lifetime,2015.0 +central water-sourced heat pump,FOM,0.5,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Fixed O&M",2015.0 +central water-sourced heat pump,VOM,1.4709,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Variable O&M",2015.0 +central water-sourced heat pump,efficiency,3.86,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Total efficiency , net, annual average",2015.0 +central water-sourced heat pump,investment,1058.2216,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Specific investment",2015.0 +central water-sourced heat pump,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","40 Comp. hp, seawater 20 MW: Technical lifetime",2015.0 clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,investment,69.1286,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",,2013.0 clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.",, @@ -835,23 +831,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions,2015.0 decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral CHP,investment,1481.5103,EUR/kWel,HP, from old pypsa cost assumptions,2015.0 decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 +decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M,2015.0 decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral air-sourced heat pump,investment,804.2484,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 -decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral air-sourced heat pump,investment,804.2484,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment,2015.0 +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime,2015.0 +decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M,2015.0 decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 -decentral gas boiler,investment,284.1413,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 -decentral gas boiler connection,investment,177.5883,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 -decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net",2015.0 +decentral gas boiler,investment,284.1413,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment,2015.0 +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime,2015.0 +decentral gas boiler connection,investment,177.5883,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment,2015.0 +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime,2015.0 +decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M,2015.0 decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 -decentral ground-sourced heat pump,investment,1269.866,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house",2015.0 +decentral ground-sourced heat pump,investment,1269.866,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment,2015.0 +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime,2015.0 decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions,2015.0 decentral oil boiler,investment,165.0975,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions,2015.0 @@ -865,48 +861,47 @@ decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions,2015. decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 decentral solar thermal,investment,285719.8393,EUR/1000m2,HP, from old pypsa cost assumptions,2015.0 decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions,2015.0 -decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 -decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 +decentral water tank charger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Charger efficiency,2015.0 +decentral water tank discharger,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Discharger efficiency,2015.0 decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions,2015.0 -decentral water tank storage,VOM,1.2699,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 +decentral water tank storage,VOM,1.2699,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Variable O&M,2015.0 decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions,2015.0 -decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 -decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 -decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 +decentral water tank storage,energy to power ratio,0.15,h,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Ratio between energy storage and input capacity,2015.0 +decentral water tank storage,investment,433.8709,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Specific investment,2015.0 +decentral water tank storage,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",142 Small scale hot water tank: Technical lifetime,2015.0 digestible biomass,fuel,17.0611,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040",,2010.0 digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, digestible biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 -direct air capture,FOM,1.3,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,electricity-input,0.24,MWh_el/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-input,1.17,MWh_th/t_CO2,ICCT IRA e-fuels assumptions ,,2020.0 -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,investment,11034260.0394,USD/t_CO2/h,ICCT IRA e-fuels assumptions ,,2022.0 -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 -direct air capture,years,30.0,years,ICCT IRA e-fuels assumptions ,, -direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 -direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 -direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 -direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 -direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 -direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 -direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output).",2020.0 +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019).",2020.0 +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct air capture,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture,2020.0 +direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas,VOM,0.282,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M,2019.0 +direct firing gas CC,VOM,0.282,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M,2019.0 +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average",2019.0 +direct firing gas CC,investment,15.105,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment,2019.0 +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime,2019.0 +direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels,VOM,0.3351,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 +direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M,2019.0 +direct firing solid fuels CC,VOM,0.3351,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M,2019.0 +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average",2019.0 +direct firing solid fuels CC,investment,221.54,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment,2019.0 +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime,2019.0 direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost.",2020.0 direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’.,2020.0 direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect).",2020.0 @@ -922,11 +917,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower.,2020.0 electric arc furnace,investment,1839600.0,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’.,2020.0 electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime.,2020.0 -electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 -electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 -electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 +electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M,2019.0 +electric boiler steam,VOM,0.7855,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M,2019.0 +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average",2019.0 +electric boiler steam,investment,70.49,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment,2019.0 +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime,2019.0 electric steam cracker,FOM,3.0,%/year,Guesstimate,,2015.0 electric steam cracker,VOM,190.4799,EUR/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",,2015.0 electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC, @@ -942,35 +937,35 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation,, electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,2.2297,EUR/MWh_th,combination of BtL and electrofuels,,2022.0 +electrobiofuels,VOM,2.6044,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.1364,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6125,per unit,Stoichiometric calculation,, -electrobiofuels,investment,931730.9035,EUR/kW_th,combination of BtL and electrofuels,,2022.0 -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 -electrolysis,efficiency,0.6994,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 -electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 +electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation,, +electrobiofuels,investment,322224.6071,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 +electrolysis,efficiency,0.6994,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 +electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 electrolysis,investment,1000.0,EUR/kW_e,private communications; IEA https://iea.blob.core.windows.net/assets/9e0c82d4-06d2-496b-9542-f184ba803645/TheRoleofE-fuelsinDecarbonisingTransport.pdf,,2020.0 -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 -electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 -electrolysis small,efficiency,0.6994,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 -electrolysis small,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 -electrolysis small,investment,475.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 -electrolysis small,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 -fuel cell,investment,846.5773,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 +electrolysis,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime,2020.0 +electrolysis small,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Fixed O&M ,2020.0 +electrolysis small,efficiency,0.6994,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Hydrogen Output,2020.0 +electrolysis small,efficiency-heat,0.1294,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: - hereof recoverable for district heating,2020.0 +electrolysis small,investment,475.0,EUR/kW_e,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Specific investment,2020.0 +electrolysis small,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 10 MW: Technical lifetime of plant,2020.0 +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M,2015.0 +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient,2015.0 +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average",2015.0 +fuel cell,investment,846.5773,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment,2015.0 +fuel cell,lifetime,10.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime,2015.0 fuelwood,fuel,11.9967,EUR/MWhth,"JRC ENSPRESO ca avg for MINBIOWOO (FuelwoodRW), ENS_BaU_GFTM",,2010.0 gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4,, gas,fuel,24.568,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 -gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 -gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M,2019.0 +gas boiler steam,VOM,1.007,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M,2019.0 +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average",2019.0 +gas boiler steam,investment,45.7727,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment,2019.0 +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime,2019.0 gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenance, salt cavern (units converted)",2015.0 gas storage,investment,0.0348,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)",2015.0 gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime",2015.0 @@ -985,47 +980,47 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions,2015.0 helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions,2015.0 helmeth,investment,2116.4433,EUR/kW,no source, from old pypsa cost assumptions,2015.0 helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions,2015.0 -home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 -home battery inverter,investment,92.5188,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 -home battery storage,investment,114.9165,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 +home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M,2015.0 +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC,2015.0 +home battery inverter,investment,92.5188,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment,2015.0 +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime,2015.0 +home battery storage,investment,114.9165,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment,2015.0 +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime,2015.0 hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2015.0 hydro,investment,2274.8177,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions,2010.0 hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions,2015.0 -hydrogen storage compressor,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg., -hydrogen storage compressor,investment,2.0291,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage compressor,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,FOM,4.0,%/year,ICCT IRA e-fuels assumptions ,-,2022.0 -hydrogen storage tank type 1,investment,15.0133,USD/kWh_H2,ICCT IRA e-fuels assumptions ,,2022.0 -hydrogen storage tank type 1,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,-, -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-, -hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 -hydrogen storage tank type 1 including compressor,investment,22.2227,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 -hydrogen storage underground,investment,1.2699,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 -industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 -industrial heat pump high temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 -industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 -industrial heat pump high temperature,investment,845.88,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 -industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 -industrial heat pump medium temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 -industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 -industrial heat pump medium temperature,investment,704.9,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg.,2020.0 +hydrogen storage compressor,investment,87.69,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out.",2020.0 +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",-,2020.0 +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,investment,13.5,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference.",2020.0 +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",-,2020.0 +hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M,2015.0 +hydrogen storage tank type 1 including compressor,investment,22.2227,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment,2015.0 +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime,2015.0 +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M,2015.0 +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M,2015.0 +hydrogen storage underground,investment,1.2699,EUR/kWh,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment,2015.0 +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, inputs/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime,2015.0 +industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M,2019.0 +industrial heat pump high temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M,2019.0 +industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average",2019.0 +industrial heat pump high temperature,investment,845.88,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment,2019.0 +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime,2019.0 +industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M,2019.0 +industrial heat pump medium temperature,VOM,3.1418,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M,2019.0 +industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average",2019.0 +industrial heat pump medium temperature,investment,704.9,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment,2019.0 +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime,2019.0 iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication.",2020.0 -iron-air battery,FOM,1.1808,%/year,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,investment,10.4,EUR/kWh,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery,lifetime,17.5,years,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery charge,efficiency,0.74,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 -iron-air battery discharge,efficiency,0.63,per unit,"Form Energy, FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2020.0 +iron-air battery,FOM,1.1808,%/year,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,investment,11.1494,EUR/kWh,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery,lifetime,17.5,years,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery charge,efficiency,0.74,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 +iron-air battery discharge,efficiency,0.63,per unit,"Form Energy, docu/FormEnergy_Europe_modeling_recommendations_2023.03.pdf, p4",,2023.0 lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018,, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 lignite,VOM,3.2612,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . ",2023.0 @@ -1064,21 +1059,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, methanolisation,investment,519738.882,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 -micro CHP,investment,6099.1099,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 +micro CHP,investment,6099.1099,EUR/kW_th,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment,2015.0 +micro CHP,lifetime,20.0,years,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime,2015.0 nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs.",2023.0 nuclear,VOM,3.5464,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260.",2023.0 nuclear,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 nuclear,investment,8594.1354,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) .",2023.0 nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.",,2023.0 -offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 +offwind,FOM,2.1655,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]",2020.0 offwind,VOM,0.0212,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions,2015.0 -offwind,investment,1523.9311,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 +offwind,investment,1523.9311,"EUR/kW_e, 2020","Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs subtracted from investment costs",2020.0 +offwind,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years],2020.0 offwind-ac-connection-submarine,investment,2841.3251,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-connection-underground,investment,1420.1334,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 offwind-ac-station,investment,264.5554,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions,2015.0 @@ -1092,16 +1087,16 @@ offwind-float-connection-submarine,investment,2118.5597,EUR/MW/km,DTU report bas offwind-float-connection-underground,investment,1039.4778,EUR/MW/km,Haertel 2017, average + 13% learning reduction,2017.0 offwind-float-station,investment,415.7911,EUR/kWel,Haertel 2017, assuming one onshore and one offshore node + 13% learning reduction,2017.0 oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel,, -oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 -oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 +oil,FOM,2.4095,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M,2015.0 +oil,VOM,6.3493,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M,2015.0 +oil,efficiency,0.35,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average",2015.0 oil,fuel,52.9111,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions,2015.0 -oil,investment,355.5625,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 -onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 -onwind,VOM,1.2857,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 -onwind,investment,1019.1375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 +oil,investment,355.5625,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment,2015.0 +oil,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime,2015.0 +onwind,FOM,1.1775,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M,2015.0 +onwind,VOM,1.2857,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M,2015.0 +onwind,investment,1019.1375,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment ,2015.0 +onwind,lifetime,30.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime,2015.0 organic rankine cycle,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details",2020.0 organic rankine cycle,electricity-input,0.12,MWh_el/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","Heat-input, Electricity-output. This is a rough estimate, depends on input temperature, implies ~150 C.",2020.0 organic rankine cycle,investment,1376.0,EUR/kW_el,Tartiere and Astolfi 2017: A world overview of the organic Rankine cycle market,"Low rollout complicates the estimation, compounded by a dependence both on plant size and temperature, converted from 1500 USD/kW using currency conversion 1.09 USD = 1 EUR.",2020.0 @@ -1125,50 +1120,50 @@ solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions,2015.0 solar-rooftop,investment,524.8579,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential',2020.0 -solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop commercial,investment,413.9018,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 -solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-rooftop residential,investment,635.814,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 -solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility,investment,292.5769,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 -solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 -solar-utility single-axis tracking,investment,352.5127,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 +solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop commercial,investment,413.9018,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years],2020.0 +solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-rooftop residential,investment,635.814,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years],2020.0 +solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility,investment,292.5769,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years],2020.0 +solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y],2020.0 +solar-utility single-axis tracking,investment,352.5127,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e],2020.0 +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years],2020.0 solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass,, solid biomass,fuel,13.6489,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040",,2010.0 -solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 -solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 -solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 -solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 -solid biomass boiler steam CC,investment,540.1182,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam,VOM,2.8679,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam,investment,540.1182,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 +solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M,2019.0 +solid biomass boiler steam CC,VOM,2.8679,EUR/MWh,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M,2019.0 +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average",2019.0 +solid biomass boiler steam CC,investment,540.1182,EUR/kW,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment,2019.0 +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime,2019.0 solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",, solid biomass to hydrogen,investment,2648.1996,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",,2014.0 uranium,fuel,3.4122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data.,2010.0 -waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 -waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 -waste CHP CC,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 -waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 -waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 -waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 -waste CHP CC,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 +waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M",2015.0 +waste CHP CC,VOM,27.0247,EUR/MWh_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M ",2015.0 +waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient",2015.0 +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient",2015.0 +waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average",2015.0 +waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average",2015.0 +waste CHP CC,investment,7480.4488,EUR/kW_e,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment ",2015.0 +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, inputs/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime",2015.0 water tank charger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 -water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 \ No newline at end of file +water tank discharger,efficiency,0.9,per unit,HP, from old pypsa cost assumptions,2015.0 From 979f565b6bf1ed9d60dcd831b790c4b2f03b24e3 Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 24 Mar 2025 15:29:06 +0100 Subject: [PATCH 620/669] rename sysgf scenario file --- config/{scenarios.eem.yaml => scenarios.sysgf.yaml} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename config/{scenarios.eem.yaml => scenarios.sysgf.yaml} (100%) diff --git a/config/scenarios.eem.yaml b/config/scenarios.sysgf.yaml similarity index 100% rename from config/scenarios.eem.yaml rename to config/scenarios.sysgf.yaml From d0944a10d3a319c86850716211d8c7604e19dac6 Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 24 Mar 2025 16:14:10 +0100 Subject: [PATCH 621/669] adjust chp path in add_existing_baseyear inputs --- rules/solve_myopic.smk | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/rules/solve_myopic.smk b/rules/solve_myopic.smk index f761e7623..e3f8b77f3 100644 --- a/rules/solve_myopic.smk +++ b/rules/solve_myopic.smk @@ -42,7 +42,7 @@ rule add_existing_baseyear: ), heating_efficiencies=resources("heating_efficiencies.csv"), custom_powerplants=resources( - "german_chp_base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.csv" + "german_chp_base_s_{clusters}.csv" ), output: resources( From eba68fe00f39b1adc4ac935eba52f0275b7975ba Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 24 Mar 2025 16:16:13 +0100 Subject: [PATCH 622/669] rename referenced sysgf scenario file --- config/config.sysgf.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.sysgf.yaml b/config/config.sysgf.yaml index 8c8c771aa..be29e305f 100644 --- a/config/config.sysgf.yaml +++ b/config/config.sysgf.yaml @@ -17,7 +17,7 @@ run: # - HighEtPRatio scenarios: enable: true - manual_file: config/scenarios.eem.yaml + manual_file: config/scenarios.sysgf.yaml file: config/scenarios.automated.yaml shared_resources: policy: base #stops recalculating From e76d4fd8b83b3fa949df5186a236219f3368a9d2 Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 25 Mar 2025 10:37:32 +0100 Subject: [PATCH 623/669] Revert "CHP plants in buffered dh area based on census instead of LAU" This reverts commit df755732349a4183b59f8d8ffefbf53f6f89f193. --- scripts/pypsa-de/build_existing_chp_de.py | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/scripts/pypsa-de/build_existing_chp_de.py b/scripts/pypsa-de/build_existing_chp_de.py index a88a040da..e829804d4 100644 --- a/scripts/pypsa-de/build_existing_chp_de.py +++ b/scripts/pypsa-de/build_existing_chp_de.py @@ -236,6 +236,10 @@ def assign_subnode( CHP_de = gpd.GeoDataFrame( CHP_de, geometry=gpd.points_from_xy(CHP_de.lon, CHP_de.lat) ) + # Set LAU shape column as geometry + subnodes["geometry"] = gpd.GeoSeries.from_wkt(subnodes["lau_shape"]) + subnodes.drop("lau_shape", axis=1, inplace=True) + # Set CRS to WGS84 CHP_de.crs = 4326 # Transform to the same CRS as the subnodes @@ -251,8 +255,6 @@ def assign_subnode( by="yearly_heat_demand_MWh", ascending=False ).head(head) - # Buffer the subnodes to avoid missing assignments - subnodes["geometry"] = subnodes.buffer(np.sqrt(subnodes.area) * 0.1) subnodes.index.rename("city", inplace=True) # Assign subnode to CHP plants based on the nuts3 region @@ -307,7 +309,7 @@ def assign_subnode( if snakemake.params.add_district_heating_subnodes: subnodes = gpd.read_file( snakemake.input.district_heating_subnodes, - columns=["Stadt", "yearly_heat_demand_MWh", "geometry"], + columns=["Stadt", "yearly_heat_demand_MWh", "lau_shape"], ).set_index("Stadt") CHP_de = assign_subnode( CHP_de, subnodes, head=snakemake.params.add_district_heating_subnodes From 4242bd481b4eeb76d8fe91a3b326881b7ac76a0a Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 28 Mar 2025 15:54:20 +0100 Subject: [PATCH 624/669] remove outdated heat source rules --- .../onshore_region_data.py | 92 ------------------ scripts/build_heat_source_potentials/run.py | 96 ------------------- ...ieve_heat_source_utilisation_potentials.py | 57 ----------- 3 files changed, 245 deletions(-) delete mode 100755 scripts/build_heat_source_potentials/onshore_region_data.py delete mode 100644 scripts/build_heat_source_potentials/run.py delete mode 100644 scripts/retrieve_heat_source_utilisation_potentials.py diff --git a/scripts/build_heat_source_potentials/onshore_region_data.py b/scripts/build_heat_source_potentials/onshore_region_data.py deleted file mode 100755 index 01456dd12..000000000 --- a/scripts/build_heat_source_potentials/onshore_region_data.py +++ /dev/null @@ -1,92 +0,0 @@ -# -*- coding: utf-8 -*- -# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors -# -# SPDX-License-Identifier: MIT -""" -Helper class for matching heat source potentials to onshore regions. -""" - -from typing import List - -import geopandas as gpd - - -class OnshoreRegionData: - """ - This class is used to map heat potentials to onshore regions. - - Attributes - ---------- - onshore_regions : gpd.GeoDataFrame - GeoDataFrame containing the onshore regions - data : gpd.GeoDataFrame - GeoDataFrame containing the heat potentials - scaling_factor : float - Scaling factor for the heat potentials - """ - - def __init__( - self, - onshore_regions: gpd.GeoDataFrame, - data: gpd.GeoDataFrame, - column_name: str, - scaling_factor: float = 1.0, - ) -> None: - """ - Parameters - ---------- - onshore_regions : gpd.GeoDataFrame - GeoDataFrame containing the onshore regions - data : gpd.GeoDataFrame - GeoDataFrame containing the heat potentials - column_name : str - Column name of the heat potential data in `data` - scaling_factor : float, optional - Scaling factor for the heat potentials, by default 1.0 - """ - - self.onshore_regions = onshore_regions - self.scaling_factor = scaling_factor - self.data = data.to_crs(onshore_regions.crs) - self._column_name = column_name - - self._mapped = False - - @property - def data_in_regions_scaled(self) -> gpd.GeoDataFrame: - """ - Scale the heat potentials and map them to the onshore regions. - - Returns - ------- - gpd.GeoDataFrame - GeoDataFrame containing the scaled heat potentials in the onshore regions - """ - if self._mapped: - return self._scaled_data_in_regions - else: - self._data_in_regions = self._map_to_onshore_regions() - self._mapped = True - return self._scaled_data_in_regions - - def _map_to_onshore_regions(self): - """ - Map the heat potentials to the onshore regions - """ - data_in_regions = gpd.sjoin(self.data, self.onshore_regions, how="right") - - # Initialize an empty list to store the merged GeoDataFrames - ret_val = self.onshore_regions.copy().set_index("name", drop=True) - ret_val[self._column_name] = data_in_regions.groupby("name")[ - self._column_name - ].sum() - ret_val = ret_val.rename_axis("name")[self._column_name] - - return ret_val - - @property - def _scaled_data_in_regions(self): - """ - Scale the heat potentials in the onshore regions - """ - return self._data_in_regions * self.scaling_factor diff --git a/scripts/build_heat_source_potentials/run.py b/scripts/build_heat_source_potentials/run.py deleted file mode 100644 index d24142d96..000000000 --- a/scripts/build_heat_source_potentials/run.py +++ /dev/null @@ -1,96 +0,0 @@ -# -*- coding: utf-8 -*- -# SPDX-FileCopyrightText: : 2020-2024 The PyPSA-Eur Authors -# -# SPDX-License-Identifier: MIT -""" -Build heat source potentials for a given heat source. - -This script maps and aggregates heat source potentials per heat source to `onshore_regions` using `OnshoreRegionData`. -It scales the heat source utilisation potentials to technical potentials by dividing the utilisation potentials by the full load hours of the heat source, also taking into account the energy unit set for the respective source in the config. - - -Relevant Settings ------------------ -.. code:: yaml - sector: - district_heating: - heat_utilisation_potentials: - {heat_source} - - -Inputs ------- -- `resources//regions_onshore.geojson` -- `resources//heat_source_utilisation_potentials/.gpkg` - -Outputs -------- -- `resources//heat_source_technical_potential_{heat_source}_base_s_{clusters}.csv` -""" - -import geopandas as gpd -from scripts._helpers import set_scenario_config - -from scripts.build_heat_source_potentials.onshore_region_data import OnshoreRegionData - - -def get_unit_conversion_factor( - input_unit: str, - output_unit: str, - unit_scaling: dict = {"Wh": 1, "kWh": 1e3, "MWh": 1e6, "GWh": 1e9, "TWh": 1e12}, -) -> float: - - if input_unit not in unit_scaling.keys(): - raise ValueError( - f"Input unit {input_unit} not allowed. Must be one of { - unit_scaling.keys()}" - ) - elif output_unit not in unit_scaling.keys(): - raise ValueError( - f"Output unit {output_unit} not allowed. Must be one of { - unit_scaling.keys()}" - ) - - return unit_scaling[input_unit] / unit_scaling[output_unit] - - -if __name__ == "__main__": - - if "snakemake" not in globals(): - from _helpers import mock_snakemake - - snakemake = mock_snakemake( - "build_heat_source_potentials", - clusters=48, - ) - - set_scenario_config(snakemake) - - regions_onshore = gpd.read_file(snakemake.input.regions_onshore) - heat_source_utilisation_potential = gpd.read_file( - snakemake.input.utilisation_potential, use_arrow=True - ) - - unit_conversion_factor = get_unit_conversion_factor( - input_unit=snakemake.params.heat_utilisation_potentials[ - snakemake.wildcards.heat_source - ]["unit"], - output_unit="MWh", - ) - scaling_factor = ( - unit_conversion_factor - / snakemake.params.heat_utilisation_potentials[snakemake.wildcards.heat_source][ - "full_load_hours" - ] - ) - - heat_source_technical_potential = OnshoreRegionData( - onshore_regions=regions_onshore, - data=heat_source_utilisation_potential, - column_name=snakemake.params.heat_utilisation_potentials[ - snakemake.wildcards.heat_source - ]["column_name"], - scaling_factor=scaling_factor, - ).data_in_regions_scaled - - heat_source_technical_potential.to_csv(snakemake.output[0]) diff --git a/scripts/retrieve_heat_source_utilisation_potentials.py b/scripts/retrieve_heat_source_utilisation_potentials.py deleted file mode 100644 index 59e662d8b..000000000 --- a/scripts/retrieve_heat_source_utilisation_potentials.py +++ /dev/null @@ -1,57 +0,0 @@ -# -*- coding: utf-8 -*- -# SPDX-FileCopyrightText: : 2024 The PyPSA-Eur Authors -# -# SPDX-License-Identifier: MIT -""" -Retrieve heat source utilisation potentials from Fraunhofer Fordatis. - -Source ------- -Manz et al. 2024: "Spatial analysis of renewable and excess heat potentials for climate-neutral district heating in Europe", Renewable Energy, vol. 224, no. 120111, https://doi.org/10.1016/j.renene.2024.120111 - -Relevant Settings ------------------ -.. code:: yaml - sector: - district_heating: - heat_utilisation_potentials: - -Outputs ------- -- `resources//heat_source_utilisation_potentials/.gpkg` -""" - -import logging -from pathlib import Path - -from _helpers import configure_logging, progress_retrieve, set_scenario_config - -logger = logging.getLogger(__name__) - -if __name__ == "__main__": - if "snakemake" not in globals(): - from _helpers import mock_snakemake - - snakemake = mock_snakemake("retrieve_heat_source_utilisation_potentials") - rootpath = ".." - else: - rootpath = "." - configure_logging(snakemake) - set_scenario_config(snakemake) - - # license: https://creativecommons.org/licenses/by/4.0/ - # download the data in url - heat_source = snakemake.params["heat_source"] - filepath = Path(snakemake.output[0]) - if not filepath.parent.exists(): - filepath.parent.mkdir(parents=True) - - url = f"https://fordatis.fraunhofer.de/bitstream/fordatis/341.3/10/{snakemake.params.heat_utilisation_potentials[heat_source]['key']}.gpkg" - - logger.info( - f"Downloading heat source utilisation potential data for {heat_source} from '{url}'." - ) - disable_progress = snakemake.config["run"].get("disable_progressbar", False) - progress_retrieve(url, filepath, disable=disable_progress) - - logger.info(f"Data available at at {filepath}") From 54e5146d02d94d561ef47402d93f9dbe613add75 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 3 Apr 2025 17:12:24 +0200 Subject: [PATCH 625/669] adjust subnode loads --- .../pypsa-de/add_district_heating_subnodes.py | 72 ++++++++++++------- 1 file changed, 46 insertions(+), 26 deletions(-) diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index ab622718a..7e5c305d8 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -63,6 +63,8 @@ def add_subnodes( subnodes_rest = subnodes[~subnodes.index.isin(subnodes_head.index)] + n_copy = n.copy() + # Add subnodes to network for _, subnode in subnodes_head.iterrows(): name = f'{subnode["cluster"]} {subnode["Stadt"]} urban central' @@ -85,11 +87,11 @@ def add_subnodes( # Get heat loads for urban central heat and low-temperature heat for industry uch_load_cluster = ( - n.snapshot_weightings.generators - @ n.loads_t.p_set[f"{subnode['cluster']} urban central heat"] + n_copy.snapshot_weightings.generators + @ n_copy.loads_t.p_set[f"{subnode['cluster']} urban central heat"] ) lti_load_cluster = ( - n.loads.loc[ + n_copy.loads.loc[ f"{subnode['cluster']} low-temperature heat for industry", "p_set" ] * 8760 @@ -98,29 +100,47 @@ def add_subnodes( # Calculate share of low-temperature heat for industry in total district heating load of cluster dh_load_cluster = uch_load_cluster + lti_load_cluster - # Calculate demand ratio between load of subnode according to Fernwärmeatlas and remaining load of assigned cluster - demand_ratio = min( - 1, - (subnode["yearly_heat_demand_MWh"] / dh_load_cluster), - ) - dh_load_cluster_subnodes = subnodes_head.loc[ subnodes_head.cluster == subnode["cluster"], "yearly_heat_demand_MWh" ].sum() lost_load = dh_load_cluster_subnodes - dh_load_cluster # District heating demand from Fernwärmeatlas exceeding the original cluster load is disregarded. The shares of the subsystems are set according to Fernwärmeatlas, while the aggregate load of cluster is preserved. - if dh_load_cluster_subnodes > dh_load_cluster: + if lost_load > 0: logger.warning( - f"Aggregated district heating load of systems within {subnode['cluster']} exceeds load of cluster. {lost_load} MWh/a are disregarded." + f"Aggregated district heating load of systems within {subnode['cluster']} exceeds load of cluster." ) - demand_ratio *= subnode["yearly_heat_demand_MWh"] / dh_load_cluster_subnodes + demand_ratio = subnode["yearly_heat_demand_MWh"] / dh_load_cluster_subnodes - # Add load components to subnode preserving the share of low-temperature heat for industry of the cluster - uch_load = demand_ratio * n.loads_t.p_set[ - f"{subnode['cluster']} urban central heat" - ].rename(f"{subnode['cluster']} {subnode['Stadt']} urban central heat") + uch_load = demand_ratio * n_copy.loads_t.p_set.filter( + regex=f"{subnode['cluster']}.*urban central heat" + ).sum(1).rename( + f"{subnode['cluster']} {subnode['Stadt']} urban central heat" + ) + + lti_load = ( + demand_ratio + * n_copy.loads.filter( + regex=f"{subnode['cluster']}.*low-temperature heat for industry", + axis=0, + )["p_set"].sum() + ) + else: + # Calculate demand ratio between load of subnode according to Fernwärmeatlas and remaining load of assigned cluster + demand_ratio = subnode["yearly_heat_demand_MWh"] / dh_load_cluster + + uch_load = demand_ratio * n_copy.loads_t.p_set[ + f"{subnode['cluster']} urban central heat" + ].rename(f"{subnode['cluster']} {subnode['Stadt']} urban central heat") + + lti_load = ( + demand_ratio + * n_copy.loads.loc[ + f"{subnode['cluster']} low-temperature heat for industry", "p_set" + ] + ) + # Add load components to subnode preserving the share of low-temperature heat for industry of the cluster n.add( "Load", f"{name} heat", @@ -130,12 +150,6 @@ def add_subnodes( location=f"{subnode['cluster']} {subnode['Stadt']}", ) - lti_load = ( - demand_ratio - * n.loads.loc[ - f"{subnode['cluster']} low-temperature heat for industry", "p_set" - ] - ) n.add( "Load", f"{subnode['cluster']} {subnode['Stadt']} low-temperature heat for industry", @@ -146,13 +160,19 @@ def add_subnodes( ) # Adjust loads of cluster buses - n.loads_t.p_set.loc[:, f'{subnode["cluster"]} urban central heat'] *= ( - 1 - demand_ratio - ) + n.loads_t.p_set.loc[:, f'{subnode["cluster"]} urban central heat'] -= uch_load n.loads.loc[ f'{subnode["cluster"]} low-temperature heat for industry', "p_set" - ] *= (1 - demand_ratio) + ] -= lti_load + + if lost_load > 0: + lost_load_subnode = subnode["yearly_heat_demand_MWh"] - ( + n.snapshot_weightings.generators @ uch_load + lti_load * 8760 + ) + logger.warning( + f"District heating load of {subnode['cluster']} {subnode['Stadt']} is reduced by {lost_load_subnode} MWh/a." + ) # Replicate district heating stores of mother node for subnodes stores = ( From 0bab6d587f146241b5f8e87e894adef2b4b5ed63 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 3 Apr 2025 17:12:56 +0200 Subject: [PATCH 626/669] remove if-clause from snakefile --- Snakefile | 190 ++++++++++++++++++++++++++---------------------------- 1 file changed, 93 insertions(+), 97 deletions(-) diff --git a/Snakefile b/Snakefile index e794bee75..e265db232 100644 --- a/Snakefile +++ b/Snakefile @@ -271,106 +271,102 @@ rule build_egon_data: "scripts/pypsa-de/build_egon_data.py" -if config["sector"]["district_heating"]["add_subnodes"] and config["sector"][ - "district_heating" -].get("add_subnodes", True): - - rule prepare_district_heating_subnodes: - params: - district_heating=config_provider("sector", "district_heating"), - baseyear=config_provider("scenario", "planning_horizons", 0), - input: - heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), - regions_onshore=resources( - "regions_onshore_base_s_{clusters}.geojson" - ), - fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", - cities="data/fernwaermeatlas/cities_geolocations.geojson", - lau_regions="data/lau_regions.zip", - census=storage( - "https://www.zensus2022.de/static/Zensus_Veroeffentlichung/Zensus2022_Heizungsart.zip", - keep_local=True, - ), - osm_land_cover=storage( - "https://heidata.uni-heidelberg.de/api/access/datafile/23053?format=original&gbrecs=true", - keep_local=True, - ), - natura=ancient("data/bundle/natura/natura.tiff"), - groundwater_depth=storage( - "http://thredds-gfnl.usc.es/thredds/fileServer/GLOBALWTDFTP/annualmeans/EURASIA_WTD_annualmean.nc", - keep_local=True - ), - output: - district_heating_subnodes=resources( - "district_heating_subnodes_base_s_{clusters}.geojson" - ), - regions_onshore_extended=resources( - "regions_onshore_base-extended_s_{clusters}.geojson" - ), - regions_onshore_restricted=resources( - "regions_onshore_base-restricted_s_{clusters}.geojson" +rule prepare_district_heating_subnodes: + params: + district_heating=config_provider("sector", "district_heating"), + baseyear=config_provider("scenario", "planning_horizons", 0), + input: + heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), + regions_onshore=resources( + "regions_onshore_base_s_{clusters}.geojson" + ), + fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", + cities="data/fernwaermeatlas/cities_geolocations.geojson", + lau_regions="data/lau_regions.zip", + census=storage( + "https://www.zensus2022.de/static/Zensus_Veroeffentlichung/Zensus2022_Heizungsart.zip", + keep_local=True, + ), + osm_land_cover=storage( + "https://heidata.uni-heidelberg.de/api/access/datafile/23053?format=original&gbrecs=true", + keep_local=True, + ), + natura=ancient("data/bundle/natura/natura.tiff"), + groundwater_depth=storage( + "http://thredds-gfnl.usc.es/thredds/fileServer/GLOBALWTDFTP/annualmeans/EURASIA_WTD_annualmean.nc", + keep_local=True ), + output: + district_heating_subnodes=resources( + "district_heating_subnodes_base_s_{clusters}.geojson" + ), + regions_onshore_extended=resources( + "regions_onshore_base-extended_s_{clusters}.geojson" + ), + regions_onshore_restricted=resources( + "regions_onshore_base-restricted_s_{clusters}.geojson" + ), - resources: - mem_mb=20000, - script: - "scripts/pypsa-de/prepare_district_heating_subnodes.py" - - baseyear_value = config["scenario"]["planning_horizons"][0] - - rule add_district_heating_subnodes: - params: - district_heating=config_provider("sector", "district_heating"), - baseyear=config_provider("scenario", "planning_horizons", 0), - sector=config_provider("sector"), - heat_pump_sources=config_provider("sector", "heat_pump_sources", "urban central"), - heat_utilisation_potentials=config_provider( - "sector", "district_heating", "heat_utilisation_potentials" - ), - direct_utilisation_heat_sources=config_provider( - "sector", "district_heating", "direct_utilisation_heat_sources" - ), - adjustments=config_provider( "adjustments", "sector"), - input: - unpack(input_heat_source_power), - network=resources( - "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" + resources: + mem_mb=20000, + script: + "scripts/pypsa-de/prepare_district_heating_subnodes.py" + +baseyear_value = config["scenario"]["planning_horizons"][0] + +rule add_district_heating_subnodes: + params: + district_heating=config_provider("sector", "district_heating"), + baseyear=config_provider("scenario", "planning_horizons", 0), + sector=config_provider("sector"), + heat_pump_sources=config_provider("sector", "heat_pump_sources", "urban central"), + heat_utilisation_potentials=config_provider( + "sector", "district_heating", "heat_utilisation_potentials" ), - subnodes=resources( - "district_heating_subnodes_base_s_{clusters}.geojson" - ), - nuts3=resources("nuts3_shapes.geojson"), - regions_onshore=resources( - "regions_onshore_base_s_{clusters}.geojson" - ), - fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", - cities="data/fernwaermeatlas/cities_geolocations.geojson", - cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), - direct_heat_source_utilisation_profiles=resources( - "direct_heat_source_utilisation_profiles_base_s_{clusters}_{planning_horizons}.nc" - ), - existing_heating_distribution=resources( - f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value}.csv" - ), - lau_regions="data/lau_regions.zip", - output: - network=resources( - "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" - ), - district_heating_subnodes=resources( - "district_heating_subnodes_base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.geojson" - ), - existing_heating_distribution_extended=( - resources( - "existing_heating_distribution_base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.csv" - ) - if baseyear_value != "{planning_horizons}" - else [] - ), - resources: - mem_mb=10000, - script: - "scripts/pypsa-de/add_district_heating_subnodes.py" + direct_utilisation_heat_sources=config_provider( + "sector", "district_heating", "direct_utilisation_heat_sources" + ), + adjustments=config_provider( "adjustments", "sector"), + input: + unpack(input_heat_source_power), + network=resources( + "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" + ), + subnodes=resources( + "district_heating_subnodes_base_s_{clusters}.geojson" + ), + nuts3=resources("nuts3_shapes.geojson"), + regions_onshore=resources( + "regions_onshore_base_s_{clusters}.geojson" + ), + fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", + cities="data/fernwaermeatlas/cities_geolocations.geojson", + cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), + direct_heat_source_utilisation_profiles=resources( + "direct_heat_source_utilisation_profiles_base_s_{clusters}_{planning_horizons}.nc" + ), + existing_heating_distribution=resources( + f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value}.csv" + ), + lau_regions="data/lau_regions.zip", + output: + network=resources( + "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" + ), + district_heating_subnodes=resources( + "district_heating_subnodes_base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.geojson" + ), + existing_heating_distribution_extended=( + resources( + "existing_heating_distribution_base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.csv" + ) + if baseyear_value != "{planning_horizons}" + else [] + ), + resources: + mem_mb=10000, + script: + "scripts/pypsa-de/add_district_heating_subnodes.py" ruleorder: modify_district_heat_share > build_district_heat_share From fb91229ba7dbce01835b615f59afbc0ba9da0449 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 3 Apr 2025 17:17:01 +0200 Subject: [PATCH 627/669] skip adjustments in prepare_sector_network if subnodes activated --- scripts/prepare_sector_network.py | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index d5f2debe1..fc47fca72 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -5780,6 +5780,11 @@ def add_enhanced_geothermal( if options["cluster_heat_buses"] and not first_year_myopic: cluster_heat_buses(n) + if not options["district_heating"]["add_subnodes"]: + maybe_adjust_costs_and_potentials( + n, snakemake.params["adjustments"], investment_year + ) + n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards))) sanitize_carriers(n, snakemake.config) From e8747526546d1db4c3dd05a57259fb60115c4279 Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 4 Apr 2025 11:03:34 +0200 Subject: [PATCH 628/669] aligned mean costs files --- ariadne-data/costs/mean/costs_2020.csv | 78 ++------------------------ ariadne-data/costs/mean/costs_2025.csv | 78 ++------------------------ ariadne-data/costs/mean/costs_2030.csv | 78 ++------------------------ ariadne-data/costs/mean/costs_2035.csv | 78 ++------------------------ ariadne-data/costs/mean/costs_2040.csv | 78 ++------------------------ ariadne-data/costs/mean/costs_2045.csv | 78 ++------------------------ ariadne-data/costs/mean/costs_2050.csv | 78 ++------------------------ 7 files changed, 42 insertions(+), 504 deletions(-) diff --git a/ariadne-data/costs/mean/costs_2020.csv b/ariadne-data/costs/mean/costs_2020.csv index 4d5494bb8..9adcc1ba0 100644 --- a/ariadne-data/costs/mean/costs_2020.csv +++ b/ariadne-data/costs/mean/costs_2020.csv @@ -1,8 +1,4 @@ technology,parameter,value,unit,source,further description,currency_year -Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,efficiency,0.65,p.u.,ICCT IRA e-fuels assumptions ,, -Alkaline electrolyzer,investment,1019.8742,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -54,13 +50,6 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -Biomass gasification,efficiency,0.35,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,efficiency,0.328,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -126,29 +115,6 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,efficiency,0.56,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification,investment,483.8765,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,efficiency,0.532,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, -Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, -Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -252,12 +218,12 @@ FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, -Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 -Fischer-Tropsch,lifetime,20.0,years,ICCT IRA e-fuels assumptions ,,2020.0 +Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,819108.478,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -346,10 +312,6 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,1785.0713,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,187899.5061,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -466,18 +428,6 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -488,14 +438,6 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,efficiency,0.75,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming,investment,212.5817,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,efficiency,0.637,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,95584.1917,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -539,10 +481,6 @@ SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,efficiency,0.82,p.u.,ICCT IRA e-fuels assumptions ,, -SOEC,investment,1389.2004,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,152624.5646,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -554,10 +492,6 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,8014.7441,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 diff --git a/ariadne-data/costs/mean/costs_2025.csv b/ariadne-data/costs/mean/costs_2025.csv index 05de2e0a1..9e70e5f90 100644 --- a/ariadne-data/costs/mean/costs_2025.csv +++ b/ariadne-data/costs/mean/costs_2025.csv @@ -1,8 +1,4 @@ technology,parameter,value,unit,source,further description,currency_year -Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,efficiency,0.67,p.u.,ICCT IRA e-fuels assumptions ,, -Alkaline electrolyzer,investment,926.4302,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -54,13 +50,6 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -Biomass gasification,efficiency,0.3792,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,efficiency,0.328,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -126,29 +115,6 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,efficiency,0.5978,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification,investment,441.5535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,efficiency,0.532,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, -Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, -Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -252,12 +218,12 @@ FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, -Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 -Fischer-Tropsch,lifetime,25.0,years,ICCT IRA e-fuels assumptions ,,2020.0 +Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,761417.4621,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -346,10 +312,6 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,1622.5424,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,166045.8871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -466,18 +428,6 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -488,14 +438,6 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,efficiency,0.7562,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming,investment,196.3225,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,efficiency,0.637,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,88568.8382,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -539,10 +481,6 @@ SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,efficiency,0.83,p.u.,ICCT IRA e-fuels assumptions ,, -SOEC,investment,1262.3836,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,148408.4164,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -554,10 +492,6 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,7357.7979,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 diff --git a/ariadne-data/costs/mean/costs_2030.csv b/ariadne-data/costs/mean/costs_2030.csv index 25b0e4f80..0b41cac5f 100644 --- a/ariadne-data/costs/mean/costs_2030.csv +++ b/ariadne-data/costs/mean/costs_2030.csv @@ -1,8 +1,4 @@ technology,parameter,value,unit,source,further description,currency_year -Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,efficiency,0.69,p.u.,ICCT IRA e-fuels assumptions ,, -Alkaline electrolyzer,investment,832.9863,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,1123945.3807,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -54,13 +50,6 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -Biomass gasification,efficiency,0.4083,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,efficiency,0.328,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -126,29 +115,6 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,efficiency,0.6357,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification,investment,399.2305,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,efficiency,0.609,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, -Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, -Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -252,12 +218,12 @@ FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, -Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 -Fischer-Tropsch,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,,2020.0 +Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,703726.4462,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -346,10 +312,6 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,1460.0135,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -466,18 +428,6 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -488,14 +438,6 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,efficiency,0.7623,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming,investment,180.0632,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,efficiency,0.637,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -539,10 +481,6 @@ SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,efficiency,0.84,p.u.,ICCT IRA e-fuels assumptions ,, -SOEC,investment,1135.5667,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -554,10 +492,6 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 diff --git a/ariadne-data/costs/mean/costs_2035.csv b/ariadne-data/costs/mean/costs_2035.csv index a2c0c5b01..d787787a8 100644 --- a/ariadne-data/costs/mean/costs_2035.csv +++ b/ariadne-data/costs/mean/costs_2035.csv @@ -1,8 +1,4 @@ technology,parameter,value,unit,source,further description,currency_year -Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,efficiency,0.715,p.u.,ICCT IRA e-fuels assumptions ,, -Alkaline electrolyzer,investment,756.8962,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,982536.4099,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -54,13 +50,6 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -Biomass gasification,efficiency,0.4375,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,efficiency,0.421,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -126,29 +115,6 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,efficiency,0.6735,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification,investment,399.2305,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,efficiency,0.609,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, -Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, -Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -252,12 +218,12 @@ FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, -Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 -Fischer-Tropsch,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,,2020.0 +Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,657729.5552,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -346,10 +312,6 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,1327.0808,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -466,18 +428,6 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -488,14 +438,6 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,efficiency,0.7685,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming,investment,180.0632,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,efficiency,0.6515,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -539,10 +481,6 @@ SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,efficiency,0.855,p.u.,ICCT IRA e-fuels assumptions ,, -SOEC,investment,1031.4435,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -554,10 +492,6 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 diff --git a/ariadne-data/costs/mean/costs_2040.csv b/ariadne-data/costs/mean/costs_2040.csv index 2933cb308..bacdadfea 100644 --- a/ariadne-data/costs/mean/costs_2040.csv +++ b/ariadne-data/costs/mean/costs_2040.csv @@ -1,8 +1,4 @@ technology,parameter,value,unit,source,further description,currency_year -Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,efficiency,0.74,p.u.,ICCT IRA e-fuels assumptions ,, -Alkaline electrolyzer,investment,680.8061,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,841127.4391,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -54,13 +50,6 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -Biomass gasification,efficiency,0.4667,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,efficiency,0.514,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -126,29 +115,6 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,efficiency,0.7113,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification,investment,399.2305,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,efficiency,0.609,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, -Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, -Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -252,12 +218,12 @@ FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, -Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 -Fischer-Tropsch,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,,2020.0 +Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,611732.6641,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -346,10 +312,6 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,1194.148,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -466,18 +428,6 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -488,14 +438,6 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,efficiency,0.7747,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming,investment,180.0632,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,efficiency,0.666,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -539,10 +481,6 @@ SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,efficiency,0.87,p.u.,ICCT IRA e-fuels assumptions ,, -SOEC,investment,927.3202,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -554,10 +492,6 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 diff --git a/ariadne-data/costs/mean/costs_2045.csv b/ariadne-data/costs/mean/costs_2045.csv index d2b30ea9d..73550d204 100644 --- a/ariadne-data/costs/mean/costs_2045.csv +++ b/ariadne-data/costs/mean/costs_2045.csv @@ -1,8 +1,4 @@ technology,parameter,value,unit,source,further description,currency_year -Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,efficiency,0.76,p.u.,ICCT IRA e-fuels assumptions ,, -Alkaline electrolyzer,investment,618.5101,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,699718.4683,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -54,13 +50,6 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -Biomass gasification,efficiency,0.4958,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,efficiency,0.514,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -126,29 +115,6 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,efficiency,0.7492,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification,investment,399.2305,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,efficiency,0.609,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, -Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, -Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -252,12 +218,12 @@ FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, -Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 -Fischer-Tropsch,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,,2020.0 +Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,565735.7731,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -346,10 +312,6 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,1054.8211,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -466,18 +428,6 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -488,14 +438,6 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,efficiency,0.7808,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming,investment,180.0632,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,efficiency,0.6805,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -539,10 +481,6 @@ SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,efficiency,0.885,p.u.,ICCT IRA e-fuels assumptions ,, -SOEC,investment,842.7756,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -554,10 +492,6 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 diff --git a/ariadne-data/costs/mean/costs_2050.csv b/ariadne-data/costs/mean/costs_2050.csv index 79bd96bf1..6e1e90879 100644 --- a/ariadne-data/costs/mean/costs_2050.csv +++ b/ariadne-data/costs/mean/costs_2050.csv @@ -1,8 +1,4 @@ technology,parameter,value,unit,source,further description,currency_year -Alkaline electrolyzer,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,efficiency,0.78,p.u.,ICCT IRA e-fuels assumptions ,, -Alkaline electrolyzer,investment,556.2141,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -Alkaline electrolyzer,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0 Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report)., Ammonia cracker,investment,558309.4975,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -54,13 +50,6 @@ BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015 BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output",2020.0 BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment",2020.0 BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime",2020.0 -Biomass gasification,efficiency,0.525,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification,investment,1467.7693,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,FOM,0.02,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,efficiency,0.514,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Biomass gasification CC,investment,3015.5325,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Biomass gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016",, @@ -126,29 +115,6 @@ Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars,2020.0 -Coal gasification,FOM,0.06,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,efficiency,0.787,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification,investment,399.2305,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,FOM,0.07,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,efficiency,0.609,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal gasification CC,investment,649.5969,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Coal gasification CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 90%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal integrated retrofit 95%-CCS,efficiency,0.386,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -Coal-95%-CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -Coal-95%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-95%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,capture_rate,0.99,per unit,"NREL, NREL ATB 2024",, -Coal-99%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-99%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,efficiency,0.5,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,capture_rate,0.9,per unit,"NREL, NREL ATB 2024",, -Coal-IGCC-90%-CCS,efficiency,0.403,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Coal-IGCC-90%-CCS,lifetime,40.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}",2020.0 Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}",2020.0 Compressed-Air-Adiabatic-bicharger,investment,946180.9426,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}",2020.0 @@ -252,12 +218,12 @@ FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, -Fischer-Tropsch,carbondioxide-input,0.32,t_CO2/MWh_FT,ICCT IRA e-fuels assumptions ,"Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.7,per unit,ICCT IRA e-fuels assumptions ,, -Fischer-Tropsch,electricity-input,0.04,MWh_el/MWh_FT,ICCT IRA e-fuels assumptions ,"0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,hydrogen-input,1.43,MWh_H2/MWh_FT,ICCT IRA e-fuels assumptions ,"0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,1509724.4026,USD/MW_FT,ICCT IRA e-fuels assumptions ,"Well developed technology, no significant learning expected.",2022.0 -Fischer-Tropsch,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,,2020.0 +Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", +Fischer-Tropsch,investment,519738.882,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -346,10 +312,6 @@ Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low car Haber-Bosch,investment,915.4941,EUR/kW_NH3,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment,2015.0 Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime,2015.0 Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh.", -Heavy oil partial oxidation,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,efficiency,0.734,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Heavy oil partial oxidation,investment,491.0535,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Heavy oil partial oxidation,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 HighT-Molten-Salt-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -466,18 +428,6 @@ Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Methanol steam reforming,investment,18016.8665,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed.",2020.0 Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",,2020.0 Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy., -NG 2-on-1 Combined Cycle (F-Frame),efficiency,0.573,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame),lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,capture_rate,0.95,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,efficiency,0.527,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 95% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,capture_rate,0.97,per unit,"NREL, NREL ATB 2024",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,efficiency,0.525,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG 2-on-1 Combined Cycle (F-Frame) 97% CCS,lifetime,30.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,capture_rate,0.9,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 90%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,capture_rate,0.95,per unit,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, -NG Combined Cycle F-Class integrated retrofit 95%-CCS,efficiency,0.536,p.u.,"NREL, “Cost and performance projections for coal- and natural gas-fired power plants""",, NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.",,2010.0 NH3 (l) storage tank incl. liquefaction,investment,166.8201,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. @@ -488,14 +438,6 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,investment,81164200.0,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B",,2019.0 NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology",,2019.0 -Natural gas steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,efficiency,0.787,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming,investment,180.0632,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,efficiency,0.695,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Natural gas steam reforming CC,investment,323.8999,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Natural gas steam reforming CC,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}",2020.0 Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}",2020.0 Ni-Zn-bicharger,investment,81553.4846,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}",2020.0 @@ -539,10 +481,6 @@ SMR CC,capture_rate,0.9,per unit,"IEA Global average levelised cost of hydrogen SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, SMR CC,investment,605753.2171,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311",2015.0 SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",, -SOEC,FOM,0.04,%/year,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,efficiency,0.9,p.u.,ICCT IRA e-fuels assumptions ,, -SOEC,investment,758.2311,USD/kW,ICCT IRA e-fuels assumptions ,,2022.0 -SOEC,lifetime,30.0,years,ICCT IRA e-fuels assumptions ,, Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}",2020.0 Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}",2020.0 Sand-charger,investment,144192.2682,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}",2020.0 @@ -554,10 +492,6 @@ Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}",2020.0 Sand-store,investment,6700.8517,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}",2020.0 Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}",2020.0 -Solid biomass steam reforming,FOM,0.05,%/year,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,efficiency,0.712,p.u.,"JRC, 01_JRC-EU-TIMES Full model ",, -Solid biomass steam reforming,investment,590.7702,EUR/kW,"JRC, 01_JRC-EU-TIMES Full model ",,2010.0 -Solid biomass steam reforming,lifetime,20.0,years,"JRC, 01_JRC-EU-TIMES Full model ",, Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 Steam methane reforming,investment,497454.611,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR.,2015.0 Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW).,2015.0 From 5224f7b84fc635f31ec34b55fb8e6c937bdfea02 Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 4 Apr 2025 11:11:32 +0200 Subject: [PATCH 629/669] clean-up prepare_sector_network --- scripts/prepare_sector_network.py | 21 ++++++++------------- 1 file changed, 8 insertions(+), 13 deletions(-) diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 3cae56b8e..f94d8fc1b 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -21,10 +21,6 @@ from pypsa.geo import haversine_pts from scipy.stats import beta -import sys - -sys.path.append(os.path.join(os.path.dirname(__file__), "..")) - from scripts._helpers import ( configure_logging, get, @@ -2204,7 +2200,7 @@ def add_EVs( # temperature corrected efficiency efficiency = get_temp_efficency( car_efficiency, - temperature[spatial.nodes], + temperature, options["transport_heating_deadband_lower"], options["transport_heating_deadband_upper"], options["EV_lower_degree_factor"], @@ -2284,7 +2280,7 @@ def add_fuel_cell_cars(n, p_set, fuel_cell_share, temperature): # temperature corrected efficiency efficiency = get_temp_efficency( car_efficiency, - temperature[spatial.nodes], + temperature, options["transport_heating_deadband_lower"], options["transport_heating_deadband_upper"], options["ICE_lower_degree_factor"], @@ -2311,7 +2307,7 @@ def add_ice_cars(n, p_set, ice_share, temperature): # temperature corrected efficiency efficiency = get_temp_efficency( car_efficiency, - temperature[spatial.nodes], + temperature, options["transport_heating_deadband_lower"], options["transport_heating_deadband_upper"], options["ICE_lower_degree_factor"], @@ -2442,7 +2438,7 @@ def add_land_transport( p_set = transport[nodes] # temperature for correction factor for heating/cooling - temperature = xr.open_dataarray(temp_air_total_file).to_pandas() + temperature = xr.open_dataarray(temp_air_total_file).to_pandas()[spatial.nodes] if shares["electric"] > 0: add_EVs( @@ -3465,7 +3461,9 @@ def add_biomass( if options["solid_biomass_import"].get("enable", False): biomass_import_price = options["solid_biomass_import"]["price"] # convert TWh in MWh - biomass_import_max_amount = options["solid_biomass_import"]["max_amount"] * 1e6 * nyears + biomass_import_max_amount = ( + options["solid_biomass_import"]["max_amount"] * 1e6 * nyears + ) biomass_import_upstream_emissions = options["solid_biomass_import"][ "upstream_emissions_factor" ] @@ -5117,7 +5115,7 @@ def define_clustering(attributes, aggregate_dict): return agg logger.info("Cluster residential and service heat buses.") - components = ["Bus", "Carrier", "Generator", "Link", "Load", "Store", "StorageUnit"] + components = ["Bus", "Carrier", "Generator", "Link", "Load", "Store"] for c in n.iterate_components(components): df = c.df @@ -5515,9 +5513,6 @@ def add_enhanced_geothermal( if "snakemake" not in globals(): from scripts._helpers import mock_snakemake - # Change directory to this script - os.chdir(os.path.dirname(os.path.realpath(__file__))) - snakemake = mock_snakemake( "prepare_sector_network", opts="", From 1106d9fa1b9650231844af0f8fca784501f512db Mon Sep 17 00:00:00 2001 From: cpschau Date: Fri, 4 Apr 2025 11:16:33 +0200 Subject: [PATCH 630/669] clean-up heating files --- scripts/build_cop_profiles/CentralHeatingCopApproximator.py | 4 ++-- scripts/build_direct_heat_source_utilisation_profiles.py | 1 - 2 files changed, 2 insertions(+), 3 deletions(-) diff --git a/scripts/build_cop_profiles/CentralHeatingCopApproximator.py b/scripts/build_cop_profiles/CentralHeatingCopApproximator.py index f4589e747..713da3a2b 100644 --- a/scripts/build_cop_profiles/CentralHeatingCopApproximator.py +++ b/scripts/build_cop_profiles/CentralHeatingCopApproximator.py @@ -143,8 +143,8 @@ def approximate_cop(self) -> Union[xr.DataArray, np.array]: """ Calculate the coefficient of performance (COP) for the system. - Notes: - ------ + Notes + ----- Returns 0 where the source inlet temperature is greater than the sink outlet temperature. Returns diff --git a/scripts/build_direct_heat_source_utilisation_profiles.py b/scripts/build_direct_heat_source_utilisation_profiles.py index a8aae12a8..2dd9a53d7 100644 --- a/scripts/build_direct_heat_source_utilisation_profiles.py +++ b/scripts/build_direct_heat_source_utilisation_profiles.py @@ -1,5 +1,4 @@ # SPDX-FileCopyrightText: Contributors to PyPSA-Eur - # # SPDX-License-Identifier: MIT """ From 04f2ae970ce3dac448ee2204cb4f57d86d0c684e Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 14 Apr 2025 14:31:31 +0200 Subject: [PATCH 631/669] Fix: wildcards of build_renewable_profiles for scenario management 'base' were not the same --- scripts/_helpers.py | 1 + 1 file changed, 1 insertion(+) diff --git a/scripts/_helpers.py b/scripts/_helpers.py index 47b45525b..e94bd03dc 100644 --- a/scripts/_helpers.py +++ b/scripts/_helpers.py @@ -134,6 +134,7 @@ def get_run_path(fn, dir, rdir, shared_resources, exclude_from_shared): "cluster_network_base_s_{clusters}", "profile_{clusters}_", "build_renewable_profile_{clusters}", + "regions_by_class_{clusters}", "availability_matrix_", "determine_availability_matrix_", "solar_thermal", From df93666677ea4efcaad9303d00a98b657b7d1307 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 14 Apr 2025 15:24:40 +0200 Subject: [PATCH 632/669] rename prefix --- config/config.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/config/config.yaml b/config/config.yaml index 906a745aa..547e35a0a 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20250404-fit_for_2050 + prefix: 20250414_merge_master_april name: # - CurrentPolicies - KN2045_Bal_v4 From 03e343db426b691a3b8e55bae82ed55827d73a14 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 14 Apr 2025 15:25:13 +0200 Subject: [PATCH 633/669] use absolute imports --- scripts/build_tes_capacity/run.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/scripts/build_tes_capacity/run.py b/scripts/build_tes_capacity/run.py index ecb51eeef..47d0ab5bd 100644 --- a/scripts/build_tes_capacity/run.py +++ b/scripts/build_tes_capacity/run.py @@ -36,9 +36,10 @@ import logging import xarray as xr -from _helpers import set_scenario_config from tes_capacity_approximator import TesCapacityApproximator +from scripts._helpers import set_scenario_config + logger = logging.getLogger(__name__) if __name__ == "__main__": From 4ed9713d79ddac5049a115c80b6d0f97c7293827 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 14 Apr 2025 15:27:55 +0200 Subject: [PATCH 634/669] switch back to get from _helpers --- scripts/prepare_sector_network.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 61ea1ffa0..2714049de 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -4995,7 +4995,7 @@ def add_industry( ) # aviation - demand_factor = options["aviation_demand_factor"] + demand_factor = get(options["aviation_demand_factor"], investment_year) if demand_factor != 1: logger.warning( f"Changing aviation demand by {demand_factor * 100 - 100:+.2f}%." From 4ef92fc0c6df84f514d9290a1f1d24380af6e6b2 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 15 Apr 2025 09:26:55 +0200 Subject: [PATCH 635/669] remove duplicate aviation sector --- scripts/prepare_sector_network.py | 45 ------------------------------- 1 file changed, 45 deletions(-) diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 2714049de..955d1268c 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -4994,51 +4994,6 @@ def add_industry( efficiency3=process_co2_per_naphtha, ) - # aviation - demand_factor = get(options["aviation_demand_factor"], investment_year) - if demand_factor != 1: - logger.warning( - f"Changing aviation demand by {demand_factor * 100 - 100:+.2f}%." - ) - - all_aviation = ["total international aviation", "total domestic aviation"] - - p_set = ( - demand_factor - * pop_weighted_energy_totals.loc[nodes, all_aviation].sum(axis=1) - * 1e6 - / nhours - ).rename(lambda x: x + " kerosene for aviation") - - if not options["regional_oil_demand"]: - p_set = p_set.sum() - - n.add( - "Bus", - spatial.oil.kerosene, - location=spatial.oil.demand_locations, - carrier="kerosene for aviation", - unit="MWh_LHV", - ) - - n.add( - "Load", - spatial.oil.kerosene, - bus=spatial.oil.kerosene, - carrier="kerosene for aviation", - p_set=p_set, - ) - - n.add( - "Link", - spatial.oil.kerosene, - bus0=spatial.oil.nodes, - bus1=spatial.oil.kerosene, - bus2="co2 atmosphere", - carrier="kerosene for aviation", - p_nom_extendable=True, - efficiency2=costs.at["oil", "CO2 intensity"], - ) # TODO simplify bus expression n.add( "Load", From 07b8b3f677d8136687a34ffe86672bf7e0e96b79 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 15 Apr 2025 09:27:12 +0200 Subject: [PATCH 636/669] get correct investments year for aviation --- scripts/prepare_sector_network.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 955d1268c..111c10d02 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -5164,13 +5164,14 @@ def add_aviation( pop_weighted_energy_totals: pd.DataFrame, options: dict, spatial: SimpleNamespace, + investment_year: int, ) -> None: logger.info("Add aviation") nodes = pop_layout.index nhours = n.snapshot_weightings.generators.sum() - demand_factor = options["aviation_demand_factor"] + demand_factor = get(options["aviation_demand_factor"], investment_year) if demand_factor != 1: logger.warning( f"Changing aviation demand by {demand_factor * 100 - 100:+.2f}%." @@ -6471,6 +6472,7 @@ def add_import_options( pop_weighted_energy_totals=pop_weighted_energy_totals, options=options, spatial=spatial, + investment_year=investment_year, ) if options["heating"]: From 9e17e5c1a41d396e73d5178ee326bd726f42ed74 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 15 Apr 2025 09:28:58 +0200 Subject: [PATCH 637/669] load_costs instead of prepare_costs --- scripts/pypsa-de/export_ariadne_variables.py | 7 +++---- scripts/pypsa-de/modify_prenetwork.py | 14 ++++---------- scripts/pypsa-de/plot_ariadne_report.py | 4 ++-- 3 files changed, 9 insertions(+), 16 deletions(-) diff --git a/scripts/pypsa-de/export_ariadne_variables.py b/scripts/pypsa-de/export_ariadne_variables.py index b81f29eda..60f503044 100644 --- a/scripts/pypsa-de/export_ariadne_variables.py +++ b/scripts/pypsa-de/export_ariadne_variables.py @@ -15,8 +15,7 @@ from numpy import isclose from scripts._helpers import configure_logging, mock_snakemake -from scripts.add_electricity import calculate_annuity -from scripts.prepare_sector_network import prepare_costs +from scripts.add_electricity import calculate_annuity, load_costs logger = logging.getLogger(__name__) @@ -4668,7 +4667,7 @@ def get_operational_and_capital_costs(year): """ var = pd.Series() ind = planning_horizons.index(year) - costs = prepare_costs( + costs = load_costs( snakemake.input.costs[ind], snakemake.params.costs, nyears=1, @@ -5471,7 +5470,7 @@ def get_data( costs = list( map( - lambda _costs: prepare_costs( + lambda _costs: load_costs( _costs, snakemake.params.costs, nyears, diff --git a/scripts/pypsa-de/modify_prenetwork.py b/scripts/pypsa-de/modify_prenetwork.py index 2409a1192..2084a163d 100644 --- a/scripts/pypsa-de/modify_prenetwork.py +++ b/scripts/pypsa-de/modify_prenetwork.py @@ -8,7 +8,7 @@ from scripts._helpers import configure_logging, mock_snakemake, sanitize_custom_columns from scripts.add_electricity import load_costs -from scripts.prepare_sector_network import lossy_bidirectional_links, prepare_costs +from scripts.prepare_sector_network import lossy_bidirectional_links logger = logging.getLogger(__name__) @@ -1300,9 +1300,10 @@ def scale_capacity(n, scaling): nhours = n.snapshot_weightings.generators.sum() nyears = nhours / 8760 - costs = prepare_costs( + costs = load_costs( snakemake.input.costs, snakemake.params.costs, + snakemake.params.max_hours, nyears, ) @@ -1329,17 +1330,10 @@ def scale_capacity(n, scaling): wkn = pd.read_csv(fn, index_col=0) add_wasserstoff_kernnetz(n, wkn, costs) - costs_loaded = load_costs( - snakemake.input.costs, - snakemake.params.costs, - snakemake.params.max_hours, - nyears, - ) - # change to NEP21 costs transmission_costs_from_modified_cost_data( n, - costs_loaded, + costs, snakemake.params.transmission_costs, ) diff --git a/scripts/pypsa-de/plot_ariadne_report.py b/scripts/pypsa-de/plot_ariadne_report.py index 09d38e29d..a702fe97d 100644 --- a/scripts/pypsa-de/plot_ariadne_report.py +++ b/scripts/pypsa-de/plot_ariadne_report.py @@ -20,8 +20,8 @@ from pypsa.plot import add_legend_circles, add_legend_lines, add_legend_patches from scripts._helpers import configure_logging, mock_snakemake +from scripts.add_electricity import load_costs from scripts.plot_power_network import assign_location -from scripts.prepare_sector_network import prepare_costs logger = logging.getLogger(__name__) @@ -2682,7 +2682,7 @@ def plot_h2_trade( costs = list( map( - lambda _costs: prepare_costs( + lambda _costs: load_costs( _costs, snakemake.params.costs, nyears, From 89f9ecc0d1ccbddbc1842691a9a7782225ab4a72 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 15 Apr 2025 09:38:59 +0200 Subject: [PATCH 638/669] simplify nep_costs --- scripts/pypsa-de/modify_prenetwork.py | 35 ++++++--------------------- 1 file changed, 8 insertions(+), 27 deletions(-) diff --git a/scripts/pypsa-de/modify_prenetwork.py b/scripts/pypsa-de/modify_prenetwork.py index 2084a163d..62a1e3afa 100644 --- a/scripts/pypsa-de/modify_prenetwork.py +++ b/scripts/pypsa-de/modify_prenetwork.py @@ -1041,30 +1041,11 @@ def enforce_transmission_project_build_years(n, current_year): n.links.loc[dc_future, "p_nom_max"] = 0.0 -def force_connection_nep_offshore(n, current_year): +def force_connection_nep_offshore(n, current_year, costs): # WARNING this code adds a new generator for the offwind connection # at an onshore locations. These extra capacities are not accounted # for in the land use constraint - # Load costs - nep23_costs = ( - pd.read_csv( - snakemake.input.costs_modifications, - index_col=0, - ) - .query( - """ - source == 'NEP2023' \ - & technology.str.contains('offwind') \ - & parameter == 'investment' - """ - ) - .rename(columns={"value": "investment"}) - ) - # kW to MW - nep23_costs.at["offwind-ac-station", "investment"] *= 1000 - nep23_costs.at["offwind-dc-station", "investment"] *= 1000 - # Load shapes and projects offshore = pd.read_csv(snakemake.input.offshore_connection_points, index_col=0) @@ -1112,10 +1093,10 @@ def force_connection_nep_offshore(n, current_year): dc_connection_totals = ( dc_projects["Trassenlänge in km"] * ( - 2 / 3 * nep23_costs.at["offwind-dc-connection-submarine", "investment"] - + 1 / 3 * nep23_costs.at["offwind-dc-connection-underground", "investment"] + 2 / 3 * costs.at["offwind-dc-connection-submarine", "investment"] + + 1 / 3 * costs.at["offwind-dc-connection-underground", "investment"] ) - + nep23_costs.at["offwind-dc-station", "investment"] + + costs.at["offwind-dc-station", "investment"] ) * dc_projects["Übertragungsleistung in MW"] dc_connection_overnight_costs = ( @@ -1181,10 +1162,10 @@ def force_connection_nep_offshore(n, current_year): ac_connection_totals = ( ac_projects["Trassenlänge in km"] * ( - 2 / 3 * nep23_costs.at["offwind-ac-connection-submarine", "investment"] - + 1 / 3 * nep23_costs.at["offwind-ac-connection-underground", "investment"] + 2 / 3 * costs.at["offwind-ac-connection-submarine", "investment"] + + 1 / 3 * costs.at["offwind-ac-connection-underground", "investment"] ) - + nep23_costs.at["offwind-ac-station", "investment"] + + costs.at["offwind-ac-station", "investment"] ) * ac_projects["Übertragungsleistung in MW"] ac_connection_overnight_costs = ( @@ -1356,7 +1337,7 @@ def scale_capacity(n, scaling): drop_duplicate_transmission_projects(n) - force_connection_nep_offshore(n, current_year) + force_connection_nep_offshore(n, current_year, costs) scale_capacity(n, snakemake.params.scale_capacity) From d6aca0ba9461eaf814e63577eb6dad6b5513f20b Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 15 Apr 2025 09:55:07 +0200 Subject: [PATCH 639/669] adjust to new naming of wind generators with resource classes --- scripts/pypsa-de/modify_prenetwork.py | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/scripts/pypsa-de/modify_prenetwork.py b/scripts/pypsa-de/modify_prenetwork.py index 62a1e3afa..f77178a7d 100644 --- a/scripts/pypsa-de/modify_prenetwork.py +++ b/scripts/pypsa-de/modify_prenetwork.py @@ -1045,6 +1045,10 @@ def force_connection_nep_offshore(n, current_year, costs): # WARNING this code adds a new generator for the offwind connection # at an onshore locations. These extra capacities are not accounted # for in the land use constraint + if not snakemake.config["renewable"]["offwind-dc"]["resource_classes"] == 1: + logger.warning( + "Number of offshore wind resource classes are not equal to 0. Assigning all offshore wind from NEP to class 0." + ) # Load shapes and projects offshore = pd.read_csv(snakemake.input.offshore_connection_points, index_col=0) @@ -1080,7 +1084,7 @@ def force_connection_nep_offshore(n, current_year, costs): nordsee_duck_node = regions_offshore.index[ regions_offshore.contains(Point(6.19628, 54.38543)) ][0] - nordsee_duck_off = f"{nordsee_duck_node} offwind-dc-{current_year}" + nordsee_duck_off = f"{nordsee_duck_node} 0 offwind-dc-{current_year}" dc_projects = goffshore[ (goffshore.Inbetriebnahmejahr > current_year - 5) @@ -1109,7 +1113,7 @@ def force_connection_nep_offshore(n, current_year, costs): logger.info(f"Forcing in NEP offshore DC projects with capacity:\n {dc_power}") for node in dc_power.index: - node_off = f"{node} offwind-dc-{current_year}" + node_off = f"{node} 0 offwind-dc-{current_year}" if node_off not in n.generators.index: logger.info(f"Adding generator {node_off}") @@ -1137,7 +1141,7 @@ def force_connection_nep_offshore(n, current_year, costs): ] for existing in existings: node = n.generators.at[existing, "bus"] - node_off = f"{node} offwind-dc-{current_year}" + node_off = f"{node} 0 offwind-dc-{current_year}" if node_off not in n.generators.index: logger.info(f"adding for dummy land constraint {node_off}") n.generators.loc[node_off] = n.generators.loc[nordsee_duck_off] @@ -1178,7 +1182,7 @@ def force_connection_nep_offshore(n, current_year, costs): logger.info(f"Forcing in NEP offshore AC projects with capacity:\n {ac_power}") for node in ac_power.index: - node_off = f"{node} offwind-ac-{current_year}" + node_off = f"{node} 0 offwind-ac-{current_year}" if node_off not in n.generators.index: logger.error( From 306e989fb0ce810c106f0066202ab52c732bb4e5 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 15 Apr 2025 11:44:08 +0200 Subject: [PATCH 640/669] some more conforming with upstream changes --- Snakefile | 2 ++ scripts/pypsa-de/export_ariadne_variables.py | 2 ++ scripts/pypsa-de/plot_ariadne_report.py | 7 ++++--- scripts/pypsa-de/plot_hydrogen_network_incl_kernnetz.py | 5 +++-- 4 files changed, 11 insertions(+), 5 deletions(-) diff --git a/Snakefile b/Snakefile index 2b5da2fd6..95fee4b6d 100644 --- a/Snakefile +++ b/Snakefile @@ -588,6 +588,7 @@ rule export_ariadne_variables: params: planning_horizons=config_provider("scenario", "planning_horizons"), hours=config_provider("clustering", "temporal", "resolution_sector"), + max_hours=config_provider("electricity", "max_hours"), costs=config_provider("costs"), config_industry=config_provider("industry"), energy_totals_year=config_provider("energy", "energy_totals_year"), @@ -760,6 +761,7 @@ rule plot_ariadne_report: run=config_provider("run", "name"), foresight=config_provider("foresight"), costs=config_provider("costs"), + max_hours=config_provider("electricity", "max_hours"), post_discretization=config_provider("solving", "options", "post_discretization"), NEP_year=config_provider("costs", "NEP"), hours=config_provider("clustering", "temporal", "resolution_sector"), diff --git a/scripts/pypsa-de/export_ariadne_variables.py b/scripts/pypsa-de/export_ariadne_variables.py index 60f503044..2b73ebb40 100644 --- a/scripts/pypsa-de/export_ariadne_variables.py +++ b/scripts/pypsa-de/export_ariadne_variables.py @@ -4670,6 +4670,7 @@ def get_operational_and_capital_costs(year): costs = load_costs( snakemake.input.costs[ind], snakemake.params.costs, + snakemake.params.max_hours, nyears=1, ) @@ -5473,6 +5474,7 @@ def get_data( lambda _costs: load_costs( _costs, snakemake.params.costs, + snakemake.params.max_hours, nyears, ).multiply(1e-9), # in bn € snakemake.input.costs, diff --git a/scripts/pypsa-de/plot_ariadne_report.py b/scripts/pypsa-de/plot_ariadne_report.py index a702fe97d..f4503df02 100644 --- a/scripts/pypsa-de/plot_ariadne_report.py +++ b/scripts/pypsa-de/plot_ariadne_report.py @@ -21,7 +21,7 @@ from scripts._helpers import configure_logging, mock_snakemake from scripts.add_electricity import load_costs -from scripts.plot_power_network import assign_location +from scripts.make_summary import assign_locations logger = logging.getLogger(__name__) @@ -1594,7 +1594,7 @@ def group_pipes(df, drop_direction=False): def plot_h2_map(n, regions, savepath, only_de=False): logger.info("Plotting H2 map") logger.info("Assigning location") - assign_location(n) + assign_locations(n) h2_storage = n.stores[n.stores.carrier.isin(["H2", "H2 Store"])] regions["H2"] = ( @@ -1820,7 +1820,7 @@ def plot_h2_map(n, regions, savepath, only_de=False): def plot_h2_map_de(n, regions, tech_colors, savepath, specify_buses=None): - assign_location(n) + assign_locations(n) h2_storage = n.stores[n.stores.carrier.isin(["H2", "H2 Store"])] regions["H2"] = ( @@ -2685,6 +2685,7 @@ def plot_h2_trade( lambda _costs: load_costs( _costs, snakemake.params.costs, + snakemake.params.max_hours, nyears, ).multiply(1e-9), # in bn EUR snakemake.input.costs, diff --git a/scripts/pypsa-de/plot_hydrogen_network_incl_kernnetz.py b/scripts/pypsa-de/plot_hydrogen_network_incl_kernnetz.py index a68c0b6cb..f88233c97 100644 --- a/scripts/pypsa-de/plot_hydrogen_network_incl_kernnetz.py +++ b/scripts/pypsa-de/plot_hydrogen_network_incl_kernnetz.py @@ -15,7 +15,8 @@ from pypsa.plot import add_legend_circles, add_legend_lines, add_legend_patches from scripts._helpers import configure_logging, mock_snakemake, set_scenario_config -from scripts.plot_power_network import assign_location, load_projection +from scripts.make_summary import assign_locations +from scripts.plot_power_network import load_projection logger = logging.getLogger(__name__) @@ -47,7 +48,7 @@ def plot_h2_map(n, regions): # if "H2 pipeline" not in n.links.carrier.unique(): # return - assign_location(n) + assign_locations(n) h2_storage = n.stores.query("carrier == 'H2'") regions["H2"] = ( From 0ef0b64e21222f8e9b53937eac7bc3adff14dac5 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 15 Apr 2025 11:46:40 +0200 Subject: [PATCH 641/669] add another color for 2050 --- scripts/pypsa-de/plot_ariadne_report.py | 1 + 1 file changed, 1 insertion(+) diff --git a/scripts/pypsa-de/plot_ariadne_report.py b/scripts/pypsa-de/plot_ariadne_report.py index f4503df02..0db813e1a 100644 --- a/scripts/pypsa-de/plot_ariadne_report.py +++ b/scripts/pypsa-de/plot_ariadne_report.py @@ -95,6 +95,7 @@ "cadetblue", "hotpink", "darkviolet", + "gold", ] markers = [ "v", From c7a7038a3fbf2892808acdd603ff5ce4d3b99a7c Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 16 Apr 2025 17:16:46 +0200 Subject: [PATCH 642/669] complement datafiles --- rules/retrieve.smk | 2 ++ 1 file changed, 2 insertions(+) diff --git a/rules/retrieve.smk b/rules/retrieve.smk index 55b2c237b..96628bdd7 100755 --- a/rules/retrieve.smk +++ b/rules/retrieve.smk @@ -28,6 +28,8 @@ if config["enable"]["retrieve"] and config["enable"].get("retrieve_databundle", "gebco/GEBCO_2014_2D.nc", "GDP_per_capita_PPP_1990_2015_v2.nc", "ppp_2019_1km_Aggregated.tif", + "era5-HDD-per-country.csv", + "era5-runoff-per-country.csv", ] rule retrieve_databundle: From 62e1016a33d3fcb37fb5d049c675fc5ff98906ad Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 7 May 2025 10:51:30 +0200 Subject: [PATCH 643/669] start by making Mix the default scenario --- config/config.de.yaml | 10 ++++++++++ config/scenarios.manual.yaml | 20 +------------------- 2 files changed, 11 insertions(+), 19 deletions(-) diff --git a/config/config.de.yaml b/config/config.de.yaml index 5f9436b37..963b68da9 100644 --- a/config/config.de.yaml +++ b/config/config.de.yaml @@ -269,6 +269,9 @@ first_technology_occurrence: costs: horizon: "mean" # "optimist", "pessimist" or "mean" + NEP: 2023 + transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") + # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#sector sector: @@ -342,6 +345,9 @@ sector: # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#industry industry: ammonia: false + steam_biomass_fraction: 0.4 + steam_hydrogen_fraction: 0.3 + steam_electricity_fraction: 0.3 St_primary_fraction: 2020: 0.6 2025: 0.55 @@ -511,6 +517,10 @@ solving: # EEG2023; Ziel for 2024: 88 GW and for 2026: 128 GW, # assuming at least 1/3 of difference reached in 2025 2025: 101 + Link: + H2 Electrolysis: + DE: + 2030: 5 # For reference, this are the values specified in the laws # limits_capacity_min: # Generator: diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 121f4c7cb..d9e7eb465 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -72,32 +72,14 @@ ExPol: KN2045_Mix: +# Default scenario # Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren # Breites Energieträgerportfolio in der Endenergie (Strom, Wasserstoff, synthetische Kraftstoffe) # Ausbau der erneuerbare Stromerzeugung erreicht politisch gesetzte Ziele # Importe erneuerbar erzeugter Energien auf mittlerem Niveau # dient als Referenzszenario in der Familie der Ariadne-Szenarien - - iiasa_database: - reference_scenario: KN2045_Mix co2_budget_DE_source: KSG - costs: - horizon: "mean" - NEP: 2023 - transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") - solving: - constraints: - limits_capacity_min: - Link: - H2 Electrolysis: - DE: - 2030: 5 - - industry: - steam_biomass_fraction: 0.4 - steam_hydrogen_fraction: 0.3 - steam_electricity_fraction: 0.3 KN2045_Elek: # Fokus auf dem Hochlauf von Technologien zur direkten Elektrifizierung der Sektoren From 4589583941dd2f4e375df7b35bb732a7f71c66a3 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 7 May 2025 10:57:33 +0200 Subject: [PATCH 644/669] make script more robust --- scripts/pypsa-de/build_scenarios.py | 40 +++++++++++++++++++++++++---- 1 file changed, 35 insertions(+), 5 deletions(-) diff --git a/scripts/pypsa-de/build_scenarios.py b/scripts/pypsa-de/build_scenarios.py index 31900d51f..0d0ef410a 100644 --- a/scripts/pypsa-de/build_scenarios.py +++ b/scripts/pypsa-de/build_scenarios.py @@ -135,7 +135,11 @@ def write_to_scenario_yaml(input, output, scenarios, df): file_path = Path(input) config = yaml.load(file_path) for scenario in scenarios: - reference_scenario = config[scenario]["iiasa_database"]["reference_scenario"] + reference_scenario = ( + config[scenario] + .get("iiasa_database", {}) + .get("reference_scenario", "KN2045_Mix") + ) planning_horizons = [ 2020, @@ -165,7 +169,11 @@ def write_to_scenario_yaml(input, output, scenarios, df): if not config[scenario].get("sector"): config[scenario]["sector"] = {} - config[scenario]["sector"]["aviation_demand_factor"] = {} + if config[scenario]["sector"].get("aviation_demand_factor") is not None: + logger.warning(f"Overwriting aviation_demand_factor in {scenario} scenario") + else: + config[scenario]["sector"]["aviation_demand_factor"] = {} + for year in planning_horizons: config[scenario]["sector"]["aviation_demand_factor"][year] = round( aviation_demand_factor.loc[year].item(), 4 @@ -178,18 +186,40 @@ def write_to_scenario_yaml(input, output, scenarios, df): dri_fraction = get_DRI_share( df.loc[:, reference_scenario, :], planning_horizons ) + if not config[scenario].get("industry"): + config[scenario]["industry"] = {} + + if config[scenario]["industry"].get("St_primary_fraction") is not None: + logger.warning(f"Overwriting St_primary_fraction in {scenario} scenario") + else: + config[scenario]["industry"]["St_primary_fraction"] = {} - config[scenario]["industry"]["St_primary_fraction"] = {} - config[scenario]["industry"]["DRI_fraction"] = {} for year in st_primary_fraction.columns: config[scenario]["industry"]["St_primary_fraction"][year] = round( st_primary_fraction.loc["Primary_Steel_Share", year].item(), 4 ) + + if config[scenario]["industry"].get("DRI_fraction") is not None: + logger.warning(f"Overwriting DRI_fraction in {scenario} scenario") + else: + config[scenario]["industry"]["DRI_fraction"] = {} + + for year in dri_fraction.columns: config[scenario]["industry"]["DRI_fraction"][year] = round( dri_fraction.loc["DRI_Steel_Share", year].item(), 4 ) + if not config[scenario].get("solving"): + config[scenario]["solving"] = {} + if not config[scenario]["solving"].get("constraints"): + config[scenario]["solving"]["constraints"] = {} + if ( + config[scenario]["solving"]["constraints"].get("co2_budget_national") + is not None + ): + logger.warning(f"Overwriting co2_budget_national in {scenario} scenario") + else: + config[scenario]["solving"]["constraints"]["co2_budget_national"] = {} - config[scenario]["solving"]["constraints"]["co2_budget_national"] = {} for year, target in co2_budget_fractions.items(): config[scenario]["solving"]["constraints"]["co2_budget_national"][year] = {} config[scenario]["solving"]["constraints"]["co2_budget_national"][year][ From d9c35d1a1e6d5e8902c2fd845cde922b423efd1d Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 7 May 2025 11:48:34 +0200 Subject: [PATCH 645/669] - change syntax of national co2_budget - define a default national_co2_budget - allow empty scenario, which falls back to the defaults specified in pypsa.de.yaml --- config/config.de.yaml | 10 +++++ config/scenarios.manual.yaml | 3 +- scripts/pypsa-de/additional_functionality.py | 43 +++++++++++--------- scripts/pypsa-de/build_scenarios.py | 35 ++++++++++++---- 4 files changed, 61 insertions(+), 30 deletions(-) diff --git a/config/config.de.yaml b/config/config.de.yaml index 963b68da9..7f74b88af 100644 --- a/config/config.de.yaml +++ b/config/config.de.yaml @@ -434,6 +434,16 @@ solving: H2 pipeline retrofitted: 0.05 fractional_last_unit_size: true constraints: + # The default CO2 budget uses the KSG targets, and the non CO2 emissions from the REMIND model in the KN2045_Mix scenario + co2_budget_national: + DE: + 2020: 0.671 + 2025: 0.523 + 2030: 0.346 + 2035: 0.216 + 2040: 0.09 + 2045: -0.05 + 2050: -0.048 efuel_export_ban: false limits_capacity_max: Generator: diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index d9e7eb465..c241feff3 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -72,13 +72,12 @@ ExPol: KN2045_Mix: -# Default scenario +# Default scenario, defined in pypsa.de.yaml # Ausgewogener Mix an Technologien zur Dekarbonisierung der Sektoren # Breites Energieträgerportfolio in der Endenergie (Strom, Wasserstoff, synthetische Kraftstoffe) # Ausbau der erneuerbare Stromerzeugung erreicht politisch gesetzte Ziele # Importe erneuerbar erzeugter Energien auf mittlerem Niveau # dient als Referenzszenario in der Familie der Ariadne-Szenarien - co2_budget_DE_source: KSG KN2045_Elek: diff --git a/scripts/pypsa-de/additional_functionality.py b/scripts/pypsa-de/additional_functionality.py index 8a6ef0043..4caa69fab 100644 --- a/scripts/pypsa-de/additional_functionality.py +++ b/scripts/pypsa-de/additional_functionality.py @@ -354,7 +354,7 @@ def electricity_import_limits(n, investment_year, limits_volume_max): ) -def add_co2limit_country(n, limit_countries, snakemake): +def add_national_co2_budgets(n, snakemake, national_co2_budgets, investment_year): """ Add a set of emissions limit constraints for specified countries. @@ -363,11 +363,12 @@ def add_co2limit_country(n, limit_countries, snakemake): Parameters ---------- n : pypsa.Network - limit_countries : dict - snakemake: snakemake object - """ - logger.info("Adding CO2 budget limit for each country as per unit of 1990 levels") + snakemake : snakemake.io.Snakemake + national_co2_budgets : dict + investment_year : int + """ + logger.info("Adding national CO2 budgets") nhours = n.snapshot_weightings.generators.sum() nyears = nhours / 8760 @@ -378,10 +379,10 @@ def add_co2limit_country(n, limit_countries, snakemake): co2_total_totals = co2_totals[sectors].sum(axis=1) * nyears - for ct in limit_countries: - limit = co2_total_totals[ct] * limit_countries[ct] + for ct in national_co2_budgets: + limit = co2_total_totals[ct] * national_co2_budgets[ct][investment_year] logger.info( - f"Limiting emissions in country {ct} to {limit_countries[ct]:.1%} of " + f"Limiting emissions in country {ct} to {national_co2_budgets[ct][investment_year]:.1%} of " f"1990 levels, i.e. {limit:,.2f} tCO2/a", ) @@ -418,10 +419,10 @@ def add_co2limit_country(n, limit_countries, snakemake): # Aviation demand energy_totals = pd.read_csv(snakemake.input.energy_totals, index_col=[0, 1]) domestic_aviation = energy_totals.loc[ - ("DE", snakemake.params.energy_year), "total domestic aviation" + (ct, snakemake.params.energy_year), "total domestic aviation" ] international_aviation = energy_totals.loc[ - ("DE", snakemake.params.energy_year), "total international aviation" + (ct, snakemake.params.energy_year), "total international aviation" ] domestic_factor = domestic_aviation / ( domestic_aviation + international_aviation @@ -440,8 +441,8 @@ def add_co2limit_country(n, limit_countries, snakemake): ) # Adding Efuel imports and exports to constraint - incoming_oil = n.links.index[n.links.index == "EU renewable oil -> DE oil"] - outgoing_oil = n.links.index[n.links.index == "DE renewable oil -> EU oil"] + incoming_oil = n.links.index[n.links.index == f"EU renewable oil -> {ct} oil"] + outgoing_oil = n.links.index[n.links.index == f"{ct} renewable oil -> EU oil"] lhs.append( ( @@ -459,8 +460,12 @@ def add_co2limit_country(n, limit_countries, snakemake): ).sum() ) - incoming_methanol = n.links.index[n.links.index == "EU methanol -> DE methanol"] - outgoing_methanol = n.links.index[n.links.index == "DE methanol -> EU methanol"] + incoming_methanol = n.links.index[ + n.links.index == f"EU methanol -> {ct} methanol" + ] + outgoing_methanol = n.links.index[ + n.links.index == f"{ct} methanol -> EU methanol" + ] lhs.append( ( @@ -480,8 +485,8 @@ def add_co2limit_country(n, limit_countries, snakemake): ) # Methane - incoming_CH4 = n.links.index[n.links.index == "EU renewable gas -> DE gas"] - outgoing_CH4 = n.links.index[n.links.index == "DE renewable gas -> EU gas"] + incoming_CH4 = n.links.index[n.links.index == f"EU renewable gas -> {ct} gas"] + outgoing_CH4 = n.links.index[n.links.index == f"{ct} renewable gas -> EU gas"] lhs.append( ( @@ -754,11 +759,11 @@ def additional_functionality(n, snapshots, snakemake): force_boiler_profiles_existing_per_boiler(n) if isinstance(constraints["co2_budget_national"], dict): - limit_countries = constraints["co2_budget_national"][investment_year] - add_co2limit_country( + add_national_co2_budgets( n, - limit_countries, snakemake, + constraints["co2_budget_national"], + investment_year, ) else: logger.warning("No national CO2 budget specified!") diff --git a/scripts/pypsa-de/build_scenarios.py b/scripts/pypsa-de/build_scenarios.py index 0d0ef410a..77270b8d8 100644 --- a/scripts/pypsa-de/build_scenarios.py +++ b/scripts/pypsa-de/build_scenarios.py @@ -135,10 +135,19 @@ def write_to_scenario_yaml(input, output, scenarios, df): file_path = Path(input) config = yaml.load(file_path) for scenario in scenarios: + if config.get(scenario) is None: + logger.warning( + f"Found an empty scenario config for {scenario}. Using default config `pypsa.de.yaml`." + ) + config[scenario] = {} + reference_scenario = ( config[scenario] .get("iiasa_database", {}) - .get("reference_scenario", "KN2045_Mix") + .get( + "reference_scenario", + snakemake.config["iiasa_database"]["reference_scenario"], + ) # Using the default reference scenario from pypsa.de.yaml ) planning_horizons = [ @@ -158,8 +167,13 @@ def write_to_scenario_yaml(input, output, scenarios, df): df.loc[snakemake.params.leitmodelle["transport"], reference_scenario, :], planning_horizons, ) - - co2_budget_source = config[scenario]["co2_budget_DE_source"] + if not config[scenario].get("co2_budget_DE_source"): + logger.info( + f"No CO2 budget source for DE specified in the scenario config. Using KSG targets and REMIND emissions from {reference_scenario} for the {scenario} scenario." + ) + co2_budget_source = "KSG" + else: + co2_budget_source = config[scenario]["co2_budget_DE_source"] co2_budget_fractions = get_co2_budget( df.loc[snakemake.params.leitmodelle["general"], reference_scenario], @@ -212,18 +226,21 @@ def write_to_scenario_yaml(input, output, scenarios, df): config[scenario]["solving"] = {} if not config[scenario]["solving"].get("constraints"): config[scenario]["solving"]["constraints"] = {} + if not config[scenario]["solving"]["constraints"].get("co2_budget_national"): + config[scenario]["solving"]["constraints"]["co2_budget_national"] = {} if ( - config[scenario]["solving"]["constraints"].get("co2_budget_national") + config[scenario]["solving"]["constraints"]["co2_budget_national"].get("DE") is not None ): - logger.warning(f"Overwriting co2_budget_national in {scenario} scenario") + logger.warning( + f"Overwriting co2_budget_national for DE in {scenario} scenario" + ) else: - config[scenario]["solving"]["constraints"]["co2_budget_national"] = {} + config[scenario]["solving"]["constraints"]["co2_budget_national"]["DE"] = {} for year, target in co2_budget_fractions.items(): - config[scenario]["solving"]["constraints"]["co2_budget_national"][year] = {} - config[scenario]["solving"]["constraints"]["co2_budget_national"][year][ - "DE" + config[scenario]["solving"]["constraints"]["co2_budget_national"]["DE"][ + year ] = target # write back to yaml file From fafaf9036703821914709093efd45c48fa1599d0 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 7 May 2025 11:54:48 +0200 Subject: [PATCH 646/669] simplify scenario definitions, fallback to defaults more often --- config/scenarios.manual.yaml | 82 ------------------------------------ 1 file changed, 82 deletions(-) diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index c241feff3..005fbbb9e 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -23,8 +23,6 @@ ExPol: 2050: 0.419 costs: - horizon: "mean" - NEP: 2023 transmission: "underground" # either overhead line ("overhead") or underground cable ("underground") solving: constraints: @@ -56,10 +54,6 @@ ExPol: DE: 2030: 215 # uba Projektionsbericht - industry: - steam_biomass_fraction: 0.4 - steam_hydrogen_fraction: 0.3 - steam_electricity_fraction: 0.3 sector: district_heating: @@ -88,12 +82,7 @@ KN2045_Elek: iiasa_database: reference_scenario: KN2045_Elek - co2_budget_DE_source: KSG - costs: - horizon: "mean" - NEP: 2023 - transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") solving: constraints: limits_volume_max: @@ -134,11 +123,6 @@ KN2045_Elek: 2040: 170 2045: 250 2050: 250 - limits_capacity_min: - Link: - H2 Electrolysis: - DE: - 2030: 5 industry: steam_biomass_fraction: 0.4 @@ -153,12 +137,7 @@ KN2045_H2: iiasa_database: reference_scenario: KN2045_H2 - co2_budget_DE_source: KSG - costs: - horizon: "mean" - NEP: 2023 - transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") solving: constraints: limits_volume_max: @@ -212,11 +191,6 @@ KN2045_H2: 2040: 0 2045: 200 2050: 200 - limits_capacity_min: - Link: - H2 Electrolysis: - DE: - 2030: 5 industry: steam_biomass_fraction: 0.4 @@ -232,34 +206,6 @@ KN2045_NFniedrig: iiasa_database: reference_scenario: KN2045plus_LowDemand - co2_budget_DE_source: KSG - - costs: - horizon: "mean" - NEP: 2023 - transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") - solving: - constraints: - # boundary condition of maximum volumes - limits_volume_max: - h2_import: - DE: - 2020: 0 - 2025: 5 - 2030: 15 - 2035: 115 - 2040: 220 - 2045: 325 - 2050: 325 - limits_capacity_min: - Link: - H2 Electrolysis: - DE: - 2030: 5 - industry: - steam_biomass_fraction: 0.4 - steam_hydrogen_fraction: 0.3 - steam_electricity_fraction: 0.3 sector: reduce_space_heat_exogenously_factor: @@ -280,34 +226,6 @@ KN2045_NFhoch: iiasa_database: reference_scenario: KN2045minus_SupplyFocus - co2_budget_DE_source: KSG - - costs: - horizon: "mean" - NEP: 2023 - transmission: "overhead" # either overhead line ("overhead") or underground cable ("underground") - solving: - constraints: - # boundary condition of maximum volumes - limits_volume_max: - h2_import: - DE: - 2020: 0 - 2025: 5 - 2030: 15 - 2035: 115 - 2040: 220 - 2045: 325 - 2050: 325 - limits_capacity_min: - Link: - H2 Electrolysis: - DE: - 2030: 5 - industry: - steam_biomass_fraction: 0.4 - steam_hydrogen_fraction: 0.3 - steam_electricity_fraction: 0.3 sector: reduce_space_heat_exogenously_factor: From 94941cd27558d77f9888889cadab1c988c529d95 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 7 May 2025 13:26:17 +0200 Subject: [PATCH 647/669] change prefix --- CHANGELOG.md | 1 + config/config.de.yaml | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 4ef0ca653..c22e96d02 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,4 +1,5 @@ # Changelog +- Simplified scenarion definition and made `Mix` the default scenario - 0.3: workflow is all public now, no longer requires credentials to internal data - Allowing myopic optimization until 2050 - CHP plants located in onshore regions without district heating are represented as EOP plants diff --git a/config/config.de.yaml b/config/config.de.yaml index 7f74b88af..9604f6a89 100644 --- a/config/config.de.yaml +++ b/config/config.de.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20250425_public_db + prefix: 20250507_simple_scenarios name: # - ExPol - KN2045_Mix From ac8456fbaaa2593c1fd7ef9564b63bd675ced5c2 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 12 May 2025 15:32:37 +0200 Subject: [PATCH 648/669] ariadne_template is data not resources --- Snakefile | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/Snakefile b/Snakefile index 8ced597b8..9636eb1e6 100644 --- a/Snakefile +++ b/Snakefile @@ -272,7 +272,7 @@ rule retrieve_ariadne_database: output: data=resources("ariadne_database.csv"), log: - "logs/pypsa-de/retrieve_ariadne_database.log", + logs("retrieve_ariadne_database.log"), resources: mem_mb=1000, script: @@ -570,7 +570,7 @@ rule download_ariadne_template: keep_local=True, ), output: - resources("template_ariadne_database.xlsx"), + "data/template_ariadne_database.xlsx", run: move(input[0], output[0]) @@ -589,7 +589,7 @@ rule export_ariadne_variables: NEP_year=config_provider("costs", "NEP"), NEP_transmission=config_provider("costs", "transmission"), input: - template=resources("template_ariadne_database.xlsx"), + template="data/template_ariadne_database.xlsx", industry_demands=expand( resources( "industrial_energy_demand_base_s_{clusters}_{planning_horizons}.csv" From 653fd49af97aaa2a9e31cb742a37098539f73aa2 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Mon, 12 May 2025 15:33:37 +0200 Subject: [PATCH 649/669] fix rounding error --- scripts/pypsa-de/export_ariadne_variables.py | 1 - 1 file changed, 1 deletion(-) diff --git a/scripts/pypsa-de/export_ariadne_variables.py b/scripts/pypsa-de/export_ariadne_variables.py index 9f0dd39e9..f465656d1 100644 --- a/scripts/pypsa-de/export_ariadne_variables.py +++ b/scripts/pypsa-de/export_ariadne_variables.py @@ -1239,7 +1239,6 @@ def get_primary_energy(n, region): **kwargs, ) .get(("Link", "DE gas compressing"), pd.Series(0)) - .round() .item() ) From e4a22b12fbd058dfe5a0c55c96327e0e683a1667 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 13 May 2025 10:24:19 +0200 Subject: [PATCH 650/669] disable interactive mode in final plotting script --- scripts/pypsa-de/plot_ariadne_scenario_comparison.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/scripts/pypsa-de/plot_ariadne_scenario_comparison.py b/scripts/pypsa-de/plot_ariadne_scenario_comparison.py index 27a29e93e..d2904d8fe 100644 --- a/scripts/pypsa-de/plot_ariadne_scenario_comparison.py +++ b/scripts/pypsa-de/plot_ariadne_scenario_comparison.py @@ -1,5 +1,8 @@ import os +import matplotlib + +matplotlib.use("Agg") # Use a non-interactive backend import matplotlib.pyplot as plt import pandas as pd @@ -12,10 +15,10 @@ def scenario_plot(df, var): unit = "billion EUR2020/yr" df = df.droplevel("Unit") ax = df.T.plot(xlabel="years", ylabel=str(unit), title=str(var)) - plt.close() prefix = snakemake.config["run"]["prefix"] var = var.replace("|", "-").replace("\\", "-").replace(" ", "-").replace("/", "-") ax.figure.savefig(f"results/{prefix}/ariadne_comparison/{var}", bbox_inches="tight") + plt.close(ax.figure) if __name__ == "__main__": @@ -46,5 +49,3 @@ def scenario_plot(df, var): for var in df._get_label_or_level_values("Variable"): scenario_plot(df.xs(var, level="Variable"), var) - - var = "Price|Carbon" From 891eb9f35e0554132ac0fcc3957a984684cf8a95 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Tue, 13 May 2025 11:22:50 +0200 Subject: [PATCH 651/669] decouple ariadne DB pre-workflow from scenario management --- Snakefile | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/Snakefile b/Snakefile index 9636eb1e6..3bac19229 100644 --- a/Snakefile +++ b/Snakefile @@ -266,13 +266,13 @@ rule retrieve_egon_data: rule retrieve_ariadne_database: params: - db_name=config_provider("iiasa_database", "db_name"), - leitmodelle=config_provider("iiasa_database", "leitmodelle"), - scenarios=config_provider("iiasa_database", "scenarios"), + db_name=config["iiasa_database"]["db_name"], + leitmodelle=config["iiasa_database"]["leitmodelle"], + scenarios=config["iiasa_database"]["scenarios"], output: - data=resources("ariadne_database.csv"), + data="resources/ariadne_database.csv", log: - logs("retrieve_ariadne_database.log"), + "logs/retrieve_ariadne_database.log", resources: mem_mb=1000, script: @@ -315,7 +315,7 @@ rule build_mobility_demand: planning_horizons=config_provider("scenario", "planning_horizons"), leitmodelle=config_provider("iiasa_database", "leitmodelle"), input: - ariadne=resources("ariadne_database.csv"), + ariadne="resources/ariadne_database.csv", clustered_pop_layout=resources("pop_layout_base_s_{clusters}.csv"), output: mobility_demand=resources( @@ -453,7 +453,7 @@ rule modify_existing_heating: iiasa_reference_scenario=config_provider("iiasa_database", "reference_scenario"), leitmodelle=config_provider("iiasa_database", "leitmodelle"), input: - ariadne=resources("ariadne_database.csv"), + ariadne="resources/ariadne_database.csv", existing_heating="data/existing_infrastructure/existing_heating_raw.csv", output: existing_heating=resources("existing_heating.csv"), @@ -501,7 +501,7 @@ rule modify_industry_demand: params: reference_scenario=config_provider("iiasa_database", "reference_scenario"), input: - ariadne=resources("ariadne_database.csv"), + ariadne="resources/ariadne_database.csv", industrial_production_per_country_tomorrow=resources( "industrial_production_per_country_tomorrow_{planning_horizons}.csv" ), @@ -639,7 +639,7 @@ rule plot_ariadne_variables: reference_scenario=config_provider("iiasa_database", "reference_scenario"), input: exported_variables_full=RESULTS + "ariadne/exported_variables_full.xlsx", - ariadne_database=resources("ariadne_database.csv"), + ariadne_database="resources/ariadne_database.csv", output: primary_energy=RESULTS + "ariadne/primary_energy.png", primary_energy_detailed=RESULTS + "ariadne/primary_energy_detailed.png", @@ -703,10 +703,10 @@ rule ariadne_all: rule build_scenarios: params: - scenarios=config_provider("run", "name"), - leitmodelle=config_provider("iiasa_database", "leitmodelle"), + scenarios=config["run"]["name"], + leitmodelle=config["iiasa_database"]["leitmodelle"], input: - ariadne_database=resources("ariadne_database.csv"), + ariadne_database="resources/ariadne_database.csv", scenario_yaml=config["run"]["scenarios"]["manual_file"], output: scenario_yaml=config["run"]["scenarios"]["file"], From 014c2226b0603c881386d31b27cd30d0049222e1 Mon Sep 17 00:00:00 2001 From: Michael Lindner Date: Wed, 14 May 2025 09:27:18 +0200 Subject: [PATCH 652/669] fix key error --- config/scenarios.manual.yaml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/config/scenarios.manual.yaml b/config/scenarios.manual.yaml index 005fbbb9e..eaa142a28 100644 --- a/config/scenarios.manual.yaml +++ b/config/scenarios.manual.yaml @@ -205,7 +205,7 @@ KN2045_NFniedrig: # dient als Referenzszenario in der Familie der Ariadne-Szenarien iiasa_database: - reference_scenario: KN2045plus_LowDemand + reference_scenario: KN2045_NFniedrig sector: reduce_space_heat_exogenously_factor: @@ -225,7 +225,7 @@ KN2045_NFhoch: # dient als Referenzszenario in der Familie der Ariadne-Szenarien iiasa_database: - reference_scenario: KN2045minus_SupplyFocus + reference_scenario: KN2045_NFhoch sector: reduce_space_heat_exogenously_factor: From 1f7ce921425e262acce671b14daede0e4683ce29 Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 14 May 2025 16:55:54 +0200 Subject: [PATCH 653/669] review: addition, removal and renaming of config parameters; removed hard-coded parameters; resolved variables containing acronyms; isolated nested function; general refactoring --- Snakefile | 6 +- config/config.sysgf.yaml | 8 +- config/config.yaml | 24 +- config/scenarios.sysgf.yaml | 40 +-- rules/build_sector.smk | 14 +- rules/solve_myopic.smk | 10 +- scripts/prepare_sector_network.py | 2 +- .../pypsa-de/add_district_heating_subnodes.py | 44 ++-- scripts/pypsa-de/build_existing_chp_de.py | 20 +- .../prepare_district_heating_subnodes.py | 249 ++++++++++-------- 10 files changed, 229 insertions(+), 188 deletions(-) diff --git a/Snakefile b/Snakefile index c46e69607..668bec523 100644 --- a/Snakefile +++ b/Snakefile @@ -588,8 +588,8 @@ rule retrieve_mastr: rule build_existing_chp_de: params: - add_district_heating_subnodes=config_provider( - "sector", "district_heating", "add_subnodes" + district_heating_subnodes=config_provider( + "sector", "district_heating", "subnodes" ), input: mastr_biomass="data/mastr/bnetza_open_mastr_2023-08-08_B_biomass.csv", @@ -603,7 +603,7 @@ rule build_existing_chp_de: resources( "district_heating_subnodes_base_s_{clusters}.geojson" ) - if config["sector"]["district_heating"].get("add_subnodes", True) + if config_provider("sector", "district_heating", "subnodes", "enable") else [] ), output: diff --git a/config/config.sysgf.yaml b/config/config.sysgf.yaml index be29e305f..7db5feda9 100644 --- a/config/config.sysgf.yaml +++ b/config/config.sysgf.yaml @@ -3,7 +3,7 @@ # SPDX-License-Identifier: CC0-1.0 run: - prefix: 20250320_dhsubnodes + prefix: 20250514_dhsubnodes name: - Baseline # - No_PTES @@ -83,7 +83,11 @@ wasserstoff_kernnetz: sector: district_heating: potential: 0.5 - add_subnodes: true + subnodes: + enable: true + limited_heat_sources: + geothermal: + ignore_missing_regions: true heat_pump_sources: urban central: - air diff --git a/config/config.yaml b/config/config.yaml index f079ab108..64e7ba7b7 100644 --- a/config/config.yaml +++ b/config/config.yaml @@ -4,7 +4,7 @@ # docs in https://pypsa-eur.readthedocs.io/en/latest/configuration.html#run run: - prefix: 20250416_dhsubnodes + prefix: 20250514_dhsubnodes name: # - CurrentPolicies - KN2045_Bal_v4 @@ -292,11 +292,23 @@ sector: 2040: 0.6 2045: 0.8 2050: 1.0 - add_subnodes: false - excluder_resolution: 10 - osm_landcover_codes: [21, 23, 32, 33] - max_groundwater_depth: -10 - ptes_potential_scalar: 1 + subnodes: + enable: false + nlargest: 40 + census_areas: + enable: true + min_district_heating_share: 0.01 + processing: + min_area: [10000, 100000, 0, 1000000] + buffer_factor: [0.01, 0.05, 0.05, 0] + limit_ptes_potential: + enable: true + limit_mother_nodes: true + excluder_resolution: 10 + osm_landcover_codes: [21, 23, 32, 33] + max_groundwater_depth: -10 + min_area: 10000 + default_capacity: 4500 heat_vent: urban central: true urban decentral: true diff --git a/config/scenarios.sysgf.yaml b/config/scenarios.sysgf.yaml index a06904bf7..5240145bf 100644 --- a/config/scenarios.sysgf.yaml +++ b/config/scenarios.sysgf.yaml @@ -34,9 +34,9 @@ No_PTES: electricity: false sector: absolute: - StorageUnit: + Store: urban central water pits: - p_nom_max: 0 + e_nom_max: 0 iiasa_database: reference_scenario: 8Gt_Bal_v3 fallback_reference_scenario: 8Gt_Bal_v3 @@ -67,11 +67,11 @@ LowPTESCAPEX: electricity: false sector: factor: - StorageUnit: + Store: urban central water pits: capital_cost: 0.5 absolute: - StorageUnit: + Store: urban central water pits: standing_loss: 0.00012121 urban central water tanks: @@ -108,11 +108,11 @@ HighPTESCAPEX: electricity: false sector: factor: - StorageUnit: + Store: urban central water pits: capital_cost: 2 absolute: - StorageUnit: + Store: urban central water pits: standing_loss: 0.00012121 urban central water tanks: @@ -149,7 +149,7 @@ LowStandingLosses: electricity: false sector: absolute: - StorageUnit: + Store: urban central water pits: standing_loss: 0 iiasa_database: @@ -183,7 +183,7 @@ HighStandingLosses: electricity: false sector: absolute: - StorageUnit: + Store: urban central water pits: standing_loss: 0.0012121 iiasa_database: @@ -214,7 +214,9 @@ HighStandingLosses: LowGroundWaterDepth: sector: district_heating: - max_groundwater_depth: -25 + subnodes: + limit_ptes_potential: + max_groundwater_depth: -25 iiasa_database: reference_scenario: 8Gt_Bal_v3 fallback_reference_scenario: 8Gt_Bal_v3 @@ -243,7 +245,9 @@ LowGroundWaterDepth: HighGroundWaterDepth: sector: district_heating: - max_groundwater_depth: 0 + subnodes: + limit_ptes_potential: + max_groundwater_depth: 0 iiasa_database: reference_scenario: 8Gt_Bal_v3 fallback_reference_scenario: 8Gt_Bal_v3 @@ -274,13 +278,13 @@ LowEtPRatio: electricity: false sector: factor: - StorageUnit: + Store: urban central water pits: - max_hours: 0.5 + energy to power ratio: 0.5 capital_cost: 0.5 - p_nom_max: 2 + e_nom_max: 2 absolute: - StorageUnit: + Store: urban central water pits: standing_loss: 0.00012121 urban central water tanks: @@ -317,13 +321,13 @@ HighEtPRatio: electricity: false sector: factor: - StorageUnit: + Store: urban central water pits: - max_hours: 2 + energy to power ratio: 2 capital_cost: 2 - p_nom_max: 0.5 + e_nom_max: 0.5 absolute: - StorageUnit: + Store: urban central water pits: standing_loss: 0.00012121 urban central water tanks: diff --git a/rules/build_sector.smk b/rules/build_sector.smk index af8c4b8d1..efd4914f2 100755 --- a/rules/build_sector.smk +++ b/rules/build_sector.smk @@ -199,9 +199,7 @@ rule build_temperature_profiles: drop_leap_day=config_provider("enable", "drop_leap_day"), input: pop_layout=resources("pop_layout_total.nc"), - regions_onshore=resources("regions_onshore_base-extended_s_{clusters}.geojson") if config["sector"][ - "district_heating" - ].get("add_subnodes", True) else resources("regions_onshore_base_s_{clusters}.geojson"), + regions_onshore=resources("regions_onshore_base-extended_s_{clusters}.geojson") if config_provider("sector", "district_heating", "subnodes", "enable") else resources("regions_onshore_base_s_{clusters}.geojson"), cutout=lambda w: input_cutout( w, config_provider("sector", "heat_demand_cutout")(w) ), @@ -270,9 +268,7 @@ rule build_central_heating_temperature_profiles: energy_totals_year=config_provider("energy", "energy_totals_year"), input: temp_air_total=resources("temp_air_total_base_s_{clusters}.nc"), - regions_onshore=resources("regions_onshore_base-extended_s_{clusters}.geojson") if config["sector"][ - "district_heating" -].get("add_subnodes", True) else resources("regions_onshore_base_s_{clusters}.geojson"), + regions_onshore=resources("regions_onshore_base-extended_s_{clusters}.geojson") if config_provider("sector", "district_heating", "subnodes", "enable") else resources("regions_onshore_base_s_{clusters}.geojson"), output: central_heating_forward_temperature_profiles=resources( "central_heating_forward_temperature_profiles_base_s_{clusters}_{planning_horizons}.nc" @@ -317,7 +313,7 @@ rule build_geothermal_heat_potential: input: isi_heat_potentials="data/isi_heat_utilisation_potentials.xlsx", regions_onshore=resources("regions_onshore_base-restricted_s_{clusters}.geojson") - if config["sector"]["district_heating"].get("add_subnodes", True) + if config_provider("sector", "district_heating", "subnodes", "enable") else resources("regions_onshore_base_s_{clusters}.geojson"), lau_regions="data/lau_regions.zip", output: @@ -361,9 +357,7 @@ rule build_cop_profiles: ), temp_soil_total=resources("temp_soil_total_base_s_{clusters}.nc"), temp_air_total=resources("temp_air_total_base_s_{clusters}.nc"), - regions_onshore=resources("regions_onshore_base-extended_s_{clusters}.geojson") if config["sector"][ - "district_heating" -].get("add_subnodes", True) else resources("regions_onshore_base_s_{clusters}.geojson"), + regions_onshore=resources("regions_onshore_base-extended_s_{clusters}.geojson") if config_provider("sector", "district_heating", "subnodes", "enable") else resources("regions_onshore_base_s_{clusters}.geojson"), output: cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), resources: diff --git a/rules/solve_myopic.smk b/rules/solve_myopic.smk index 7fbe5eb04..21b50b9ee 100644 --- a/rules/solve_myopic.smk +++ b/rules/solve_myopic.smk @@ -11,13 +11,11 @@ rule add_existing_baseyear: costs=config_provider("costs"), heat_pump_sources=config_provider("sector", "heat_pump_sources"), energy_totals_year=config_provider("energy", "energy_totals_year"), - add_district_heating_subnodes=config_provider( - "sector", "district_heating", "add_subnodes" - ), + add_district_heating_subnodes=config_provider("sector", "district_heating", "subnodes", "enable"), input: network=resources( "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" - ) if config["sector"]["district_heating"].get("add_subnodes", True) + ) if config_provider("sector", "district_heating", "subnodes", "enable") else resources( "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ), @@ -35,7 +33,7 @@ rule add_existing_baseyear: resources( "existing_heating_distribution_base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.csv" ) - if config["sector"]["district_heating"].get("add_subnodes", True) + if config_provider("sector", "district_heating", "subnodes", "enable") else resources( "existing_heating_distribution_base_s_{clusters}_{planning_horizons}.csv" ) @@ -99,7 +97,7 @@ rule add_brownfield: cluster_busmap=resources("busmap_base_s_{clusters}.csv"), network=resources( "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" - ) if config["sector"]["district_heating"].get("add_subnodes", True) + ) if config_provider("sector", "district_heating", "subnodes", "enable") else resources( "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ), diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index d9fda484d..91d5f7067 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -6591,7 +6591,7 @@ def add_import_options( if options["cluster_heat_buses"] and not first_year_myopic: cluster_heat_buses(n) - if not options["district_heating"]["add_subnodes"]: + if not options["district_heating"]["subnodes"]["enable"]: maybe_adjust_costs_and_potentials( n, snakemake.params["adjustments"], investment_year ) diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index 7e5c305d8..0fc63f0e2 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -27,7 +27,7 @@ def add_subnodes( subnodes: gpd.GeoDataFrame, cop: xr.DataArray, direct_heat_source_utilisation_profile: xr.DataArray, - head: Union[int, bool] = 40, + head: int = 40, ) -> None: """ Add largest district heating systems subnodes to the network. @@ -46,15 +46,13 @@ def add_subnodes( COPs for heat pumps. direct_heat_source_utilisation_profile : xr.DataArray Direct heat source utilisation profiles. + head : int + Number of largest district heating systems to be added as subnodes. Returns ------- None """ - # If head is boolean set it to 40 for default behavior - if isinstance(head, bool): - head = 40 - # Keep only n largest district heating networks according to head parameter subnodes_head = subnodes.sort_values( by="Wärmeeinspeisung in GWh/a", ascending=False @@ -86,11 +84,11 @@ def add_subnodes( n.add("Bus", buses.index, **buses) # Get heat loads for urban central heat and low-temperature heat for industry - uch_load_cluster = ( + urban_central_heat_load_cluster = ( n_copy.snapshot_weightings.generators @ n_copy.loads_t.p_set[f"{subnode['cluster']} urban central heat"] ) - lti_load_cluster = ( + low_temperature_heat_for_industry_load_cluster = ( n_copy.loads.loc[ f"{subnode['cluster']} low-temperature heat for industry", "p_set" ] @@ -98,7 +96,10 @@ def add_subnodes( ) # Calculate share of low-temperature heat for industry in total district heating load of cluster - dh_load_cluster = uch_load_cluster + lti_load_cluster + dh_load_cluster = ( + urban_central_heat_load_cluster + + low_temperature_heat_for_industry_load_cluster + ) dh_load_cluster_subnodes = subnodes_head.loc[ subnodes_head.cluster == subnode["cluster"], "yearly_heat_demand_MWh" @@ -112,13 +113,13 @@ def add_subnodes( ) demand_ratio = subnode["yearly_heat_demand_MWh"] / dh_load_cluster_subnodes - uch_load = demand_ratio * n_copy.loads_t.p_set.filter( + urban_central_heat_load = demand_ratio * n_copy.loads_t.p_set.filter( regex=f"{subnode['cluster']}.*urban central heat" ).sum(1).rename( f"{subnode['cluster']} {subnode['Stadt']} urban central heat" ) - lti_load = ( + low_temperature_heat_for_industry_load = ( demand_ratio * n_copy.loads.filter( regex=f"{subnode['cluster']}.*low-temperature heat for industry", @@ -129,11 +130,11 @@ def add_subnodes( # Calculate demand ratio between load of subnode according to Fernwärmeatlas and remaining load of assigned cluster demand_ratio = subnode["yearly_heat_demand_MWh"] / dh_load_cluster - uch_load = demand_ratio * n_copy.loads_t.p_set[ + urban_central_heat_load = demand_ratio * n_copy.loads_t.p_set[ f"{subnode['cluster']} urban central heat" ].rename(f"{subnode['cluster']} {subnode['Stadt']} urban central heat") - lti_load = ( + low_temperature_heat_for_industry_load = ( demand_ratio * n_copy.loads.loc[ f"{subnode['cluster']} low-temperature heat for industry", "p_set" @@ -145,7 +146,7 @@ def add_subnodes( "Load", f"{name} heat", bus=f"{name} heat", - p_set=uch_load, + p_set=urban_central_heat_load, carrier="urban central heat", location=f"{subnode['cluster']} {subnode['Stadt']}", ) @@ -154,21 +155,24 @@ def add_subnodes( "Load", f"{subnode['cluster']} {subnode['Stadt']} low-temperature heat for industry", bus=f"{name} heat", - p_set=lti_load, + p_set=low_temperature_heat_for_industry_load, carrier="low-temperature heat for industry", - location=location, + location=f"{subnode['cluster']} {subnode['Stadt']}", ) # Adjust loads of cluster buses - n.loads_t.p_set.loc[:, f'{subnode["cluster"]} urban central heat'] -= uch_load + n.loads_t.p_set.loc[ + :, f'{subnode["cluster"]} urban central heat' + ] -= urban_central_heat_load n.loads.loc[ f'{subnode["cluster"]} low-temperature heat for industry', "p_set" - ] -= lti_load + ] -= low_temperature_heat_for_industry_load if lost_load > 0: lost_load_subnode = subnode["yearly_heat_demand_MWh"] - ( - n.snapshot_weightings.generators @ uch_load + lti_load * 8760 + n.snapshot_weightings.generators @ urban_central_heat_load + + low_temperature_heat_for_industry_load * 8760 ) logger.warning( f"District heating load of {subnode['cluster']} {subnode['Stadt']} is reduced by {lost_load_subnode} MWh/a." @@ -349,8 +353,6 @@ def add_subnodes( "p_nom_max", ] = p_max_source - return - def extend_heating_distribution( existing_heating_distribution: pd.DataFrame, subnodes: gpd.GeoDataFrame @@ -455,7 +457,7 @@ def extend_heating_distribution( direct_heat_source_utilisation_profile=xr.open_dataarray( snakemake.input.direct_heat_source_utilisation_profiles ), - head=snakemake.params.district_heating["add_subnodes"], + head=snakemake.params.district_heating["subnodes"]["nlargest"], ) if snakemake.wildcards.planning_horizons == str(snakemake.params["baseyear"]): diff --git a/scripts/pypsa-de/build_existing_chp_de.py b/scripts/pypsa-de/build_existing_chp_de.py index affc6e110..fd3300839 100644 --- a/scripts/pypsa-de/build_existing_chp_de.py +++ b/scripts/pypsa-de/build_existing_chp_de.py @@ -208,7 +208,7 @@ def BP(cap, year): def assign_subnode( - CHP_de: pd.DataFrame, subnodes: gpd.GeoDataFrame, head: Union[bool, int] + CHP_de: pd.DataFrame, subnodes: gpd.GeoDataFrame, head: int = 40 ) -> pd.DataFrame: """ Assign subnodes to the CHP plants based on their location. @@ -240,15 +240,9 @@ def assign_subnode( CHP_de = CHP_de.to_crs(subnodes.crs) # Select largest subnodes - if isinstance(head, bool): - subnodes = subnodes.sort_values( - by="yearly_heat_demand_MWh", ascending=False - ).head(40) - else: - subnodes = subnodes.sort_values( - by="yearly_heat_demand_MWh", ascending=False - ).head(head) - + subnodes = subnodes.sort_values(by="yearly_heat_demand_MWh", ascending=False).head( + head + ) subnodes.index.rename("city", inplace=True) # Assign subnode to CHP plants based on the nuts3 region @@ -300,13 +294,15 @@ def assign_subnode( gdf = gpd.GeoDataFrame(geometry=geometry, crs=4326) CHP_de["bus"] = gpd.sjoin_nearest(gdf, regions, how="left")["name"] - if snakemake.params.add_district_heating_subnodes: + if snakemake.params.district_heating_subnodes["enable"]: subnodes = gpd.read_file( snakemake.input.district_heating_subnodes, columns=["Stadt", "yearly_heat_demand_MWh", "lau_shape"], ).set_index("Stadt") CHP_de = assign_subnode( - CHP_de, subnodes, head=snakemake.params.add_district_heating_subnodes + CHP_de, + subnodes, + head=snakemake.params.district_heating_subnodes["nlargest"], ) CHP_de.to_csv(snakemake.output.german_chp, index=False) diff --git a/scripts/pypsa-de/prepare_district_heating_subnodes.py b/scripts/pypsa-de/prepare_district_heating_subnodes.py index faff93486..23d642107 100644 --- a/scripts/pypsa-de/prepare_district_heating_subnodes.py +++ b/scripts/pypsa-de/prepare_district_heating_subnodes.py @@ -20,7 +20,7 @@ import zipfile import dask from dask.diagnostics import ProgressBar - +import weakref from scripts._helpers import ( configure_logging, @@ -144,9 +144,6 @@ def get_chunked_raster( # The OS will clean it up when the process exits or it's manually deleted dataset = rasterio.open(temp_path) - # Register finalizer to remove temporary file when dataset is garbage collected - import weakref - def cleanup(temp_path: str) -> None: try: os.unlink(temp_path) @@ -305,36 +302,52 @@ def prepare_subnodes( return subnodes -def process_geometries( - gdf: gpd.GeoDataFrame, min_area: float = None, buffer_factor: float = None +def process_district_heating_areas( + gdf: gpd.GeoDataFrame, + min_areas: list[float] = None, + buffer_factors: list[float] = None, ) -> gpd.GeoDataFrame: """ - Process geometries in a GeoDataFrame by dissolving, exploding, and optionally filtering and buffering. + Process geometries in a GeoDataFrame by uniting polygons of same city and applying optional area filters and buffers to disjoint subpolygons. + Performs iterative processing with multiple min_area and buffer_factor values. Parameters ---------- gdf : gpd.GeoDataFrame GeoDataFrame containing geometries to be processed. Must contain a 'Stadt' column for dissolving. - min_area : float, optional - Minimum area threshold. Geometries smaller than this will be filtered out. - buffer_factor : float, optional - Factor used to calculate buffer distance as a proportion of the square root of geometry area. + min_areas : list[float], optional + List of minimum area thresholds. Geometries smaller than these will be filtered out in each iteration. + buffer_factors : list[float], optional + List of factors used to calculate buffer distance as a proportion of the square root of geometry area. Returns ------- gpd.GeoDataFrame - Processed GeoDataFrame with dissolved and exploded geometries, optionally filtered and buffered. + Processed GeoDataFrame with optionally dissolved and exploded geometries. """ - gdf = gdf.dissolve("Stadt").explode(index_parts=False).reset_index(drop=False) - if min_area is not None: + + # Ensure both lists have the same length + iterations = max(len(min_areas), len(buffer_factors)) + + # Iterative processing with different parameters + for i in range(iterations): + gdf = gdf.explode() + # Get current parameters, use 0 if index out of bounds + min_area = min_areas[i] if i < len(min_areas) else 0 + buffer_factor = buffer_factors[i] if i < len(buffer_factors) else 0 + gdf = gdf.loc[gdf.area > min_area] - if buffer_factor is not None: gdf["geometry"] = gdf.geometry.buffer(np.sqrt(gdf.area) * buffer_factor) + + gdf = gdf.dissolve("Stadt").reset_index() + return gdf def refine_dh_areas_from_census_data( - subnodes: gpd.GeoDataFrame, census: gpd.GeoDataFrame + subnodes: gpd.GeoDataFrame, + census: gpd.GeoDataFrame, + **processing_config: dict[str, any], ) -> gpd.GeoDataFrame: """ Refine district heating areas based on census raster data. @@ -360,7 +373,7 @@ def refine_dh_areas_from_census_data( # Add buffer, so tiles are 100x100m census["geometry"] = census.geometry.buffer(50, cap_style="square") - # Union of conjunct geometries + # Union of conjoint geometries census = census.union_all() census = gpd.GeoDataFrame(geometry=[census], crs="EPSG:3035") @@ -373,22 +386,46 @@ def refine_dh_areas_from_census_data( lau_shape_dict = dict(zip(subnodes["Stadt"], subnodes["lau_shape"])) census["lau_shape"] = census["Stadt"].map(lau_shape_dict) + # Take convex hull of census geometries census["geometry"] = census.convex_hull - # Filter out single tiles with area < 10000 m^2 - census = census.loc[census.area > 10000] + # Process census geometries using passed configuration + census = process_district_heating_areas( + census, + processing_config["min_area"], + processing_config["buffer_factor"], + ) + + return census + + +def process_batch(batch, osm_land_cover_path, natura_path, excluder_resolution, codes): + # Get efficient chunked rasters for this batch + osm_dataset = get_chunked_raster(osm_land_cover_path, batch.total_bounds) + natura_dataset = get_chunked_raster(natura_path, batch.total_bounds) + + # Create exclusion container + excluder = ExclusionContainer(crs=3035, res=excluder_resolution) + excluder.add_raster(osm_dataset, codes=codes, invert=True, crs=3035) + excluder.add_raster(natura_dataset, codes=[1], invert=False, crs=3035) - # Buffer the census areas by 1% of their area and combine them - # Buffer by 1% of area square root - census["geometry"] = census.geometry.buffer(np.sqrt(census.area) * 0.01) + # Process batch shapes + batch_shapes = batch["geometry"] + band, transform = shape_availability(batch_shapes, excluder) - # Process with increasing buffer factors and area thresholds - census = process_geometries(census) - census = process_geometries(census, min_area=100000, buffer_factor=0.05) - census = process_geometries(census, buffer_factor=0.05) - census = process_geometries(census, min_area=1000000) + # Extract valid points + row_indices, col_indices = np.where(band != osm_dataset.nodata) + values = band[row_indices, col_indices] - return census.dissolve("Stadt").reset_index() + x_coords, y_coords = rasterio.transform.xy(transform, row_indices, col_indices) + + # Process eligible points if any exist + if len(x_coords) > 0: + eligible_areas = process_eligible_points( + x_coords, y_coords, values, osm_dataset.crs, batch + ) + return eligible_areas + return None def add_ptes_limit( @@ -398,8 +435,9 @@ def add_ptes_limit( groundwater: xr.Dataset, codes: list, max_groundwater_depth: float, - ptes_potential_scalar: float, excluder_resolution: int, + min_area: float = 10000, + default_capacity: float = 4500, ) -> gpd.GeoDataFrame: """ Add PTES limit to subnodes according to land availability within city regions. @@ -418,56 +456,33 @@ def add_ptes_limit( List of CORINE land cover codes to include. max_groundwater_depth : float Maximum allowable groundwater depth for PTES installation. - ptes_potential_scalar : float - Scalar to adjust PTES potential. + excluder_resolution : int + Resolution of the exclusion raster. + min_area : float, optional + Minimum area for eligible regions. Default is 10000 m². + default_capacity : float, optional + Default capacity for PTES potential calculation. Default comes from DEA data and is 4500 MWh. Returns ------- gpd.GeoDataFrame Updated GeoDataFrame with PTES potential added. """ - - dh_systems = subnodes.copy() - # Increase batch size for better performance batch_size = 1 # Create batches batches = [] - for i in range(0, len(dh_systems), batch_size): - batches.append(dh_systems.iloc[i : i + batch_size]) - - # Define the processing function for a single batch - def process_batch(batch): - # Get efficient chunked rasters for this batch - osm_dataset = get_chunked_raster(osm_land_cover_path, batch.total_bounds) - natura_dataset = get_chunked_raster(natura_path, batch.total_bounds) - - # Create exclusion container - excluder = ExclusionContainer(crs=3035, res=excluder_resolution) - excluder.add_raster(osm_dataset, codes=codes, invert=True, crs=3035) - excluder.add_raster(natura_dataset, codes=[1], invert=False, crs=3035) - - # Process batch shapes - batch_shapes = batch["geometry"] - band, transform = shape_availability(batch_shapes, excluder) - - # Extract valid points - row_indices, col_indices = np.where(band != osm_dataset.nodata) - values = band[row_indices, col_indices] - - x_coords, y_coords = rasterio.transform.xy(transform, row_indices, col_indices) - - # Process eligible points if any exist - if len(x_coords) > 0: - eligible_areas = process_eligible_points( - x_coords, y_coords, values, osm_dataset.crs, batch - ) - return eligible_areas - return None + for i in range(0, len(subnodes), batch_size): + batches.append(subnodes.iloc[i : i + batch_size]) # Create delayed tasks for each batch - delayed_results = [dask.delayed(process_batch)(batch) for batch in batches] + delayed_results = [ + dask.delayed(process_batch)( + batch, osm_land_cover_path, natura_path, excluder_resolution, codes + ) + for batch in batches + ] # Execute tasks in parallel with progress bar with ProgressBar(): @@ -481,11 +496,11 @@ def process_batch(batch): eligible_areas = pd.concat(batch_results, ignore_index=True) eligible_areas = gpd.sjoin( - eligible_areas, dh_systems.drop("Stadt", axis=1), how="left", rsuffix="" + eligible_areas, subnodes.drop("Stadt", axis=1), how="left", rsuffix="" )[["Stadt", "geometry"]].set_geometry("geometry") - # filter for eligible areas that are larger than 10000 m^2 - eligible_areas = eligible_areas[eligible_areas.area > 10000] + # filter for eligible areas that are larger than min_area + eligible_areas = eligible_areas[eligible_areas.area > min_area] # Find closest value in groundwater dataset and kick out areas with groundwater level > threshold eligible_areas["groundwater_level"] = eligible_areas.to_crs("EPSG:4326").apply( @@ -501,18 +516,17 @@ def process_batch(batch): # Combine eligible areas by city eligible_areas = eligible_areas.dissolve("Stadt") - # Calculate PTES potential according to Dronninglund and DEA parameters + # Calculate PTES potential according to storage configuration eligible_areas["area_m2"] = eligible_areas.area - eligible_areas["nstorages_pot"] = eligible_areas.area_m2 / 10000 - eligible_areas["storage_pot_mwh"] = eligible_areas["nstorages_pot"] * 4500 + eligible_areas["nstorages_pot"] = eligible_areas.area_m2 / min_area + eligible_areas["storage_pot_mwh"] = ( + eligible_areas["nstorages_pot"] * default_capacity + ) subnodes.set_index("Stadt", inplace=True) - subnodes["ptes_pot_mwh"] = ( - eligible_areas.loc[subnodes.index.intersection(eligible_areas.index)][ - "storage_pot_mwh" - ] - * ptes_potential_scalar - ) + subnodes["ptes_pot_mwh"] = eligible_areas.loc[ + subnodes.index.intersection(eligible_areas.index) + ]["storage_pot_mwh"] subnodes["ptes_pot_mwh"] = subnodes["ptes_pot_mwh"].fillna(0) subnodes.reset_index(inplace=True) @@ -522,8 +536,8 @@ def process_batch(batch): def extend_regions_onshore( regions_onshore: gpd.GeoDataFrame, subnodes_all: gpd.GeoDataFrame, - head: Union[int, bool] = 40, -) -> Union[gpd.GeoDataFrame, gpd.GeoDataFrame]: + head: int = 40, +) -> dict[str, gpd.GeoDataFrame]: """ Extend onshore regions to include city LAU regions and restrict onshore regions to district heating areas of Fernwärmeatlas. @@ -539,14 +553,12 @@ def extend_regions_onshore( Returns ------- - regions_onshore_extended : geopandas.GeoDataFrame - GeoDataFrame with extended onshore regions including city LAU regions. - regions_onshore_restricted : geopandas.GeoDataFrame - GeoDataFrame with restricted onshore regions, replacing geometries - with the district heating areas. + dict + Dictionary with two keys: + - 'extended': GeoDataFrame with extended onshore regions including city LAU regions. + - 'restricted': GeoDataFrame with restricted onshore regions, replacing geometries + with the district heating areas. """ - if isinstance(head, bool): - head = 40 # Extend regions_onshore to include the cities' lau regions subnodes = ( @@ -566,7 +578,7 @@ def extend_regions_onshore( # Rename lau_shape to geometry subnodes = subnodes.drop(columns=["cluster"]) - # Concat regions_onshore and subnodes CRS of regions_onshore + # Concat regions_onshore and subnodal regions regions_onshore_extended = pd.concat([regions_onshore, subnodes.set_index("name")]) # Restrict regions_onshore geometries to only consist of the remaining city areas @@ -586,7 +598,10 @@ def extend_regions_onshore( subnodes_all.loc[subnodes.index].set_index("name").geometry.to_crs("EPSG:4326") ) - return regions_onshore_extended, regions_onshore_restricted + return { + "extended": regions_onshore_extended, + "restricted": regions_onshore_restricted, + } if __name__ == "__main__": @@ -646,36 +661,52 @@ def extend_regions_onshore( heat_techs, ) - subnodes = refine_dh_areas_from_census_data(subnodes, census) + if snakemake.params.district_heating["subnodes"]["census_areas"]["enable"]: + # Parameters for processing of census data is read from config file. + # Default values were chosen to yield district heating areas with high + # geographic accordance to the ones publicly available e.g. Berlin, Hamburg. + processing_config = snakemake.params.district_heating["subnodes"][ + "census_areas" + ]["processing"] + subnodes = refine_dh_areas_from_census_data( + subnodes, census, **processing_config + ) - bounds = subnodes.to_crs("EPSG:4326").total_bounds # (minx, miny, maxx, maxy) - groundwater = xr.open_dataset(snakemake.input.groundwater_depth).sel( - lon=slice(bounds[0], bounds[2]), # minx to maxx - lat=slice(bounds[1], bounds[3]), # miny to maxy - ) - subnodes = add_ptes_limit( - subnodes, - snakemake.input.osm_land_cover, - snakemake.input.natura, - groundwater, - snakemake.params.district_heating["osm_landcover_codes"], - snakemake.params.district_heating["max_groundwater_depth"], - snakemake.params.district_heating["ptes_potential_scalar"], - snakemake.params.district_heating["excluder_resolution"], - ) + if snakemake.params.district_heating["subnodes"]["limit_ptes_potential"]["enable"]: + bounds = subnodes.to_crs("EPSG:4326").total_bounds # (minx, miny, maxx, maxy) + groundwater = xr.open_dataset(snakemake.input.groundwater_depth).sel( + lon=slice(bounds[0], bounds[2]), # minx to maxx + lat=slice(bounds[1], bounds[3]), # miny to maxy + ) + + subnodes = add_ptes_limit( + subnodes, + snakemake.input.osm_land_cover, + snakemake.input.natura, + groundwater, + snakemake.params.district_heating["subnodes"]["limit_ptes_potential"][ + "osm_landcover_codes" + ], + snakemake.params.district_heating["subnodes"]["limit_ptes_potential"][ + "max_groundwater_depth" + ], + snakemake.params.district_heating["subnodes"]["limit_ptes_potential"][ + "excluder_resolution" + ], + ) subnodes.to_file(snakemake.output.district_heating_subnodes, driver="GeoJSON") - regions_onshore_extended, regions_onshore_restricted = extend_regions_onshore( + regions_onshore_modified = extend_regions_onshore( regions_onshore, subnodes, - head=snakemake.params.district_heating["add_subnodes"], + head=snakemake.params.district_heating["subnodes"]["nlargest"], ) - regions_onshore_extended.to_file( + regions_onshore_modified["extended"].to_file( snakemake.output.regions_onshore_extended, driver="GeoJSON" ) - regions_onshore_restricted.to_file( + regions_onshore_modified["restricted"].to_file( snakemake.output.regions_onshore_restricted, driver="GeoJSON" ) From 486ac2b307ff3128090cbf0ca08e23f4e486e181 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 15 May 2025 14:48:49 +0200 Subject: [PATCH 654/669] adjust configs --- config/config.sysgf.yaml | 15 -- config/scenarios.sysgf.yaml | 277 ++---------------------------------- 2 files changed, 9 insertions(+), 283 deletions(-) diff --git a/config/config.sysgf.yaml b/config/config.sysgf.yaml index 7db5feda9..4d4f92031 100644 --- a/config/config.sysgf.yaml +++ b/config/config.sysgf.yaml @@ -29,21 +29,6 @@ run: - build_industry_sector_ratios # This is necessary to save build_industry_sector_ratios_data.log in the correct folder - modify_existing_heating -iiasa_database: - db_name: ariadne - leitmodelle: - general: REMIND-EU v1.1 - buildings: REMod v1.0 - transport: REMIND-EU v1.1 - transport_stock: DLR-VECTOR21 - industry: FORECAST v1.0 - scenarios: - - 8Gt_Bal_v3 - - 8Gt_Elec_v3 - - 8Gt_H2_v3 - reference_scenario: 8Gt_Bal_v3 - region: Deutschland - foresight: myopic scenario: diff --git a/config/scenarios.sysgf.yaml b/config/scenarios.sysgf.yaml index 5240145bf..dc1dced7c 100644 --- a/config/scenarios.sysgf.yaml +++ b/config/scenarios.sysgf.yaml @@ -4,30 +4,10 @@ # SPDX-License-Identifier: MIT Baseline: + foresight: myopic iiasa_database: - reference_scenario: 8Gt_Bal_v3 - fallback_reference_scenario: 8Gt_Bal_v3 - co2_budget_DE_source: KSG - industry: - - St_primary_fraction: - 2020: 0.7023 - 2025: 0.705 - 2030: 0.6929 - 2035: 0.6598 - 2040: 0.6273 - 2045: 0.6047 - DRI_fraction: - 2020: 0.0 - 2025: 0.0 - 2030: 0.2011 - 2035: 0.496 - 2040: 0.7729 - 2045: 1.0 - costs: - horizon: mean - NEP: 2023 - transmission: overhead # either overhead line ("overhead") or underground cable ("underground") + reference_scenario: KN2045_Mix + co2_budget_DE_source: UBA No_PTES: adjustments: @@ -37,30 +17,6 @@ No_PTES: Store: urban central water pits: e_nom_max: 0 - iiasa_database: - reference_scenario: 8Gt_Bal_v3 - fallback_reference_scenario: 8Gt_Bal_v3 - co2_budget_DE_source: KSG - industry: - - St_primary_fraction: - 2020: 0.7023 - 2025: 0.705 - 2030: 0.6929 - 2035: 0.6598 - 2040: 0.6273 - 2045: 0.6047 - DRI_fraction: - 2020: 0.0 - 2025: 0.0 - 2030: 0.2011 - 2035: 0.496 - 2040: 0.7729 - 2045: 1.0 - costs: - horizon: mean - NEP: 2023 - transmission: overhead # either overhead line ("overhead") or underground cable ("underground") LowPTESCAPEX: adjustments: @@ -77,32 +33,6 @@ LowPTESCAPEX: urban central water tanks: standing_loss: 0.00015476 - iiasa_database: - reference_scenario: 8Gt_Bal_v3 - fallback_reference_scenario: 8Gt_Bal_v3 - co2_budget_DE_source: KSG - industry: - - St_primary_fraction: - 2020: 0.7023 - 2025: 0.705 - 2030: 0.6929 - 2035: 0.6598 - 2040: 0.6273 - 2045: 0.6047 - DRI_fraction: - 2020: 0.0 - 2025: 0.0 - 2030: 0.2011 - 2035: 0.496 - 2040: 0.7729 - 2045: 1.0 - costs: - horizon: mean - NEP: 2023 - transmission: overhead # either overhead line ("overhead") or underground cable ("underground") - - HighPTESCAPEX: adjustments: electricity: false @@ -118,32 +48,6 @@ HighPTESCAPEX: urban central water tanks: standing_loss: 0.00015476 - iiasa_database: - reference_scenario: 8Gt_Bal_v3 - fallback_reference_scenario: 8Gt_Bal_v3 - co2_budget_DE_source: KSG - industry: - - St_primary_fraction: - 2020: 0.7023 - 2025: 0.705 - 2030: 0.6929 - 2035: 0.6598 - 2040: 0.6273 - 2045: 0.6047 - DRI_fraction: - 2020: 0.0 - 2025: 0.0 - 2030: 0.2011 - 2035: 0.496 - 2040: 0.7729 - 2045: 1.0 - costs: - horizon: mean - NEP: 2023 - transmission: overhead # either overhead line ("overhead") or underground cable ("underground") - - LowStandingLosses: adjustments: electricity: false @@ -152,31 +56,6 @@ LowStandingLosses: Store: urban central water pits: standing_loss: 0 - iiasa_database: - reference_scenario: 8Gt_Bal_v3 - fallback_reference_scenario: 8Gt_Bal_v3 - co2_budget_DE_source: KSG - industry: - - St_primary_fraction: - 2020: 0.7023 - 2025: 0.705 - 2030: 0.6929 - 2035: 0.6598 - 2040: 0.6273 - 2045: 0.6047 - DRI_fraction: - 2020: 0.0 - 2025: 0.0 - 2030: 0.2011 - 2035: 0.496 - 2040: 0.7729 - 2045: 1.0 - costs: - horizon: mean - NEP: 2023 - transmission: overhead # either overhead line ("overhead") or underground cable ("underground") - HighStandingLosses: adjustments: @@ -186,30 +65,6 @@ HighStandingLosses: Store: urban central water pits: standing_loss: 0.0012121 - iiasa_database: - reference_scenario: 8Gt_Bal_v3 - fallback_reference_scenario: 8Gt_Bal_v3 - co2_budget_DE_source: KSG - industry: - - St_primary_fraction: - 2020: 0.7023 - 2025: 0.705 - 2030: 0.6929 - 2035: 0.6598 - 2040: 0.6273 - 2045: 0.6047 - DRI_fraction: - 2020: 0.0 - 2025: 0.0 - 2030: 0.2011 - 2035: 0.496 - 2040: 0.7729 - 2045: 1.0 - costs: - horizon: mean - NEP: 2023 - transmission: overhead # either overhead line ("overhead") or underground cable ("underground") LowGroundWaterDepth: sector: @@ -217,142 +72,28 @@ LowGroundWaterDepth: subnodes: limit_ptes_potential: max_groundwater_depth: -25 - iiasa_database: - reference_scenario: 8Gt_Bal_v3 - fallback_reference_scenario: 8Gt_Bal_v3 - co2_budget_DE_source: KSG - industry: - - St_primary_fraction: - 2020: 0.7023 - 2025: 0.705 - 2030: 0.6929 - 2035: 0.6598 - 2040: 0.6273 - 2045: 0.6047 - DRI_fraction: - 2020: 0.0 - 2025: 0.0 - 2030: 0.2011 - 2035: 0.496 - 2040: 0.7729 - 2045: 1.0 - costs: - horizon: mean - NEP: 2023 - transmission: overhead # either overhead line ("overhead") or underground cable ("underground") - + HighGroundWaterDepth: sector: district_heating: subnodes: limit_ptes_potential: max_groundwater_depth: 0 - iiasa_database: - reference_scenario: 8Gt_Bal_v3 - fallback_reference_scenario: 8Gt_Bal_v3 - co2_budget_DE_source: KSG - industry: - - St_primary_fraction: - 2020: 0.7023 - 2025: 0.705 - 2030: 0.6929 - 2035: 0.6598 - 2040: 0.6273 - 2045: 0.6047 - DRI_fraction: - 2020: 0.0 - 2025: 0.0 - 2030: 0.2011 - 2035: 0.496 - 2040: 0.7729 - 2045: 1.0 - costs: - horizon: mean - NEP: 2023 - transmission: overhead # either overhead line ("overhead") or underground cable ("underground") LowEtPRatio: adjustments: electricity: false sector: factor: - Store: - urban central water pits: + Link: + urban central water pits charger: energy to power ratio: 0.5 - capital_cost: 0.5 - e_nom_max: 2 - absolute: - Store: - urban central water pits: - standing_loss: 0.00012121 - urban central water tanks: - standing_loss: 0.00015476 - - iiasa_database: - reference_scenario: 8Gt_Bal_v3 - fallback_reference_scenario: 8Gt_Bal_v3 - co2_budget_DE_source: KSG - industry: - - St_primary_fraction: - 2020: 0.7023 - 2025: 0.705 - 2030: 0.6929 - 2035: 0.6598 - 2040: 0.6273 - 2045: 0.6047 - DRI_fraction: - 2020: 0.0 - 2025: 0.0 - 2030: 0.2011 - 2035: 0.496 - 2040: 0.7729 - 2045: 1.0 - costs: - horizon: mean - NEP: 2023 - transmission: overhead # either overhead line ("overhead") or underground cable ("underground") - HighEtPRatio: adjustments: electricity: false sector: factor: - Store: - urban central water pits: - energy to power ratio: 2 - capital_cost: 2 - e_nom_max: 0.5 - absolute: - Store: - urban central water pits: - standing_loss: 0.00012121 - urban central water tanks: - standing_loss: 0.00015476 - iiasa_database: - reference_scenario: 8Gt_Bal_v3 - fallback_reference_scenario: 8Gt_Bal_v3 - co2_budget_DE_source: KSG - industry: - - St_primary_fraction: - 2020: 0.7023 - 2025: 0.705 - 2030: 0.6929 - 2035: 0.6598 - 2040: 0.6273 - 2045: 0.6047 - DRI_fraction: - 2020: 0.0 - 2025: 0.0 - 2030: 0.2011 - 2035: 0.496 - 2040: 0.7729 - 2045: 1.0 - costs: - horizon: mean - NEP: 2023 - transmission: overhead # either overhead line ("overhead") or underground cable ("underground") + Link: + urban central water pits charger: + energy to power ratio: 2 \ No newline at end of file From 643ea21d507defb3b55ace60536e0a44fe895485 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 15 May 2025 14:58:01 +0200 Subject: [PATCH 655/669] allow for dynamic ptes capacity and remove cases for ptes as storage unit --- .../pypsa-de/add_district_heating_subnodes.py | 54 +++++++++---------- 1 file changed, 27 insertions(+), 27 deletions(-) diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index 0fc63f0e2..37e605270 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -28,6 +28,7 @@ def add_subnodes( cop: xr.DataArray, direct_heat_source_utilisation_profile: xr.DataArray, head: int = 40, + dynamic_ptes_capacity: bool = False, ) -> None: """ Add largest district heating systems subnodes to the network. @@ -191,12 +192,30 @@ def add_subnodes( .set_index("Store") ) - # Restrict PTES capacity in subnodes if modeled as store - if stores.carrier.str.contains("pits$").any(): - stores.loc[stores.carrier.str.contains("pits$").index, "e_nom_max"] = ( - subnode["ptes_pot_mwh"] + # Restrict PTES capacity in subnodes + stores.loc[stores.carrier.str.contains("pits$").index, "e_nom_max"] = subnode[ + "ptes_pot_mwh" + ] + + # + + if dynamic_ptes_capacity: + e_max_pu_static = stores.e_max_pu + e_max_pu = ( + n.stores_t.e_max_pu[f"{subnode['cluster']} urban central water pits"] + .rename(f"{name} water pits") + .to_frame() + .reindex(columns=stores.index) + .fillna(e_max_pu_static) ) - n.add("Store", stores.index, **stores) + n.add( + "Store", + stores.index, + e_max_pu=e_max_pu, + **stores.drop("e_max_pu", axis=1), + ) + else: + n.add("Store", stores.index, **stores) # Replicate district heating storage units of mother node for subnodes storage_units = ( @@ -211,30 +230,8 @@ def add_subnodes( .set_index("StorageUnit") ) - # Restrict PTES capacity in subnodes if modeled as storage unit - if storage_units.carrier.str.contains("pits$").any(): - storage_units.loc[ - storage_units.carrier.str.contains("pits$"), "p_nom_max" - ] = (subnode["ptes_pot_mwh"] / storage_units["max_hours"]) n.add("StorageUnit", storage_units.index, **storage_units) - # restrict PTES capacity in mother nodes - mother_nodes_ptes_pot = subnodes_rest.groupby("cluster").ptes_pot_mwh.sum() - - mother_nodes_ptes_pot.index = ( - mother_nodes_ptes_pot.index + " urban central water pits" - ) - - if not n.storage_units.filter(like="urban central water pits", axis=0).empty: - n.storage_units.loc[mother_nodes_ptes_pot.index, "p_nom_max"] = ( - mother_nodes_ptes_pot - / n.storage_units.loc[mother_nodes_ptes_pot.index, "max_hours"] - ) - elif not n.stores.filter(like="urban central water pits", axis=0).empty: - n.stores.loc[mother_nodes_ptes_pot.index, "e_nom_max"] = ( - mother_nodes_ptes_pot - ) - # Replicate district heating generators of mother node for subnodes generators = ( n.generators.filter(like=f"{subnode['cluster']} urban central", axis=0) @@ -458,6 +455,9 @@ def extend_heating_distribution( snakemake.input.direct_heat_source_utilisation_profiles ), head=snakemake.params.district_heating["subnodes"]["nlargest"], + dynamic_ptes_capacity=snakemake.params.district_heating["ptes"][ + "dynamic_capacity" + ], ) if snakemake.wildcards.planning_horizons == str(snakemake.params["baseyear"]): From e506603cb1d75c45d29d2917b6876b792ea9323c Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 15 May 2025 15:05:49 +0200 Subject: [PATCH 656/669] revert restriction of mother node ptes potentials --- .../pypsa-de/add_district_heating_subnodes.py | 17 +++++++++++++++-- 1 file changed, 15 insertions(+), 2 deletions(-) diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index 37e605270..a5278c4b8 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -29,6 +29,7 @@ def add_subnodes( direct_heat_source_utilisation_profile: xr.DataArray, head: int = 40, dynamic_ptes_capacity: bool = False, + limit_ptes_potential_mother_nodes: bool = True, ) -> None: """ Add largest district heating systems subnodes to the network. @@ -197,8 +198,6 @@ def add_subnodes( "ptes_pot_mwh" ] - # - if dynamic_ptes_capacity: e_max_pu_static = stores.e_max_pu e_max_pu = ( @@ -217,6 +216,17 @@ def add_subnodes( else: n.add("Store", stores.index, **stores) + # Limit storage potential in mother nodes + if limit_ptes_potential_mother_nodes: + mother_nodes_ptes_pot = subnodes_rest.groupby("cluster").ptes_pot_mwh.sum() + + mother_nodes_ptes_pot.index = ( + mother_nodes_ptes_pot.index + " urban central water pits" + ) + n.stores.loc[mother_nodes_ptes_pot.index, "e_nom_max"] = ( + mother_nodes_ptes_pot + ) + # Replicate district heating storage units of mother node for subnodes storage_units = ( n.storage_units.filter(like=f"{subnode['cluster']} urban central", axis=0) @@ -458,6 +468,9 @@ def extend_heating_distribution( dynamic_ptes_capacity=snakemake.params.district_heating["ptes"][ "dynamic_capacity" ], + limit_ptes_potential_mother_nodes=snakemake.params.district_heating["subnodes"][ + "limit_ptes_potential" + ]["limit_mother_nodes"], ) if snakemake.wildcards.planning_horizons == str(snakemake.params["baseyear"]): From 9f8f909a68f9b3530018425d49248c66df75c277 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Thu, 15 May 2025 13:22:29 +0000 Subject: [PATCH 657/669] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- Snakefile | 41 ++++++++----------- config/config.sysgf.yaml | 24 +++++------ config/scenarios.sysgf.yaml | 4 +- rules/build_sector.smk | 26 +++++++++--- rules/solve_myopic.smk | 30 ++++++++------ .../build_existing_heating_distribution.py | 6 +-- scripts/prepare_sector_network.py | 10 ++--- .../pypsa-de/add_district_heating_subnodes.py | 24 +++++------ scripts/pypsa-de/build_existing_chp_de.py | 3 +- scripts/pypsa-de/export_ariadne_variables.py | 32 +++++++-------- scripts/pypsa-de/plot_ariadne_report.py | 4 +- .../prepare_district_heating_subnodes.py | 33 ++++++++------- scripts/solve_network.py | 6 +-- 13 files changed, 125 insertions(+), 118 deletions(-) diff --git a/Snakefile b/Snakefile index 5063f57f2..2bdb9afdf 100644 --- a/Snakefile +++ b/Snakefile @@ -352,9 +352,7 @@ rule prepare_district_heating_subnodes: baseyear=config_provider("scenario", "planning_horizons", 0), input: heating_technologies_nuts3=resources("heating_technologies_nuts3.geojson"), - regions_onshore=resources( - "regions_onshore_base_s_{clusters}.geojson" - ), + regions_onshore=resources("regions_onshore_base_s_{clusters}.geojson"), fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", cities="data/fernwaermeatlas/cities_geolocations.geojson", lau_regions="data/lau_regions.zip", @@ -369,8 +367,8 @@ rule prepare_district_heating_subnodes: natura=ancient("data/bundle/natura/natura.tiff"), groundwater_depth=storage( "http://thredds-gfnl.usc.es/thredds/fileServer/GLOBALWTDFTP/annualmeans/EURASIA_WTD_annualmean.nc", - keep_local=True - ), + keep_local=True, + ), output: district_heating_subnodes=resources( "district_heating_subnodes_base_s_{clusters}.geojson" @@ -381,44 +379,43 @@ rule prepare_district_heating_subnodes: regions_onshore_restricted=resources( "regions_onshore_base-restricted_s_{clusters}.geojson" ), - resources: mem_mb=20000, script: "scripts/pypsa-de/prepare_district_heating_subnodes.py" + baseyear_value = config["scenario"]["planning_horizons"][0] + rule add_district_heating_subnodes: params: district_heating=config_provider("sector", "district_heating"), baseyear=config_provider("scenario", "planning_horizons", 0), sector=config_provider("sector"), - heat_pump_sources=config_provider("sector", "heat_pump_sources", "urban central"), + heat_pump_sources=config_provider( + "sector", "heat_pump_sources", "urban central" + ), heat_utilisation_potentials=config_provider( - "sector", "district_heating", "heat_utilisation_potentials" + "sector", "district_heating", "heat_utilisation_potentials" ), direct_utilisation_heat_sources=config_provider( "sector", "district_heating", "direct_utilisation_heat_sources" ), - adjustments=config_provider( "adjustments", "sector"), + adjustments=config_provider("adjustments", "sector"), input: unpack(input_heat_source_power), network=resources( - "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" - ), - subnodes=resources( - "district_heating_subnodes_base_s_{clusters}.geojson" + "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ), + subnodes=resources("district_heating_subnodes_base_s_{clusters}.geojson"), nuts3=resources("nuts3_shapes.geojson"), - regions_onshore=resources( - "regions_onshore_base_s_{clusters}.geojson" - ), + regions_onshore=resources("regions_onshore_base_s_{clusters}.geojson"), fernwaermeatlas="data/fernwaermeatlas/fernwaermeatlas.xlsx", cities="data/fernwaermeatlas/cities_geolocations.geojson", cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), direct_heat_source_utilisation_profiles=resources( - "direct_heat_source_utilisation_profiles_base_s_{clusters}_{planning_horizons}.nc" + "direct_heat_source_utilisation_profiles_base_s_{clusters}_{planning_horizons}.nc" ), existing_heating_distribution=resources( f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value}.csv" @@ -426,7 +423,7 @@ rule add_district_heating_subnodes: lau_regions="data/lau_regions.zip", output: network=resources( - "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" + "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ), district_heating_subnodes=resources( "district_heating_subnodes_base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.geojson" @@ -592,16 +589,12 @@ rule build_existing_chp_de: ), regions=resources("regions_onshore_base_s_{clusters}.geojson"), district_heating_subnodes=( - resources( - "district_heating_subnodes_base_s_{clusters}.geojson" - ) + resources("district_heating_subnodes_base_s_{clusters}.geojson") if config_provider("sector", "district_heating", "subnodes", "enable") else [] ), output: - german_chp=resources( - "german_chp_base_s_{clusters}.csv" - ), + german_chp=resources("german_chp_base_s_{clusters}.csv"), log: logs("build_existing_chp_de_{clusters}.log"), script: diff --git a/config/config.sysgf.yaml b/config/config.sysgf.yaml index 4d4f92031..3208c1d34 100644 --- a/config/config.sysgf.yaml +++ b/config/config.sysgf.yaml @@ -47,20 +47,20 @@ scenario: # - 2035 # - 2040 - 2045 - + clustering: temporal: resolution_sector: 365H adjustments: - electricity: false - sector: - absolute: - StorageUnit: - urban central water pits: - standing_loss: 0.00012121 - urban central water tanks: - standing_loss: 0.00015476 + electricity: false + sector: + absolute: + StorageUnit: + urban central water pits: + standing_loss: 0.00012121 + urban central water tanks: + standing_loss: 0.00015476 wasserstoff_kernnetz: enable: false @@ -75,8 +75,8 @@ sector: ignore_missing_regions: true heat_pump_sources: urban central: - - air - - geothermal + - air + - geothermal urban decentral: - air rural: @@ -94,4 +94,4 @@ solving: limits_capacity_min: {} limits_volume_max: {} limits_volume_min: {} - limits_power_max: {} \ No newline at end of file + limits_power_max: {} diff --git a/config/scenarios.sysgf.yaml b/config/scenarios.sysgf.yaml index dc1dced7c..a7edf4961 100644 --- a/config/scenarios.sysgf.yaml +++ b/config/scenarios.sysgf.yaml @@ -72,7 +72,7 @@ LowGroundWaterDepth: subnodes: limit_ptes_potential: max_groundwater_depth: -25 - + HighGroundWaterDepth: sector: district_heating: @@ -96,4 +96,4 @@ HighEtPRatio: factor: Link: urban central water pits charger: - energy to power ratio: 2 \ No newline at end of file + energy to power ratio: 2 diff --git a/rules/build_sector.smk b/rules/build_sector.smk index efd4914f2..63c31f94f 100755 --- a/rules/build_sector.smk +++ b/rules/build_sector.smk @@ -199,7 +199,11 @@ rule build_temperature_profiles: drop_leap_day=config_provider("enable", "drop_leap_day"), input: pop_layout=resources("pop_layout_total.nc"), - regions_onshore=resources("regions_onshore_base-extended_s_{clusters}.geojson") if config_provider("sector", "district_heating", "subnodes", "enable") else resources("regions_onshore_base_s_{clusters}.geojson"), + regions_onshore=( + resources("regions_onshore_base-extended_s_{clusters}.geojson") + if config_provider("sector", "district_heating", "subnodes", "enable") + else resources("regions_onshore_base_s_{clusters}.geojson") + ), cutout=lambda w: input_cutout( w, config_provider("sector", "heat_demand_cutout")(w) ), @@ -268,7 +272,11 @@ rule build_central_heating_temperature_profiles: energy_totals_year=config_provider("energy", "energy_totals_year"), input: temp_air_total=resources("temp_air_total_base_s_{clusters}.nc"), - regions_onshore=resources("regions_onshore_base-extended_s_{clusters}.geojson") if config_provider("sector", "district_heating", "subnodes", "enable") else resources("regions_onshore_base_s_{clusters}.geojson"), + regions_onshore=( + resources("regions_onshore_base-extended_s_{clusters}.geojson") + if config_provider("sector", "district_heating", "subnodes", "enable") + else resources("regions_onshore_base_s_{clusters}.geojson") + ), output: central_heating_forward_temperature_profiles=resources( "central_heating_forward_temperature_profiles_base_s_{clusters}_{planning_horizons}.nc" @@ -312,9 +320,11 @@ rule build_geothermal_heat_potential: ), input: isi_heat_potentials="data/isi_heat_utilisation_potentials.xlsx", - regions_onshore=resources("regions_onshore_base-restricted_s_{clusters}.geojson") - if config_provider("sector", "district_heating", "subnodes", "enable") - else resources("regions_onshore_base_s_{clusters}.geojson"), + regions_onshore=( + resources("regions_onshore_base-restricted_s_{clusters}.geojson") + if config_provider("sector", "district_heating", "subnodes", "enable") + else resources("regions_onshore_base_s_{clusters}.geojson") + ), lau_regions="data/lau_regions.zip", output: heat_source_power=resources( @@ -357,7 +367,11 @@ rule build_cop_profiles: ), temp_soil_total=resources("temp_soil_total_base_s_{clusters}.nc"), temp_air_total=resources("temp_air_total_base_s_{clusters}.nc"), - regions_onshore=resources("regions_onshore_base-extended_s_{clusters}.geojson") if config_provider("sector", "district_heating", "subnodes", "enable") else resources("regions_onshore_base_s_{clusters}.geojson"), + regions_onshore=( + resources("regions_onshore_base-extended_s_{clusters}.geojson") + if config_provider("sector", "district_heating", "subnodes", "enable") + else resources("regions_onshore_base_s_{clusters}.geojson") + ), output: cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), resources: diff --git a/rules/solve_myopic.smk b/rules/solve_myopic.smk index dc00640ce..4217aae9d 100644 --- a/rules/solve_myopic.smk +++ b/rules/solve_myopic.smk @@ -11,13 +11,18 @@ rule add_existing_baseyear: costs=config_provider("costs"), heat_pump_sources=config_provider("sector", "heat_pump_sources"), energy_totals_year=config_provider("energy", "energy_totals_year"), - add_district_heating_subnodes=config_provider("sector", "district_heating", "subnodes", "enable"), + add_district_heating_subnodes=config_provider( + "sector", "district_heating", "subnodes", "enable" + ), input: - network=resources( - "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" - ) if config_provider("sector", "district_heating", "subnodes", "enable") + network=( + resources( + "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" + ) + if config_provider("sector", "district_heating", "subnodes", "enable") else resources( - "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" + "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" + ) ), powerplants=resources("powerplants_s_{clusters}.csv"), busmap_s=resources("busmap_base_s.csv"), @@ -39,9 +44,7 @@ rule add_existing_baseyear: ) ), heating_efficiencies=resources("heating_efficiencies.csv"), - custom_powerplants=resources( - "german_chp_base_s_{clusters}.csv" - ), + custom_powerplants=resources("german_chp_base_s_{clusters}.csv"), output: resources( "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}_brownfield.nc" @@ -95,12 +98,15 @@ rule add_brownfield: unpack(input_profile_tech_brownfield), simplify_busmap=resources("busmap_base_s.csv"), cluster_busmap=resources("busmap_base_s_{clusters}.csv"), - network=resources( - "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" - ) if config_provider("sector", "district_heating", "subnodes", "enable") + network=( + resources( + "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" + ) + if config_provider("sector", "district_heating", "subnodes", "enable") else resources( "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" - ), + ) + ), network_p=solved_previous_horizon, #solved network at previous time step costs=resources("costs_{planning_horizons}.csv"), cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), diff --git a/scripts/build_existing_heating_distribution.py b/scripts/build_existing_heating_distribution.py index 094cdacee..0d7b8653b 100644 --- a/scripts/build_existing_heating_distribution.py +++ b/scripts/build_existing_heating_distribution.py @@ -145,9 +145,9 @@ def build_existing_heating(): ) nodal_heat_name_tech[(f"{sector} urban decentral", "ground heat pump")] = 0.0 - nodal_heat_name_tech[ - (f"{sector} urban decentral", "air heat pump") - ] += nodal_heat_name_tech[(f"{sector} rural", "air heat pump")] + nodal_heat_name_tech[(f"{sector} urban decentral", "air heat pump")] += ( + nodal_heat_name_tech[(f"{sector} rural", "air heat pump")] + ) nodal_heat_name_tech[(f"{sector} rural", "air heat pump")] = 0.0 # add large-scale heat pump sources as columns for district heating with 0 capacity diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 91d5f7067..abac1d724 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -3031,9 +3031,7 @@ def add_heat( # 1e3 converts from W/m^2 to MW/(1000m^2) = kW/m^2 solar_thermal = options["solar_cf_correction"] * solar_thermal / 1e3 - for ( - heat_system - ) in ( + for heat_system in ( HeatSystem ): # this loops through all heat systems defined in _entities.HeatSystem overdim_factor = options["overdimension_heat_generators"][ @@ -6013,9 +6011,9 @@ def add_enhanced_geothermal( * Nyears ) - assert ( - egs_potentials["capital_cost"] > 0 - ).all(), "Error in EGS cost, negative values found." + assert (egs_potentials["capital_cost"] > 0).all(), ( + "Error in EGS cost, negative values found." + ) orc_annuity = calculate_annuity(costs.at["organic rankine cycle", "lifetime"], dr) orc_capital_cost = (orc_annuity + FOM / (1 + FOM)) * orc_capex * Nyears diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index a5278c4b8..3d525f07d 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -1,25 +1,23 @@ -# -*- coding: utf-8 -*- import logging logger = logging.getLogger(__name__) +import os +import sys + import geopandas as gpd import pandas as pd import pypsa import xarray as xr -from typing import Union - -import os -import sys sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..")) -from scripts.prepare_network import maybe_adjust_costs_and_potentials from scripts._helpers import ( configure_logging, set_scenario_config, update_config_from_wildcards, ) +from scripts.prepare_network import maybe_adjust_costs_and_potentials def add_subnodes( @@ -38,6 +36,7 @@ def add_subnodes( - the heat demand profiles taken from the mother node, - the district heating investment options (stores, storage units, links, generators) from the mother node, The district heating loads in the mother nodes are reduced accordingly. + Parameters ---------- n : pypsa.Network @@ -50,6 +49,7 @@ def add_subnodes( Direct heat source utilisation profiles. head : int Number of largest district heating systems to be added as subnodes. + Returns ------- None @@ -67,7 +67,7 @@ def add_subnodes( # Add subnodes to network for _, subnode in subnodes_head.iterrows(): - name = f'{subnode["cluster"]} {subnode["Stadt"]} urban central' + name = f"{subnode['cluster']} {subnode['Stadt']} urban central" location = f"{subnode['cluster']} {subnode['Stadt']}" # Add buses @@ -163,12 +163,12 @@ def add_subnodes( ) # Adjust loads of cluster buses - n.loads_t.p_set.loc[ - :, f'{subnode["cluster"]} urban central heat' - ] -= urban_central_heat_load + n.loads_t.p_set.loc[:, f"{subnode['cluster']} urban central heat"] -= ( + urban_central_heat_load + ) n.loads.loc[ - f'{subnode["cluster"]} low-temperature heat for industry', "p_set" + f"{subnode['cluster']} low-temperature heat for industry", "p_set" ] -= low_temperature_heat_for_industry_load if lost_load > 0: @@ -374,6 +374,7 @@ def extend_heating_distribution( DataFrame containing the existing heating distribution. subnodes : gpd.GeoDataFrame GeoDataFrame containing information about district heating subnodes. + Returns ------- pd.DataFrame @@ -418,7 +419,6 @@ def extend_heating_distribution( if __name__ == "__main__": if "snakemake" not in globals(): - from scripts._helpers import mock_snakemake # Change directory to this script directory diff --git a/scripts/pypsa-de/build_existing_chp_de.py b/scripts/pypsa-de/build_existing_chp_de.py index 94f1ed4a2..8eb92868d 100644 --- a/scripts/pypsa-de/build_existing_chp_de.py +++ b/scripts/pypsa-de/build_existing_chp_de.py @@ -8,7 +8,6 @@ """ import logging -from typing import Union import geopandas as gpd import pandas as pd @@ -212,6 +211,7 @@ def assign_subnode( ) -> pd.DataFrame: """ Assign subnodes to the CHP plants based on their location. + Parameters ---------- CHP_de : pd.DataFrame @@ -220,6 +220,7 @@ def assign_subnode( GeoDataFrame containing subnode data with geometries. head : Union[bool, int] If int, select the largest N subnodes. If True, use all subnodes. + Returns ------- pd.DataFrame diff --git a/scripts/pypsa-de/export_ariadne_variables.py b/scripts/pypsa-de/export_ariadne_variables.py index 602e589a5..9c812faa0 100644 --- a/scripts/pypsa-de/export_ariadne_variables.py +++ b/scripts/pypsa-de/export_ariadne_variables.py @@ -111,9 +111,7 @@ def _get_fuel_fractions(n, region, fuel): n.statistics.supply(bus_carrier=f"renewable {fuel}", **kwargs) .groupby(["bus", "carrier"]) .sum() - ).round( - 3 - ) # rounding for numerical stability + ).round(3) # rounding for numerical stability total_fuel_supply = ( n.statistics.supply(bus_carrier=f"{fuel}", **kwargs) @@ -2359,7 +2357,7 @@ def get_final_energy( var["Final Energy|Bunkers|Aviation"] = var[ "Final Energy|Bunkers|Aviation|Liquids" - ] = (sum_load(n, "kerosene for aviation", region) * international_aviation_fraction) + ] = sum_load(n, "kerosene for aviation", region) * international_aviation_fraction for var_key, fraction_key in zip( ["Biomass", "Petroleum", "Efuel"], oil_fractions.index @@ -4086,7 +4084,7 @@ def get_grid_investments( var["Investment|Energy Supply|Hydrogen|Transmission and Distribution"] = var[ "Investment|Energy Supply|Hydrogen|Transmission" - ] = (h2_investments.sum() / 5) + ] = h2_investments.sum() / 5 new_h2_links_kernnetz_i = new_h2_links[ (new_h2_links.index.str.contains("kernnetz")) @@ -4128,7 +4126,7 @@ def get_grid_investments( ) var[ "Investment|Energy Supply|Hydrogen|Transmission and Distribution|Retrofitted" - ] = (h2_investments[new_h2_links_retrofitted_i].sum() / 5) + ] = h2_investments[new_h2_links_retrofitted_i].sum() / 5 assert isclose( var["Investment|Energy Supply|Hydrogen|Transmission and Distribution"], @@ -4211,13 +4209,13 @@ def get_grid_investments( var[ "Investment|Energy Supply|Hydrogen|Transmission and Distribution|Kernnetz|PCI" - ] = (h2_investments[pci_i].sum() / 5) + ] = h2_investments[pci_i].sum() / 5 var[ "Investment|Energy Supply|Hydrogen|Transmission and Distribution|Kernnetz|IPCEI" - ] = (h2_investments[ipcei_i].sum() / 5) + ] = h2_investments[ipcei_i].sum() / 5 var[ "Investment|Energy Supply|Hydrogen|Transmission and Distribution|Kernnetz|PCI+IPCEI" - ] = (h2_investments[pci_i.union(ipcei_i)].sum() / 5) + ] = h2_investments[pci_i.union(ipcei_i)].sum() / 5 var[ "Investment|Energy Supply|Hydrogen|Transmission and Distribution|Kernnetz|NOT-PCI+IPCEI" ] = ( @@ -4594,9 +4592,7 @@ def get_production(region, year): index = next((idx for idx, y in enumerate(years) if y == year), None) production = pd.read_csv( snakemake.input.industrial_production_per_country_tomorrow[index], index_col=0 - ).div( - 1e3 - ) # kton/a -> Mton/a + ).div(1e3) # kton/a -> Mton/a var["Production|Non-Metallic Minerals|Cement"] = production.loc[region, "Cement"] var["Production|Steel"] = production.loc[ @@ -4797,7 +4793,9 @@ def get_grid_capacity(n, region, year): var["Capacity|Hydrogen|Transmission"], var["Capacity|Hydrogen|Transmission|Kernnetz"] + var["Capacity|Hydrogen|Transmission|Endogenous"], - ), "Hydrogen transmission capacity is not correctly split into Kernnetz and Endogenous" + ), ( + "Hydrogen transmission capacity is not correctly split into Kernnetz and Endogenous" + ) year = h2_links.build_year.max() new_h2_links = h2_links[ @@ -4824,7 +4822,9 @@ def get_grid_capacity(n, region, year): var["Capacity Additions|Hydrogen|Transmission"], var["Capacity Additions|Hydrogen|Transmission|Kernnetz"] + var["Capacity Additions|Hydrogen|Transmission|Endogenous"], - ), "Hydrogen transmission capacity additions are not correctly split into Kernnetz and Endogenous" + ), ( + "Hydrogen transmission capacity additions are not correctly split into Kernnetz and Endogenous" + ) # TODO: add length additions @@ -5217,9 +5217,7 @@ def get_data( snakemake.params.costs, snakemake.params.max_hours, nyears, - ).multiply( - 1e-9 - ), # in bn € + ).multiply(1e-9), # in bn € snakemake.input.costs, ) ) diff --git a/scripts/pypsa-de/plot_ariadne_report.py b/scripts/pypsa-de/plot_ariadne_report.py index 0efc88afe..c3b023538 100644 --- a/scripts/pypsa-de/plot_ariadne_report.py +++ b/scripts/pypsa-de/plot_ariadne_report.py @@ -2784,9 +2784,7 @@ def plot_h2_trade( snakemake.params.costs, snakemake.params.max_hours, nyears, - ).multiply( - 1e-9 - ), # in bn EUR + ).multiply(1e-9), # in bn EUR snakemake.input.costs, ) ) diff --git a/scripts/pypsa-de/prepare_district_heating_subnodes.py b/scripts/pypsa-de/prepare_district_heating_subnodes.py index 23d642107..3dc32facd 100644 --- a/scripts/pypsa-de/prepare_district_heating_subnodes.py +++ b/scripts/pypsa-de/prepare_district_heating_subnodes.py @@ -1,26 +1,23 @@ -# -*- coding: utf-8 -*- import logging logger = logging.getLogger(__name__) -import geopandas as gpd -import pandas as pd -import numpy as np -from typing import Union -import xarray as xr -import shapely -import rasterio -from rasterio.windows import Window -import rasterio -import tempfile -from atlite.gis import ExclusionContainer -from atlite.gis import shape_availability -import sys import os +import sys +import tempfile +import weakref import zipfile + import dask +import geopandas as gpd +import numpy as np +import pandas as pd +import rasterio +import shapely +import xarray as xr +from atlite.gis import ExclusionContainer, shape_availability from dask.diagnostics import ProgressBar -import weakref +from rasterio.windows import Window from scripts._helpers import ( configure_logging, @@ -83,7 +80,7 @@ def get_chunked_raster( """ Returns windowed data from a raster. - Parameters: + Parameters ---------- dataset_path : str Path to the raster dataset. @@ -93,7 +90,7 @@ def get_chunked_raster( Buffer distance in the dataset's units to add around the bounds. Default is 1000. - Returns: + Returns ------- rasterio.io.DatasetReader A windowed raster dataset. @@ -211,6 +208,7 @@ def prepare_subnodes( ) -> gpd.GeoDataFrame: """ Prepare subnodes by assigning the corresponding LAU and onshore region shapes. + Parameters ---------- subnodes : pd.DataFrame @@ -223,6 +221,7 @@ def prepare_subnodes( GeoDataFrame containing LAU (Local Administrative Units) geometries and IDs. heat_techs : gpd.GeoDataFrame GeoDataFrame containing NUTS3 region geometries of heat technologies and data from eGo^N project. + Returns ------- gpd.GeoDataFrame diff --git a/scripts/solve_network.py b/scripts/solve_network.py index 92a3a203f..641809652 100644 --- a/scripts/solve_network.py +++ b/scripts/solve_network.py @@ -547,9 +547,9 @@ def add_CCL_constraints( agg_p_nom_limits: data/agg_p_nom_minmax.csv """ - assert ( - planning_horizons is not None - ), "add_CCL_constraints are not implemented for perfect foresight, yet" + assert planning_horizons is not None, ( + "add_CCL_constraints are not implemented for perfect foresight, yet" + ) agg_p_nom_minmax = pd.read_csv( config["solving"]["agg_p_nom_limits"]["file"], index_col=[0, 1], header=[0, 1] From a3f9a04a578962a6ade8407bf05a5b07a02121b7 Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 15 May 2025 16:27:07 +0200 Subject: [PATCH 658/669] Modularize and refactor add_subnodes --- .../pypsa-de/add_district_heating_subnodes.py | 730 +++++++++++------- 1 file changed, 465 insertions(+), 265 deletions(-) diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index 3d525f07d..1c2ede266 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -9,6 +9,10 @@ import pandas as pd import pypsa import xarray as xr +from typing import Dict, List + +import os +import sys sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..")) @@ -20,345 +24,528 @@ from scripts.prepare_network import maybe_adjust_costs_and_potentials -def add_subnodes( - n: pypsa.Network, - subnodes: gpd.GeoDataFrame, - cop: xr.DataArray, - direct_heat_source_utilisation_profile: xr.DataArray, - head: int = 40, - dynamic_ptes_capacity: bool = False, - limit_ptes_potential_mother_nodes: bool = True, -) -> None: +def add_buses(n: pypsa.Network, subnode: pd.Series, name: str) -> None: """ - Add largest district heating systems subnodes to the network. - They are initialized with: - - the total annual heat demand taken from the mother node, that is assigned to urban central heat and low-temperature heat for industry, - - the heat demand profiles taken from the mother node, - - the district heating investment options (stores, storage units, links, generators) from the mother node, - The district heating loads in the mother nodes are reduced accordingly. + Add buses for a district heating subnode. Parameters ---------- n : pypsa.Network - The PyPSA network object to which subnodes will be added. - subnodes : gpd.GeoDataFrame - GeoDataFrame containing information about district heating subnodes. - cop : xr.DataArray - COPs for heat pumps. - direct_heat_source_utilisation_profile : xr.DataArray - Direct heat source utilisation profiles. - head : int - Number of largest district heating systems to be added as subnodes. + The PyPSA network object to which buses will be added. + subnode : pd.Series + Series containing information about the district heating subnode. + name : str + Name prefix for the buses. Returns ------- None """ + buses = ( + n.buses.filter(like=f"{subnode['cluster']} urban central", axis=0) + .reset_index() + .replace( + { + f"{subnode['cluster']} urban central": name, + f"{subnode['cluster']}$": f"{subnode['cluster']} {subnode['Stadt']}", + }, + regex=True, + ) + .set_index("Bus") + ) + n.add("Bus", buses.index, **buses) - # Keep only n largest district heating networks according to head parameter - subnodes_head = subnodes.sort_values( - by="Wärmeeinspeisung in GWh/a", ascending=False - ).head(head) - subnodes_head.to_file(snakemake.output.district_heating_subnodes, driver="GeoJSON") - subnodes_rest = subnodes[~subnodes.index.isin(subnodes_head.index)] +def add_loads( + n: pypsa.Network, + n_copy: pypsa.Network, + subnode: pd.Series, + name: str, + subnodes_head: gpd.GeoDataFrame, +) -> None: + """ + Add loads for a district heating subnode and adjust mother node loads. - n_copy = n.copy() + Parameters + ---------- + n : pypsa.Network + The PyPSA network object to which loads will be added. + n_copy : pypsa.Network + Copy of the original network. + subnode : pd.Series + Series containing data about the district heating subnode to be added. + name : str + Name prefix for the loads. + subnodes_head : gpd.GeoDataFrame + GeoDataFrame containing data about largest district heating systems. - # Add subnodes to network - for _, subnode in subnodes_head.iterrows(): - name = f"{subnode['cluster']} {subnode['Stadt']} urban central" - location = f"{subnode['cluster']} {subnode['Stadt']}" + Returns + ------- + None + """ + # Get heat loads for urban central heat and low-temperature heat for industry + urban_central_heat_load_cluster = ( + n_copy.snapshot_weightings.generators + @ n_copy.loads_t.p_set[f"{subnode['cluster']} urban central heat"] + ) + low_temperature_heat_for_industry_load_cluster = ( + n_copy.loads.loc[ + f"{subnode['cluster']} low-temperature heat for industry", "p_set" + ] + * 8760 + ) - # Add buses - buses = ( - n.buses.filter(like=f"{subnode['cluster']} urban central", axis=0) - .reset_index() - .replace( - { - f"{subnode['cluster']} urban central": name, - f"{subnode['cluster']}$": location, - }, - regex=True, - ) - .set_index("Bus") - ) - n.add("Bus", buses.index, **buses) + # Calculate share of low-temperature heat for industry in total district heating load of cluster + dh_load_cluster = ( + urban_central_heat_load_cluster + low_temperature_heat_for_industry_load_cluster + ) - # Get heat loads for urban central heat and low-temperature heat for industry - urban_central_heat_load_cluster = ( - n_copy.snapshot_weightings.generators - @ n_copy.loads_t.p_set[f"{subnode['cluster']} urban central heat"] + dh_load_cluster_subnodes = subnodes_head.loc[ + subnodes_head.cluster == subnode["cluster"], "yearly_heat_demand_MWh" + ].sum() + lost_load = dh_load_cluster_subnodes - dh_load_cluster + + # District heating demand from Fernwärmeatlas exceeding the original cluster load is disregarded. The shares of the subsystems are set according to Fernwärmeatlas, while the aggregate load of cluster is preserved. + if lost_load > 0: + logger.warning( + f"Aggregated district heating load of systems within {subnode['cluster']} exceeds load of cluster." + ) + demand_ratio = subnode["yearly_heat_demand_MWh"] / dh_load_cluster_subnodes + + urban_central_heat_load = demand_ratio * n_copy.loads_t.p_set.filter( + regex=f"{subnode['cluster']}.*urban central heat" + ).sum(1).rename(f"{subnode['cluster']} {subnode['Stadt']} urban central heat") + + low_temperature_heat_for_industry_load = ( + demand_ratio + * n_copy.loads.filter( + regex=f"{subnode['cluster']}.*low-temperature heat for industry", + axis=0, + )["p_set"].sum() ) - low_temperature_heat_for_industry_load_cluster = ( - n_copy.loads.loc[ + else: + # Calculate demand ratio between load of subnode according to Fernwärmeatlas and remaining load of assigned cluster + demand_ratio = subnode["yearly_heat_demand_MWh"] / dh_load_cluster + + urban_central_heat_load = demand_ratio * n_copy.loads_t.p_set[ + f"{subnode['cluster']} urban central heat" + ].rename(f"{subnode['cluster']} {subnode['Stadt']} urban central heat") + + low_temperature_heat_for_industry_load = ( + demand_ratio + * n_copy.loads.loc[ f"{subnode['cluster']} low-temperature heat for industry", "p_set" ] - * 8760 ) - # Calculate share of low-temperature heat for industry in total district heating load of cluster - dh_load_cluster = ( - urban_central_heat_load_cluster - + low_temperature_heat_for_industry_load_cluster - ) + # Add load components to subnode preserving the share of low-temperature heat for industry of the cluster + n.add( + "Load", + f"{name} heat", + bus=f"{name} heat", + p_set=urban_central_heat_load, + carrier="urban central heat", + ) - dh_load_cluster_subnodes = subnodes_head.loc[ - subnodes_head.cluster == subnode["cluster"], "yearly_heat_demand_MWh" - ].sum() - lost_load = dh_load_cluster_subnodes - dh_load_cluster + n.add( + "Load", + f"{subnode['cluster']} {subnode['Stadt']} low-temperature heat for industry", + bus=f"{name} heat", + p_set=low_temperature_heat_for_industry_load, + carrier="low-temperature heat for industry", + ) - # District heating demand from Fernwärmeatlas exceeding the original cluster load is disregarded. The shares of the subsystems are set according to Fernwärmeatlas, while the aggregate load of cluster is preserved. - if lost_load > 0: - logger.warning( - f"Aggregated district heating load of systems within {subnode['cluster']} exceeds load of cluster." - ) - demand_ratio = subnode["yearly_heat_demand_MWh"] / dh_load_cluster_subnodes + # Adjust loads of cluster buses + n.loads_t.p_set.loc[ + :, f'{subnode["cluster"]} urban central heat' + ] -= urban_central_heat_load - urban_central_heat_load = demand_ratio * n_copy.loads_t.p_set.filter( - regex=f"{subnode['cluster']}.*urban central heat" - ).sum(1).rename( - f"{subnode['cluster']} {subnode['Stadt']} urban central heat" - ) + n.loads.loc[ + f'{subnode["cluster"]} low-temperature heat for industry', "p_set" + ] -= low_temperature_heat_for_industry_load - low_temperature_heat_for_industry_load = ( - demand_ratio - * n_copy.loads.filter( - regex=f"{subnode['cluster']}.*low-temperature heat for industry", - axis=0, - )["p_set"].sum() - ) - else: - # Calculate demand ratio between load of subnode according to Fernwärmeatlas and remaining load of assigned cluster - demand_ratio = subnode["yearly_heat_demand_MWh"] / dh_load_cluster - - urban_central_heat_load = demand_ratio * n_copy.loads_t.p_set[ - f"{subnode['cluster']} urban central heat" - ].rename(f"{subnode['cluster']} {subnode['Stadt']} urban central heat") - - low_temperature_heat_for_industry_load = ( - demand_ratio - * n_copy.loads.loc[ - f"{subnode['cluster']} low-temperature heat for industry", "p_set" - ] - ) + if lost_load > 0: + lost_load_subnode = subnode["yearly_heat_demand_MWh"] - ( + n.snapshot_weightings.generators @ urban_central_heat_load + + low_temperature_heat_for_industry_load * 8760 + ) + logger.warning( + f"District heating load of {subnode['cluster']} {subnode['Stadt']} is reduced by {lost_load_subnode} MWh/a." + ) - # Add load components to subnode preserving the share of low-temperature heat for industry of the cluster - n.add( - "Load", - f"{name} heat", - bus=f"{name} heat", - p_set=urban_central_heat_load, - carrier="urban central heat", - location=f"{subnode['cluster']} {subnode['Stadt']}", + +def add_stores( + n: pypsa.Network, + subnode: pd.Series, + name: str, + subnodes_rest: gpd.GeoDataFrame, + dynamic_ptes_capacity: bool = False, + limit_ptes_potential_mother_nodes: bool = False, +) -> None: + """ + Add stores for a district heating subnode. + + Parameters + ---------- + n : pypsa.Network + The PyPSA network object to which stores will be added. + subnode : pd.Series + Series containing information about the district heating subnode. + name : str + Name prefix for the stores. + subnodes_rest : gpd.GeoDataFrame + GeoDataFrame containing information about remaining district heating subnodes. + dynamic_ptes_capacity : bool, optional + Whether to use dynamic PTES capacity, by default False + limit_ptes_potential_mother_nodes : bool, optional + Whether to limit PTES potential in mother nodes, by default False + + Returns + ------- + None + """ + # Replicate district heating stores of mother node for subnodes + stores = ( + n.stores.filter(like=f"{subnode['cluster']} urban central", axis=0) + .reset_index() + .replace( + {f"{subnode['cluster']} urban central": name}, + regex=True, ) + .set_index("Store") + ) + # Restrict PTES capacity in subnodes + stores.loc[stores.carrier.str.contains("pits$").index, "e_nom_max"] = subnode[ + "ptes_pot_mwh" + ] + + if dynamic_ptes_capacity: + e_max_pu_static = stores.e_max_pu + e_max_pu = ( + n.stores_t.e_max_pu[f"{subnode['cluster']} urban central water pits"] + .rename(f"{name} water pits") + .to_frame() + .reindex(columns=stores.index) + .fillna(e_max_pu_static) + ) n.add( - "Load", - f"{subnode['cluster']} {subnode['Stadt']} low-temperature heat for industry", - bus=f"{name} heat", - p_set=low_temperature_heat_for_industry_load, - carrier="low-temperature heat for industry", - location=f"{subnode['cluster']} {subnode['Stadt']}", + "Store", + stores.index, + e_max_pu=e_max_pu, + **stores.drop("e_max_pu", axis=1), ) + else: + n.add("Store", stores.index, **stores) + + # Limit storage potential in mother nodes + if limit_ptes_potential_mother_nodes: + mother_nodes_ptes_pot = subnodes_rest.groupby("cluster").ptes_pot_mwh.sum() - # Adjust loads of cluster buses - n.loads_t.p_set.loc[:, f"{subnode['cluster']} urban central heat"] -= ( - urban_central_heat_load + mother_nodes_ptes_pot.index = ( + mother_nodes_ptes_pot.index + " urban central water pits" ) + n.stores.loc[mother_nodes_ptes_pot.index, "e_nom_max"] = mother_nodes_ptes_pot - n.loads.loc[ - f"{subnode['cluster']} low-temperature heat for industry", "p_set" - ] -= low_temperature_heat_for_industry_load - if lost_load > 0: - lost_load_subnode = subnode["yearly_heat_demand_MWh"] - ( - n.snapshot_weightings.generators @ urban_central_heat_load - + low_temperature_heat_for_industry_load * 8760 - ) - logger.warning( - f"District heating load of {subnode['cluster']} {subnode['Stadt']} is reduced by {lost_load_subnode} MWh/a." - ) +def add_storage_units(n: pypsa.Network, subnode: pd.Series, name: str) -> None: + """ + Add storage units for a district heating subnode. - # Replicate district heating stores of mother node for subnodes - stores = ( - n.stores.filter(like=f"{subnode['cluster']} urban central", axis=0) - .reset_index() - .replace( - { - f"{subnode['cluster']} urban central": f"{subnode['cluster']} {subnode['Stadt']} urban central" - }, - regex=True, - ) - .set_index("Store") + Parameters + ---------- + n : pypsa.Network + The PyPSA network object to which storage units will be added. + subnode : pd.Series + Series containing information about the district heating subnode. + name : str + Name prefix for the storage units. + + Returns + ------- + None + """ + # Replicate district heating storage units of mother node for subnodes + storage_units = ( + n.storage_units.filter(like=f"{subnode['cluster']} urban central", axis=0) + .reset_index() + .replace( + {f"{subnode['cluster']} urban central": name}, + regex=True, ) + .set_index("StorageUnit") + ) - # Restrict PTES capacity in subnodes - stores.loc[stores.carrier.str.contains("pits$").index, "e_nom_max"] = subnode[ - "ptes_pot_mwh" - ] + n.add("StorageUnit", storage_units.index, **storage_units) - if dynamic_ptes_capacity: - e_max_pu_static = stores.e_max_pu - e_max_pu = ( - n.stores_t.e_max_pu[f"{subnode['cluster']} urban central water pits"] - .rename(f"{name} water pits") - .to_frame() - .reindex(columns=stores.index) - .fillna(e_max_pu_static) - ) - n.add( - "Store", - stores.index, - e_max_pu=e_max_pu, - **stores.drop("e_max_pu", axis=1), - ) - else: - n.add("Store", stores.index, **stores) - # Limit storage potential in mother nodes - if limit_ptes_potential_mother_nodes: - mother_nodes_ptes_pot = subnodes_rest.groupby("cluster").ptes_pot_mwh.sum() +def add_generators(n: pypsa.Network, subnode: pd.Series, name: str) -> None: + """ + Add generators for a district heating subnode. - mother_nodes_ptes_pot.index = ( - mother_nodes_ptes_pot.index + " urban central water pits" - ) - n.stores.loc[mother_nodes_ptes_pot.index, "e_nom_max"] = ( - mother_nodes_ptes_pot - ) + Parameters + ---------- + n : pypsa.Network + The PyPSA network object to which generators will be added. + subnode : pd.Series + Series containing information about the district heating subnode. + name : str + Name prefix for the generators. - # Replicate district heating storage units of mother node for subnodes - storage_units = ( - n.storage_units.filter(like=f"{subnode['cluster']} urban central", axis=0) - .reset_index() - .replace( - { - f"{subnode['cluster']} urban central": f"{subnode['cluster']} {subnode['Stadt']} urban central" - }, - regex=True, - ) - .set_index("StorageUnit") + Returns + ------- + None + """ + # Replicate district heating generators of mother node for subnodes + generators = ( + n.generators.filter(like=f"{subnode['cluster']} urban central", axis=0) + .reset_index() + .replace( + {f"{subnode['cluster']} urban central": name}, + regex=True, ) + .set_index("Generator") + ) + n.add("Generator", generators.index, **generators) - n.add("StorageUnit", storage_units.index, **storage_units) - # Replicate district heating generators of mother node for subnodes - generators = ( - n.generators.filter(like=f"{subnode['cluster']} urban central", axis=0) - .reset_index() - .replace( - { - f"{subnode['cluster']} urban central": f"{subnode['cluster']} {subnode['Stadt']} urban central" - }, - regex=True, +def add_links( + n: pypsa.Network, + subnode: pd.Series, + name: str, + cop: xr.DataArray, + direct_heat_source_utilisation_profile: xr.DataArray, + heat_pump_sources: List[str], + direct_utilisation_heat_sources: List[str], + time_dep_hp_cop: bool, + limited_heat_sources: List[str], + heat_source_potentials: Dict[str, str], +) -> None: + """ + Add links for a district heating subnode. + + Parameters + ---------- + n : pypsa.Network + The PyPSA network object to which links will be added. + subnode : pd.Series + Series containing information about the district heating subnode. + name : str + Name prefix for the links. + cop : xr.DataArray + COPs for heat pumps. + direct_heat_source_utilisation_profile : xr.DataArray + Direct heat source utilisation profiles. + heat_pump_sources : List[str] + List of heat pump sources. + direct_utilisation_heat_sources : List[str] + List of heat sources that can be directly utilized. + time_dep_hp_cop : bool + Whether to use time-dependent COPs for heat pumps. + limited_heat_sources : List[str] + List of heat sources with limited potential. + heat_source_potentials : Dict[str, str] + Dictionary mapping heat sources to paths with potential data. + + Returns + ------- + None + """ + # Replicate district heating links of mother node for subnodes with separate treatment for links with dynamic efficiencies + links = ( + n.links.loc[~n.links.carrier.str.contains("heat pump|direct", regex=True)] + .filter(like=f"{subnode['cluster']} urban central", axis=0) + .reset_index() + .replace( + {f"{subnode['cluster']} urban central": name}, + regex=True, + ) + .set_index("Link") + ) + n.add("Link", links.index, **links) + + # Add heat pumps and direct heat source utilization to subnode + for heat_source in heat_pump_sources: + cop_heat_pump = ( + cop.sel( + heat_system="urban central", + heat_source=heat_source, + name=f"{subnode['cluster']} {subnode['Stadt']}", ) - .set_index("Generator") + .to_pandas() + .to_frame(name=f"{name} {heat_source} heat pump") + .reindex(index=n.snapshots) + if time_dep_hp_cop + else n.links.filter(like=heat_source, axis=0).efficiency.mode() ) - n.add("Generator", generators.index, **generators) - # Replicate district heating links of mother node for subnodes with separate treatment for links with dynamic efficiencies - links = ( - n.links.loc[~n.links.carrier.str.contains("heat pump|direct", regex=True)] - .filter(like=f"{subnode['cluster']} urban central", axis=0) + heat_pump = ( + n.links.filter( + regex=f"{subnode['cluster']} urban central.*{heat_source}.*heat pump", + axis=0, + ) .reset_index() .replace( - { - f"{subnode['cluster']} urban central": f"{subnode['cluster']} {subnode['Stadt']} urban central" - }, + {f"{subnode['cluster']} urban central": name}, regex=True, ) + .drop(["efficiency", "efficiency2"], axis=1) .set_index("Link") ) - n.add("Link", links.index, **links) + if heat_pump["bus2"].str.match("$").any(): + n.add("Link", heat_pump.index, efficiency=cop_heat_pump, **heat_pump) + else: + n.add( + "Link", + heat_pump.index, + efficiency=-(cop_heat_pump - 1), + efficiency2=cop_heat_pump, + **heat_pump, + ) - # Add heat pumps and direct heat source utilization to subnode - for heat_source in snakemake.params.heat_pump_sources: - cop_heat_pump = ( - cop.sel( - heat_system="urban central", + if heat_source in direct_utilisation_heat_sources: + # Add direct heat source utilization to subnode + efficiency_direct_utilisation = ( + direct_heat_source_utilisation_profile.sel( heat_source=heat_source, name=f"{subnode['cluster']} {subnode['Stadt']}", ) .to_pandas() - .to_frame(name=f"{name} {heat_source} heat pump") + .to_frame(name=f"{name} {heat_source} heat direct utilisation") .reindex(index=n.snapshots) - if snakemake.params.sector["time_dep_hp_cop"] - else n.links.filter(like=heat_source, axis=0).efficiency.mode() ) - heat_pump = ( + direct_utilization = ( n.links.filter( - regex=f"{subnode['cluster']} urban central.*{heat_source}.*heat pump", + regex=f"{subnode['cluster']} urban central.*{heat_source}.*direct", axis=0, ) .reset_index() .replace( - { - f"{subnode['cluster']} urban central": f"{subnode['cluster']} {subnode['Stadt']} urban central" - }, + {f"{subnode['cluster']} urban central": name}, regex=True, ) - .drop(["efficiency", "efficiency2"], axis=1) .set_index("Link") + .drop("efficiency", axis=1) ) - if heat_pump["bus2"].str.match("$").any(): - n.add("Link", heat_pump.index, efficiency=cop_heat_pump, **heat_pump) - else: - n.add( - "Link", - heat_pump.index, - efficiency=-(cop_heat_pump - 1), - efficiency2=cop_heat_pump, - **heat_pump, - ) - if heat_source in snakemake.params.direct_utilisation_heat_sources: - # Add direct heat source utilization to subnode - efficiency_direct_utilisation = ( - direct_heat_source_utilisation_profile.sel( - heat_source=heat_source, - name=f"{subnode['cluster']} {subnode['Stadt']}", - ) - .to_pandas() - .to_frame(name=f"{name} {heat_source} heat direct utilisation") - .reindex(index=n.snapshots) - ) + n.add( + "Link", + direct_utilization.index, + efficiency=efficiency_direct_utilisation, + **direct_utilization, + ) - direct_utilization = ( - n.links.filter( - regex=f"{subnode['cluster']} urban central.*{heat_source}.*direct", - axis=0, - ) - .reset_index() - .replace( - { - f"{subnode['cluster']} urban central": f"{subnode['cluster']} {subnode['Stadt']} urban central" - }, - regex=True, - ) - .set_index("Link") - .drop("efficiency", axis=1) - ) + # Restrict heat source potential in subnodes + if heat_source in limited_heat_sources: + # get potential + p_max_source = pd.read_csv( + heat_source_potentials[heat_source], + index_col=0, + ).squeeze()[f"{subnode['cluster']} {subnode['Stadt']}"] + # add potential to generator + n.generators.loc[ + f"{subnode['cluster']} {subnode['Stadt']} urban central {heat_source} heat", + "p_nom_max", + ] = p_max_source - n.add( - "Link", - direct_utilization.index, - efficiency=efficiency_direct_utilisation, - **direct_utilization, - ) - # Restrict heat source potential in subnodes - if heat_source in snakemake.params.district_heating["limited_heat_sources"]: - # get potential - p_max_source = pd.read_csv( - snakemake.input[heat_source], - index_col=0, - ).squeeze()[f"{subnode['cluster']} {subnode['Stadt']}"] - # add potential to generator - n.generators.loc[ - f"{subnode['cluster']} {subnode['Stadt']} urban central {heat_source} heat", - "p_nom_max", - ] = p_max_source +def add_subnodes( + n: pypsa.Network, + subnodes: gpd.GeoDataFrame, + cop: xr.DataArray, + direct_heat_source_utilisation_profile: xr.DataArray, + head: int = 40, + dynamic_ptes_capacity: bool = False, + limit_ptes_potential_mother_nodes: bool = True, + heat_pump_sources: List[str] = None, + direct_utilisation_heat_sources: List[str] = None, + time_dep_hp_cop: bool = False, + limited_heat_sources: List[str] = None, + heat_source_potentials: Dict[str, str] = None, + output_path: str = None, +) -> None: + """ + Add largest district heating systems subnodes to the network. + They are initialized with: + - the total annual heat demand taken from the mother node, that is assigned to urban central heat and low-temperature heat for industry, + - the heat demand profiles taken from the mother node, + - the district heating investment options (stores, storage units, links, generators) from the mother node, + The district heating loads in the mother nodes are reduced accordingly. + Parameters + ---------- + n : pypsa.Network + The PyPSA network object to which subnodes will be added. + subnodes : gpd.GeoDataFrame + GeoDataFrame containing information about district heating subnodes. + cop : xr.DataArray + COPs for heat pumps. + direct_heat_source_utilisation_profile : xr.DataArray + Direct heat source utilisation profiles. + head : int + Number of largest district heating systems to be added as subnodes. + dynamic_ptes_capacity : bool + Whether to use dynamic PTES capacity. + limit_ptes_potential_mother_nodes : bool + Whether to limit PTES potential in mother nodes. + heat_pump_sources : List[str] + List of heat pump sources. + direct_utilisation_heat_sources : List[str] + List of heat sources that can be directly utilized. + time_dep_hp_cop : bool + Whether to use time-dependent COPs for heat pumps. + limited_heat_sources : List[str] + List of heat sources with limited potential. + heat_source_potentials : Dict[str, str] + Dictionary mapping heat sources to paths with potential data. + output_path : str + Path to save the subnodes_head GeoDataFrame. + Returns + ------- + None + """ + + # Keep only n largest district heating networks according to head parameter + subnodes_head = subnodes.sort_values( + by="Wärmeeinspeisung in GWh/a", ascending=False + ).head(head) + + if output_path: + subnodes_head.to_file(output_path, driver="GeoJSON") + + subnodes_rest = subnodes[~subnodes.index.isin(subnodes_head.index)] + + n_copy = n.copy() + + # Add subnodes to network + for _, subnode in subnodes_head.iterrows(): + name = f'{subnode["cluster"]} {subnode["Stadt"]} urban central' + + # Add different component types + add_buses(n, subnode, name) + add_loads(n, n_copy, subnode, name, subnodes_head) + add_stores( + n, + subnode, + name, + subnodes_rest, + dynamic_ptes_capacity, + limit_ptes_potential_mother_nodes, + ) + add_storage_units(n, subnode, name) + add_generators(n, subnode, name) + add_links( + n, + subnode, + name, + cop, + direct_heat_source_utilisation_profile, + heat_pump_sources, + direct_utilisation_heat_sources, + time_dep_hp_cop, + limited_heat_sources, + heat_source_potentials, + ) def extend_heating_distribution( @@ -457,6 +644,11 @@ def extend_heating_distribution( subnodes = gpd.read_file(snakemake.input.subnodes) + # Create a dictionary of heat source potentials for the limited heat sources + heat_source_potentials = {} + for source in snakemake.params.district_heating["limited_heat_sources"]: + heat_source_potentials[source] = snakemake.input[source] + add_subnodes( n, subnodes, @@ -471,6 +663,14 @@ def extend_heating_distribution( limit_ptes_potential_mother_nodes=snakemake.params.district_heating["subnodes"][ "limit_ptes_potential" ]["limit_mother_nodes"], + heat_pump_sources=snakemake.params.heat_pump_sources, + direct_utilisation_heat_sources=snakemake.params.district_heating[ + "direct_utilisation_heat_sources" + ], + time_dep_hp_cop=snakemake.params.sector["time_dep_hp_cop"], + limited_heat_sources=snakemake.params.district_heating["limited_heat_sources"], + heat_source_potentials=heat_source_potentials, + output_path=snakemake.output.district_heating_subnodes, ) if snakemake.wildcards.planning_horizons == str(snakemake.params["baseyear"]): From e5abe49518f58d8ea304f0f9a6425f2ec4f27a0a Mon Sep 17 00:00:00 2001 From: cpschau Date: Thu, 15 May 2025 16:54:37 +0200 Subject: [PATCH 659/669] doc: extended docstring of add_subnodes --- scripts/pypsa-de/add_district_heating_subnodes.py | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index 1c2ede266..b13d80949 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -466,12 +466,18 @@ def add_subnodes( output_path: str = None, ) -> None: """ - Add largest district heating systems subnodes to the network. + Add the largest district heating systems as subnodes to the network based on + their heat demand. For each subnode, create individual district heating components + from the corresponding mother node template, including heat sources, storage options, + and heat pumps. Adjust loads of original mother nodes to maintain the overall + energy balance. + They are initialized with: - the total annual heat demand taken from the mother node, that is assigned to urban central heat and low-temperature heat for industry, - the heat demand profiles taken from the mother node, - the district heating investment options (stores, storage units, links, generators) from the mother node, The district heating loads in the mother nodes are reduced accordingly. + Parameters ---------- n : pypsa.Network From 5bb701acf03efc1cbf57d56d3dfb1feaceb5ad64 Mon Sep 17 00:00:00 2001 From: cpschau Date: Mon, 23 Jun 2025 14:49:30 +0200 Subject: [PATCH 660/669] fix disabling of feature --- Snakefile | 2 +- rules/build_sector.smk | 8 ++++---- rules/solve_myopic.smk | 6 +++--- 3 files changed, 8 insertions(+), 8 deletions(-) diff --git a/Snakefile b/Snakefile index 2bdb9afdf..1969e5c28 100644 --- a/Snakefile +++ b/Snakefile @@ -590,7 +590,7 @@ rule build_existing_chp_de: regions=resources("regions_onshore_base_s_{clusters}.geojson"), district_heating_subnodes=( resources("district_heating_subnodes_base_s_{clusters}.geojson") - if config_provider("sector", "district_heating", "subnodes", "enable") + if config_provider("sector", "district_heating", "subnodes", "enable") == True else [] ), output: diff --git a/rules/build_sector.smk b/rules/build_sector.smk index 63c31f94f..18a1d500a 100755 --- a/rules/build_sector.smk +++ b/rules/build_sector.smk @@ -201,7 +201,7 @@ rule build_temperature_profiles: pop_layout=resources("pop_layout_total.nc"), regions_onshore=( resources("regions_onshore_base-extended_s_{clusters}.geojson") - if config_provider("sector", "district_heating", "subnodes", "enable") + if config_provider("sector", "district_heating", "subnodes", "enable") == True else resources("regions_onshore_base_s_{clusters}.geojson") ), cutout=lambda w: input_cutout( @@ -274,7 +274,7 @@ rule build_central_heating_temperature_profiles: temp_air_total=resources("temp_air_total_base_s_{clusters}.nc"), regions_onshore=( resources("regions_onshore_base-extended_s_{clusters}.geojson") - if config_provider("sector", "district_heating", "subnodes", "enable") + if config_provider("sector", "district_heating", "subnodes", "enable") == True else resources("regions_onshore_base_s_{clusters}.geojson") ), output: @@ -322,7 +322,7 @@ rule build_geothermal_heat_potential: isi_heat_potentials="data/isi_heat_utilisation_potentials.xlsx", regions_onshore=( resources("regions_onshore_base-restricted_s_{clusters}.geojson") - if config_provider("sector", "district_heating", "subnodes", "enable") + if config_provider("sector", "district_heating", "subnodes", "enable") == True else resources("regions_onshore_base_s_{clusters}.geojson") ), lau_regions="data/lau_regions.zip", @@ -369,7 +369,7 @@ rule build_cop_profiles: temp_air_total=resources("temp_air_total_base_s_{clusters}.nc"), regions_onshore=( resources("regions_onshore_base-extended_s_{clusters}.geojson") - if config_provider("sector", "district_heating", "subnodes", "enable") + if config_provider("sector", "district_heating", "subnodes", "enable") == True else resources("regions_onshore_base_s_{clusters}.geojson") ), output: diff --git a/rules/solve_myopic.smk b/rules/solve_myopic.smk index 4217aae9d..9e9bea8fb 100644 --- a/rules/solve_myopic.smk +++ b/rules/solve_myopic.smk @@ -19,7 +19,7 @@ rule add_existing_baseyear: resources( "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ) - if config_provider("sector", "district_heating", "subnodes", "enable") + if config_provider("sector", "district_heating", "subnodes", "enable") == True else resources( "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ) @@ -38,7 +38,7 @@ rule add_existing_baseyear: resources( "existing_heating_distribution_base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.csv" ) - if config_provider("sector", "district_heating", "subnodes", "enable") + if config_provider("sector", "district_heating", "subnodes", "enable") == True else resources( "existing_heating_distribution_base_s_{clusters}_{planning_horizons}.csv" ) @@ -102,7 +102,7 @@ rule add_brownfield: resources( "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ) - if config_provider("sector", "district_heating", "subnodes", "enable") + if config_provider("sector", "district_heating", "subnodes", "enable") == True else resources( "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ) From 77c16eb0ed9d04121929f15d912123179af99dfa Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 1 Jul 2025 15:04:19 +0200 Subject: [PATCH 661/669] get baseyear using config_provider --- Snakefile | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/Snakefile b/Snakefile index 1969e5c28..bee5597e6 100644 --- a/Snakefile +++ b/Snakefile @@ -385,8 +385,7 @@ rule prepare_district_heating_subnodes: "scripts/pypsa-de/prepare_district_heating_subnodes.py" -baseyear_value = config["scenario"]["planning_horizons"][0] - +baseyear_value = config_provider("scenario", "planning_horizons", 0) rule add_district_heating_subnodes: params: From 0101967dd72534c5db8243d6ba14171194610ed2 Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 1 Jul 2025 15:04:51 +0200 Subject: [PATCH 662/669] remove duplicated marginal cost for pit chargers --- config/config.default.yaml | 1 - 1 file changed, 1 deletion(-) diff --git a/config/config.default.yaml b/config/config.default.yaml index f5c47f555..130fedb10 100644 --- a/config/config.default.yaml +++ b/config/config.default.yaml @@ -889,7 +889,6 @@ costs: home battery storage: 0 water tank charger: 0.03 central water pit charger: 0.025 - central water pit charger: 0.025 emission_prices: enable: false co2: 0. From 02f47402ee389fa3d8ee138797484ebcd738871c Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 1 Jul 2025 15:05:18 +0200 Subject: [PATCH 663/669] declared variable for transmission bus --- scripts/add_existing_baseyear.py | 17 +++++++++++------ 1 file changed, 11 insertions(+), 6 deletions(-) diff --git a/scripts/add_existing_baseyear.py b/scripts/add_existing_baseyear.py index 9e8fb1473..855a8bac2 100644 --- a/scripts/add_existing_baseyear.py +++ b/scripts/add_existing_baseyear.py @@ -613,6 +613,8 @@ def add_chp_plants(n, grouping_years, costs, baseyear): n.links.loc[bus + suffix, "efficiency2"] = efficiency_heat.loc[bus] continue + # bus1 represents electricity transmission node + bus1 = " ".join(bus.split()[:2]) if generator != "urban central solid biomass CHP": # lignite CHPs are not in DEA database - use coal CHP parameters key = keys[generator] @@ -620,12 +622,13 @@ def add_chp_plants(n, grouping_years, costs, baseyear): bus0 = vars(spatial)[generator].nodes[0] else: bus0 = vars(spatial)[generator].df.loc[bus, "nodes"] + n.add( "Link", bus, suffix=f" urban central {generator} CHP-{grouping_year}", bus0=bus0, - bus1=" ".join(bus.split()[:2]), + bus1=bus1, bus2=bus + " urban central heat", bus3="co2 atmosphere", carrier=f"urban central {generator} CHP", @@ -647,8 +650,8 @@ def add_chp_plants(n, grouping_years, costs, baseyear): "Link", bus, suffix=f" urban {key}-{grouping_year}", - bus0=spatial.biomass.df.loc[" ".join(bus.split()[:2])]["nodes"], - bus1=" ".join(bus.split()[:2]), + bus0=spatial.biomass.df.loc[bus1]["nodes"], + bus1=bus1, bus2=bus + " urban central heat", carrier=generator, p_nom=p_nom[bus], @@ -688,6 +691,8 @@ def add_chp_plants(n, grouping_years, costs, baseyear): n.links.loc[bus + suffix, "p_nom"] = p_nom.loc[bus] continue + # bus1 represents electricity transmission node + bus1 = " ".join(bus.split()[:2]) # CHPs are represented as EOP if no urban central heat bus is available if f"{bus} urban central heat" in n.buses.index: bus2 = bus + " urban central heat" @@ -709,7 +714,7 @@ def add_chp_plants(n, grouping_years, costs, baseyear): bus, suffix=f" urban central {generator} CHP-{grouping_year}", bus0=bus0, - bus1=" ".join(bus.split()[:2]), + bus1=bus1, bus2=bus2, bus3="co2 atmosphere", carrier=f"urban central {generator} CHP", @@ -731,8 +736,8 @@ def add_chp_plants(n, grouping_years, costs, baseyear): "Link", p_nom.index, suffix=f" urban {key}-{grouping_year}", - bus0=spatial.biomass.df.loc[" ".join(bus.split()[:2])]["nodes"], - bus1=" ".join(bus.split()[:2]), + bus0=spatial.biomass.df.loc[bus1]["nodes"], + bus1=bus1, bus2=bus2, carrier=generator, p_nom=p_nom[bus] / costs.at[key, "efficiency"], From 8dc7f10aef3338525e7c8861425925eeec332108 Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 1 Jul 2025 15:06:03 +0200 Subject: [PATCH 664/669] added overnight costs for TES --- scripts/prepare_sector_network.py | 15 +++++++++++---- 1 file changed, 11 insertions(+), 4 deletions(-) diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index abac1d724..752c6ad40 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -3031,7 +3031,9 @@ def add_heat( # 1e3 converts from W/m^2 to MW/(1000m^2) = kW/m^2 solar_thermal = options["solar_cf_correction"] * solar_thermal / 1e3 - for heat_system in ( + for ( + heat_system + ) in ( HeatSystem ): # this loops through all heat systems defined in _entities.HeatSystem overdim_factor = options["overdimension_heat_generators"][ @@ -3300,6 +3302,10 @@ def add_heat( heat_system.central_or_decentral + " water tank storage", "capital_cost", ], + overnight_cost=costs.at[ + heat_system.central_or_decentral + " water tank storage", + "investment", + ], lifetime=costs.at[ heat_system.central_or_decentral + " water tank storage", "lifetime" ], @@ -3377,6 +3383,7 @@ def add_heat( carrier=f"{heat_system} water pits", standing_loss=1 - np.exp(-1 / 24 / tes_time_constant_days), capital_cost=costs.at["central water pit storage", "capital_cost"], + overnight_cost=costs.at["central water pit storage", "investment"], lifetime=costs.at["central water pit storage", "lifetime"], ) @@ -6011,9 +6018,9 @@ def add_enhanced_geothermal( * Nyears ) - assert (egs_potentials["capital_cost"] > 0).all(), ( - "Error in EGS cost, negative values found." - ) + assert ( + egs_potentials["capital_cost"] > 0 + ).all(), "Error in EGS cost, negative values found." orc_annuity = calculate_annuity(costs.at["organic rankine cycle", "lifetime"], dr) orc_capital_cost = (orc_annuity + FOM / (1 + FOM)) * orc_capex * Nyears From bd406394aeae8a1684c272387efec2d58a413ec9 Mon Sep 17 00:00:00 2001 From: cpschau Date: Tue, 1 Jul 2025 15:08:15 +0200 Subject: [PATCH 665/669] used min_dh_share from config, removed obsolete function for encoding, adjusted docstring & comments --- .../prepare_district_heating_subnodes.py | 40 +++++++------------ 1 file changed, 15 insertions(+), 25 deletions(-) diff --git a/scripts/pypsa-de/prepare_district_heating_subnodes.py b/scripts/pypsa-de/prepare_district_heating_subnodes.py index 3dc32facd..b10e93bae 100644 --- a/scripts/pypsa-de/prepare_district_heating_subnodes.py +++ b/scripts/pypsa-de/prepare_district_heating_subnodes.py @@ -54,24 +54,6 @@ def load_census_data(census_path: str) -> gpd.GeoDataFrame: return census -# Function to encode city names in UTF-8 -def encode_utf8(city_name: str) -> bytes: - """ - Encode a city name as a UTF-8 byte string. - - Parameters - ---------- - city_name : str - The name of the city to be encoded. - - Returns - ------- - bytes - The UTF-8 encoded byte string of the city name. - """ - return city_name.encode("utf-8") - - def get_chunked_raster( dataset_path: str, bounds: tuple[float, float, float, float], @@ -346,6 +328,7 @@ def process_district_heating_areas( def refine_dh_areas_from_census_data( subnodes: gpd.GeoDataFrame, census: gpd.GeoDataFrame, + min_dh_share: float, **processing_config: dict[str, any], ) -> gpd.GeoDataFrame: """ @@ -354,19 +337,23 @@ def refine_dh_areas_from_census_data( Parameters ---------- subnodes : gpd.GeoDataFrame - GeoDataFrame containing information about district heating subnodes. + GeoDataFrame containing information about district heating subnodes, including city and LAU shapes. census : gpd.GeoDataFrame GeoDataFrame containing census data about geographical distribution of heating systems. + min_dh_share : float + Minimum share of district heating required to include a raster cell of census data. + processing_config : dict[str, any] + Configuration parameters for processing district heating areas, including minimum area and buffer factor. Returns ------- gpd.GeoDataFrame - Updated GeoDataFrame with refined district heating areas. + Updated GeoDataFrame with refined district heating areas, processed and filtered based on census data. """ - # Keep rows where share of district heating is larger than 1% + # Keep rows where share of district heating is larger than the specified threshold census = census[ census["Fernheizung"].astype(int) / census["Insgesamt_Heizungsart"].astype(int) - > 0.01 + > min_dh_share ] # Add buffer, so tiles are 100x100m @@ -378,10 +365,10 @@ def refine_dh_areas_from_census_data( # Explode to single geometries census = census.explode().reset_index(drop=True) - # Assign to subnodes lau_regions + # Assign to subnodes LAU regions census = gpd.overlay(subnodes, census, how="intersection") - # Add lau_shape from subnodes to census + # Add LAU shapes from subnodes to census lau_shape_dict = dict(zip(subnodes["Stadt"], subnodes["lau_shape"])) census["lau_shape"] = census["Stadt"].map(lau_shape_dict) @@ -664,11 +651,14 @@ def extend_regions_onshore( # Parameters for processing of census data is read from config file. # Default values were chosen to yield district heating areas with high # geographic accordance to the ones publicly available e.g. Berlin, Hamburg. + min_dh_share = snakemake.params.district_heating["subnodes"]["census_areas"][ + "min_district_heating_share" + ] processing_config = snakemake.params.district_heating["subnodes"][ "census_areas" ]["processing"] subnodes = refine_dh_areas_from_census_data( - subnodes, census, **processing_config + subnodes, census, min_dh_share, **processing_config ) if snakemake.params.district_heating["subnodes"]["limit_ptes_potential"]["enable"]: From 11a0fff7690660795ece4935f5748972f44a534a Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 2 Jul 2025 16:50:59 +0200 Subject: [PATCH 666/669] remove commented lines with neglected CHP techs --- scripts/add_existing_baseyear.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/scripts/add_existing_baseyear.py b/scripts/add_existing_baseyear.py index 855a8bac2..e2302ae03 100644 --- a/scripts/add_existing_baseyear.py +++ b/scripts/add_existing_baseyear.py @@ -193,8 +193,6 @@ def add_power_capacities_installed_before_baseyear( "OCGT": "OCGT", "CCGT": "CCGT", "Bioenergy": "solid biomass", - # "Waste": "waste", - # "nicht biogener Abfall": "waste", } # If heat is considered, add CHPs in the add_heating_capacities function. From 946e6f1fd3c48294a99bdf1e58623c1daeff28f6 Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 2 Jul 2025 16:52:15 +0200 Subject: [PATCH 667/669] fix config provider usage --- Snakefile | 11 ++++++----- rules/build_sector.smk | 16 ++++++++-------- rules/solve_myopic.smk | 12 ++++++------ 3 files changed, 20 insertions(+), 19 deletions(-) diff --git a/Snakefile b/Snakefile index bee5597e6..104f1f12d 100644 --- a/Snakefile +++ b/Snakefile @@ -385,7 +385,8 @@ rule prepare_district_heating_subnodes: "scripts/pypsa-de/prepare_district_heating_subnodes.py" -baseyear_value = config_provider("scenario", "planning_horizons", 0) +def baseyear_value(wildcards): + return config_provider("scenario", "planning_horizons", 0)(wildcards) rule add_district_heating_subnodes: params: @@ -416,8 +417,8 @@ rule add_district_heating_subnodes: direct_heat_source_utilisation_profiles=resources( "direct_heat_source_utilisation_profiles_base_s_{clusters}_{planning_horizons}.nc" ), - existing_heating_distribution=resources( - f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value}.csv" + existing_heating_distribution=lambda w:resources( + f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value(w)}.csv" ), lau_regions="data/lau_regions.zip", output: @@ -587,9 +588,9 @@ rule build_existing_chp_de: keep_local=True, ), regions=resources("regions_onshore_base_s_{clusters}.geojson"), - district_heating_subnodes=( + district_heating_subnodes=lambda w: ( resources("district_heating_subnodes_base_s_{clusters}.geojson") - if config_provider("sector", "district_heating", "subnodes", "enable") == True + if config_provider("sector", "district_heating", "subnodes", "enable")(w) else [] ), output: diff --git a/rules/build_sector.smk b/rules/build_sector.smk index 18a1d500a..391e07b98 100755 --- a/rules/build_sector.smk +++ b/rules/build_sector.smk @@ -199,9 +199,9 @@ rule build_temperature_profiles: drop_leap_day=config_provider("enable", "drop_leap_day"), input: pop_layout=resources("pop_layout_total.nc"), - regions_onshore=( + regions_onshore=lambda w: ( resources("regions_onshore_base-extended_s_{clusters}.geojson") - if config_provider("sector", "district_heating", "subnodes", "enable") == True + if config_provider("sector", "district_heating", "subnodes", "enable")(w) else resources("regions_onshore_base_s_{clusters}.geojson") ), cutout=lambda w: input_cutout( @@ -272,9 +272,9 @@ rule build_central_heating_temperature_profiles: energy_totals_year=config_provider("energy", "energy_totals_year"), input: temp_air_total=resources("temp_air_total_base_s_{clusters}.nc"), - regions_onshore=( + regions_onshore=lambda w: ( resources("regions_onshore_base-extended_s_{clusters}.geojson") - if config_provider("sector", "district_heating", "subnodes", "enable") == True + if config_provider("sector", "district_heating", "subnodes", "enable")(w) else resources("regions_onshore_base_s_{clusters}.geojson") ), output: @@ -320,9 +320,9 @@ rule build_geothermal_heat_potential: ), input: isi_heat_potentials="data/isi_heat_utilisation_potentials.xlsx", - regions_onshore=( + regions_onshore=lambda w: ( resources("regions_onshore_base-restricted_s_{clusters}.geojson") - if config_provider("sector", "district_heating", "subnodes", "enable") == True + if config_provider("sector", "district_heating", "subnodes", "enable")(w) else resources("regions_onshore_base_s_{clusters}.geojson") ), lau_regions="data/lau_regions.zip", @@ -367,9 +367,9 @@ rule build_cop_profiles: ), temp_soil_total=resources("temp_soil_total_base_s_{clusters}.nc"), temp_air_total=resources("temp_air_total_base_s_{clusters}.nc"), - regions_onshore=( + regions_onshore=lambda w: ( resources("regions_onshore_base-extended_s_{clusters}.geojson") - if config_provider("sector", "district_heating", "subnodes", "enable") == True + if config_provider("sector", "district_heating", "subnodes", "enable")(w) else resources("regions_onshore_base_s_{clusters}.geojson") ), output: diff --git a/rules/solve_myopic.smk b/rules/solve_myopic.smk index 9e9bea8fb..1df6afeec 100644 --- a/rules/solve_myopic.smk +++ b/rules/solve_myopic.smk @@ -15,11 +15,11 @@ rule add_existing_baseyear: "sector", "district_heating", "subnodes", "enable" ), input: - network=( + network=lambda w: ( resources( "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ) - if config_provider("sector", "district_heating", "subnodes", "enable") == True + if config_provider("sector", "district_heating", "subnodes", "enable")(w) else resources( "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ) @@ -34,11 +34,11 @@ rule add_existing_baseyear: ) ), cop_profiles=resources("cop_profiles_base_s_{clusters}_{planning_horizons}.nc"), - existing_heating_distribution=( + existing_heating_distribution=lambda w: ( resources( "existing_heating_distribution_base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.csv" ) - if config_provider("sector", "district_heating", "subnodes", "enable") == True + if config_provider("sector", "district_heating", "subnodes", "enable")(w) else resources( "existing_heating_distribution_base_s_{clusters}_{planning_horizons}.csv" ) @@ -98,11 +98,11 @@ rule add_brownfield: unpack(input_profile_tech_brownfield), simplify_busmap=resources("busmap_base_s.csv"), cluster_busmap=resources("busmap_base_s_{clusters}.csv"), - network=( + network=lambda w: ( resources( "networks/base-extended_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ) - if config_provider("sector", "district_heating", "subnodes", "enable") == True + if config_provider("sector", "district_heating", "subnodes", "enable")(w) else resources( "networks/base_s_{clusters}_{opts}_{sector_opts}_{planning_horizons}.nc" ) From 3b64f8e85b85c31e0779f1a5c7bea650b87d853b Mon Sep 17 00:00:00 2001 From: cpschau Date: Wed, 2 Jul 2025 17:09:59 +0200 Subject: [PATCH 668/669] add check for load preservation --- .../pypsa-de/add_district_heating_subnodes.py | 28 +++++++++++++++++++ 1 file changed, 28 insertions(+) diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index b13d80949..4f0be5101 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -56,6 +56,28 @@ def add_buses(n: pypsa.Network, subnode: pd.Series, name: str) -> None: n.add("Bus", buses.index, **buses) +def get_district_heating_loads(n: pypsa.Network): + """ + Get the district heating loads from the network. + Parameters + ---------- + n : pypsa.Network + The PyPSA network object from which to extract district heating loads. + Returns + ------- + float + The total district heating load in MWh/a. + """ + return ( + n.snapshot_weightings.generators + @ n.loads_t.p_set.filter( + like=f"urban central heat", + ) + ).sum() + n.loads.filter(like=f"low-temperature heat for industry", axis=0)[ + "p_set" + ].sum() * 8760 + + def add_loads( n: pypsa.Network, n_copy: pypsa.Network, @@ -523,6 +545,7 @@ def add_subnodes( n_copy = n.copy() + dh_loads_before = get_district_heating_loads(n) # Add subnodes to network for _, subnode in subnodes_head.iterrows(): name = f'{subnode["cluster"]} {subnode["Stadt"]} urban central' @@ -552,6 +575,11 @@ def add_subnodes( limited_heat_sources, heat_source_potentials, ) + dh_loads_after = get_district_heating_loads(n) + # Check if the total district heating load is preserved + assert ( + dh_loads_before == dh_loads_after + ), "Total district heating load is not preserved after adding subnodes." def extend_heating_distribution( From bf23f046bf3f61c2af84889fb6842a54edf3383b Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Wed, 2 Jul 2025 15:12:47 +0000 Subject: [PATCH 669/669] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- Snakefile | 3 +- scripts/prepare_sector_network.py | 10 +++--- .../pypsa-de/add_district_heating_subnodes.py | 32 +++++++++---------- 3 files changed, 22 insertions(+), 23 deletions(-) diff --git a/Snakefile b/Snakefile index 104f1f12d..59fc95e0e 100644 --- a/Snakefile +++ b/Snakefile @@ -388,6 +388,7 @@ rule prepare_district_heating_subnodes: def baseyear_value(wildcards): return config_provider("scenario", "planning_horizons", 0)(wildcards) + rule add_district_heating_subnodes: params: district_heating=config_provider("sector", "district_heating"), @@ -417,7 +418,7 @@ rule add_district_heating_subnodes: direct_heat_source_utilisation_profiles=resources( "direct_heat_source_utilisation_profiles_base_s_{clusters}_{planning_horizons}.nc" ), - existing_heating_distribution=lambda w:resources( + existing_heating_distribution=lambda w: resources( f"existing_heating_distribution_base_s_{{clusters}}_{baseyear_value(w)}.csv" ), lau_regions="data/lau_regions.zip", diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 752c6ad40..9cbe86edb 100755 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -3031,9 +3031,7 @@ def add_heat( # 1e3 converts from W/m^2 to MW/(1000m^2) = kW/m^2 solar_thermal = options["solar_cf_correction"] * solar_thermal / 1e3 - for ( - heat_system - ) in ( + for heat_system in ( HeatSystem ): # this loops through all heat systems defined in _entities.HeatSystem overdim_factor = options["overdimension_heat_generators"][ @@ -6018,9 +6016,9 @@ def add_enhanced_geothermal( * Nyears ) - assert ( - egs_potentials["capital_cost"] > 0 - ).all(), "Error in EGS cost, negative values found." + assert (egs_potentials["capital_cost"] > 0).all(), ( + "Error in EGS cost, negative values found." + ) orc_annuity = calculate_annuity(costs.at["organic rankine cycle", "lifetime"], dr) orc_capital_cost = (orc_annuity + FOM / (1 + FOM)) * orc_capex * Nyears diff --git a/scripts/pypsa-de/add_district_heating_subnodes.py b/scripts/pypsa-de/add_district_heating_subnodes.py index 4f0be5101..ad083a6ef 100644 --- a/scripts/pypsa-de/add_district_heating_subnodes.py +++ b/scripts/pypsa-de/add_district_heating_subnodes.py @@ -4,15 +4,12 @@ import os import sys +from typing import Dict, List import geopandas as gpd import pandas as pd import pypsa import xarray as xr -from typing import Dict, List - -import os -import sys sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..")) @@ -59,10 +56,12 @@ def add_buses(n: pypsa.Network, subnode: pd.Series, name: str) -> None: def get_district_heating_loads(n: pypsa.Network): """ Get the district heating loads from the network. + Parameters ---------- n : pypsa.Network The PyPSA network object from which to extract district heating loads. + Returns ------- float @@ -71,9 +70,9 @@ def get_district_heating_loads(n: pypsa.Network): return ( n.snapshot_weightings.generators @ n.loads_t.p_set.filter( - like=f"urban central heat", + like="urban central heat", ) - ).sum() + n.loads.filter(like=f"low-temperature heat for industry", axis=0)[ + ).sum() + n.loads.filter(like="low-temperature heat for industry", axis=0)[ "p_set" ].sum() * 8760 @@ -178,13 +177,13 @@ def add_loads( ) # Adjust loads of cluster buses - n.loads_t.p_set.loc[ - :, f'{subnode["cluster"]} urban central heat' - ] -= urban_central_heat_load + n.loads_t.p_set.loc[:, f"{subnode['cluster']} urban central heat"] -= ( + urban_central_heat_load + ) - n.loads.loc[ - f'{subnode["cluster"]} low-temperature heat for industry', "p_set" - ] -= low_temperature_heat_for_industry_load + n.loads.loc[f"{subnode['cluster']} low-temperature heat for industry", "p_set"] -= ( + low_temperature_heat_for_industry_load + ) if lost_load > 0: lost_load_subnode = subnode["yearly_heat_demand_MWh"] - ( @@ -528,6 +527,7 @@ def add_subnodes( Dictionary mapping heat sources to paths with potential data. output_path : str Path to save the subnodes_head GeoDataFrame. + Returns ------- None @@ -548,7 +548,7 @@ def add_subnodes( dh_loads_before = get_district_heating_loads(n) # Add subnodes to network for _, subnode in subnodes_head.iterrows(): - name = f'{subnode["cluster"]} {subnode["Stadt"]} urban central' + name = f"{subnode['cluster']} {subnode['Stadt']} urban central" # Add different component types add_buses(n, subnode, name) @@ -577,9 +577,9 @@ def add_subnodes( ) dh_loads_after = get_district_heating_loads(n) # Check if the total district heating load is preserved - assert ( - dh_loads_before == dh_loads_after - ), "Total district heating load is not preserved after adding subnodes." + assert dh_loads_before == dh_loads_after, ( + "Total district heating load is not preserved after adding subnodes." + ) def extend_heating_distribution(